JP2009023262A - Transparent material and method for producing the same - Google Patents

Transparent material and method for producing the same Download PDF

Info

Publication number
JP2009023262A
JP2009023262A JP2007190063A JP2007190063A JP2009023262A JP 2009023262 A JP2009023262 A JP 2009023262A JP 2007190063 A JP2007190063 A JP 2007190063A JP 2007190063 A JP2007190063 A JP 2007190063A JP 2009023262 A JP2009023262 A JP 2009023262A
Authority
JP
Japan
Prior art keywords
thin film
transparent
refractive index
coating
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007190063A
Other languages
Japanese (ja)
Other versions
JP5187815B2 (en
Inventor
Masayuki Kamei
雅之 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007190063A priority Critical patent/JP5187815B2/en
Publication of JP2009023262A publication Critical patent/JP2009023262A/en
Application granted granted Critical
Publication of JP5187815B2 publication Critical patent/JP5187815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve various problems caused by a coating film formed on a transparent base material by paying attention to a difference in a refractive index between the base material and the coating film and eliminating the difference itself in the refractive index. <P>SOLUTION: The transparent material is characterized in that a functional thin film is made porous in such a manner that the apparent refractive index thereof is made substantially the same as that of the base material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガラス、プラスチックス等の透明な基材上に、薄膜を形成してなる透明材とその製造方法に関する。   The present invention relates to a transparent material formed by forming a thin film on a transparent substrate such as glass or plastics and a method for producing the same.

ガラス等透明基材表面に光触媒機能や防滴機能などを付与する試みは広く実施されており、一部実用にも供されている。このような場合はガラス等透明基材の表面に所望の機能を発揮する材料からからなるコーティング膜を形成することで表面に所望の機能を付与することが最も一般的である。このコーティング膜には十分高い光触媒活性はもちろんのことであるが、それに加えて透明基材の意匠性すなわち美観をそこなわないということも強く求められる。例えば、窓に用いる場合には可視光線に対する透過性とその均一性が必須となる。しかしながらコーティング膜を形成することにより著しく可視光線の透過の均一性をそこなってしまう場合が多い。これは透明基材の屈折率の値とコーティング膜の屈折率の値との間に差があるため透明基材/コーティング膜の界面において光の反射が発生しこれらの光線が繰り返し干渉することにより、膜厚の分布に従って虹色に不均一に着色して観測される現象による。これは身近には水溜りに薄く油等が被膜として形成された場合、水と油がお互いに透明であるにもかかわらず、可視光線に対する屈折率が水と油それぞれ異なるため上述の繰り返し干渉が発生し、水溜り表面に浮いた油が虹色に不均一に着色して観測されることと同じ現象である。この着色の不均一性は膜厚の分布に起因するため、不均一性を低減させるため膜厚を均一化することが必要であった。しかしながらコーティング膜は一般には100〜1000ナノメートルときわめて薄いため、その膜厚を厳密制御して均一に保つことは工程の厳密な制御、管理が必要な極めて難しいものであった。このためスパッタリングやゾルゲル法(湿式法)等の各種コーティング手法とも均一性の確保は非常な手間とコストがかかるものであった。   Attempts to impart a photocatalytic function, a drip-proof function, and the like to the surface of a transparent substrate such as glass have been widely practiced, and some have been put into practical use. In such a case, it is most common to impart a desired function to the surface by forming a coating film made of a material that exhibits a desired function on the surface of a transparent substrate such as glass. In addition to sufficiently high photocatalytic activity, this coating film is also strongly required not to detract from the design of the transparent substrate, that is, the appearance. For example, when used for windows, transparency to visible light and its uniformity are essential. However, in many cases, the formation of the coating film significantly reduces the uniformity of visible light transmission. This is because there is a difference between the refractive index value of the transparent substrate and the refractive index value of the coating film, so that reflection of light occurs at the transparent substrate / coating film interface, and these light beams repeatedly interfere with each other. This is due to a phenomenon observed by unevenly rainbow-colored according to the film thickness distribution. This is because when the oil or the like is formed as a thin film in a puddle, water and oil are transparent to each other, but the refractive index with respect to visible light is different for each of water and oil. This is the same phenomenon as the oil that is generated and floats on the surface of the puddle is observed in a non-uniform rainbow color. Since this non-uniform coloration is caused by the distribution of the film thickness, it was necessary to make the film thickness uniform in order to reduce the non-uniformity. However, since the coating film is generally very thin as 100 to 1000 nanometers, it is extremely difficult to strictly control and manage the process to keep the film thickness strictly controlled. For this reason, it has been very troublesome and costly to ensure uniformity in various coating methods such as sputtering and sol-gel method (wet method).

また均一性が確保された場合においてもコーティング膜の膜厚に応じて光の干渉が生じる結果、透明基材が着色したかのように観察される。しばしばこの着色現象そのものさえ意匠上好ましくないとされ、透明基材表面に形成されたコーティング膜には所望の機能を高く保ったままの状態で無色透明の外観を維持することが求められる。これを実現する試みとしてはコーティング膜の膜厚を100ナノメートル以下に抑えることにより、光の干渉が発生する波長を紫外線領域へ追いやることでガラスの着色を避けることが実施されている。しかしながらこの方法において採用可能な100ナノメートル以下という膜厚は所望の機能を十分に高く維持するには厚みが不足しているため、肝心の機能を十分に発現させることが極めて困難であり広く採用されるに至っていない。   Even when the uniformity is ensured, light interference occurs depending on the thickness of the coating film, and as a result, the transparent substrate is observed as if colored. Often, even this coloring phenomenon itself is unfavorable in design, and the coating film formed on the surface of the transparent substrate is required to maintain a colorless and transparent appearance while maintaining a desired function at a high level. As an attempt to realize this, glass is prevented from being colored by driving the wavelength at which light interference occurs to the ultraviolet region by limiting the thickness of the coating film to 100 nanometers or less. However, the film thickness of 100 nanometers or less that can be adopted in this method is insufficient to maintain the desired function sufficiently high, so it is extremely difficult to fully express the essential functions and is widely adopted. It has not been done.

