JP2009022877A - Adsorbent for phosphorus and method for removing phosphorus - Google Patents

Adsorbent for phosphorus and method for removing phosphorus Download PDF

Info

Publication number
JP2009022877A
JP2009022877A JP2007188239A JP2007188239A JP2009022877A JP 2009022877 A JP2009022877 A JP 2009022877A JP 2007188239 A JP2007188239 A JP 2007188239A JP 2007188239 A JP2007188239 A JP 2007188239A JP 2009022877 A JP2009022877 A JP 2009022877A
Authority
JP
Japan
Prior art keywords
phosphorus
adsorbent
liquid
carrier
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188239A
Other languages
Japanese (ja)
Other versions
JP4857417B2 (en
Inventor
Katsutoshi Inoue
勝利 井上
Biplob Kumar Biswas
クマール ビスワス,ビプローブ
Hiroyuki Harada
浩幸 原田
Keisuke Owatari
啓介 大渡
Hidetaka Kawakita
英孝 川喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Original Assignee
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC filed Critical Saga University NUC
Priority to JP2007188239A priority Critical patent/JP4857417B2/en
Publication of JP2009022877A publication Critical patent/JP2009022877A/en
Application granted granted Critical
Publication of JP4857417B2 publication Critical patent/JP4857417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent for phosphorus capable of being re-used by selectively dissolving the adsorbed phosphorus and being sufficiently used even at neutrality, and a method for removing phosphorus from a liquid to be treated using the adsorbent. <P>SOLUTION: A capacity of the liquid to be removed is determined and a concentration of phosphorus contained in the liquid to be removed is determined by a measurement value or an estimated value. Based on the results, an addition amount of the adsorbent in which zirconium is bonded to a carrier containing pectinic acid as a main component is determined. The adsorbent in the obtained addition amount is thrown into the liquid to be removed and the mixture is stirred for 10 hours or more to adsorb phosphorus (phosphoric acid) in the liquid to be removed to the adsorbent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リンが環境中へ放出されることを防止すべく、生活排水又は家畜のし尿等の被除去液中に含まれるリンを吸着させる吸着剤、及び該吸着剤を用いて被除去液からリンを除去する方法に関する。   The present invention relates to an adsorbent that adsorbs phosphorus contained in a liquid to be removed, such as domestic wastewater or livestock excreta, and a liquid to be removed using the adsorbent in order to prevent phosphorus from being released into the environment. The present invention relates to a method for removing phosphorus from water.

生活排水又は家畜のし尿等のリン(リン酸)を含有する被除去液は、リンを含有したまま環境中へ放出された場合、環境破壊に繋がる富栄養化をもたらすため、費用を可及的に要することなくリンを除去することが要求されている。
ところで、本発明者らは、後記する特許文献1に次のような吸着剤を開示している。
Liquids containing phosphorus (phosphoric acid) such as domestic wastewater or livestock excreta, when released into the environment while containing phosphorus, will lead to eutrophication that leads to environmental destruction, so the cost can be minimized Therefore, it is required to remove phosphorus without requiring it.
By the way, the present inventors have disclosed the following adsorbents in Patent Document 1 described later.

すなわち、ミカン又はリンゴの搾汁残滓に水酸化カルシウム及び水を添加し、このアルカリ溶液中で搾汁残滓を断砕することによって、前記搾汁残滓に含まれるペクチンからペクチン酸を生成させつつ、生成させたペクチン酸にカルシウムイオンを反応させてゲル化させた後、適宜直径の目を有する篩の通過物を略中性になるまで水洗し、40℃〜80℃の温度下で乾燥させて乾燥担体を得る。この乾燥担体を適宜濃度の第2鉄イオン溶液に懸濁させることによって、乾燥担体からゲル状の担体を生成させるとともに、この担体に第2鉄イオンを吸着・結合させて吸着剤を得る。   That is, by adding calcium hydroxide and water to the juice residue of mandarin orange or apple, and crushing the juice residue in this alkaline solution, while generating pectin acid from the pectin contained in the juice residue, After making calcium ion react with the produced pectic acid and gelling, it is washed with water until it becomes almost neutral, and the dried product is dried at a temperature of 40 ° C to 80 ° C. A dry carrier is obtained. By suspending this dry carrier in a ferric ion solution having an appropriate concentration, a gel-like carrier is generated from the dry carrier, and ferric ions are adsorbed and bound to this carrier to obtain an adsorbent.

本発明者らは、かかる吸着剤についてその吸着能を種々検討したところ、砒素の他にリンも吸着することができるという知見を得た。
従って、このような吸着剤を用いて被除去液からリンを除去するには、被除去液に適量の吸着剤を投入して適宜時間攪拌し、被除去液中のリンを吸着剤に吸着させた後、濾別又は沈下によって吸着剤と被除去液と固液分離することによって被除去液からリンを除去する。
The inventors of the present invention have studied various adsorption capacities of such adsorbents and have found that phosphorus can be adsorbed in addition to arsenic.
Therefore, in order to remove phosphorus from the liquid to be removed using such an adsorbent, an appropriate amount of adsorbent is added to the liquid to be removed and stirred for an appropriate period of time so that the phosphorus in the liquid to be removed is adsorbed to the adsorbent. After that, phosphorus is removed from the liquid to be removed by solid-liquid separation of the adsorbent and the liquid to be removed by filtration or subsidence.

または、前記吸着剤を耐圧性の筒体内に充填し、この筒体内にその一端側から他端側へ被除去液を通流させて被除去液中のリンを筒体内の吸着剤に吸着させることによって、被除去液からリンを除去することが考えられた。
特開平2004−267805号公報
Alternatively, the pressure-resistant cylinder is filled with the adsorbent, and the liquid to be removed is allowed to flow from one end side to the other end of the cylinder to adsorb phosphorus in the liquid to be adsorbed on the cylinder. Therefore, it was considered to remove phosphorus from the liquid to be removed.
Japanese Patent Laid-Open No. 2004-267805

しかしながら、このような吸着剤にあっては、産業廃棄物たる搾汁残滓を原料として比較的簡単な処理によって製造することができるため可及的に廉価であるものの、次のような問題があった。   However, such an adsorbent is as cheap as possible because it can be produced by a relatively simple process using squeezed residue as industrial waste, but has the following problems. It was.

すなわち、第2鉄はpH3.0を超えた環境では沈殿してしまうため、ペクチン酸をゲル化させた担体に第2鉄イオンを結合させる場合のpH範囲がpH2.0〜pH2.5程度と狭く、従って担体とこれに吸着された第2鉄イオンとの結合力が弱い。   That is, since ferric iron precipitates in an environment exceeding pH 3.0, the pH range in the case of binding ferric ions to a carrier obtained by gelling pectic acid is about pH 2.0 to pH 2.5. Narrow, and therefore, the binding force between the carrier and the ferric ion adsorbed thereto is weak.

一方、第2鉄へのリンの吸着力が比較的強いため、温和な条件で第2鉄からリンを脱離させることができず、リンを吸着させた吸着剤に1M程度の塩酸水溶液を加えることによって当該吸着剤からリンを溶離させることはできるものの、当該操作によって担体に結合されている第2鉄イオンもリンと結合した状態で溶離されてしまうため、吸着剤を再使用することができないという問題があった。
また、被除去液から除去したリンを利用する場合、第2鉄を分離・除去する後処理を実施しなければならず、後処理に手間、時間及びコストを要するという問題があった。
ところで、被除去液からリンを除去する吸着剤としてジルコニウムフェライト系の吸着剤(例えば、セブントール(登録商標)P(武田薬品工業株式会社))が市販されている。
On the other hand, since the adsorption power of phosphorus to ferric iron is relatively strong, phosphorus cannot be desorbed from ferric iron under mild conditions, and an aqueous hydrochloric acid solution of about 1M is added to the adsorbent adsorbing phosphorus. As a result, phosphorus can be eluted from the adsorbent, but the ferric ion bound to the carrier is also eluted in a state bound to phosphorus by the operation, so that the adsorbent cannot be reused. There was a problem.
Further, when phosphorus removed from the liquid to be removed is used, post-treatment for separating and removing ferric iron has to be performed, and there is a problem that post-treatment requires time, cost, and cost.
By the way, as an adsorbent for removing phosphorus from a liquid to be removed, a zirconium ferrite-based adsorbent (for example, Seven Tol (registered trademark) P (Takeda Pharmaceutical Co., Ltd.)) is commercially available.

しかしながら、かかる吸着剤にあっては後述するように、リンの吸着量は、強酸性領域では良好であるものの、弱酸性領域に向かうにつれて減少し、中性付近における吸着量は強酸性領域における吸着量の1/2程度に減少するため、中性付近での使用に適さないという問題があった。   However, in such an adsorbent, as will be described later, the amount of phosphorus adsorbed is good in the strongly acidic region, but decreases toward the weakly acidic region. Since the amount is reduced to about 1/2 of the amount, there is a problem that it is not suitable for use near neutrality.

本発明は、斯かる事情に鑑みてなされたものであって、吸着したリンを選択的に溶離させて再使用することができるとともに、中性付近でも十分に使用することができるリンの吸着剤、及び該吸着剤を用いて被処理液からリンを除去する方法を提供する。   The present invention has been made in view of such circumstances, and it is possible to selectively elute adsorbed phosphorus and reuse it, and to sufficiently use even in the vicinity of neutrality And a method for removing phosphorus from the liquid to be treated using the adsorbent.

(1) 発明に係る吸着剤は、担体に適宜金属を結合させてなり、被除去液に含まれるリンを吸着する吸着剤において、ペクチン酸を主要成分として含む担体にジルコニウムを結合させてなることを特徴とする。   (1) The adsorbent according to the present invention is formed by appropriately bonding a metal to a carrier, and adsorbing phosphorus contained in a liquid to be removed, and by binding zirconium to a carrier containing pectic acid as a main component. It is characterized by.

例えば、ペクチン酸にホルムアルデヒドを反応させてペクチン酸を架橋させることによって、ペクチン酸を主要成分として含むゲル状の担体を得る。この担体は乾燥させておいてもよい。この担体をpH2〜pH6程度に調製した適宜濃度のジルコニウム溶液で処理することによって、当該担体にジルコニウムを吸着・結合させてリンを吸着する吸着剤を調製することができる。   For example, a gel-like carrier containing pectin acid as a main component is obtained by reacting pectin acid with formaldehyde to crosslink pectin acid. This carrier may be dried. By treating this carrier with a zirconium solution having an appropriate concentration adjusted to about pH 2 to pH 6, an adsorbent that adsorbs and binds zirconium to the carrier to adsorb phosphorus can be prepared.

なお、ジルコニウム溶液による処理は、例えば、ジルコニウム溶液に担体を添加して攪拌するバッチ法によっても良いし、担体を充填したカラムにジルコニウム溶液を通流させるカラム法によっても良い。   The treatment with the zirconium solution may be, for example, a batch method in which a carrier is added to the zirconium solution and stirred, or a column method in which the zirconium solution is passed through a column packed with the carrier.

前述した担体にジルコニウムを結合させた吸着剤は、酸性領域から塩基性領域までの広いpH領域でリンを十分に吸着することができた。従って、生活排水又は家畜のし尿等の被除去液からリンを除去する操作を、殆どの場合、pH調整することなく行うことができる。   The adsorbent in which zirconium is bound to the above-mentioned carrier can sufficiently adsorb phosphorus in a wide pH range from the acidic region to the basic region. Therefore, in most cases, the operation of removing phosphorus from the liquid to be removed such as domestic wastewater or livestock excreta can be performed without adjusting the pH.

一方、リンを吸着させた吸着剤を適宜濃度の水酸化ナトリウム溶液で処理することによって、ジルコニウムを担体から脱離させることなく、吸着剤からリンを溶離させることができた。このように吸着したリンを溶離させた吸着剤には再びリンを吸着させることができるため、かかる吸着剤は繰り返し使用することができる。   On the other hand, by treating the adsorbent adsorbing phosphorus with a sodium hydroxide solution having an appropriate concentration, it was possible to elute phosphorus from the adsorbent without desorbing zirconium from the support. Since the adsorbent from which the adsorbed phosphorus is eluted can adsorb phosphorus again, such an adsorbent can be used repeatedly.

(2) また、本発明に係る吸着剤は、前記担体はミカン搾汁残滓又はリンゴ搾汁残滓を原料として調製してなることを特徴とする。
ミカン搾汁残滓及びリンゴ搾汁残滓には比較的多量のペクチンが含まれており、それらを水酸化ナトリウム溶液等の処理液で処理することによって、ペクチン酸を生成することができる。かかるペクチン酸はCa又はMg等の金属イオンを添加することによってゲル化させることができ、担体とすることができる。
かかる担体にジルコニウムを結合させた吸着剤は、pH2〜pH10の広いpH領域でリンを十分に吸着することができた。
一方、ミカン搾汁残滓及びリンゴ搾汁残滓は産業廃棄物であり、吸着剤を廉価に製造することができるのに加え、産業廃棄物を有効利用することができる。
(2) Moreover, the adsorbent according to the present invention is characterized in that the carrier is prepared using mandarin juice residue or apple juice residue as a raw material.
The citrus juice residue and apple juice residue contain a relatively large amount of pectin, and pectin acid can be produced by treating them with a treatment solution such as sodium hydroxide solution. Such pectic acid can be gelled by adding a metal ion such as Ca or Mg, and can be used as a carrier.
The adsorbent in which zirconium is bonded to such a carrier can sufficiently adsorb phosphorus in a wide pH range of pH 2 to pH 10.
On the other hand, tangerine juice residue and apple juice residue are industrial wastes. In addition to being able to produce adsorbents at low cost, industrial wastes can be used effectively.

(3) 一方、本発明に係るリンの除去方法は、被除去液中のリンを吸着剤に吸着させて、当該被除去液からリンを除去する方法において、前記(1)又は(2)に記載の吸着剤を用いることを特徴とする。
被除去液中のリンを前述した吸着剤に吸着させるには、被除去液に吸着剤を添加して攪拌するバッチ法によって行うこともできるし、吸着剤を充填したカラムに被除去液を通流させるカラム法によって行うこともできる。
このとき、吸着剤として前記(1)又は(2)に記載の吸着剤を用いるため、前述した各効果を奏する。
(3) On the other hand, in the method for removing phosphorus according to the present invention, in the method for removing phosphorus from the liquid to be removed by adsorbing phosphorus in the liquid to be removed to the adsorbent, the method (1) or (2) The adsorbent described is used.
The phosphorus in the liquid to be removed can be adsorbed by the adsorbent described above by a batch method in which the adsorbent is added to the liquid to be removed and stirred, or the liquid to be removed is passed through a column packed with the adsorbent. It can also be carried out by a flowing column method.
At this time, since the adsorbent described in the above (1) or (2) is used as the adsorbent, the above-described effects are exhibited.

(4) また、本発明に係るリンの除去方法は、リンを吸着させた吸着剤を適宜濃度の水酸化ナトリウム溶液で処理して、当該吸着剤からリンを溶離させることを特徴とする。
例えば、0.2M程度の水酸化ナトリウム溶液を吸着剤からリンを溶離させるための溶離液として用いることができる。
(4) Moreover, the phosphorus removal method according to the present invention is characterized in that the adsorbent adsorbing phosphorus is treated with a sodium hydroxide solution having an appropriate concentration to elute phosphorus from the adsorbent.
For example, a sodium hydroxide solution of about 0.2M can be used as an eluent for eluting phosphorus from the adsorbent.

リンの溶離にあっては、担体にジルコニウムが結合したままの状態で、ジルコニウムから脱離されたリンが溶離されるため、溶離液から容易にリンを回収することができ、土壌肥料等に直接利用するができる。   In the elution of phosphorus, since the phosphorus released from the zirconium is eluted while the zirconium remains bonded to the carrier, the phosphorus can be easily recovered from the eluent and directly applied to the soil fertilizer etc. Can be used.

(本発明の実施形態)
以下に本発明に係る実施の形態について説明する。
(担体の調製)
ミカン搾汁残滓を用いて吸着剤の担体を調製する方法について説明する。
(Embodiment of the present invention)
Embodiments according to the present invention will be described below.
(Preparation of carrier)
A method for preparing an adsorbent carrier using tangerine juice residue will be described.

ミカンジュース工場で発生した湿潤状態のミカン搾汁残滓150gに水酸化カルシウム3g及び水10mlを加え、サンプルミルSK−M10型粉砕機(協立理工株式会社)を用いて、30分程度断砕処理した。得られた処理物を適宜の容器内に移し、500mlの水を加えて24時間程度、室温で攪拌することによって、ミカン搾汁残滓に含まれるペクチンをケン化してペクチン酸のカルシウム塩にすることによりゲル化させた。   3 g of calcium hydroxide and 10 ml of water are added to 150 g of wet citrus juice residue generated at a mandarin orange juice factory, and crushing is performed for about 30 minutes using a sample mill SK-M10 type crusher (Kyoritsu Riko Co., Ltd.). did. Transfer the resulting processed product into a suitable container, add 500 ml of water and stir at room temperature for about 24 hours to saponify the pectin contained in the tangerine juice residue to form a calcium salt of pectic acid. Gelled.

この液状物を適宜直径の目を有する篩上に移してゲル粒子の大きさを揃え、前記篩を通過したゲル及び液体を別の容器に回収した。この回収物に適宜量の水を加えて攪拌した後に静置してゲルたる担体を沈下させ、上清を廃棄することによって担体を洗浄した。そして、かかる洗浄操作を上清のpHが中性になるまで繰り返した後、担体を例えば300μm程度の直径の目を有する篩を用いて濾別し、例えば対流乾燥機を用いて40℃〜80℃、好ましくは50℃〜70℃の温度下で乾燥して粉末状の乾燥担体を得た。   The liquid material was transferred onto a sieve having an appropriate diameter, and the sizes of the gel particles were made uniform. The gel and liquid that passed through the sieve were collected in another container. An appropriate amount of water was added to the collected material and stirred, and then allowed to stand to sink the gel carrier, and the supernatant was discarded to wash the carrier. And after repeating this washing | cleaning operation until the pH of a supernatant becomes neutral, a support | carrier is filter-separated using the sieve which has an eye with a diameter of about 300 micrometers, for example, for example, 40 to 80 degreeC using a convection dryer. Drying was performed at a temperature of ° C, preferably 50 ° C to 70 ° C, to obtain a powdery dry carrier.

このような乾燥担体になすことによって、pH1〜pH8の間の種々のpHの液体に乾燥担体を懸濁させた場合であっても、当該ゲルから有機体炭素が遊離することが抑制され、担体のゲル強度を向上させることができる。   By using such a dry carrier, even when the dry carrier is suspended in liquids having various pHs between pH 1 and pH 8, release of organic carbon from the gel is suppressed, and the carrier The gel strength can be improved.

次に、リンゴ搾汁残滓を用いて吸着剤の担体を調製する方法について説明する。
リンゴジュース工場で発生した湿潤状態のリンゴ搾汁残滓200gに50mlの水を加え家庭用のミキサーを用いて断砕処理した。得られた処理物を適宜の容器内に移した後、水酸化カルシウム6gを加えて、室温で48時間程度攪拌した。
Next, a method for preparing an adsorbent carrier using apple juice residue will be described.
50 ml of water was added to 200 g of wet apple juice residue generated in an apple juice factory, and the mixture was crushed using a home mixer. After the obtained processed product was transferred into an appropriate container, 6 g of calcium hydroxide was added and stirred at room temperature for about 48 hours.

これを再び家庭用のミキサーに移して30分程度断砕処理した後、適宜の容器内に移し、500mlの水を加えて24時間程度、室温で攪拌した。
そして、前同様、濾過、担体の洗浄操作、及び乾燥操作を行って粉末状の乾燥担体を得た。
This was again transferred to a home mixer and crushed for about 30 minutes, then transferred to a suitable container, 500 ml of water was added, and the mixture was stirred at room temperature for about 24 hours.
And as before, filtration, washing | cleaning operation of a support | carrier, and drying operation were performed, and the powdery dry support | carrier was obtained.

なお、ミカン搾汁残滓としては、温州ミカン、はっさく、あまなつ等の搾汁残滓を用いることができ、リンゴ搾汁残滓としては、つがる、王林、ジョナ等の搾汁残滓を用いることができる。   In addition, squeezed residue such as Satsuma mandarin, hassaku, and red pepper can be used as the mandarin juice residue, and squeezed residue such as Tsugaru, Wang Lin, and Jonah can be used as the apple juice residue.

また、前述した搾汁残滓、水酸化カルシウム及び水の量、処理時間並びに粉砕機及び乾燥機等は処理スケールに応じて適宜変更することができる。例えば、対流乾燥機に代えてスプレードライ乾燥機を用いることができる。   In addition, the above-described squeezed residue, calcium hydroxide and water amounts, processing time, pulverizer and dryer can be appropriately changed according to the processing scale. For example, a spray dryer can be used instead of the convection dryer.

一方、ホルムアルデヒドを用いてペクチン酸を架橋することによってゲル化させ、これを担体とすることもできる。
すなわち、濃塩酸0.5mlと35%ホルムアルデヒド水溶液99.5mlとの混合液2mlを5gのペクチン酸粉末(片山化学工業株式会社)に加え、更に蒸留水3mlを加えてそれらを混合し、室温で2時間静置する。
On the other hand, it can be gelled by cross-linking pectinic acid using formaldehyde, and this can be used as a carrier.
That is, 2 ml of a mixture of 0.5 ml of concentrated hydrochloric acid and 99.5 ml of 35% formaldehyde aqueous solution was added to 5 g of pectic acid powder (Katayama Chemical Co., Ltd.), and further 3 ml of distilled water was added and mixed at room temperature. Let stand for 2 hours.

次に、105℃で3時間加熱してペクチン酸を架橋させるとともに乾燥させて、粉体を得る。得られた粉体を0.1Mの水酸化ナトリウム溶液に懸濁させてゲル化させるとともに洗浄し、デカンテーション法によって上清を廃棄した後、0.1Mの塩酸溶液を流入して洗浄し、デカンテーション法によって上清を廃棄する。そして、塩基性溶液及び酸性溶液で洗浄した後、蒸留水で中性になるまで洗浄を繰り返し、例えば真空乾燥して乾燥担体を得ることができる。   Next, it is heated at 105 ° C. for 3 hours to crosslink and dry the pectic acid to obtain a powder. The obtained powder was suspended in 0.1M sodium hydroxide solution to be gelled and washed, and the supernatant was discarded by a decantation method, and then washed by injecting 0.1M hydrochloric acid solution, Discard the supernatant by decantation. And after washing | cleaning with a basic solution and an acidic solution, washing | cleaning is repeated until it becomes neutral with distilled water, for example, vacuum-drying can obtain a dry support | carrier.

(吸着剤の調製)
本発明に係る吸着剤にあっては、このようにして調製した担体にジルコニウムイオンを結合させて吸着剤を調製する。
図1は、本発明に係る担体にジルコニウムイオンを結合させる場合のpHの影響を示すグラフであり、横軸はジルコニウムを吸着させた後の溶液のpHを、縦軸は担体に結合したジルコニウムの割合をそれぞれ示している。
(Preparation of adsorbent)
In the adsorbent according to the present invention, the adsorbent is prepared by binding zirconium ions to the carrier thus prepared.
FIG. 1 is a graph showing the influence of pH when zirconium ions are bound to a carrier according to the present invention, the horizontal axis represents the pH of the solution after adsorption of zirconium, and the vertical axis represents the zirconium bound to the carrier. Each percentage is shown.

純水にジルコニウムの初期濃度が25mg/lとなるようにオキシ塩化ジルコニウム8水和物(和光純薬工業株式会社)を溶解させるとともに、塩酸溶液又は水酸化ナトリウム溶液を用いてpH0.5からH6.0まで相異なるpHに調製して種々のpHのジルコニウム溶液を得、得られた各ジルコニウム溶液にミカン搾汁残滓から調製した乾燥担体を25mgずつ添加した後、それぞれ15mlに調整した。   Zirconium oxychloride octahydrate (Wako Pure Chemical Industries, Ltd.) is dissolved in pure water so that the initial concentration of zirconium is 25 mg / l, and at a pH of 0.5 to H6 using hydrochloric acid solution or sodium hydroxide solution. A zirconium solution having various pH values was obtained by adjusting the pH to 0.0, and 25 mg of a dry carrier prepared from citrus juice residue was added to each of the obtained zirconium solutions, and then adjusted to 15 ml.

そして、30℃で24時間振盪した後、上清を採取して、ICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて残存するジルコニウムの濃度を測定し、初期濃度に対する百分率を求めた。   Then, after shaking at 30 ° C. for 24 hours, the supernatant is collected, and the concentration of remaining zirconium is measured using an ICP atomic emission spectrometer (ICPS500 type, Shimadzu Corporation) to obtain a percentage with respect to the initial concentration. It was.

図1に示したグラフから明らかなように、本発明に係る担体にあっては、pH2.0〜pH6.0の範囲でジルコニウムイオンを略100%結合していた。このことより、前述した如く調製したペクチン酸を主要成分とする担体とジルコニウムイオンとの結合強度は高いことが分かる。   As is clear from the graph shown in FIG. 1, in the carrier according to the present invention, zirconium ions were bound approximately 100% in the range of pH 2.0 to pH 6.0. From this, it can be seen that the bond strength between the carrier mainly composed of pectinic acid prepared as described above and zirconium ions is high.

図2は、ジルコニウム濃度と本発明に係る担体へのジルコニウムイオンの結合量との関係を示すグラフであり、横軸は残存するジルコニウム濃度を、縦軸は乾燥担体1kg当たりに結合したジルコニウム量をそれぞれ示している。   FIG. 2 is a graph showing the relationship between the zirconium concentration and the amount of zirconium ions bound to the carrier according to the present invention, wherein the horizontal axis represents the remaining zirconium concentration and the vertical axis represents the amount of zirconium bound per kg of dry carrier. Each is shown.

0.25mmol/lから10mmol/lまで種々の濃度になるように調製したジルコニウム溶液(pH3.0)15mlにミカン搾汁残滓から調製した乾燥担体を25mgずつ添加し、30℃で24時間振盪した後、上清を採取して、ICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて残存するジルコニウムの濃度を測定し、各ジルコニウム溶液の初期濃度から減少したジルコニウム量に基づいて乾燥担体1kg当たりに結合したジルコニウム量を求めた。   25 mg of dry carrier prepared from tangerine juice residue was added to 15 ml of zirconium solution (pH 3.0) prepared to various concentrations from 0.25 mmol / l to 10 mmol / l and shaken at 30 ° C. for 24 hours. Thereafter, the supernatant is collected, and the concentration of remaining zirconium is measured using an ICP atomic emission spectrometer (ICPS500 type, Shimadzu Corporation), and dried based on the amount of zirconium reduced from the initial concentration of each zirconium solution. The amount of zirconium bound per kg of support was determined.

図2に示したグラフから明らかなように、ジルコニウムの前記担体への結合量の変化はラングミュアー型の様態をなしており、この結果より前記担体に対するジルコニウムの飽和結合量は0.70mol/kg(乾燥担体)であると考えられる。   As apparent from the graph shown in FIG. 2, the change in the amount of zirconium bound to the carrier is in a Langmuir type, and as a result, the saturated amount of zirconium bound to the carrier is 0.70 mol / kg. (Dry carrier).

以上の結果より、本発明に係る吸着剤は、前述した如く調製した乾燥担体1kg当たり0.70molより僅かに多くなるようにジルコニウムを水に溶解させたジルコニウム溶液(pH2.0〜pH6.0)に所要量の前記乾燥担体を懸濁させて室温で1昼夜程度攪拌することによって調製することができる。
これによって、担体に飽和結合量のジルコニウムを結合させることができる。
From the above results, the adsorbent according to the present invention is a zirconium solution (pH 2.0 to pH 6.0) in which zirconium is dissolved in water so as to be slightly more than 0.70 mol per kg of the dry carrier prepared as described above. The required amount of the dry carrier can be suspended in and stirred at room temperature for about a day and night.
As a result, zirconium having a saturated bond amount can be bound to the support.

なお、本発明に係る吸着剤にあっては、このように担体に飽和結合量のジルコニウムを結合させる場合に限らず、飽和結合量より少ない量のジルコニウムを担体に結合させてもよいことはいうまでもない。   In the adsorbent according to the present invention, it is not limited to the case where zirconium having a saturated bond amount is bonded to the support as described above, and it may be said that a smaller amount of zirconium than the saturated bond amount may be bonded to the support. Not too long.

(リンの除去方法)
次に、生活排水又は家畜のし尿等の被除去液からリンを除去する方法について説明する。
まず、本発明に係る吸着剤の種々のpHにおけるリンの吸着特性について検討した。
なお、後記する各試験結果はミカン搾汁残滓から調製した担体を用いた場合について示すが、リンゴ搾汁残滓及びペクチン酸から調製した担体を用いた場合でも、略同様な試験結果が得られる。
(Phosphorus removal method)
Next, a method for removing phosphorus from a liquid to be removed such as domestic wastewater or livestock excreta will be described.
First, the adsorption characteristics of phosphorus at various pH values of the adsorbent according to the present invention were examined.
In addition, although each test result mentioned later shows about the case where the support | carrier prepared from the tangerine juice residue is used, also when using the support | carrier prepared from apple juice residue and pectic acid, a test result substantially the same is obtained.

図3は、本発明に係る吸着剤のリン酸イオンの吸着率とpHとの関係を示すグラフであり、図中、縦軸は吸着率を、また横軸はpHをそれぞれ示している。
リン酸を適量ずつ純水に溶解させ、pH1.5〜pH13.5程度の種々のpHに調整した後に定量とし、リン酸イオンの初期濃度が25mg/lの供試液を調製した。
FIG. 3 is a graph showing the relationship between the adsorption rate of phosphate ions and the pH of the adsorbent according to the present invention, in which the vertical axis indicates the adsorption rate and the horizontal axis indicates the pH.
Phosphoric acid was dissolved in pure water in an appropriate amount, adjusted to various pHs of about pH 1.5 to pH 13.5, and then quantified to prepare a test solution having an initial concentration of phosphate ions of 25 mg / l.

各供試液15mlに前述したように略飽和結合量のジルコニウムを結合させた吸着剤を、それぞれ乾燥担体として25mgとなるようにそれぞれ分注し、30℃で24時間振盪させた後、上清を採取して、ICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて残存するリン酸イオンの濃度を測定し、各供試液の初期濃度から減少したリン酸イオン量に基づいて吸着剤へのリン酸イオンの吸着率を求めた。   As described above, each adsorbent having approximately saturated binding amount of zirconium bound to 15 ml of each test solution was dispensed to 25 mg as a dry carrier, and shaken at 30 ° C. for 24 hours. The concentration of phosphate ions collected was measured using an ICP atomic emission spectrometer (ICPS500 type Shimadzu Corporation), and the adsorbent was determined based on the phosphate ion amount decreased from the initial concentration of each test solution. The adsorption rate of phosphate ions on the surface was determined.

図3に示したグラフから明らかなように、吸着剤へのリン酸イオンの吸着率は、略pH2.0以上略pH4.0以下の領域では略100%であり、略pH4.0を超えpH10.0以下の領域では略80%以上であった。
従って、本発明に係る吸着剤は、略pH2.0以上略pH10.0の領域でリンを十分に吸着することができる。
As is apparent from the graph shown in FIG. 3, the adsorption rate of phosphate ions to the adsorbent is about 100% in the region of about pH 2.0 to about pH 4.0, exceeding about pH 4.0 and pH 10 About 80% or more in the region of 0.0 or less.
Therefore, the adsorbent according to the present invention can sufficiently adsorb phosphorus in the region of about pH 2.0 or more and about pH 10.0.

次に、バッチ法によるリンの除去について検討した。
図4は、バッチ法によりリンを除去する場合におけるリンの濃度と吸着剤へのリンの結合速度との関係を示すグラフであり、図中、縦軸は乾燥担体1g当たりの吸着剤に吸着されたリンの質量(mg)を示しており、横軸は振盪時間を示している。
Next, removal of phosphorus by a batch method was examined.
FIG. 4 is a graph showing the relationship between the concentration of phosphorus and the binding rate of phosphorus to the adsorbent when phosphorus is removed by the batch method. In the figure, the vertical axis is adsorbed by the adsorbent per 1 g of dry carrier. The mass (mg) of phosphorous is shown, and the horizontal axis shows the shaking time.

適量のリン酸を純水に溶解させ、少量の水酸化ナトリウムの添加により、pHを3.0に調整した後に定量とし、リンの初期濃度が20ppm(図中の○印)、100ppm(図中の△印)、及び260ppm(図中の□印)の各供試液を調製した。   An appropriate amount of phosphoric acid is dissolved in pure water, and the pH is adjusted to 3.0 by adding a small amount of sodium hydroxide. Then, the initial concentration of phosphorus is 20 ppm (circle mark in the figure), 100 ppm (in the figure) △ marks) and 260 ppm (□ marks in the figure) were prepared.

各供試液15mlに前述したように調製した吸着剤を乾燥担体として25mgとなるようにそれぞれ分注し、30℃で経時的に振盪させつつ、適宜時間ごとに上清を採取して、ICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて残存するリンの濃度を測定し、各供試液の初期濃度から減少したリン量に基づいて吸着剤へのリンの吸着量を求めた。   The adsorbent prepared as described above was dispensed into 15 ml of each test solution to 25 mg as a dry carrier, and the supernatant was collected at appropriate intervals while shaking over time at 30 ° C. The concentration of remaining phosphorus was measured using an emission spectroscopic analyzer (ICPS500 type Shimadzu Corporation), and the amount of phosphorus adsorbed on the adsorbent was determined based on the amount of phosphorus decreased from the initial concentration of each test solution.

図4に示した各グラフから明らかなように、いずれのリン酸濃度の供試液にあっても、10時間程度で平衡状態に達していた。
従って、バッチ法により被除去液からリンを除去する場合、被除去液に適量の吸着剤を添加してから攪拌操作を10時間以上行えばよい。
なお、冬季等にあって被除去液の温度が低い場合は、例えば攪拌操作を1昼夜程度実施するとよい。
As is apparent from the respective graphs shown in FIG. 4, the equilibrium was reached in about 10 hours in any test solution having any phosphoric acid concentration.
Therefore, when phosphorus is removed from the liquid to be removed by a batch method, a stirring operation may be performed for 10 hours or more after an appropriate amount of adsorbent is added to the liquid to be removed.
In addition, when the temperature of the liquid to be removed is low in winter or the like, for example, the stirring operation may be performed for about one day and night.

次に、カラム法によるリンの除去について検討した。
図5は、カラム法によって吸着剤にリン酸を吸着させた結果を示すグラフであり、図中、縦軸は供試液中のリンの初期濃度に対するカラムの出口におけるリンの濃度の相対値(カラム出口におけるリンの濃度/リンの初期濃度)を、横軸はカラムから流出された液体の容量を当該カラムのベッド数(1ベッド=カラムに充填された吸着剤の体積)で示している。
Next, removal of phosphorus by the column method was examined.
FIG. 5 is a graph showing the results of adsorbing phosphoric acid on the adsorbent by the column method, in which the vertical axis represents the relative value of the concentration of phosphorus at the outlet of the column with respect to the initial concentration of phosphorus in the test solution (column The concentration of the liquid discharged from the column is indicated by the number of beds of the column (1 bed = the volume of the adsorbent packed in the column).

適量のリン酸を純水に溶解させ、pH3.0に調整した後に定量とし、リンの初期濃度が20mg/lの供試液を調製した。
前述したように調製した吸着剤を乾燥担体の質量として150mgとなるように充填したガラス製のカラムに前記供試液を5.02ml/hの流速で導入し、カラムから流出される液体を5.02mlづつ分取し、分取したそれぞれの液体に含まれるリンの濃度をICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて測定し、供試液中のリンの初期濃度に対するカラムの出口におけるリンの濃度の相対値を求めた。
An appropriate amount of phosphoric acid was dissolved in pure water and adjusted to pH 3.0 to obtain a test solution having an initial concentration of phosphorus of 20 mg / l.
The test solution is introduced at a flow rate of 5.02 ml / h into a glass column packed with the adsorbent prepared as described above so as to have a dry carrier mass of 150 mg. Each 02 ml was collected, and the concentration of phosphorus contained in each of the separated liquids was measured using an ICP atomic emission spectrometer (ICPS500 type Shimadzu Corporation), and the column concentration relative to the initial concentration of phosphorus in the test solution was measured. The relative value of the phosphorus concentration at the outlet was determined.

図5に示したグラフより明らかなように、カラムから流出された液体は、300ベッド数に達するまでリンが検出されなかった。
従って、かかるカラム法による場合、被除去液中にリンが20mg/l程度含まれているとすると、カラムに充填した吸着剤の体積の少なくとも300倍の容量の被除去液を処理することができる。
As apparent from the graph shown in FIG. 5, phosphorus was not detected in the liquid flowing out from the column until the number of beds reached 300.
Therefore, in the case of such a column method, if the liquid to be removed contains about 20 mg / l of phosphorus, the liquid to be removed can be processed with a capacity of at least 300 times the volume of the adsorbent packed in the column. .

次に、吸着剤からリンを溶離させる溶離剤の種類及びその濃度を検討した。
図6は、吸着剤からリンを溶離させる溶離剤の種類及びその濃度と吸着剤からのリンの溶離率との関係を示すグラフであり、図中、縦軸は吸着剤から溶離したリンの量の割合を、横軸は溶離剤の濃度をそれぞれ示している。
前述したように調製した吸着剤にリンを平衡状態になるまで吸着させた。
Next, the type and concentration of the eluent that elutes phosphorus from the adsorbent were studied.
FIG. 6 is a graph showing the relationship between the type and concentration of an eluent that elutes phosphorus from the adsorbent and the elution rate of phosphorus from the adsorbent, and the vertical axis indicates the amount of phosphorus eluted from the adsorbent. The horizontal axis represents the concentration of the eluent.
Phosphorus was adsorbed to the adsorbent prepared as described above until equilibrium was reached.

一方、水酸化ナトリウム、塩酸及び塩化ナトリウム(いずれも1級 和光純薬株式会社)を適量純水に溶解させて、0.2mol/l〜1.0mol/lの種々の濃度の水酸化ナトリウム溶液(図中の○印)、塩酸溶液(図中の△印)及び塩化ナトリウム溶液(図中の□印)を調製した。   On the other hand, sodium hydroxide, hydrochloric acid and sodium chloride (all grades 1 Wako Pure Chemical Industries, Ltd.) are dissolved in appropriate amounts of pure water to obtain sodium hydroxide solutions having various concentrations of 0.2 mol / l to 1.0 mol / l. (Circle mark in the figure), hydrochloric acid solution (triangle mark in the figure), and sodium chloride solution (square mark in the figure) were prepared.

各共試液15mlにリンを吸着させた吸着剤を湿状態で20mgずつ分注し、30℃で24時間振盪させた後、上清を採取して、ICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて溶離されたリン酸イオンの濃度を測定し、前記吸着剤に吸着させたリンの吸着量に基づいて溶離されたリンの量の割合を求めた。   After 20 mg of the adsorbent adsorbing phosphorus in 15 ml of each co-test solution was dispensed in a wet state and shaken at 30 ° C. for 24 hours, the supernatant was collected, and an ICP atomic emission spectrometer (ICPS500 type Co., Ltd.) was collected. The concentration of phosphate ions eluted was measured using Shimadzu Corporation, and the proportion of the amount of phosphorus eluted was determined based on the amount of phosphorus adsorbed on the adsorbent.

図6から明らかな如く、溶離剤として塩化ナトリウムを用いた場合、いずれの濃度であっても吸着剤からリンを溶離させることはできなかった。
また、溶離剤として塩酸を用いた場合、1.0mol/lの濃度であっても吸着剤から溶離されるリンの割合は40%程度であった。
これに対して、溶離剤として水酸化ナトリウムを用いた場合、0.2mol/lの濃度で95%以上の割合で吸着剤からリンが溶離された。
As is clear from FIG. 6, when sodium chloride was used as the eluent, phosphorus could not be eluted from the adsorbent at any concentration.
When hydrochloric acid was used as the eluent, the proportion of phosphorus eluted from the adsorbent was about 40% even at a concentration of 1.0 mol / l.
In contrast, when sodium hydroxide was used as the eluent, phosphorus was eluted from the adsorbent at a concentration of 0.2 mol / l and a ratio of 95% or more.

このとき、24時間振盪後の水酸化ナトリウム溶液について、前記ICP原子発光分光分析装置を用いてジルコニウムの測定を試みたが、ジルコニウムを検出することはできなかった。   At this time, for the sodium hydroxide solution after shaking for 24 hours, an attempt was made to measure zirconium using the ICP atomic emission spectrometer, but zirconium could not be detected.

一方、0.2mol/lというように比較的低濃度の水酸化ナトリウム溶液でリンの溶離操作を行うことができるため、溶離操作を安全に実施することができる。更に、溶離操作によって排出される廃液も安全に取り扱うことができるのに加え、廃液の環境負荷も小さく、中和といった廃液処理を容易に行うことができる。   On the other hand, since the elution operation of phosphorus can be performed with a sodium hydroxide solution having a relatively low concentration of 0.2 mol / l, the elution operation can be performed safely. Furthermore, waste liquid discharged by the elution operation can be handled safely, and the environmental load of the waste liquid is small, and waste liquid treatment such as neutralization can be easily performed.

次に、0.2mol/lの水酸化ナトリウム溶液が、カラム法によって吸着させた吸着剤からのリンの溶離に有効であるか否かを検討した。
図7は、0.2mol/lの水酸化ナトリウム溶液を用いて、リンを吸着させたカラムからリンを溶離させた結果を示すグラフであり、図中、縦軸は供試液中のリンの初期濃度に対するカラムの出口におけるリンの濃度の相対値(カラム出口におけるリンの濃度/リンの初期濃度)を、横軸はカラムから流出された液体の容量を当該カラムのベッド数で示している。
Next, it was examined whether 0.2 mol / l sodium hydroxide solution is effective for elution of phosphorus from the adsorbent adsorbed by the column method.
FIG. 7 is a graph showing the results of elution of phosphorus from a column on which phosphorus was adsorbed using a 0.2 mol / l sodium hydroxide solution. In the figure, the vertical axis represents the initial phosphorus in the test solution. The relative value of the concentration of phosphorus at the outlet of the column with respect to the concentration (the concentration of phosphorus at the outlet of the column / the initial concentration of phosphorus), and the horizontal axis indicates the volume of liquid discharged from the column as the number of beds of the column.

カラムは図5で説明したものを用いた。このカラムに前記溶離剤溶液を5.02ml/hの流速で供給し、カラムから流出される液体を5.02mlづつ分画し、得られた各画分の液体に含まれるリンの濃度をICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて測定し、図5で説明した供試液中のリンの初期濃度に対するカラムの出口におけるリンの濃度の相対値を求めた。   The column described in FIG. 5 was used. The eluent solution is supplied to this column at a flow rate of 5.02 ml / h, and the liquid flowing out from the column is fractionated in increments of 5.02 ml, and the concentration of phosphorus contained in the obtained liquid of each fraction is determined by ICP. Measurement was performed using an atomic emission spectrometer (ICPS500 type Shimadzu Corporation), and the relative value of the concentration of phosphorus at the outlet of the column with respect to the initial concentration of phosphorus in the test solution described in FIG. 5 was determined.

図7に示したグラフより明らかなように、非常にシャープな山形状の溶離曲線を得ることができ、0.2mol/lの水酸化ナトリウム溶液はカラム法にも有効であった。
なお、供試液のリンの初期濃度に対する溶離液中のリンの濃縮度は45倍であり、吸着剤に吸着させたリンの回収率は95%以上であった。
このとき、いずれの画分の液体中にもジルコニウムは検出されなかった。
As is apparent from the graph shown in FIG. 7, a very sharp mountain-shaped elution curve was obtained, and the 0.2 mol / l sodium hydroxide solution was also effective in the column method.
The concentration of phosphorus in the eluent with respect to the initial concentration of phosphorus in the test solution was 45 times, and the recovery rate of phosphorus adsorbed on the adsorbent was 95% or more.
At this time, zirconium was not detected in any fraction of the liquid.

(バッチ法によるリンの除去方法)
以上の結果より、バッチ法によって被除去液からリンを除去するには次のように行う。
すなわち、被除去液の容量を求めると共に、当該被除去液の含まれるリンの濃度を測定値又は推定値によって定め、それらの結果に基づいて、前述したようにして調製した吸着剤の添加量を求める。得られた添加量の吸着剤を当該被除去液に投入し、10時間以上攪拌して、被除去液中のリン(リン酸)を吸着剤に吸着させる。
(Method of removing phosphorus by batch method)
From the above results, phosphorus is removed from the liquid to be removed by the batch method as follows.
That is, while determining the volume of the liquid to be removed, the concentration of phosphorus contained in the liquid to be removed is determined by a measured value or an estimated value, and based on the results, the amount of adsorbent prepared as described above is determined. Ask. The obtained addition amount of the adsorbent is put into the liquid to be removed and stirred for 10 hours or more to adsorb phosphorus (phosphoric acid) in the liquid to be removed to the adsorbent.

このとき吸着剤は、前述したようにpH2.0〜pH10.0までの広いpH領域でリンを十分に吸着することができる一方、生活排水又は家畜のし尿等の被除去液のpHは殆どの場合、前記のpH範囲内であるため、pH調整することなくリンの吸着操作を行うことができる。   At this time, the adsorbent can sufficiently adsorb phosphorus in a wide pH range from pH 2.0 to pH 10.0 as described above, while the pH of the liquid to be removed such as domestic wastewater or livestock excreta is almost the same. In this case, the phosphorus adsorption operation can be performed without adjusting the pH because it is within the above pH range.

このようにしてリンを吸着させた吸着剤を、濾過又は沈下による固液分離によって回収することによって、被除去液からリンを除去する、
回収した吸着剤は、0.2mol/l程度(例えば0.15〜0.25mol/l)の水酸化ナトリウム溶液中に投入し、1昼夜程度攪拌することによって、吸着したリンを水酸化ナトリウム溶液中へ溶離させた後、前同様にして回収する。この吸着剤を水で1回以上洗浄し、再使用に備える。
By recovering the adsorbent adsorbing phosphorus in this way by solid-liquid separation by filtration or subsidence, phosphorus is removed from the liquid to be removed.
The collected adsorbent is put into a sodium hydroxide solution of about 0.2 mol / l (for example, 0.15 to 0.25 mol / l), and stirred for about a day and night, so that the adsorbed phosphorus is dissolved in the sodium hydroxide solution. After eluting into, recover as before. The adsorbent is washed with water at least once to prepare for reuse.

(カラム法によるリンの除去方法)
カラム法によりリンを除去する場合は次のように行う。
すなわち、耐圧性のカラム内に適量の吸着剤を充填しておく。前同様にして当該被除去液の含まれるリンの濃度を定め、定めたリンの濃度及び充填した吸着剤の容量に基づいて被除去液の通流量を求める。そして、得られた通流量になるまで被除去液をカラムに通流させて被除去液中のリンをカラム内の吸着剤に吸着させて、被除去液からリンを除去する。
(Method of removing phosphorus by column method)
When removing phosphorus by the column method, it is carried out as follows.
That is, an appropriate amount of adsorbent is packed in a pressure resistant column. The concentration of phosphorus contained in the liquid to be removed is determined in the same manner as before, and the flow rate of the liquid to be removed is determined based on the determined concentration of phosphorus and the capacity of the adsorbent filled. Then, the liquid to be removed is passed through the column until the obtained flow rate is reached, and the phosphorus in the liquid to be removed is adsorbed by the adsorbent in the column to remove phosphorus from the liquid to be removed.

カラムへの被除去液の通流が終了すると、当該カラムに0.2mol/l程度(例えば0.15〜0.25mol/l)の水酸化ナトリウム溶液を通流させて、カラム内の吸着剤からリンを溶離させた後、更に水を通流させて吸着剤を洗浄し、水酸化ナトリウム溶液を除去することによって、再使用に備える。   When the flow of the liquid to be removed through the column is completed, a sodium hydroxide solution of about 0.2 mol / l (for example, 0.15 to 0.25 mol / l) is passed through the column to adsorb the adsorbent in the column. After the phosphorus is eluted, the adsorbent is washed by passing water further and the sodium hydroxide solution is removed to prepare for reuse.

次に比較試験を実施した結果について説明する。
図8は、本発明に係る吸着剤及び比較例の吸着剤について種々のpHにおけるリンの吸着率を測定した結果を示すグラフであり、図中、○印は本発明に係る吸着剤を用いた場合を、△印は比較例の吸着剤を用いた場合をそれぞれ示している。なお、縦軸は吸着率を、また横軸はpHを示している。
Next, the results of the comparative test will be described.
FIG. 8 is a graph showing the results of measuring the adsorption rate of phosphorus at various pH values for the adsorbent according to the present invention and the adsorbent of the comparative example. In the figure, the circles indicate the adsorbent according to the present invention. In each case, Δ indicates the case where the adsorbent of the comparative example is used. The vertical axis indicates the adsorption rate, and the horizontal axis indicates the pH.

比較例の吸着剤として、ジルコニウムフェライト系の吸着剤(セブントール(登録商標)P(武田薬品工業株式会社))を用いた。
試験方法は図3で説明した方法と同じである。
As an adsorbent of the comparative example, a zirconium ferrite-based adsorbent (Seventor (registered trademark) P (Takeda Pharmaceutical Co., Ltd.)) was used.
The test method is the same as the method described in FIG.

図8に示したグラフから明らかなように、比較例の吸着剤にあっては、リンの吸着率は、pH2.0では90%程度であるものの、pH2.5から漸次低下し、pH4.0〜pH7.0では50%程度であり、pH7.0を超えると更に低下していた。
これに対し、本発明に係る吸着剤にあっては、、略pH2.0以上略pH4.0以下の領域では略100%であり、略pH4.0を超えpH10.0以下の領域でも略80%以上であった。
As is clear from the graph shown in FIG. 8, in the adsorbent of the comparative example, the adsorption rate of phosphorus is about 90% at pH 2.0, but gradually decreases from pH 2.5 to pH 4.0. It was about 50% at ˜pH 7.0, and further decreased when the pH exceeded 7.0.
On the other hand, in the adsorbent according to the present invention, it is about 100% in the region of about pH 2.0 to about pH 4.0, and about 80 in the region of about pH 4.0 and below pH 10.0. % Or more.

次に、リンの吸着量を比較した結果について説明する。
図9は、本発明に係る吸着剤及び比較例の吸着剤についてリン酸イオンの吸着量を測定した結果を示すグラフであり、図中、○印は本発明に係る吸着剤を用いた場合を、△印は比較例の吸着剤を用いた場合をそれぞれ示している。なお、縦軸はリン酸イオンの吸着量を、また横軸は残存するリン酸イオンの濃度をそれぞれ示している。
Next, the results of comparing the phosphorus adsorption amounts will be described.
FIG. 9 is a graph showing the results of measuring the adsorption amount of phosphate ions for the adsorbent according to the present invention and the adsorbent of the comparative example, and in the figure, the circles indicate the case where the adsorbent according to the present invention is used. , Δ indicates the case where the comparative adsorbent was used. The vertical axis represents the phosphate ion adsorption amount, and the horizontal axis represents the remaining phosphate ion concentration.

5mg/lから900mg/lまで種々の濃度になるように調製したリン酸溶液(pH3.0)15mlに本発明に係る吸着剤では乾燥担体として25mgずつ添加し、比較例に係る吸着剤では50mgずつ添加して、30℃で24時間振盪した後、上清を採取して、ICP原子発光分光分析装置(ICPS500型 株式会社島津製作所)を用いて残存するジルコニウムの濃度を測定し、各リン酸溶液の初期濃度から減少したリン酸量に基づいて乾燥体1g当たりに結合したリン酸の量を求めた。   In the adsorbent according to the present invention, 25 mg each as a dry carrier is added to 15 ml of a phosphoric acid solution (pH 3.0) prepared to have various concentrations from 5 mg / l to 900 mg / l, and 50 mg in the adsorbent according to the comparative example. After each addition and shaking at 30 ° C. for 24 hours, the supernatant was collected, and the concentration of remaining zirconium was measured using an ICP atomic emission spectrometer (ICPS500 type Shimadzu Corporation). Based on the amount of phosphoric acid decreased from the initial concentration of the solution, the amount of phosphoric acid bound per gram of dried product was determined.

図9に示したグラフから明らかなように、両グラフともラングミュアー型の様態をなしており、本発明に係る吸着剤の吸着量は、比較例に係る吸着剤の吸着量の略5倍であった。   As is apparent from the graph shown in FIG. 9, both graphs are in Langmuir type, and the adsorption amount of the adsorbent according to the present invention is approximately five times the adsorption amount of the adsorbent according to the comparative example. there were.

本発明に係る担体にジルコニウムイオンを結合させる場合のpHの影響を示すグラフである。It is a graph which shows the influence of pH at the time of making a zirconium ion couple | bond with the support | carrier which concerns on this invention. ジルコニウム濃度と本発明に係る担体へのジルコニウムイオンの結合量との関係を示すグラフである。It is a graph which shows the relationship between a zirconium concentration and the binding amount of the zirconium ion to the support | carrier which concerns on this invention. 本発明に係る吸着剤のリンの吸着率とpHとの関係を示すグラフである。It is a graph which shows the relationship between the adsorption rate of phosphorus of adsorbent which concerns on this invention, and pH. バッチ法によりリンを除去する場合におけるリンの濃度と吸着剤へのリンの結合速度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of phosphorus in the case of removing phosphorus by a batch method, and the binding rate of phosphorus to an adsorbent. カラム法によって吸着剤にリン酸イオンを吸着させた結果を示すグラフである。It is a graph which shows the result of having adsorbed phosphate ion to an adsorbent by the column method. 吸着剤からリンを溶離させる溶離剤の種類及びその濃度と吸着剤からのリンの溶離率との関係を示すグラフである。It is a graph which shows the relationship between the kind and the density | concentration of the eluent which elute phosphorus from adsorbent, and the elution rate of phosphorus from adsorbent. 0.2mol/lの水酸化ナトリウム溶液を用いて、リン酸イオンを吸着させたカラムからリン酸イオンを溶離させた結果を示すグラフである。It is a graph which shows the result of having eluted phosphate ion from the column which adsorb | sucked the phosphate ion using 0.2 mol / l sodium hydroxide solution. 本発明に係る吸着剤及び比較例の吸着剤について種々のpHにおけるリンの吸着率を測定した結果を示すグラフである。It is a graph which shows the result of having measured the adsorption rate of phosphorus in various pH about the adsorbent which concerns on this invention, and the adsorbent of a comparative example. 本発明に係る吸着剤及び比較例の吸着剤についてリン酸イオンの吸着量を測定した結果を示すグラフである。It is a graph which shows the result of having measured the adsorption amount of the phosphate ion about the adsorbent which concerns on this invention, and the adsorbent of a comparative example.

Claims (4)

担体に適宜金属を結合させてなり、被除去液に含まれるリンを吸着する吸着剤において、
ペクチン酸を主要成分として含む担体にジルコニウムを結合させてなることを特徴とする吸着剤。
In an adsorbent that is formed by appropriately binding a metal to a carrier and adsorbs phosphorus contained in the liquid to be removed.
An adsorbent obtained by binding zirconium to a carrier containing pectic acid as a main component.
前記担体はミカン搾汁残滓又はリンゴ搾汁残滓を原料として調製してなる請求項1記載の吸着剤。   The adsorbent according to claim 1, wherein the carrier is prepared by using mandarin juice residue or apple juice residue as a raw material. 被除去液中のリンを吸着剤に吸着させて、当該被除去液からリンを除去する方法において、
請求項1又は2に記載の吸着剤を用いることを特徴とするリンの除去方法。
In a method of removing phosphorus from the liquid to be removed by adsorbing phosphorus in the liquid to be removed to the adsorbent,
A method for removing phosphorus, comprising using the adsorbent according to claim 1.
リンを吸着させた吸着剤を適宜濃度の水酸化ナトリウム溶液で処理して、当該吸着剤からリンを溶離させる請求項3記載のリンの除去方法。   The method for removing phosphorus according to claim 3, wherein the adsorbent adsorbing phosphorus is treated with a sodium hydroxide solution having an appropriate concentration to elute phosphorus from the adsorbent.
JP2007188239A 2007-07-19 2007-07-19 Phosphorous adsorbent and method for removing phosphorus Expired - Fee Related JP4857417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188239A JP4857417B2 (en) 2007-07-19 2007-07-19 Phosphorous adsorbent and method for removing phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188239A JP4857417B2 (en) 2007-07-19 2007-07-19 Phosphorous adsorbent and method for removing phosphorus

Publications (2)

Publication Number Publication Date
JP2009022877A true JP2009022877A (en) 2009-02-05
JP4857417B2 JP4857417B2 (en) 2012-01-18

Family

ID=40395215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188239A Expired - Fee Related JP4857417B2 (en) 2007-07-19 2007-07-19 Phosphorous adsorbent and method for removing phosphorus

Country Status (1)

Country Link
JP (1) JP4857417B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136672A (en) * 2014-01-23 2015-07-30 国立大学法人佐賀大学 Method for removing anionic species in solution
CN113083225A (en) * 2021-02-24 2021-07-09 江苏裕隆环保有限公司 Lanthanum-zirconium modified zeolite adsorbent capable of efficiently removing phosphorus and use method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834039A (en) * 1981-08-24 1983-02-28 Agency Of Ind Science & Technol Adsorbent containing zirconium oxide and preparation thereof
JPH0568969A (en) * 1991-09-17 1993-03-23 Agency Of Ind Science & Technol Adsorption and removal of phosphate ion
JP2004267805A (en) * 2003-01-06 2004-09-30 Japan Science & Technology Agency Adsorbent made of residue of squeezed fruit as raw material and method for removing toxic substance by using the same
JP2007106965A (en) * 2005-10-17 2007-04-26 Asahi Kasei Corp Gel particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834039A (en) * 1981-08-24 1983-02-28 Agency Of Ind Science & Technol Adsorbent containing zirconium oxide and preparation thereof
JPH0568969A (en) * 1991-09-17 1993-03-23 Agency Of Ind Science & Technol Adsorption and removal of phosphate ion
JP2004267805A (en) * 2003-01-06 2004-09-30 Japan Science & Technology Agency Adsorbent made of residue of squeezed fruit as raw material and method for removing toxic substance by using the same
JP2007106965A (en) * 2005-10-17 2007-04-26 Asahi Kasei Corp Gel particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136672A (en) * 2014-01-23 2015-07-30 国立大学法人佐賀大学 Method for removing anionic species in solution
CN113083225A (en) * 2021-02-24 2021-07-09 江苏裕隆环保有限公司 Lanthanum-zirconium modified zeolite adsorbent capable of efficiently removing phosphorus and use method thereof

Also Published As

Publication number Publication date
JP4857417B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
Alagumuthu et al. Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon
Daifullah et al. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw
Ahmadpour et al. Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions
Vahdat et al. Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals
JP5390411B2 (en) Method for removing endocrine disrupting compounds
Gandhi et al. Preparation and characterization of La (III) encapsulated silica gel/chitosan composite and its metal uptake studies
Park et al. Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN)
Elwakeel et al. Uptake of U (VI) from aqueous media by magnetic Schiff's base chitosan composite
Gang et al. As (III) removal using an iron-impregnated chitosan sorbent
Nashine et al. Equilibrium, kinetic and thermodynamic studies for adsorption of As (III) on coconut (Cocos nucifera L.) fiber
Rao et al. Removal of natural organic matter by cationic hydrogel with magnetic properties
Kołodyńska Cu (II), Zn (II), Co (II) and Pb (II) removal in the presence of the complexing agent of a new generation
Vijaya et al. Synthesis and characterization of glutaraldehyde‐crosslinked calcium alginate for fluoride removal from aqueous solutions
Mortada et al. Microwave assisted modification of cellulose by gallic acid and its application for removal of aluminium from real samples
Moharami et al. Effect of TiO2, Al2O3, and Fe3O4 nanoparticles on phosphorus removal from aqueous solution
Sima et al. Efficiency of waste clinker ash and iron oxide tailings for phosphorus removal from tertiary wastewater: batch studies
Samra et al. Biosorption of Pb2+ from natural water using date pits: a green chemistry approach
Moussous et al. Batch cadmium (II) biosorption by an industrial residue of macrofungal biomass (Clitopilus scyphoides)
Rahman et al. Development of Zr (IV)—Doped polypyrrole/zirconium (IV) iodate composite for efficient removal of fluoride from water environment
Gad et al. Treatment of rice husk ash to improve adsorption capacity of cobalt from aqueous solution
Kousalya et al. Removal of toxic Cr (VI) ions from aqueous solution using nano-hydroxyapatite-based chitin and chitosan hybrid composites
Oladoja et al. Synthesis of nano-sized hydrocalumite from a Gastropod shell for aqua system phosphate removal
Dwivedi et al. Bioadsorption of fluoride by Ficusreligiosa (Peepal Leaf Powder): optimization of process parameters and equilibrium study
Shahmoradi et al. Removal of nitrate from ground water using activated carbon prepared from rice husk and sludge of paper industry wastewater treatment
Wieszczycka et al. Microcapsules containing task-specific ionic liquids for Zn (II) and Cu (II) recovery from dilute aqueous solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees