JP2009022825A - Judgment method of judging if final waste disposal site is sufficiently stabilized, using thermogravimetric analysis - Google Patents

Judgment method of judging if final waste disposal site is sufficiently stabilized, using thermogravimetric analysis Download PDF

Info

Publication number
JP2009022825A
JP2009022825A JP2007185721A JP2007185721A JP2009022825A JP 2009022825 A JP2009022825 A JP 2009022825A JP 2007185721 A JP2007185721 A JP 2007185721A JP 2007185721 A JP2007185721 A JP 2007185721A JP 2009022825 A JP2009022825 A JP 2009022825A
Authority
JP
Japan
Prior art keywords
disposal site
waste
waste disposal
peak
judgment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007185721A
Other languages
Japanese (ja)
Inventor
Toshio Imai
敏夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007185721A priority Critical patent/JP2009022825A/en
Publication of JP2009022825A publication Critical patent/JP2009022825A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a judgment method of quickly, simply and properly judging whether or not a final waste disposal site satisfies required requirements for terminating its operation. <P>SOLUTION: The judgment method of judging whether a final waste disposal site wherein waste comprising incineration main ash or incineration residue of city garbage is dumped and disposed of has been sufficiently stabilized or not, uses thermogravimetric analysis in atmospheric air of the evaporation residue of the waste dumped therein from which water contained in the waste or seeping out therefrom has been removed by evaporation, and determines that the stabilization of the final waste disposal site is complete if the ratio of the weight reduction of the evaporation residue corresponding to an exothermic peak of not lower than 200°C and not higher than 400°C relative to the weight reduction thereof corresponding to an exothermic peak of not lower than 400°C and not higher than 500°C has reached 0.4 or below. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、廃棄物最終処分場の熱重量分析による安定化の診断方法に関する。 The present invention relates to a method for diagnosing stabilization by thermogravimetric analysis of a waste final disposal site.

従来、都市ごみ焼却灰は、主にストーカ式焼却炉あるいは流動床式焼却炉において焼却され、焼却炉の焼却残渣(主灰)は焼却灰として一般廃棄物最終処分場または産業廃棄物の管理型最終処分場に、搬入車両から直接ダンピングされ重機などで成形しながら埋立処分される。混合や分級などの特段の前処理がなされることもなく、埋め立てられるのが通常である。管理型最終処分場は、埋立地に遮水工を施すとともに、自然降雨等による埋立地内の保有水を集水する設備を有する。集水された保有水は適切な水質にまで浄化された後に自然環境へ放流される。 Conventionally, municipal waste incineration ash is mainly incinerated in a stoker-type incinerator or fluidized bed incinerator, and the incineration residue (main ash) of the incinerator is incinerated ash as a general waste final disposal site or industrial waste management type It is dumped directly from the incoming vehicle at the final disposal site and landfilled while being molded with heavy machinery. It is usually landfilled without any special pretreatment such as mixing or classification. The management-type final disposal site has a facility to collect water stored in the landfill due to natural rainfall, etc., while impeding the landfill. The collected water is purified to an appropriate quality and then released into the natural environment.

最終処分場は早いもので5年、通常15年〜20年で満杯となるが、埋立てが終了した時点でその処分場を廃止できるわけではなく、最終処分場を廃止するためには、以下の廃止要件を満たす必要がある。
1 保有水等の水質が2年以上にわたって排水基準を満足すること。
2 埋立地ガスの発生がほとんど認められず、そのガスの発生量の増加が2年以上にわたって認められないこと。
3 埋立て地の内部温度が周辺の地中温度に比して異常な高温となっていないこと。
The final disposal site is fast and fills up in 5 years, usually 15 to 20 years. However, when landfilling is completed, the disposal site cannot be abolished. It is necessary to satisfy the abolition requirements.
1 The water quality of retained water, etc. shall satisfy the drainage standards for more than 2 years.
2 There is almost no generation of landfill gas, and no increase in the amount of gas generated is observed for more than two years.
3 The internal temperature of the landfill is not abnormally high compared to the surrounding underground temperature.

環境省の作成した非特許文献1には、安定化のモニタリングの指標として、埋め立て廃棄物、浸出液、湧出ガス、内部温度、埋め立て地表層を対象とすること、更に、微生物群の解析、内部保有水の分布、透水係数、物理探査も補足的な指標として、採用できるという記載がある。しかし、上記の複数の指標診断結果に基づいてなされる判定には、膨大な作業量が必要とされる。そこで、より簡便で迅速な診断手法の開発が望まれる。 Non-patent document 1 created by the Ministry of the Environment includes landfill waste, leachate, source gas, internal temperature, landfill surface as an indicator of stabilization monitoring, analysis of microorganisms, There is a description that water distribution, hydraulic conductivity, and geophysical exploration can be adopted as supplementary indicators. However, a huge amount of work is required for the determination made based on the plurality of index diagnosis results. Therefore, development of a simpler and quicker diagnostic method is desired.

廃棄物最終処分場安定化監視マニュアル 環境庁 1992Waste Disposal Site Stabilization Monitoring Manual Environment Agency 1992

本発明はかかる事情に鑑みてなされたものであり、迅速且つ簡便で適格に廃棄物最終処分場が廃止要件を満たすか否かについて判定する診断方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a diagnostic method for determining whether a waste final disposal site satisfies abolition requirements promptly, simply and qualitatively.

都市ごみ焼却主灰を含む廃棄物の最終処分場の安定化判定方法であって、前記最終処分場の集水管等で集められた保有水または浸出水の蒸発残留物を空気中で熱重量分析し、200℃以上で400℃以下の発熱ピークに対応する重量減少量が、400℃以上500℃以下の発熱ピークに対応する重量減少量に対して、その比率が0.4以下になることをもって、安定化が完了したこととする判定方法、を提供する。 A method for determining the stabilization of the final disposal site for waste containing municipal waste incineration main ash, and the thermogravimetric analysis of the evaporation residue of retained water or leachate collected in the collection pipe of the final disposal site in the air The weight loss corresponding to the exothermic peak of 200 ° C. or more and 400 ° C. or less is 0.4 or less with respect to the weight decrease corresponding to the exothermic peak of 400 ° C. or more and 500 ° C. or less. And a determination method that the stabilization is completed.

本発明に係る最終処分場の安定化診断方法によれば、廃棄物最終処分場が廃止要件を満たすか否かについて判定すること及び廃止要件を満たす時期を推定することなど、都市ごみ焼却主灰の最終処分場の熱重量分析による安定化判定が可能となる。 According to the final disposal site stabilization diagnosis method according to the present invention, municipal waste incineration main ash, such as determining whether a waste final disposal site satisfies the abolition requirements and estimating when to meet the abolition requirements Stabilization can be determined by thermogravimetric analysis at the final disposal site.

主灰を構成する主要な鉱物は炭酸カルシウム、石英、長石、ゲーレナイトなどであるが、これらのほかに水との接触により水和するカルシウムシリケイトおよびカルシウムアルミネイトなどを含んでいる。最終処分場で埋立てられた主灰は、埋めた後に地中に浸透する降水との反応によりエトリンガイトやフリーデル氏塩などの水和鉱物を生成する。これらの水和物は主灰の粒子間隙を充填しながら成長していくので、主灰は次第に緻密な固化物へと変化していく。この固化物あるいは固化層の発達が進行すると、次第に降水が浸透し難くなっていく。 The main minerals that make up the main ash are calcium carbonate, quartz, feldspar, and gehlenite, but in addition to these, calcium silicate and calcium aluminate that hydrates upon contact with water are included. The main ash landfilled at the final disposal site generates hydrated minerals such as ettringite and Friedel's salt by reacting with precipitation that penetrates into the ground after filling. Since these hydrates grow while filling the particle gaps of the main ash, the main ash gradually changes into a dense solidified product. As this solidified material or solidified layer develops, precipitation gradually becomes difficult to penetrate.

主灰は都市ごみの焼却によって発生するが、少ないもので3%、多いもので12%程度の有機物が未燃焼の状態で残っている。これらの有機物は、処分場内の保有水の水質および処分場外に排水される浸出水の汚濁の原因物質となる。
適切な水分および酸素の供給がなされるのであれば、埋立てられた廃棄物中の有機物の分解は好気的な微生物活動により進行するので、埋立後の時間の経過に伴って比較的短期間で発生ガス量が減少するとともに浸出水中の汚濁物質の量も減少していく。
Main ash is generated by incineration of municipal waste, but a small amount of organic matter remains 3% and a large amount of 12% remains unburned. These organic substances cause contamination of the quality of water retained in the disposal site and the leachate discharged from the disposal site.
If adequate water and oxygen supply is provided, the decomposition of organic matter in landfilled waste will proceed by aerobic microbial activity, so that it will take a relatively short period of time after the landfill. As the amount of generated gas decreases, the amount of pollutants in the leachate also decreases.

ところが、埋立後に地中で主灰の固化の固化が起こり、大気および降水の供給が阻害されたり不均一となったりすると、微生物活動による有機物の分解は分解速度が極めて遅い嫌気的条件で進行するようになるため、いつまでたっても埋立地からのガスの放出は継続するとともに浸出水中の汚濁物質の量も減少しないことになる。   However, when solidification of main ash occurs in the ground after landfill, and the supply of air and precipitation is obstructed or non-uniform, the decomposition of organic matter by microbial activity proceeds under anaerobic conditions with a very slow decomposition rate. As a result, the release of gas from the landfill will continue and the amount of pollutants in the leachate will not decrease.

有機物分解に基づく処分場の安定化は時系列的な次5段階に分けて考えることができる。
1 好気的分解期:酸素が消費され、二酸化炭素が生成し始める、窒素濃度は一定で、一部嫌気的部位での揮発的有機物が生成する。
2 通性嫌気菌が支配的な嫌気性酸発酵期:易生物分解性有機物の加水分解、酸発酵により、酸素がすべて消費されて二酸化炭素の生成が活発であり、揮発性有機酸、水素が発生する。窒素濃度は相対的に低下する。
3 絶対嫌気性菌が支配的なメタン発生発達期:揮発性有機酸は、メタンガスと炭酸ガスに変換される。
The stabilization of the disposal site based on the decomposition of organic matter can be divided into the following five stages in time series.
1. Aerobic decomposition period: Oxygen is consumed and carbon dioxide begins to be produced. Nitrogen concentration is constant, and volatile organic substances are produced at some anaerobic sites.
2 Anaerobic acid fermentation period in which facultative anaerobes are dominant: Hydrolysis and acid fermentation of readily biodegradable organic substances consumes all oxygen and actively produces carbon dioxide. appear. The nitrogen concentration is relatively lowered.
3 Methane generation and development period in which absolute anaerobic bacteria are dominant: Volatile organic acids are converted into methane and carbon dioxide.

4 難分解性有機物が徐々に可溶化・分解されるメタン生成定常期:揮発性有機酸が消費されると、セルロース及びリグニンの分解産物がメタン生成に使われる。メタンの生成により層内のガス圧が上昇する。
5 有機物が少なくなり、大気が拡散進入するメタン発酵終末期:窒素や酸素の濃度が相対的に増加する。
4. Steady phase of methane formation in which persistent organic substances are gradually solubilized and decomposed: When volatile organic acids are consumed, decomposition products of cellulose and lignin are used for methane production. The gas pressure in the bed rises due to the formation of methane.
5 Organic matter is reduced and the atmosphere is diffused and entered. End of methane fermentation: Nitrogen and oxygen concentrations are relatively increased.

上記の安定化段階のうち、最も長期間に及ぶのは4の段階であり、これを経過すると最終処分場の廃止要件を満たすことになる。 Of the above-mentioned stabilization stages, the longest period is stage 4, and after this, the requirements for decommissioning the final disposal site are satisfied.

また、4の段階を完全に経過しなくても、これを経過する状況を適切にモニターできれば、廃止要件を満たす時期を判定することができる。 Further, even if the stage 4 is not completely passed, if the situation passing through this stage can be properly monitored, it is possible to determine when to satisfy the abolition requirement.

第1乃至3の段階では、水素と揮発性有機物の生成と減少、二酸化炭素等気体の急激な増大と減少が特徴的である。一方、セルロース量の減少する割合がすくない。4の段階では、メタン、二酸化炭素濃度が定常的であり、有機酸が少量で、セルロースの量が比較的大きな減少をすることが特徴的である。 The first to third stages are characterized by the generation and reduction of hydrogen and volatile organic substances, and the rapid increase and decrease of gases such as carbon dioxide. On the other hand, the rate of decrease in the amount of cellulose is not great. The stage 4 is characterized in that the methane and carbon dioxide concentrations are constant, the amount of organic acid is small, and the amount of cellulose decreases relatively.

そこで、次検討により、4の段階の状況を把握する指標として前記最終処分場の集水管等で集められた保有水または浸出水の蒸発残留物の熱重量分析による判定が適切であることが判明した。 Therefore, the following examination revealed that the determination by the thermogravimetric analysis of the evaporation residue of the retained water or leachate collected in the water collection pipe etc. of the final disposal site as an index to grasp the status of the four stages did.

廃棄物処分場から、廃棄物由来の浸出水を採取し、これを蒸発乾固させ、サンプルを得る。最終処分場からは、底部に設けられた集水溝、集水管を通って廃棄物由来の保有水、浸出水が集まる仕組みが設けられていることが多いので、集水管等で集められた水は、代表性の良い試料となり、これを用いて熱重量分析をすることが好ましい。
熱重量分析機は、株式会社リガク製Thermo plus TG8210を使用し、約10mgの試料を白金パンに秤量し、大気雰囲気中で、室温から1000℃まで昇温速度10℃/minで重量変化(以下TG)測定とDTA測定を行った。標準試料には、αアルミナを用いた。昇温速度10℃/minであり、室温から昇温開始するが、温度更正の結果、10分後には、100℃、20分後には、200℃、以後順次10分経過後の温度更正を続け、100分後に1000℃となるように調整した。
Collect the leachate from the waste disposal site and evaporate it to dryness to obtain a sample. From the final disposal site, there is often a mechanism for collecting retained water from the waste and leachate through the water collecting groove and water collecting pipe provided at the bottom, so the water collected in the water collecting pipe etc. Becomes a sample with good representativeness, and it is preferable to perform thermogravimetric analysis using the sample.
The thermogravimetric analyzer uses Thermo plus TG8210 manufactured by Rigaku Corporation, weighs about 10 mg of sample into a platinum pan, and changes the weight at a heating rate of 10 ° C./min from room temperature to 1000 ° C. in the air atmosphere (hereinafter referred to as “thermogravimetric analyzer”). TG) measurement and DTA measurement were performed. Α alumina was used as a standard sample. The rate of temperature increase is 10 ° C / min, and the temperature starts to increase from room temperature. As a result of temperature correction, 100 ° C after 10 minutes, 200 ° C after 20 minutes, and then continue temperature correction after 10 minutes. The temperature was adjusted to 1000 ° C. after 100 minutes.

図1に、安定化の進んでいない初年度目の処分場から採取した試料、図2に、安定化の進行した10年目の処分場から採取したサンプルのTG−DTA曲線を示す。 FIG. 1 shows a TG-DTA curve of a sample collected from the disposal site in the first year where the stabilization has not progressed, and FIG. 2 shows a sample collected from the disposal site in the 10th year where the stabilization has progressed.

図1の初年度の処分場の浸出水からの蒸発乾固物(A)のDTA曲線には、260℃、360℃、450℃にブロードな発熱ピークが認められる。他の吸熱ピークは、生成した水和鉱物の脱水、複合塩化物の融解によるものと思われる。 A broad exothermic peak at 260 ° C., 360 ° C., and 450 ° C. is observed in the DTA curve of the evaporated dry solid (A) from the leachate of the disposal site in the first year of FIG. Other endothermic peaks are thought to be due to dehydration of the hydrated mineral produced and melting of the complex chloride.

他方安定化の進行した処分場の浸漬液からの蒸発乾固物(B)のDTA曲線には、260℃から390℃に亘って発熱するピークと450℃を中心とする発熱ピークが認められ、前記(A)の発熱ピークと温度範囲が略一致する。これらは、処分場の浸漬液に溶け込んだ有機物由来のピークに対応する。 On the other hand, in the DTA curve of the evaporated dry solid (B) from the immersion liquid of the disposal site where the stabilization has progressed, a peak exothermic from 260 ° C. to 390 ° C. and an exothermic peak centered at 450 ° C. are observed, The exothermic peak of (A) and the temperature range substantially coincide. These correspond to peaks derived from organic matter dissolved in the immersion liquid at the disposal site.

各ピークの特定のために、試薬のフミン酸、天然の腐植土壌から抽出した腐植物のTG−DTA曲線を、図3、図4に示す。共に200℃から600℃に亘る2段階の発熱ピークが求められ、各ステップの中間は400℃程度であり、各ピークは、360℃、470〜490℃程度である。腐植の進行に伴い、前段のピークが小さくなり、後段のピークが大となる傾向がうかがえる。 For identification of each peak, TG-DTA curves of humic substances extracted from humic acid as a reagent and natural humic soil are shown in FIGS. In both cases, a two-stage exothermic peak ranging from 200 ° C. to 600 ° C. is obtained, the middle of each step is about 400 ° C., and each peak is about 360 ° C. and about 470-490 ° C. As the humus progresses, the peak at the front stage tends to decrease and the peak at the rear stage increases.

そこで、図1、図2の発熱ピークを再度検討すると、200℃から400℃までの第1段階のピークが初期の処分場の有機物の発熱によるもの、400℃を越える発熱ピークが前記有機物の経年分解による変性した有機物と考えることができる。 Accordingly, when the exothermic peaks in FIGS. 1 and 2 are examined again, the first stage peak from 200 ° C. to 400 ° C. is due to the exothermic heat of the organic matter in the initial disposal site, and the exothermic peak exceeding 400 ° C. is the age of the organic matter. It can be considered as an organic substance modified by decomposition.

初期の処分場の有機物に帰属させた第1段階のピークに対応する試料重量に対応する重量減少量をその含有率とする。また、より高温の第2段階のピークに対応する重量減少量の割合を経年分解による変性した有機物の含有率とすることができる。 The weight loss corresponding to the sample weight corresponding to the peak in the first stage assigned to the organic matter in the initial disposal site is taken as the content rate. Moreover, the ratio of the weight loss corresponding to the peak of the second stage at a higher temperature can be the content of the organic substance modified by aging decomposition.

図1によって説明すると、初年度の処分場の浸出水からの蒸発乾固物(A)の初期の処分場に多い有機物に帰属させた第1段階のピークの燃焼による重量減は、DTA曲線がそのベースラインから急激に立ち上がる発熱温度200℃から400℃に亘るピークに対応する重量減と特定されるので、その減少量は、縦軸の目盛で9となり、より高温の第2段階のピークに対応する重量減は、400℃から500℃と特定されるので、縦軸目盛で1.5の重量減少量となる。従って、試料(A)中の第1ピークに対応する燃焼による重量減少量の第2ピークに対応する燃焼による重量減少量に対する比率は6となる。 Referring to FIG. 1, the weight loss due to the combustion of the first stage peak attributed to the organic matter that is abundant in the initial disposal site of the evaporated dry matter (A) from the leachate of the disposal site in the first year is represented by the DTA curve. Since the weight loss corresponding to the peak in the exothermic temperature from 200 ° C to 400 ° C rising rapidly from the baseline is specified, the amount of decrease is 9 on the scale of the vertical axis, and the peak of the second stage at a higher temperature Since the corresponding weight loss is specified from 400 ° C. to 500 ° C., the weight loss is 1.5 on the vertical scale. Therefore, the ratio of the weight loss due to combustion corresponding to the first peak in the sample (A) to the weight loss due to combustion corresponding to the second peak is 6.

一方、図2に示すように、安定化の進行した処分場の浸漬液からの蒸発乾固物(B)の第1ステップの燃焼による重量減は、DTA曲線がそのベースラインから離れる発熱温度250℃から400℃の重量減と特定されるので、その重量減少量は、縦軸の目盛で8となり、第2ステップの燃焼による重量減は、同じように400℃から500℃と特定されるので、その重量減少量は、縦軸目盛で16となる。従って、試料(B)中の第1ピークに対応する燃焼による重量減少量の第2ピークに対応する燃焼による重量減少量に対する比率は0.5となる。 On the other hand, as shown in FIG. 2, the weight loss due to the combustion in the first step of the evaporated dry solid (B) from the immersion liquid in the disposal site where the stabilization has progressed is the exothermic temperature 250 at which the DTA curve departs from the baseline. Since the weight loss from ℃ to 400 ℃ is specified, the weight reduction amount is 8 on the vertical scale, and the weight loss due to the combustion in the second step is similarly specified from 400 ℃ to 500 ℃. The weight reduction amount is 16 on the vertical scale. Therefore, the ratio of the weight loss due to combustion corresponding to the first peak in the sample (B) to the weight loss due to combustion corresponding to the second peak is 0.5.

更に、いくつかの経年変化のある処分場から採取した試料の第1ピークに対応する燃焼による重量減少量の第2ピークに対応する燃焼による重量減少量に対する比率及び、廃棄物最終処分場の廃止要件1から3の関係は、表1に示すとおりである。 Furthermore, the ratio of the weight loss due to combustion corresponding to the first peak of the samples collected from several aging disposal sites to the weight loss due to combustion corresponding to the second peak, and the elimination of the waste final disposal site The relationship between requirements 1 to 3 is as shown in Table 1.

Figure 2009022825
Figure 2009022825

従って、第1ピークに対応する燃焼による重量減少量の第2ピークに対応する燃焼による重量減少量に対する比率が、0.4以下となるとき、廃棄物処分場が安定したと判定し、廃止要件が満たされることが判明した。 Therefore, when the ratio of the weight loss due to combustion corresponding to the first peak to the weight loss due to combustion corresponding to the second peak is 0.4 or less, it is determined that the waste disposal site is stable, and the abolition requirement Turned out to be satisfied.

本発明に係る判定方法により、より簡便、迅速に廃棄物最終処分場の安定化の進行状況の目安を得ることができ、廃止要件を満たしたかの判定が容易となる。   By the determination method according to the present invention, it is possible to obtain a guide for the progress of stabilization of the final waste disposal site more easily and quickly, and it is easy to determine whether the abolition requirement is satisfied.

初年度の処分場の浸出水からの蒸発乾固物(A)のTG−DTA曲線を示す図。The figure which shows the TG-DTA curve of the evaporation dry matter (A) from the leachate of the disposal site of the first year. 安定化の進行した処分場の浸出水からの蒸発乾固物(B)のTG−DTA曲線を示す図。The figure which shows the TG-DTA curve of the evaporative dry matter (B) from the leachate of the disposal site which stabilization advanced. フミン酸のTG−DTA曲線を示す図。The figure which shows the TG-DTA curve of humic acid. 天然の腐植土壌から抽出した腐植物のTG−DTA曲線を示す図。The figure which shows the TG-DTA curve of humus extracted from natural humus soil.

符号の説明Explanation of symbols

Claims (1)

都市ごみ焼却主灰を含む廃棄物の最終処分場の安定化判定方法であって、前記最終処分場の廃棄物の保有水または浸出水の蒸発残留物を空気中で熱重量分析し、200℃以上で400℃以下の発熱ピークに対応する重量減少量が、400℃以上500℃以下の発熱ピークに対応する重量減少量に対して、その比率が0.4以下になることをもって、安定化が完了したこととする判定方法。 A method for determining the stability of a final disposal site for waste containing municipal waste incineration main ash, wherein the evaporation residue of retained water or leachate from the final disposal site is subjected to thermogravimetric analysis in air, and 200 ° C. As described above, the weight reduction amount corresponding to the exothermic peak of 400 ° C. or lower is less than 0.4 with respect to the weight reduction amount corresponding to the exothermic peak of 400 ° C. or higher and 500 ° C. or lower. Judgment method to be completed.
JP2007185721A 2007-07-17 2007-07-17 Judgment method of judging if final waste disposal site is sufficiently stabilized, using thermogravimetric analysis Pending JP2009022825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007185721A JP2009022825A (en) 2007-07-17 2007-07-17 Judgment method of judging if final waste disposal site is sufficiently stabilized, using thermogravimetric analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007185721A JP2009022825A (en) 2007-07-17 2007-07-17 Judgment method of judging if final waste disposal site is sufficiently stabilized, using thermogravimetric analysis

Publications (1)

Publication Number Publication Date
JP2009022825A true JP2009022825A (en) 2009-02-05

Family

ID=40395168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185721A Pending JP2009022825A (en) 2007-07-17 2007-07-17 Judgment method of judging if final waste disposal site is sufficiently stabilized, using thermogravimetric analysis

Country Status (1)

Country Link
JP (1) JP2009022825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330327A (en) * 2014-11-11 2015-02-04 广东电网有限责任公司电力科学研究院 Method for measuring content of unburned combustible in flue dust of biomass in power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330327A (en) * 2014-11-11 2015-02-04 广东电网有限责任公司电力科学研究院 Method for measuring content of unburned combustible in flue dust of biomass in power plant

Similar Documents

Publication Publication Date Title
Francois et al. Leachate recirculation effects on waste degradation: Study on columns
Visvanathan Evaluation of anaerobic digestate for greenhouse gas emissions at various stages of its management
Schirmer et al. Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: evaluation in refuse of diferent ages
Wang et al. Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk
Zin et al. Characterization of leachate at Matang Landfill site, Perak, Malaysia
Prasad et al. Industrial and municipal sludge: emerging concerns and scope for resource recovery
Zhang et al. Biodegradable organic matter in municipal solid waste incineration bottom ash
Hettiaratchi et al. Innovative practices to maximize resource recovery and minimize greenhouse gas emissions from landfill waste cells: Historical and recent developments
Wiśniewska et al. Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland
Jumasheva et al. Study on the Composition and Environmental Impact of Sewage Sludge
CN107235709A (en) A kind of method that incineration of refuse flyash is granulated with sludge mixing low temp
Wreford et al. The effects of moisture inputs on landfill gas production and composition and leachate characteristics at the Vancouver Lanclfill Site at Burns Bog
López et al. Emissions from mechanically biologically treated waste landfills at field scale
JP2009022825A (en) Judgment method of judging if final waste disposal site is sufficiently stabilized, using thermogravimetric analysis
Brisolara et al. Biosolids and sludge management
Amoatey et al. Estimation of the Methane Generation Potential of the Tamale Landfill Site Using LandGEM
Xie et al. Effects of biochar-amended soils as intermediate covers on the physical, mechanical and biochemical behaviour of municipal solid wastes
Wang et al. Effect of terminal temperature on the morphology and potentially toxic metals concentrations of biochars derived from paper and kitchen waste
Zhu et al. Combination of combustion with pyrolysis for studying the stabilization process of sludge in landfill
Akesson et al. Material dependence of methane production rates in landfills
Cakir Investigation and evaluation of potential options to determine the methane gas
Mahar et al. Biodegradation of organic matters from mixed unshredded municipal solid waste through air convection before landfilling
Pitul’ko et al. Ecological risks and problems of monitoring uncontrolled garbage gas emissions
Kadjo et al. Biogas production from household solid waste by anaerobic batch reactor
JP2009022939A (en) Method of judging if final waste disposal site is sufficiently stabilized