本発明においては上述の各問題点に個別に対処するのではなく、すべての問題点の原点に戻り、すべての問題点の原因となっている基材とコーティング膜との間の屈折率の差に注目し、この屈折率の差そのものを解消することによって、上述のすべての問題点がすべて原理的に発生しないようなガラス等基材上に作成したコーティング膜およびその合理的で生産性に優れた作成方法を提供するものである。   In the present invention, instead of individually addressing each of the above-mentioned problems, it returns to the origin of all the problems, and the difference in refractive index between the substrate and the coating film that causes all the problems. By eliminating the difference in refractive index itself, the coating film created on a substrate such as glass and the like that does not cause all the above problems in principle, and its rational and excellent productivity It provides a creation method.

発明1の透明材は、機能薄膜の見かけの屈折率を前記基材の屈性率と実質同一とするように多孔質化されていることを特徴とする。   The transparent material of the invention 1 is characterized in that it is porous so that the apparent refractive index of the functional thin film is substantially the same as the refractive index of the substrate.

発明2は、発明1の透明材において、前記機能薄膜が、無機材料のナノ多孔体からなることを特徴とする。   Invention 2 is characterized in that, in the transparent material of Invention 1, the functional thin film is made of a nanoporous material of an inorganic material.

発明3は、発明2の透明材において、前記機能薄膜が、光触媒材からなることを特徴とする。   Invention 3 is the transparent material of Invention 2, wherein the functional thin film is made of a photocatalyst material.

発明4は、発明3の透明材において光触媒材は、二酸化チタンを主成分とすることを特徴とする。   Invention 4 is characterized in that in the transparent material of Invention 3, the photocatalyst material contains titanium dioxide as a main component.

発明5は、発明1から4のいずれかの透明材の製造方法であって、前記機能薄膜の構成元素を含む原料あるいはその溶液と少なくとも常温では固体又は液体であり前記薄膜構成材料よりも燃焼又は気化による消失温度が低い補助材とを所望の割合で混合分散する混合工程と、この混合分散材を前記基材の表面にコーティングして前駆膜を生成するコーティング工程と、この前駆膜付き基材を前記薄膜構成材料が消失せず、前記補助材が消失する温度に加熱して、前記基材表面に多孔質の膜状となった機能薄膜を生成する工程からなることを特徴とする。   Invention 5 is a method for producing a transparent material according to any one of Inventions 1 to 4, wherein the raw material containing the constituent elements of the functional thin film or a solution thereof and a solid or liquid at least at room temperature and combusted or more than the thin film constituent material A mixing step in which an auxiliary material having a low disappearance temperature due to vaporization is mixed and dispersed in a desired ratio, a coating step in which the mixed dispersion material is coated on the surface of the base material to form a precursor film, and the base material with the precursor film The thin film constituting material is heated to a temperature at which the auxiliary material disappears, and a functional thin film having a porous film shape is formed on the surface of the base material.

発明6は、発明5の透明材の製造方法において、前記補助材は、有機材料あるいはその溶液であり、前記薄膜構成材料は金属酸化物結晶体であることを特徴とする。   The invention 6 is the method for producing a transparent material according to the invention 5, wherein the auxiliary material is an organic material or a solution thereof, and the thin film constituent material is a metal oxide crystal.

発明7は、発明6の透明材の製造方法において、前記補助材は、糖類又はその水溶液であることを特徴とする。   Invention 7 is the method for producing a transparent material according to Invention 6, wherein the auxiliary material is a saccharide or an aqueous solution thereof.

発明8は、発明5から7の何れかの透明材の製造方法において、前記薄膜構成材料は、光触媒であることを特徴とする。   Invention 8 is the method for producing a transparent material according to any one of Inventions 5 to 7, wherein the thin film constituent material is a photocatalyst.

本発明は、コーティング膜の膜厚の均一化、および薄膜化によって「着色現象」および「着色の不均一性」を克服しようとするのではなく、透明基材とコーティング膜との間の屈折率の差そのものを解消することにより、可視光線の干渉そのものを原理的に発生しないようにしたものである。
通常ガラス等透明基材の屈折率の値は機能性コーティング膜の屈折率の値よりも低い値を示す場合が多い。両者の屈折率の値を同等にすることで、可視光線の干渉が発生しない状況を作るには基材の屈折率の値を上昇させる、あるいはコーティング膜の屈折率の値を下げる、の二つのアプローチが考えられる。しかしながら工業的には基材の選択の余地は小さい。 コーティング膜の屈折率は、それを構成する物質固有の値ではあるが、見かけの屈折率は材料の充填率すなわち空孔の多寡、あるいは大小などにより左右されることを見出し、多孔質化することにより緻密な材料よりは見かけの屈折率が低くなる。よってコーティング膜を多孔質化し、その充填率を自在に調整することを実現すればコーティング膜の屈折率の値と透明基材の屈折率の値とを見かけ上一致させることにより両者の界面における光の干渉を原理的に除去でき、「着色」およびその不均一性は発生しないことになる。
この原理に基づき、上記本発明を行ったものである。
The present invention does not attempt to overcome the “coloring phenomenon” and “coloration non-uniformity” by making the coating film uniform and thin, but the refractive index between the transparent substrate and the coating film. By eliminating the difference itself, visible light interference itself does not occur in principle.
Usually, the value of the refractive index of a transparent substrate such as glass is often lower than the value of the refractive index of the functional coating film. By making the refractive index values of both the same, in order to create a situation in which no visible light interference occurs, increase the refractive index value of the substrate or decrease the refractive index value of the coating film. An approach is conceivable. However, industrially, there is little room for selection of the substrate. Although the refractive index of the coating film is a value specific to the material constituting the coating film, it is found that the apparent refractive index depends on the filling rate of the material, that is, the number of pores, the size of the pores, etc. Thus, the apparent refractive index is lower than that of a dense material. Therefore, if the coating film is made porous and the filling rate can be freely adjusted, the light at the interface between the two is obtained by apparently matching the refractive index value of the coating film with the refractive index value of the transparent substrate. In principle, the above-mentioned interference can be removed, and “coloring” and its non-uniformity do not occur.
Based on this principle, the present invention is carried out.

また、本発明の透明材の製造方法では、発明5に示すとおりであり、その孔の微細化には、セラミックス等のコーティング膜の多孔質化を実現する方法として、薄膜の構成材料の元素を含む原料あるいはその溶液に、有機材料あるいはその溶液を補助剤として溶解/分散し、これを透明基材上へコーティングし、透明基材を熱処理する際に補助材が蒸気等となって失われることによりコーティング膜中に存在していた補助材の部分が空孔として残り、結果として多孔質コーティングが可能である。
より改良したものとして、発明7に示すように糖類を用いることとし、補助材の入手と薄膜構成材料の分散を容易にした。
Further, in the method for producing a transparent material of the present invention, as shown in the invention 5, the pores are miniaturized as a method for realizing a porous coating film such as ceramics by using an element of a constituent material of the thin film. Dissolve / disperse the organic material or its solution as an auxiliary agent in the raw material or its solution, coat it on the transparent base material, and lose the auxiliary material as vapor etc. when heat-treating the transparent base material As a result, the portion of the auxiliary material that was present in the coating film remains as pores, and as a result, porous coating is possible.
As a further improvement, saccharides were used as shown in Invention 7 to facilitate the acquisition of auxiliary materials and the dispersion of thin film constituent materials.

本発明において機能薄膜を多孔質化することは機能薄膜の密度(屈折率に対応)を下げる、すなわち可視光線に対する見かけの屈折率を下げる効果がある。この機能薄膜の可視光線に対する見かけの屈折率が透明基材の可視光線に対する屈折率に十分近い値まで達した場合には機能薄膜と透明基材の界面において屈折率の不連続性が消失し、このためこの屈折率の不連続性に起因する光の干渉そのものが原理的に抑制される効果がある。その結果、通常の機能薄膜の成膜にともなって観測されていた透明基材の着色現象およびその不均一性は原理的に発生しなくなる効果につながり、意匠性の問題は原理的な解消をみる。   In the present invention, making the functional thin film porous has the effect of lowering the density (corresponding to the refractive index) of the functional thin film, that is, reducing the apparent refractive index with respect to visible light. When the apparent refractive index for visible light of this functional thin film reaches a value sufficiently close to the refractive index for visible light of the transparent substrate, the discontinuity of the refractive index disappears at the interface between the functional thin film and the transparent substrate, For this reason, there is an effect that the light interference itself due to the discontinuity of the refractive index is suppressed in principle. As a result, the coloring phenomenon and the non-uniformity of the transparent substrate, which have been observed with the formation of the normal functional thin film, lead to the effect that it does not occur in principle, and the problem of designability is solved in principle. .

本発明8では、この機能薄膜の多孔質化を糖類を用いるという意表をついたプロセスで実現するが、この糖類を用いるプロセスには多様な効果が存在する。まず糖類は食品として非常に大量かつ安価に安定供給されており、原料への添加剤として用いることにより他の多孔質化プロセスと比較して著しいコスト削減効果を有している。また糖類は水を主成分とする原料溶液に「分散」するのではなく「溶解」するため凝集して均一な細孔分布を得られなくなりがちなミセル等を分散させた原料溶液等と比較して分散剤等を必要とせず安価、かつ凝集しないため作成される多孔質膜の細孔分布が極めて安定かつ原料溶液管理が極めて容易であり、良いところ尽くしと言ってよい。   In the present invention 8, the functional thin film is made porous by a process with the intention of using saccharides, and there are various effects in the process using saccharides. First, saccharides are stably supplied as a food in a very large amount and at a low cost, and have a significant cost reduction effect when used as an additive to raw materials compared to other porosification processes. Saccharides are not “dispersed” in the raw material solution containing water as a main component but are “dissolved”, so they are aggregated and compared with a raw material solution in which micelles or the like that tend to aggregate cannot be obtained are dispersed. Therefore, it does not require a dispersing agent or the like, is inexpensive, and does not agglomerate. Therefore, the pore distribution of the produced porous membrane is extremely stable and the raw material solution management is extremely easy, so that it can be said that it is exhausted.

また糖類の水への可溶解の範囲は極めて大きく、ppbの極めて希薄な状態から体積比で1対1程度以上(1ccの水に1立方センチメートル以上の糖類を溶解できる)の極めて濃厚な状態まで安定して制御できる。
しかも簡易な攪拌のみで容易に均一溶液が得られる。すなわち糖類を原料溶液に添加して多孔質機能薄膜の成膜を実施するプロセスは屈折率の制御範囲が広いことが特徴である。
In addition, the range of saccharides soluble in water is extremely large, stable from a very dilute state of ppb to a very dense state with a volume ratio of about 1: 1 or more (can dissolve saccharides of 1 cubic centimeter or more in 1 cc of water). Can be controlled.
Moreover, a uniform solution can be easily obtained by simple stirring. That is, the process of forming a porous functional thin film by adding saccharides to a raw material solution is characterized by a wide refractive index control range.

本発明では、基材の屈折率に十分近い値近傍まで作成される機能薄膜の屈折率を制御できなければ光の干渉による透明基材の着色およびその不均一性を克服できず用を成さない。ゆえにこの屈折率の制御範囲が十分広いことはプロセスにとって極めて有利である。
また本発明は糖類のた水溶液を塗布液として用いることができる。これは清浄ガラス表面が親水性であることから非常に塗布が容易になるという効果を有する。すなわち親水表面への水溶液塗布であるため、本発明で用いる原料水溶液は清浄ガラス表面に非常によくなじみ、薄く均一に広がった状態が安定、すなわち自然に薄く均一なコーティングが実現され、スピンコーティング等の強制的な均一化手段を省略する効果がある。このためただ浸すだけのディップ式コーティング法においても塗布むらや未塗布領域が発生しにくく、極めて容易に均一なナノメートルオーダーのコーティング膜を得ることができる。水溶液に溶解した糖類は焼成前はコーティング膜中にナノメートルオーダーで含有されており、加熱を開始した時点までは、コーティング膜を支える骨格のように働き、コーティング膜の形状維持や、均一な細孔分布とその大きさ形状を保つ効果がある。さらに加熱完了段階において結晶化完了温度付近で自動的に大気中に蒸気として脱離するので酸処理等による除去処理が不要になる。また糖類は主用途が食品であるため人畜無害、大気中へ蒸気として放出されても一切人体や環境への悪影響がなく、有害物を全く出さないことも特筆すべきであろう。
In the present invention, if the refractive index of the functional thin film formed to a value close to the refractive index of the base material cannot be controlled, the coloring of the transparent base material due to light interference and the unevenness thereof cannot be overcome. Absent. Therefore, a sufficiently wide control range of the refractive index is extremely advantageous for the process.
In the present invention, an aqueous solution of saccharides can be used as a coating solution. This has the effect that the surface of the clean glass is hydrophilic, so that application is very easy. That is, since the aqueous solution is applied to the hydrophilic surface, the raw material aqueous solution used in the present invention is very well adapted to the surface of the clean glass, and the thin and uniform state is stable, that is, a thin and uniform coating is realized naturally, such as spin coating. There is an effect of omitting the forced uniformizing means. For this reason, even in a dip coating method in which only immersion is performed, uneven coating and uncoated areas are hardly generated, and a uniform coating film of nanometer order can be obtained very easily. The saccharide dissolved in the aqueous solution is contained in the nanometer order in the coating film before firing, and until the heating starts, it works like a skeleton that supports the coating film, maintaining the shape of the coating film and uniform fineness. There is an effect of maintaining the pore distribution and its size and shape. Furthermore, since it is automatically desorbed as vapor into the atmosphere near the crystallization completion temperature at the heating completion stage, removal treatment by acid treatment or the like is not necessary. It should also be noted that saccharides are mainly used for food, so they are harmless to humans, have no adverse effects on the human body or the environment even if released into the atmosphere as vapors, and do not emit harmful substances at all.

本発明に用いられる透明基材として、各種のガラス、ポリカーボネート、ポリエチレン、アクリル、ポリイミド系、ポリ乳酸、オレフィン・マレイミド共重合体、フッ素樹脂等の耐熱性を有する透明樹脂からなる板状体を主な基材とするが、ガラスあるいは透明樹脂ブロックからなる花瓶や置物等も本発明の透明材に含むことができる。
また、機能薄膜を構成ずる材料としては、本来基材には存在しない機能を発現する材料であれば特に制限がないが、無機材料及び前記基材を構成するような耐熱性を有する有機材料の粉末が使用可能である。
無機材料として、チタン、亜鉛、インジウム、ガリウム、タンタル、ジルコニウム、ニオブ、バナジウム、鉄、銅、ニッケル、タングステン、モリブデン、鉄等の金属由来のナノ粒子、及びその酸化物の微細結晶体などの無機材料多孔体がその機能に基づき選択して使用可能である。
下記実施例では、酸化チタンのナノ結晶多孔体を薄膜構成材料として用いた例を示した。この機能性薄膜材料を作成する際の原料(以下実施例においては[(NH4)4[Ti2(C6H4O7)2(O2)2]・4H2O]水溶液:商品名NEW TAS FINE2%水溶液)としては作成をもくろむ機能性薄膜の構成元素を含むものであれば特に制限はないが、基材へのコーティングが容易であり、かつ多孔質化を実現するために用いる補助材の分散/溶解が容易である溶液等を用いることが工程を簡易にするため好ましい。しかしながら、酸化チタン粉末、チタン金属粉末、チタンイオンあるいはこれらを含む溶液等が適用可能である。
また機能性薄膜材料を作成する際の原料に混合する補助材としては以下実施例においては糖類(グラニュー糖)を用いた。しかし補助材は糖類に限定されるものではなく、機能性薄膜材料を作成する際の原料あるいはその溶液と混合が容易で良く分散/溶解し、作成をもくろむ機能性薄膜材料の機能発現に必要な熱処理温度よりも低い温度で気化若しくは燃焼して消失し、かつ機能性薄膜材料の機能発現を妨げないものであればよい。
例えば、非耐熱性の高分子である塩化ビニル、セルロース樹脂、スチレン等の樹脂やそのポリマー等の樹脂系材料、あるいは砂糖などの糖類、デンプン類などを、それぞれに適用する溶媒に溶解した、常温で液状のものを用いることができる。
As the transparent substrate used in the present invention, various glass, polycarbonate, polyethylene, acrylic, polyimide-based, polylactic acid, olefin / maleimide copolymer, plate-like bodies made of transparent resin having heat resistance such as fluororesin are mainly used. The transparent material of the present invention may include vases and figurines made of glass or transparent resin blocks.
In addition, the material constituting the functional thin film is not particularly limited as long as it is a material that expresses a function that does not originally exist in the base material, but an inorganic material and a heat-resistant organic material that constitutes the base material. Powder can be used.
Inorganic materials such as titanium, zinc, indium, gallium, tantalum, zirconium, niobium, vanadium, iron, copper, nickel, tungsten, molybdenum, iron-derived nanoparticles, and fine crystals of the oxide A material porous body can be selected and used based on its function.
In the following examples, an example in which a nanocrystalline porous body of titanium oxide was used as a thin film constituent material was shown. As a raw material for producing this functional thin film material (hereinafter referred to as [(NH4) 4 [Ti2 (C6H4O7) 2 (O2) 2] · 4H2O] aqueous solution: trade name NEW TAS FINE 2% aqueous solution) in the examples) There is no particular limitation as long as it contains the constituent elements of the functional thin film to be considered, but the solution is easy to coat on the substrate and easily disperse / dissolve the auxiliary material used to realize the porous structure. Etc. are preferable in order to simplify the process. However, titanium oxide powder, titanium metal powder, titanium ions, or a solution containing these can be applied.
In addition, in the following examples, saccharides (granulated sugar) were used as auxiliary materials to be mixed with the raw material when creating the functional thin film material. However, auxiliary materials are not limited to saccharides, and are necessary for the functional manifestation of functional thin film materials that are easy to mix and disperse / dissolve with the raw materials for the production of functional thin film materials or their solutions. Any material that vaporizes or burns at a temperature lower than the heat treatment temperature and disappears and does not hinder the functional expression of the functional thin film material may be used.
For example, a non-heat-resistant polymer such as vinyl chloride, cellulose resin, resin such as styrene, resin-based materials such as the polymer, saccharides such as sugar, starches, etc., dissolved in a solvent applied to each, The liquid can be used.

実施例および比較例Examples and comparative examples

窓ガラス等への応用を念頭においているため、ガラスの値段が著しく上昇するような高価な原料、材料を用いることは適切ではなく、また最近大型化が著しい建築用ガラスに光触媒コーティングを実施する必要があるため、スピンコーティングを必要とするようなコーティング液(原料)を採用することは非現実的でありディップコーティングでのコーティング膜形成を念頭に置く必要がある。清浄ガラス表面が親水性であることに着目し、コーティング膜がはじかれることなくガラス全体に形成されるよう、清浄ガラス表面となじみやすい水を主成分とするコーティング液を採用する。   It is not appropriate to use expensive raw materials and materials that significantly increase the price of glass because of its application to window glass, etc., and it is necessary to carry out photocatalytic coating on architectural glass, which has recently been increasing in size. Therefore, it is impractical to employ a coating liquid (raw material) that requires spin coating, and it is necessary to keep in mind the formation of a coating film by dip coating. Focusing on the fact that the surface of the clean glass is hydrophilic, a coating liquid mainly composed of water that is easily compatible with the surface of the clean glass is employed so that the coating film is formed on the entire glass without being repelled.

光触媒活性を示す材料として最も性能の高い物質は二酸化チタンであるため、本実施例においては水溶性のチタン原料[(NH4)4[Ti2(C6H4O7)2(O2)2]・4H2O]を水からなる溶液に溶解したものをコーティング液として採用した(商品名フルウチ化学:NEW TAS FINE Ti2%水溶液)。
また本実施例の要とも言える光触媒コーティング膜の多孔質化に用いる補助材として身近で安価な原料である砂糖類(ショ糖、グラニュー糖、ブドウ糖…など糖類全般を指す)特に市販のグラニュー糖を用いた。
Since titanium dioxide has the highest performance as a material exhibiting photocatalytic activity, water-soluble titanium raw material [(NH4) 4 [Ti2 (C6H4O7) 2 (O2) 2] · 4H2O] is removed from water in this embodiment. What was melt | dissolved in the solution which becomes this was employ | adopted as a coating liquid (brand name Furuuchi Chemical: NEW TAS FINE Ti2% aqueous solution).
Also, sugars (referring to all sugars such as sucrose, granulated sugar, glucose, etc.) that are familiar and inexpensive raw materials as auxiliary materials used to make the photocatalyst coating film porous, which can be said to be the main point of this example, especially commercially available granulated sugar Using.

一般にセラミックス等を多孔質化する場合は高分子ミセル等をコーティング液中に分散させる手法を採用することが多い。コーティング原料中の高分子ミセル等は光触媒セラミック薄膜の結晶化のための熱処理過程で分解・蒸発し、その結果光触媒セラミック薄膜中に空孔が形成され、多孔質化される。   In general, when a ceramic or the like is made porous, a technique of dispersing polymer micelles or the like in a coating solution is often employed. Polymer micelles and the like in the coating raw material are decomposed and evaporated in the heat treatment process for crystallization of the photocatalytic ceramic thin film, and as a result, pores are formed in the photocatalytic ceramic thin film and become porous.

しかしながら本実施例の砂糖類を用いる手法はミセル等を用いる方法と比較して以下の点が優れている。第1に砂糖は水に「分散」ではなく極めて安定かつ大量に「溶解」する。これは高分子ミセルを溶液に分散させたときに常に問題となってくる「凝集」が全く生じないことを示しており、コーティング液の主成分を水とし、これに多孔質化のために砂糖類を加えたものは多孔質材料を作成する際の極めて安定かつ扱いやすい原料を提供する。
この凝集せず安定した原料は極めて使い勝手の良い原料すなわち作成される多孔質光触媒活性膜の屈折率が原料溶液調整の際の砂糖類とチタン原料の比によって支配的に決まり、ミセルの分散状況やコーティングプロセスからの影響を全くといってよいほど受けない。またこの原料溶液は一度調整した後は均質性等の原料としての性能を特殊な保存環境を一切要求することなく長期にわたって容易に維持することができ、かつこの原料溶液の調整は「水に砂糖を溶解させる」という非常に容易で制御しやすいプロセスを経るのみであり、コストも低く抑えることが可能である。さらにこの原料溶液中で砂糖は溶液中の水分に溶解しているため分散しているだけのミセル等よりも微細で均一な空孔の分布が得られる。さらに砂糖は極めて大量に水を主成分とする溶液に溶解させることが可能であるために、多孔質化による屈折率の制御範囲がミセル等の分散を用いる場合等に比べて著しく広いことも極めて重要な長所である。
However, the method using sugars of this example is superior to the method using micelles as follows. First, sugar is not “dispersed” in water, but “dissolved” in a very stable and large amount. This indicates that there is no “aggregation” that is always a problem when polymer micelles are dispersed in a solution. The main component of the coating solution is water, and this is used to make it porous. Such a material provides a very stable and easy-to-handle raw material for making porous materials.
This agglomerated and stable raw material is an extremely easy-to-use raw material, i.e., the refractive index of the porous photocatalytic active film to be produced is determined mainly by the ratio of sugars and titanium raw material at the time of preparing the raw material solution. Not affected by the coating process at all. In addition, once this raw material solution is prepared, the performance as a raw material such as homogeneity can be easily maintained over a long period of time without requiring any special storage environment. It only goes through a very easy and controllable process of “dissolving” and the cost can be kept low. Furthermore, since sugar is dissolved in the water in the solution in this raw material solution, a finer and more uniform distribution of pores can be obtained than micelles or the like that are merely dispersed. Furthermore, because sugar can be dissolved in a very large amount of a solution containing water as a main component, the control range of the refractive index by making it porous is significantly wider than when using dispersion such as micelles. This is an important advantage.

本実施例ではNEW TAS FINE Ti2%水溶液2.5cc+純水2.5cc(合計5cc)に3グラムの割合でグラニュー糖を溶解したもの(実験No.2、3)を原料溶液として用い、形成される二酸化チタン薄膜を光触媒コーティングとして用いた。またグラニュー糖を加えないNEW TAS FINE Ti2%水溶液(実験No.1)を原料溶液として用いた場合を比較例として示した。
In this example, a product obtained by dissolving granulated sugar at a rate of 3 grams (Experiment No. 2 and 3) in 2.5 cc of NEW TAS FINE Ti 2% aqueous solution + 2.5 cc of pure water (total 5 cc) is used as a raw material solution. A titanium dioxide thin film was used as a photocatalytic coating. Moreover, the case where NEW TAS FINE Ti2% aqueous solution (experiment No. 1) which does not add granulated sugar was used as a raw material solution was shown as a comparative example.

実施例、比較例において異なるのは原料溶液であるNEW TAS FINE Ti2%水溶液に砂糖を加えたか、加えていないかのみの差であり、他の条件は一切同一である。また本実施例においてはNEW TAS FINE Ti2%水溶液を採用したが、水溶性のチタン原料であれば本発明を適用することが可能であり、特にNEW TAS FINE Ti水溶液に限定するものではない。   The difference between the examples and the comparative examples is the difference in whether or not sugar is added to the NEW TAS FINE Ti 2% aqueous solution as the raw material solution, and other conditions are the same. In this embodiment, a NEW TAS FINE Ti 2% aqueous solution is used. However, the present invention can be applied to any water-soluble titanium raw material, and is not particularly limited to a NEW TAS FINE Ti aqueous solution.

コーティングを形成する基材としてはガラス板(屈折率1.7程度)を用い、コーティングの工程はディップコーティングすなわちガラス板をコーティング溶液に浸した後引き上げるのみの最も簡便な方法を用いた。(大面積の建築用のガラス等においてはスピンコーティング等が適用できないためディップコーティングにおいて要求される意匠性すなわち着色の有無やその均一性)を満足できることがコーティング原料溶液に求められる重要な因子である。)コーティング後、大気中で30分程度乾燥させた後、同じく大気雰囲気の電気炉中で450℃、3時間の熱処理を施した。   A glass plate (having a refractive index of about 1.7) was used as a base material for forming the coating, and the coating process was carried out using the simplest method of dip coating, that is, simply dipping the glass plate in a coating solution and then pulling it up. (Since glass coating for large areas cannot be applied with spin coating, etc., it is an important factor required for the coating raw material solution to satisfy the designability required for dip coating, that is, the presence or absence of coloring and its uniformity). . ) After coating, it was dried in the air for about 30 minutes, and then heat-treated at 450 ° C. for 3 hours in an electric furnace in the same air atmosphere.

実施例および比較例それぞれガラス上に光触媒活性を有するコーティング膜の形成が確認された。光触媒活性の測定は銀イオンの光還元によりコーティング膜上に形成される銀の薄膜を透過率の測定によって検出する手法(特願2005−020195:光触媒の活性度評価・測定法とそのための装置)を採用して評価し、結果を図1に示す。   Formation of a coating film having photocatalytic activity was confirmed on each of the examples and comparative examples. Measurement of photocatalytic activity is a method of detecting a silver thin film formed on a coating film by photoreduction of silver ions by measuring transmittance (Japanese Patent Application No. 2005-020195: Photocatalytic activity evaluation and measurement method and apparatus therefor) Figure 1 shows the results.

図1に実施例、比較例それぞれの光触媒効果による銀薄膜の析出により時間の経過と共に試料の透過率が低下する様子がはっきりと観測され、両試料とも良好な光触媒活性を有するコーティング膜がガラス板表面に形成されていることが確認できる。このように実施例、比較例ともに光触媒活性は同等の優れた活性を示しているが、それぞれの試料の光学的な特性ははっきり異なって観測される。   In FIG. 1, it is clearly observed that the transmittance of the sample decreases with time due to the deposition of the silver thin film by the photocatalytic effect of each of the example and the comparative example. It can be confirmed that it is formed on the surface. As described above, the photocatalytic activity of both the example and the comparative example shows the same excellent activity, but the optical characteristics of the respective samples are clearly observed.

まず本発明の目的である光の干渉に起因する着色効果の除去であるが、多孔質化のための原料への砂糖の導入を行っていない比較例の場合、はっきりと緑色から青色等、コーティング膜の膜厚分布に従って不均一な模様で着色が観測される。これはコーティング膜とガラスとの界面にはっきりとした屈折率の不連続な界面があることを示唆しており、この着色の不均一性は窓ガラス等意匠性の高い用途に対しては致命的な欠点となる。しかしがなら実施例の場合、着色は認められず、コーティングを施していないガラス板とほとんど変わらない外観をしめしている。これはすなわち原料に導入した砂糖の効果により光触媒コーティング膜が多孔質化され、その結果光触媒コーティング膜とガラスの間の屈折率の差がほとんど解消されたことを意味している。すなわち着色およびその不均一性の原因となる光触媒コーティング膜とガラスの間の屈折率の差そのものを解消するという本発明の目的が達成された。   First, the purpose of the present invention is to remove the coloring effect due to the interference of light, but in the case of a comparative example in which sugar is not introduced into the raw material for porous formation, the coating is clearly green to blue, etc. Coloring is observed in a non-uniform pattern according to the film thickness distribution. This suggests that there is a distinct discontinuous interface of refractive index at the interface between the coating film and the glass, and this uneven coloring is fatal for high-design applications such as window glass. It becomes a serious drawback. However, in the case of the examples, coloring is not recognized, and the appearance is almost the same as that of a glass plate not coated. This means that the photocatalyst coating film is made porous by the effect of sugar introduced into the raw material, and as a result, the difference in refractive index between the photocatalyst coating film and glass is almost eliminated. In other words, the object of the present invention was achieved to eliminate the difference in refractive index between the photocatalyst coating film and the glass, which causes coloring and non-uniformity.

実施例の光触媒コーティングガラスは窓ガラスとして使用する際の意匠性もコーティングを施していないガラスと同等であるため極めて優れている。上記のように目視によってはっきりと本発明の適用による光の干渉による着色およびその不均一性の除去が実現されていることがわかるが、より客観的で定量的な評価のために光の干渉を用いた膜厚および屈折率測定(FILMETRICS製F−20使用)を比較例、実施例各試料に対して実施した。   The photocatalyst-coated glass of the example is extremely excellent because the design property when used as a window glass is the same as that of the glass not coated. As described above, it can be clearly seen that the application of the present invention clearly realizes coloring and non-uniformity removal by the application of the present invention. However, for more objective and quantitative evaluation, the light interference is reduced. The used film thickness and refractive index measurement (using F-20 by FILMETRICS) were performed on each sample of the comparative example and the example.

比較例の試料に関しては明瞭な光の干渉が観測され、平均膜厚83ナノメートル、屈折率2.6程度の光触媒コーティング膜がガラス基板上に形成されていることが光干渉の解析によって明らかになった。屈折率の値2.6はルチル構造の二酸化チタン材料の値とよく一致し、平均膜厚83ナノメートルのルチル構造の二酸化チタン膜がガラス基板上に形成されたことをしめしている。   Clear light interference was observed for the sample of the comparative example, and it was revealed by optical interference analysis that a photocatalyst coating film having an average film thickness of 83 nanometers and a refractive index of about 2.6 was formed on the glass substrate. became. The refractive index value 2.6 is in good agreement with the value of the rutile titanium dioxide material, indicating that a rutile titanium dioxide film having an average film thickness of 83 nanometers was formed on the glass substrate.

しかしながら実施例においては光の干渉が観測されず、このため光の干渉を基にした平均膜厚および屈折率の決定はできなかった。これは実施例における光触媒二酸化チタン膜が多孔質化されることによりみかけの屈折率がルチル構造の二酸化チタン材料本来の値2.6から低下し、ガラスの屈折率1.7程度近傍に近づいたことをしめしている。このため光の干渉に必要なコーティング膜/ガラス界面における屈折率の不連続性が小さくなり、観測可能なレベルの光の干渉が存在しないことをしめしており、目視による着色現象の消失と非常に良く対応する。このように非常に簡易で安価な砂糖を原料水溶液に混合するプロセスだけで、多孔質化によるコーティング膜の屈折率制御が実現され、これによってガラス上のコーティング膜の着色現象を解消することができた。   However, in the examples, no light interference was observed, and therefore the average film thickness and refractive index could not be determined based on the light interference. This is because the photocatalytic titanium dioxide film in the example is made porous so that the apparent refractive index decreases from the original value 2.6 of the rutile-structured titanium dioxide material, and approaches the refractive index of glass around 1.7. I'm telling you. For this reason, the discontinuity of the refractive index at the coating film / glass interface necessary for light interference is reduced, indicating that there is no observable level of light interference. Corresponds well. In this way, the refractive index control of the coating film by making it porous is realized only by the process of mixing very simple and inexpensive sugar into the raw material aqueous solution, which can eliminate the coloring phenomenon of the coating film on the glass. It was.

銀イオンの光還元により測定した光触媒活性膜(1)実施例(実線)および(2)比較例(点線)の光触媒活性測定結果を示すグラフ。The graph which shows the photocatalytic activity measurement result of the photocatalytic active film | membrane measured by the photoreduction of silver ion (1) Example (solid line) and (2) Comparative example (dotted line).

Claims (8)

ガラス、プラスチックス等の透明な基材上に、所望の機能を発現する機能薄膜が設けられている透明材であって、前記機能薄膜の見かけの屈折率を前記基材の屈性率と実質同一とするように多孔質化されていることを特徴とする。   A transparent material in which a functional thin film expressing a desired function is provided on a transparent base material such as glass or plastics, and the apparent refractive index of the functional thin film is substantially equal to the refractive index of the base material. It is characterized by being made porous so as to be the same. 請求項1に記載の透明材において、前記機能薄膜が、無機材料のナノ多孔体からなることを特徴とする。   The transparent material according to claim 1, wherein the functional thin film is made of a nanoporous material of an inorganic material. 請求項2に記載の透明材において、前記機能薄膜が、光触媒材からなることを特徴とする。   3. The transparent material according to claim 2, wherein the functional thin film is made of a photocatalytic material. 請求項3に記載の透明材において光触媒材は、二酸化チタンを主成分とすることを特徴とする。   The transparent material according to claim 3, wherein the photocatalyst material contains titanium dioxide as a main component. 請求項1から4のいずれかに記載の透明材の製造方法であって、前記機能薄膜の構成元素を含む原料あるいはその溶液と少なくとも常温では固体又は液体であり前記薄膜構成材料よりも燃焼又は気化による消失温度が低い補助材とを所望の割合で混合分散(分散は溶解を含むものとする)する混合工程と、この混合分散材を前記基材の表面にコーティングして前駆膜を生成するコーティング工程と、この前駆膜付き基材を前記薄膜構成材料が消失せず、前記補助材が消失する温度に加熱して、前記基材表面に多孔質の膜状となった機能薄膜を生成する工程からなることを特徴とする透明材の製造方法。   The method for producing a transparent material according to any one of claims 1 to 4, wherein the raw material containing the constituent elements of the functional thin film or a solution thereof and a solid or liquid at least at a normal temperature, are combusted or vaporized more than the thin film constituent material. A mixing step of mixing and dispersing the auxiliary material having a low disappearance temperature by a desired ratio (dispersion includes dissolution), and a coating step of coating the surface of the base material to form a precursor film. And heating the base material with the precursor film to a temperature at which the auxiliary material disappears without the thin film constituent material disappearing to form a porous functional thin film on the surface of the base material. A method for producing a transparent material. 請求項5に記載の透明材の製造方法において、前記補助材は、有機材料あるいはその溶液であり、前記薄膜構成材料は金属酸化物結晶体であることを特徴とする透明材の製造方法。   6. The method for producing a transparent material according to claim 5, wherein the auxiliary material is an organic material or a solution thereof, and the thin film constituent material is a metal oxide crystal. 請求項6に記載の透明材の製造方法において、前記補助材は、糖類又はその水溶液であることを特徴とする。   The method for producing a transparent material according to claim 6, wherein the auxiliary material is a saccharide or an aqueous solution thereof. 請求項5から7の何れかに記載の透明材の製造方法において、前記薄膜構成材料は、光触媒であることを特徴とする。   8. The method for producing a transparent material according to claim 5, wherein the thin film constituent material is a photocatalyst.
JP2007190063A 2007-07-20 2007-07-20 Transparent material and its manufacturing method Expired - Fee Related JP5187815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190063A JP5187815B2 (en) 2007-07-20 2007-07-20 Transparent material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190063A JP5187815B2 (en) 2007-07-20 2007-07-20 Transparent material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2009023262A true JP2009023262A (en) 2009-02-05
JP5187815B2 JP5187815B2 (en) 2013-04-24

Family

ID=40395560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190063A Expired - Fee Related JP5187815B2 (en) 2007-07-20 2007-07-20 Transparent material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5187815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255625A (en) * 2010-06-11 2011-12-22 National Institute For Materials Science Transparent material and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143292A (en) * 1998-11-06 2000-05-23 Central Glass Co Ltd Porous photo-catalyst film coating glass and its coating method
WO2007034843A1 (en) * 2005-09-20 2007-03-29 National Institute For Materials Science Porous base, method of producing the same and method of using the porous base
JP2007098315A (en) * 2005-10-06 2007-04-19 Shizuoka Prefecture Method for producing porous film of titanium oxide photocatalyst and filter having the film imparted thereon
JP2007131714A (en) * 2005-11-09 2007-05-31 Fuso Chemical Co Ltd Composition for film forming, cured film composed of cured product of the same and method for producing the same
JP2007241177A (en) * 2006-03-13 2007-09-20 Nissan Motor Co Ltd Antireflection structure and structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143292A (en) * 1998-11-06 2000-05-23 Central Glass Co Ltd Porous photo-catalyst film coating glass and its coating method
WO2007034843A1 (en) * 2005-09-20 2007-03-29 National Institute For Materials Science Porous base, method of producing the same and method of using the porous base
JP2007098315A (en) * 2005-10-06 2007-04-19 Shizuoka Prefecture Method for producing porous film of titanium oxide photocatalyst and filter having the film imparted thereon
JP2007131714A (en) * 2005-11-09 2007-05-31 Fuso Chemical Co Ltd Composition for film forming, cured film composed of cured product of the same and method for producing the same
JP2007241177A (en) * 2006-03-13 2007-09-20 Nissan Motor Co Ltd Antireflection structure and structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255625A (en) * 2010-06-11 2011-12-22 National Institute For Materials Science Transparent material and production method thereof

Also Published As

Publication number Publication date
JP5187815B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
Wang et al. Structural coloration pigments based on carbon modified ZnS@ SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability
Phillips et al. Nanocrystalline Precursors for the Co‐Assembly of Crack‐Free Metal Oxide Inverse Opals
Slistan-Grijalva et al. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol
Gu et al. Patterning of a colloidal crystal film on a modified hydrophilic and hydrophobic surface
RU2737088C2 (en) Control of optical properties and structural stability of photon structures using ionic particles
JP5066105B2 (en) Method for producing Prussian blue coating film for electrochromic device
KR100889454B1 (en) Electrochromic device having complex-type electrochromic layer and method for preparing thereof
JP2019513669A (en) Co-assembly to form high quality titania, alumina and other metal oxide template materials
JP2013512178A (en) Surface structuring method by ion beam etching, structured surface and utilization
JP6050119B2 (en) Surface structuring method by reactive ion etching
TW201825181A (en) Photocatalytic material and photocatalytic coating composition
CN103787586A (en) Self-cleaning hydrophilic composite material and preparation method thereof
JP2013501248A (en) Method for making an anti-reflective coating
JP5187815B2 (en) Transparent material and its manufacturing method
AU2003260901A1 (en) Process to produce solutions to be used as coating in photo-catalytic and transparent films
JP6681831B2 (en) Method for producing a patterned metal coating
Goodman et al. Enabling New Classes of Templated Materials through Mesoporous Carbon Colloidal Crystals
US20090047512A1 (en) Dispersed metal nanoparticles in polymer films
Hsu et al. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films
Zhu et al. Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions
WO2014013708A1 (en) Method for producing hollow particles, hollow particle, antireflection coating, and optical element
Alzamani et al. Sol–gel synthesis of TiO 2 nanostructured film on SiO 2 pre-coated glass with a comparative study of solvent effect on the film properties
JP6695417B2 (en) Photocatalyst structure and manufacturing method thereof
KR102618176B1 (en) Infrared absorbing material particulate dispersion and method for producing the same
Rusek et al. Composite TiO2 films modified by CeO2 and SiO2 for the photocatalytic removal of water pollutants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees