JP2009021678A - Power line communication system, and noise component removal control method - Google Patents

Power line communication system, and noise component removal control method Download PDF

Info

Publication number
JP2009021678A
JP2009021678A JP2007180963A JP2007180963A JP2009021678A JP 2009021678 A JP2009021678 A JP 2009021678A JP 2007180963 A JP2007180963 A JP 2007180963A JP 2007180963 A JP2007180963 A JP 2007180963A JP 2009021678 A JP2009021678 A JP 2009021678A
Authority
JP
Japan
Prior art keywords
signal
operational amplifier
noise component
power line
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007180963A
Other languages
Japanese (ja)
Inventor
Kenji Takato
健司 高遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2007180963A priority Critical patent/JP2009021678A/en
Publication of JP2009021678A publication Critical patent/JP2009021678A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove a noise component superimposed on a power line, in relation to a power line communication system and a noise component removal control method. <P>SOLUTION: In this power line communication system transmitting/receiving data between PLC modems through a power line by modulating the data by an OFDM method, and this noise component removal control method, the PLC modem detects a noise component superimposed on a reception signal transmitted through the power line and received by an auxiliary operational amplifier 14, an A/D converter 15 and a fast Fourier transformation part 16, generates a cancel signal having the same frequency as and a phase reverse to those of the noise component in a transmission pause period in a certain cycle by a configuration comprising a carrier spectrum detection circuit 17, a continuously signaling circuit 18, a fast inverse Fourier transformation part 19 and a D/A converter 20, and adds the cancel signal to the reception signal input to an operational amplifier 10 to cancel the noise component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力線を介してデータを送受信する制御する電力線通信システム及び電力線を介して送受信するデータに妨害を与えるノイズ成分を除去するノイズ成分除去制御方法に関する。   The present invention relates to a power line communication system that controls transmission / reception of data via a power line and a noise component removal control method that removes a noise component that interferes with data transmitted / received via a power line.

屋内の電力線は、通常50Hz又は60Hzの単相100Vや単相又は3相200Vの交流電圧により家電機器等に電力を供給するものであり、この電力線を介して各種のデータを送受信するPLC(Power Line Communication;電力線通信)システムが知られており、伝送方式としては、例えば、OFDMA(Orthogonal Frequency Division Multiple Access)方式やCDMA(Code Division Multiple Access)方式等が適用され、2MHz〜30MHz程度の帯域を用いて、最大200Mbps程度の伝送速度でデータ伝送が行われる。   An indoor power line supplies power to home appliances or the like with a single-phase 100 V or single-phase or three-phase 200 V AC voltage of 50 Hz or 60 Hz, and a PLC (Power) that transmits and receives various types of data via this power line. A Line Communication (power line communication) system is known, and as a transmission method, for example, an OFDMA (Orthogonal Frequency Multiple Access) method, a CDMA (Code Division Multiple Access) method, or the like is applied. The data transmission is performed at a transmission rate of about 200 Mbps at the maximum.

又電力線には、家電機器から発生する各種の周波数成分のノイズが重畳されるものであり、又放送局やアマチュア無線局等のアンテナ近傍に於いては、アンテナから放射される無線周波数成分が電力線に誘導され、PLCシステムに於ける送受信データに重畳されて、受信増幅器の飽和等により受信データエラー発生の原因となる。例えば、図10は、PLCシステムの概要を示すもので、外部から屋内に引き込んで配線した電力線100に、複数のコンセント103〜105を設け、コンセント104に家電機器102を接続し、コンセント103,104にPLCモデム106,107を接続して、PLCモデム106,107間で、データの送受信を行う。このようなPLCシステムに於いては、家電機器102から発生するノイズ成分が、電力線100に伝搬して、送受信データに対して妨害を与えることになる。又放送局やアマチュア無線局等の無線機器110が存在する場合、屋内配線の電力線100は数m〜数10mの長さであるから、アンテナゲインとしては小さいとしても、無線周波数の信号が、電力線100にノイズ成分として誘導される場合がある。   Also, noise of various frequency components generated from home appliances is superimposed on the power line, and in the vicinity of antennas such as broadcasting stations and amateur radio stations, the radio frequency components radiated from the antenna are the power lines. And is superimposed on the transmission / reception data in the PLC system, causing a reception data error due to saturation of the reception amplifier. For example, FIG. 10 shows an outline of a PLC system. A plurality of outlets 103 to 105 are provided on a power line 100 drawn indoors from the outside and wired, and a household electrical appliance 102 is connected to the outlet 104. PLC modems 106 and 107 are connected to each other, and data is transmitted and received between the PLC modems 106 and 107. In such a PLC system, a noise component generated from the home appliance 102 propagates to the power line 100 and interferes with transmission / reception data. When there is a wireless device 110 such as a broadcast station or an amateur radio station, the power line 100 of the indoor wiring is several meters to several tens of meters long. Therefore, even if the antenna gain is small, the signal of the radio frequency is 100 may be induced as a noise component.

又PLCシステムに適用されるOFDM(Orthogonal Frequency Division Multiple)方式は、2〜30MHzの帯域を数100以上のサブキャリアに分割して、それぞれのサブキャリアによりデータを送受信するもので、データの送受信エラーが発生する周波数帯域を避けて、並列伝送することができるから、データの高速伝送が可能となり、又複数のサブキャリアによる広い周波数帯域に分散した状態でデータ伝送が可能で、サブキャリア当たりの送信電力を下げることができるから、EMI(Electro−Magnetic Interference)の面で有利であり、更に、無線通信に妨害を与える帯域には、積極的にノッチフィルタ等により、その特定周波数帯域を全く使用しないようにすることも可能である。   The OFDM (Orthogonal Frequency Division Multiple) method applied to the PLC system divides the band of 2 to 30 MHz into several hundred subcarriers and transmits / receives data by each subcarrier. Can be transmitted in parallel, avoiding the frequency band where data is generated, enabling high-speed data transmission, and data transmission in a wide frequency band with multiple subcarriers, and transmission per subcarrier. Since the power can be lowered, it is advantageous in terms of EMI (Electro-Magnetic Interference), and the specific frequency band is not used at all for the band that interferes with wireless communication by a notch filter or the like. Unisuru it is also possible.

例えば、OFDM方式のサブキャリアとノイズとの関係は、図11の概念図に示すように、OFDM方式の周波数帯域2MHz〜30MHzより低い周波数帯にレベルの大きい家電機器等から発生するノイズが含まれる場合が多く、これらはフィルタにより除くことができる。又サブキャリアの帯域内には、アマチュア無線で使用する周波数等が含まれ、比較的大きなノイズレベルとなることがある。この場合のノイズ成分は、使用する無線周波数に対応し、単一周波数成分ではなく、複数の周波数成分となる場合が一般的であるから、単純なフィルタによっては除去できないものである。従って、PLCシステムの受信側の増幅器が、レベルの大きいノイズ成分により飽和する場合がある。   For example, as shown in the conceptual diagram of FIG. 11, the relationship between OFDM subcarriers and noise includes noise generated from household appliances or the like having a high level in a frequency band lower than 2 MHz to 30 MHz of the OFDM system. In many cases, these can be filtered out. The subcarrier band includes a frequency used for amateur radio and the like, and may have a relatively large noise level. The noise component in this case corresponds to the radio frequency to be used, and is generally not a single frequency component but a plurality of frequency components, and thus cannot be removed by a simple filter. Therefore, the amplifier on the receiving side of the PLC system may be saturated with a noise component having a large level.

図12は、従来例のPLCモデムの説明図であり、111はOFDM信号処理部、112は高速逆フーリエ変換部(OFDMIFFT)、113はD/Aコンバータ、114はローパスフィルタ(LPF)、115,116は高速大電流の演算増幅器、117は結合トランス、118は結合コンデンサ、119は減衰器(ATT)、120は受信演算増幅器、121はA/Dコンバータ、122は高速フーリエ変換部(OFDMFFT)を示し、電力線とは、結合トランス117と結合コンデンサ118とを介して接続する。   FIG. 12 is an explanatory diagram of a conventional PLC modem, 111 is an OFDM signal processing unit, 112 is a fast inverse Fourier transform unit (OFDM IFFT), 113 is a D / A converter, 114 is a low-pass filter (LPF), 115, 116 is a high-speed high-current operational amplifier, 117 is a coupling transformer, 118 is a coupling capacitor, 119 is an attenuator (ATT), 120 is a reception operational amplifier, 121 is an A / D converter, and 122 is a fast Fourier transform unit (OFDMFT). The power line is connected via a coupling transformer 117 and a coupling capacitor 118.

電力線を介した受信OFDM信号は、結合コンデンサ118と結合トランス117とを介して減衰器119により所定レベルに減衰させて受信演算増幅器120に入力し、その出力信号をA/Dコンバータ121によりディジタル信号に変換し、高速フーリエ変換部122とOFDM信号処理部111とにより受信データを復元処理する。又OFDM信号処理部111と高速逆フーリエ変換部112とにより送信データをOFDM信号とし、D/Aコンバータ113によりアナログ信号に変換し、ローバスフィルタ114により量子化ノイズ等を除去して、高速大電流の演算増幅器115により非反転増幅し、演算増幅器116により反転増幅し、結合トランス117と結合コンデンサ118とを介して電力線にPLC信号送信として示すように送出する。電力線の特性インピーダンスは、100Ω以下となる場合が多いから、送信用として、高速大電流出力特性を有し、相補的に動作する演算増幅器115,116を用いるものである。又電力線に、AM無線ノイズとして示すようなPLC信号帯域内のノイズ成分が重畳される。   The received OFDM signal via the power line is attenuated to a predetermined level by an attenuator 119 via a coupling capacitor 118 and a coupling transformer 117 and input to the reception operational amplifier 120, and the output signal is converted into a digital signal by the A / D converter 121. The received data is restored by the fast Fourier transform unit 122 and the OFDM signal processing unit 111. The OFDM signal processing unit 111 and the high-speed inverse Fourier transform unit 112 convert the transmission data to an OFDM signal, the D / A converter 113 converts the transmission data into an analog signal, and the low-pass filter 114 removes quantization noise and the like, thereby increasing the speed. A current operational amplifier 115 performs non-inverting amplification, an operational amplifier 116 performs inverting amplification, and sends it to a power line through a coupling transformer 117 and a coupling capacitor 118 as shown as PLC signal transmission. Since the characteristic impedance of the power line is often 100Ω or less, operational amplifiers 115 and 116 having high-speed and high-current output characteristics and operating in a complementary manner are used for transmission. Further, a noise component in the PLC signal band as shown as AM radio noise is superimposed on the power line.

図13は、前述の図12に於けるOFDM信号処理部111と高速逆フーリエ変換部112との機能の概要のOFDM信号生成概念説明図であり、送信データをシリアルスペクトルデータ列として直並列変換部131に入力してサブキャリア対応に並列に変換し、変調部132に於いて、サブキャリア対応のサイン波との積を求めて、加算部により加算し、並直列変換部133により直列に変換して、OFDM信号とする。従って、このOFDM信号生成過程は、逆フーリエ変換過程に相当するものとなる。又図12に於ける高速フーリエ変換部122は、高速逆フーリエ変換部112の逆の処理を行って、データを復元することができる。   FIG. 13 is an explanatory diagram of an OFDM signal generation concept outlining the functions of the OFDM signal processing unit 111 and the fast inverse Fourier transform unit 112 in FIG. 12, and the serial / parallel conversion unit uses transmission data as a serial spectrum data string. The signal is input to 131 and converted into parallel corresponding to the subcarrier, the product of the sine wave corresponding to the subcarrier is obtained in the modulator 132, added by the adder, and converted into serial by the parallel-serial converter 133. And an OFDM signal. Therefore, this OFDM signal generation process corresponds to an inverse Fourier transform process. The fast Fourier transform unit 122 in FIG. 12 can restore the data by performing the reverse process of the fast inverse Fourier transform unit 112.

前述のような電力線通信システムに於けるノイズ成分は各種のものが含まれるから、例えば、送信データの変調点間に零点を含めるように送信側で信号処理し、受信側では、その零点のタイミングを求め、零点上のノイズ成分を抽出し、受信変調点上にも重畳されているノイズ成分を、抽出したノイズ成分を用いて減算することにより、受信変調点上に頂上されたノイズ成分を除去して受信処理する手段が提案されている(例えば、特許文献1参照)。
特開2003−8521号公報
Since various noise components are included in the power line communication system as described above, for example, signal processing is performed on the transmission side so as to include a zero point between modulation points of transmission data, and the timing of the zero point is received on the reception side. The noise component on the reception modulation point is removed by subtracting the noise component superimposed on the reception modulation point using the extracted noise component. Thus, a means for receiving processing has been proposed (see, for example, Patent Document 1).
JP 2003-8521 A

電力線を介して伝送するOFDM信号に、2MHz〜30MHz帯域の何れかの周波数の無線通信波が誘導された場合、その誘導信号レベルが大きいと、例えば、図12の受信演算増幅器120は、通常の減衰器119の設定では飽和する場合がある。この受信演算増幅器120の飽和により、受信データはエラーが多くなり、事実上のデータ通信ができなくなる。なお、減衰器119の減衰量を大きくすることにより、受信レベルを減衰させて、受信演算増幅器120の飽和を防止することは可能であるが、誘導信号レベルは、常時大きいとは限らないと共に、実際の受信信号レベルについても減衰されることにより、エラーが多くなる。即ち、伝送可能な情報量は、周波数帯域とSN比とに比例することから、信号レベルが減少することは、伝送可能な情報量が減少し、OFDM方式の利点が生かされない問題がある。   When a radio communication wave of any frequency in the 2 MHz to 30 MHz band is induced in the OFDM signal transmitted through the power line, if the induction signal level is large, for example, the reception operational amplifier 120 in FIG. The setting of the attenuator 119 may be saturated. Due to the saturation of the reception operational amplifier 120, there are many errors in the reception data, and practical data communication cannot be performed. Although it is possible to attenuate the reception level by increasing the attenuation amount of the attenuator 119 and prevent the reception operational amplifier 120 from being saturated, the induction signal level is not always large, Since the actual received signal level is also attenuated, errors increase. That is, since the amount of information that can be transmitted is proportional to the frequency band and the S / N ratio, a decrease in the signal level causes a problem that the amount of information that can be transmitted decreases and the advantage of the OFDM scheme cannot be utilized.

本発明は、従来の問題点を解決することを目的とし、電力線に誘導されたノイズ成分を抽出し、そのノイズ成分に対して逆位相のキャンセル信号を形成して、ノイズ成分を除去することにより、受信信号を増幅する増幅器の飽和を確実に防止する。   An object of the present invention is to solve the conventional problems by extracting a noise component induced in a power line, forming a cancellation signal having an antiphase with respect to the noise component, and removing the noise component. The amplifier that amplifies the received signal is reliably prevented from being saturated.

本発明の電力線通信システムは、電力線を介してPLCモデム間でデータをOFDM方式により変調して送受信する電力線通信システムに於いて、前記PLCモデムは、前記電力線を伝送して受信した受信信号に重畳されたノイズ成分を、一定周期の伝送休止期間に於いて検出する検出手段と、この検出手段により検出した前記ノイズ成分の振幅と周波数とに対して、同一又はそれに近い値の振幅で、且つ逆位相の連続波としたキャンセル信号を生成する生成手段と、この生成手段により生成した前記キャンセル信号を、前記受信信号に加算するノイズキャンセル手段とを含む構成を有するものである。   The power line communication system of the present invention is a power line communication system that transmits and receives data by modulating data between PLC modems via the power line in accordance with the OFDM method, wherein the PLC modem is superimposed on the received signal transmitted through the power line. Detecting means for detecting the generated noise component in a transmission suspension period of a fixed period, and the amplitude and frequency of the noise component detected by the detecting means are the same or close to each other and vice versa. It has a configuration including a generation unit that generates a cancellation signal that is a continuous wave of phase, and a noise cancellation unit that adds the cancellation signal generated by the generation unit to the reception signal.

又前記PLCモデムは、受信信号を増幅する演算増幅器と、この演算増幅器により増幅した受信信号をディジタル信号に変換し、高速フーリエ変換によりサブキャリア対応の信号に分離して受信処理する処理手段と、演算増幅器と並列的に受信信号を副演算増幅器により増幅し、処理手段からの一定周期の伝送休止期間の情報に従って、この伝送休止期間のノイズ成分を検出する検出手段と、この検出手段により検出したノイズ成分をフーリエ変換して、ノイズ成分の振幅と周波数とに対して同一又はそれに近い値の振幅で且つ逆位相の連続波としたキャンセル信号を生成する生成手段と、この生成手段により生成されたキャンセル信号を演算増幅器に前記受信信号と共に入力するノイズキャンセル手段とを含む構成を有するものである。   The PLC modem includes an operational amplifier for amplifying the received signal, processing means for converting the received signal amplified by the operational amplifier into a digital signal, separating the signal into signals corresponding to subcarriers by fast Fourier transform, and receiving processing; The reception signal is amplified by the sub-operational amplifier in parallel with the operational amplifier, and the detection means for detecting the noise component of the transmission pause period in accordance with the information of the transmission pause period of the fixed period from the processing means, and the detection means detects A generation unit that Fourier-transforms the noise component to generate a cancel signal having the same or close amplitude and opposite phase with respect to the amplitude and frequency of the noise component, and generated by the generation unit And a noise canceling means for inputting a cancel signal to the operational amplifier together with the received signal.

又前記PLCモデムは、受信信号をそれぞれ増幅する演算増幅器と副演算増幅器と、一定周期の伝送休止期間は副演算増幅器の増幅出力信号を選択し、それ以外の期間は演算増幅器の増幅出力信号を選択して、それぞれディジタル信号に変換し、高速フーリエ変換によりサブキャリアを含む各周波数成分と振幅値とを求めて受信処理する処理手段と、この処理手段の高速フーリエ変換により前記伝送休止期間の受信信号を基に求めた周波数と振幅と同一又はそれに近い値の振幅で且つ逆位相の連続波としてのキャンセル信号を生成する生成手段と、この生成手段により生成したキャンセル信号を演算増幅器に前記受信信号と共に入力するノイズキャンセル手段とを含むものである。   The PLC modem selects an operational amplifier and a sub operational amplifier for amplifying the received signal, and selects the amplified output signal of the operational amplifier during a fixed period of transmission suspension, and outputs the amplified output signal of the operational amplifier during other periods. And processing means for selecting each frequency component and amplitude value including subcarriers by fast Fourier transform, receiving processing, and receiving the transmission pause period by fast Fourier transform of the processing means. Generating means for generating a cancel signal as a continuous wave having the same or close frequency and amplitude as the frequency and amplitude determined based on the signal, and a reverse phase; and the received signal generated by the cancel signal generated by the generating means to the operational amplifier And noise canceling means for input.

又本発明のノイズ成分除去制御方法は、電力線を介してPLCモデム間でデータをOFDM方式により変調して送受信し、電力線に重畳されたノイズ成分を除去するノイズ成分除去制御方法に於いて、電力線を介して受信した受信信号に重畳されたノイズ成分を、一定周期の伝送休止期間に於いて検出し、このノイズ成分のキャリアと同一周波数で、且つ逆位相の連続波をキャンセル信号として生成し、このキャンセル信号を前記受信信号に加算して、データの受信処理を行う制御過程を含むものである。   The noise component removal control method of the present invention is a noise component removal control method in which data is modulated and transmitted / received between PLC modems via a power line using the OFDM method, and the noise component superimposed on the power line is removed. A noise component superimposed on the received signal received via the signal is detected in a transmission suspension period of a fixed period, and a continuous wave having the same frequency as that of the carrier of the noise component and having an opposite phase is generated as a cancel signal. This includes a control process in which the cancel signal is added to the reception signal to perform data reception processing.

又電力線を介して伝送された受信信号を演算増幅器と副演算増幅器とにより並列的に増幅し、副演算増幅器により増幅した受信信号を、一定周期の伝送休止期間に於いて処理して、前記受信信号に重畳されたノイズ成分を検出し、このノイズ成分と同一周波数で、且つ逆位相の連続波のキャンセル信号を生成し、このキャンセル信号を演算増幅器に前記受信信号と加算して入力し、この演算増幅器により増幅した受信信号をディジタル信号に変換し、高速フーリエ変換によりサブキャリア対応の信号に分離して、データの受信処理を行う過程を含むものである。   The reception signal transmitted through the power line is amplified in parallel by an operational amplifier and a sub-operation amplifier, and the reception signal amplified by the sub-operation amplifier is processed in a transmission suspension period of a predetermined period, and the reception A noise component superimposed on the signal is detected, a cancellation signal of a continuous wave having the same frequency as that of the noise component and having an opposite phase is generated, and the cancellation signal is added to the operational amplifier and input to the operational amplifier. This includes a process of converting the received signal amplified by the operational amplifier into a digital signal, separating it into a signal corresponding to the subcarrier by fast Fourier transform, and performing a data reception process.

又電力線を介して伝送された受信信号を演算増幅器と副演算増幅器とにより並列的に増幅し、一定周期の伝送休止期間は、副演算増幅器の増幅出力信号を選択し、それ以外の期間は演算増幅器の増幅出力信号を選択して、それぞれディジタル信号に変換し、高速フーリエ変換によりサブキャリアを含む各周波数成分と振幅値とを求めて受信処理し、伝送休止期間に於いて高速フーリエ変換により求めた信号の周波数と振幅と同一又はそれに近い値の振幅で且つ逆位相の連続波としてのキャンセル信号を生成し、このキャンセル信号を演算増幅器に前記受信信号と共に入力して、データの受信処理を行う過程を含むものである。   Also, the received signal transmitted through the power line is amplified in parallel by the operational amplifier and the sub operational amplifier, and the amplified output signal of the sub operational amplifier is selected during the transmission suspension period of a certain period, and the computation is performed during the other periods. Select the amplified output signal of the amplifier, convert it to a digital signal, obtain the frequency components and amplitude values including subcarriers by fast Fourier transform, receive them, and find them by fast Fourier transform in the transmission pause period. A cancel signal is generated as a continuous wave having the same or close frequency and amplitude as the frequency and amplitude of the received signal, and this cancel signal is input to the operational amplifier together with the received signal to receive data. Including processes.

電力線を介してOFDM方式により変調してPLCモデム間でデータを送受信する時の電力線に誘導された伝送帯域内のノイズ成分を、一定周期の伝送休止期間に於いて検出し、その周波数と同一で逆位相のキャンセル信号を生成し、受信信号に加算して、ノイズ成分を除去するもので、電力線に誘導された無線周波数の信号レベルが比較的大きい場合でも、逆位相のキャンセル信号により除去することができるから、受信信号を増幅する演算増幅器が飽和するような問題を解決することができる。
PLC信号の使用帯域内
The noise component in the transmission band induced in the power line when data is transmitted / received between PLC modems by modulating with the OFDM system through the power line is detected in the transmission pause period of the fixed period, and the same frequency An anti-phase cancellation signal is generated and added to the received signal to remove noise components. Even when the signal level of the radio frequency induced on the power line is relatively high, it is removed by the anti-phase cancellation signal. Therefore, the problem that the operational amplifier that amplifies the received signal is saturated can be solved.
Within the use band of PLC signal

本発明の電力線通信システムは、図1を参照すと、電力線を介してPLCモデム間でデータをOFDM方式により変調して送受信する電力線通信システムであって、PLCモデムは、電力線を伝送して受信した受信信号に重畳されたノイズ成分を、一定周期の伝送休止期間に於いて検出する副演算増幅器14、A/Dコンバータ15、高速フーリエ変換部16を含む検出手段と、この検出手段により検出したノイズ成分の振幅と周波数とに対して、同一又はそれに近い値の振幅で、且つ逆位相の連続波としたキャンセル信号を生成するキャリアスペクトル検出回路17、連続信号化回路18、高速逆フーリエ変換部19、D/Aコンバータ20、ローパスフィルタ21、演算増幅器22,23を含む生成手段と、この生成手段により生成したキャンセル信号を、受信信号に加算するノイズキャンセル手段とを含む構成を備えている。   Referring to FIG. 1, the power line communication system according to the present invention is a power line communication system that transmits and receives data by modulating data between PLC modems via the power line using the OFDM method. The PLC modem transmits and receives power lines. The noise component superimposed on the received signal is detected by the detection means including the sub operational amplifier 14, the A / D converter 15 and the fast Fourier transform unit 16 for detecting the transmission pause period of a fixed period, and the detection means. Carrier spectrum detection circuit 17, continuous signal generation circuit 18, and high-speed inverse Fourier transform unit for generating a cancel signal having the same or close amplitude with respect to the amplitude and frequency of the noise component and an antiphase continuous wave 19, D / A converter 20, low-pass filter 21, generating means including operational amplifiers 22 and 23, and generated by this generating means The Yanseru signal has a structure that includes a noise cancel means for adding to the received signal.

本発明のノイズ成分除去制御方法は、電力線を介してPLCモデム間でデータをOFDM方式により変調して送受信し、電力線に重畳されたノイズ成分を除去するノイズ成分除去制御方法であって、電力線を介して受信した受信信号に重畳されたノイズ成分を、一定周期の伝送休止期間に於いて検出し、このノイズ成分のキャリアと同一周波数で、且つ逆位相の連続波を、キャリアスペクトル検出回路17、連続信号化回路18、高速逆フーリエ変換部19、D/Aコンバータ20、ローパスフィルタ21を含む構成により、キャンセル信号として生成し、このキャンセル信号を、演算増幅器10に入力する受信信号に加算して、データの受信処理を行う制御過程を含むものである。   The noise component removal control method of the present invention is a noise component removal control method for removing and transmitting noise components superimposed on a power line by modulating and transmitting / receiving data between PLC modems via a power line using an OFDM method. The noise component superimposed on the received signal received via the signal is detected in a transmission suspension period of a fixed period, and a continuous wave having the same frequency and opposite phase as the carrier of the noise component is detected by the carrier spectrum detection circuit 17, The signal is generated as a cancel signal by the configuration including the continuous signal conversion circuit 18, the fast inverse Fourier transform unit 19, the D / A converter 20, and the low-pass filter 21, and this cancel signal is added to the reception signal input to the operational amplifier 10. And a control process for performing data reception processing.

図1は、本発明の実施例1の説明図であり、1はOFDM信号処理部、2は高速逆フーリエ変換部(OFDMIFFT)、3はD/Aコンバータ、4はローパスフィルタ(LPF)、5,6は高速大電流演算増幅器、7は結合トランス、8は結合コンデンサ、9は減衰器(ATT)、10は演算増幅器、11はA/Dコンバータ、12は高速フーリエ変換部(OFDMFFT)、13は副減衰器(ATT)、14は副演算増幅器、15はA/Dコンバータ、16は高速フーリエ変換部(FFT)、17はキャリアスペクトル検出回路、18は連続信号化回路、19は高速逆フーリエ変換部(IFFT)、20はD/Aコンバータ、21はローパスフィルタ(LPF)、22,23は演算増幅器を示す。   FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention, in which 1 is an OFDM signal processing unit, 2 is a fast inverse Fourier transform unit (OFDM IFFT), 3 is a D / A converter, 4 is a low-pass filter (LPF), 5 , 6 is a high-speed high-current operational amplifier, 7 is a coupling transformer, 8 is a coupling capacitor, 9 is an attenuator (ATT), 10 is an operational amplifier, 11 is an A / D converter, 12 is a fast Fourier transform unit (OFDMFT), 13 Is a sub-attenuator (ATT), 14 is a sub-operational amplifier, 15 is an A / D converter, 16 is a fast Fourier transform unit (FFT), 17 is a carrier spectrum detection circuit, 18 is a continuous signal converting circuit, and 19 is a fast inverse Fourier transform. A conversion unit (IFFT), 20 is a D / A converter, 21 is a low-pass filter (LPF), and 22 and 23 are operational amplifiers.

OFDM信号処理部1から高速逆フーリエ変換部2とD/Aコンバータ3とローパスフィルタ4と高速大電流演算増幅器5,6と結合トランス7と結合コンデンサ8とを介して電力線に、PLC信号送信として示すように送信する。又電力線を伝送して受信するPLC信号は、結合コンデンサ8と結合トランス7と減衰器9と演算増幅器10とA/Dコンバータ11と高速フーリエ変換部12とを介してOFDM信号処理部1により受信処理を行うものであり、この受信処理の主要構成は、例えば、図12に示す構成と同様であって、各部の機能も同様であり、重複した説明を省略する。この実施例1に於いては、結合トランス7を介したPLC信号受信として示す受信信号を減衰器9と並列的に接続した副減衰器13にも入力し、この副減衰器13により減衰させた受信PLC信号を、副演算増幅器14により増幅してA/Dコンバータ15に入力する。   As a PLC signal transmission from the OFDM signal processing unit 1 to the power line through the high-speed inverse Fourier transform unit 2, the D / A converter 3, the low-pass filter 4, the high-speed high-current operational amplifiers 5 and 6, the coupling transformer 7 and the coupling capacitor 8. Send as shown. The PLC signal received through the power line is received by the OFDM signal processing unit 1 through the coupling capacitor 8, the coupling transformer 7, the attenuator 9, the operational amplifier 10, the A / D converter 11, and the fast Fourier transform unit 12. The main configuration of this reception processing is the same as the configuration shown in FIG. 12, for example, and the function of each unit is also the same, and redundant description is omitted. In the first embodiment, a received signal shown as PLC signal reception via the coupling transformer 7 is also input to the sub-attenuator 13 connected in parallel with the attenuator 9 and attenuated by the sub-attenuator 13. The received PLC signal is amplified by the sub operational amplifier 14 and input to the A / D converter 15.

このA/Dコンバータ15は、OFDM信号処理部1からの一定周期のOFDM信号の伝送休止期間を指示する信号に従ってA/D変換処理を行う。即ち、OFDM方式は、複数サブキャリアを多数用いてデータを並列伝送する為に、サブキャリア間の伝送遅延時間の差を吸収する為に、一定周期の伝送休止期間を設定しているもので、この伝送休止期間の情報をOFDM信号処理部1からA/Dコンバータ15に通知し、伝送休止期間にはノイズ成分だけであるから、A/Dコンバータ15によりディジタル信号に変換し、高速フーリエ変換部16によりフーリエ変換して周波数成分と振幅成分とを求め、キャリアスペクトル検出回路17により、ノイズ成分の位相を含めて検出し、連続信号化回路18によりノイズ成分の周波数の一定振幅信号とし、高速逆フーリエ変換部19により連続波信号とし、D/Aコンバータ20によりアナログ信号に変換し、このD/A変換時の量子化ノイズをローパスフィルタ21により除去し、演算増幅器22,23を介して、連続波信号のキャンセル信号として示すように、ノイズ成分と逆位相で、且つノイズ成分の振幅と同一又はそれに近い値のキャンセル信号を、演算増幅器10に入力信号と共に入力する。即ち、入力信号に重畳されているノイズ成分と同一周波数且つ振幅値がほぼ同じで、逆位相のキャンセル信号を、入力信号に加算することにより、ノイズ成分を除去した受信信号を演算増幅器10により増幅して、受信処理することができる。   The A / D converter 15 performs A / D conversion processing in accordance with a signal from the OFDM signal processing unit 1 that designates a transmission suspension period of an OFDM signal having a fixed period. That is, in the OFDM system, a plurality of subcarriers are used to transmit data in parallel, and in order to absorb the difference in transmission delay time between the subcarriers, a fixed transmission suspension period is set. Information on the transmission pause period is notified from the OFDM signal processing unit 1 to the A / D converter 15, and only the noise component is transmitted during the transmission pause period, so that it is converted into a digital signal by the A / D converter 15, and a fast Fourier transform unit 16, the frequency component and the amplitude component are obtained by Fourier transform, and the carrier spectrum detection circuit 17 detects the phase including the phase of the noise component. The Fourier transform unit 19 converts the signal into a continuous wave signal, the D / A converter 20 converts the signal into an analog signal, and the quantization noise at the time of the D / A conversion. Is removed by the low-pass filter 21, and a cancel signal having a phase opposite to that of the noise component and a value equal to or close to the amplitude of the noise component is obtained via the operational amplifiers 22 and 23 as shown in FIG. The signal is input to the operational amplifier 10 together with the input signal. That is, the received signal from which the noise component has been removed is amplified by the operational amplifier 10 by adding a cancel signal having the same frequency and amplitude as the noise component superimposed on the input signal to the input signal and having the opposite phase. Then, reception processing can be performed.

前述のように、演算増幅器22,23から演算増幅器10に入力される信号は、受信PLC信号に含まれたノイズ成分と逆位相の信号であるから、受信PLC信号に重畳されたノイズ成分をキャンセルすることができる。この場合、ノイズ成分を100%打ち消すことができれば最良の状態であるが、80%程度も打ち消すことができれば、演算増幅器10の飽和を防止し、充分にエラー低減効果が得られる。その場合、減衰器9の減衰量は、演算増幅器10及びA/Dコンバータ11が飽和しないレベルに低減できれば充分の値とすることができる。又キャンセル信号生成は、殆どディジタル処理で実行できるから、既存のPLCモデムに僅かな構成と演算処理機能とを含ませることにより、PLC信号の受信演算増幅器が飽和状態となるようなノイズ成分を容易に打ち消すことができる。   As described above, since the signals input from the operational amplifiers 22 and 23 to the operational amplifier 10 are signals having a phase opposite to that of the noise component included in the received PLC signal, the noise component superimposed on the received PLC signal is canceled. can do. In this case, it is the best state if the noise component can be canceled by 100%, but if it can be canceled by about 80%, saturation of the operational amplifier 10 can be prevented, and a sufficient error reduction effect can be obtained. In this case, the attenuation amount of the attenuator 9 can be set to a sufficient value as long as the operational amplifier 10 and the A / D converter 11 can be reduced to a level that does not saturate. Since cancellation signal generation can be performed almost digitally, noise components that can cause the reception operational amplifier of the PLC signal to become saturated can be easily obtained by adding a slight configuration and an arithmetic processing function to an existing PLC modem. Can be canceled.

図2は、ノイズ成分とキャンセル波形との概念説明図であり、(a)は音声信号等により無線周波数信号が振幅変調されたAM信号波形、(b)は搬送波を示す。又(c)はAM波信号と搬送波とを乗算して復調する場合を示し、(d)は、AM信号にキャンセル信号を加算してキャンセル処理する場合を示す。又(e)はAM波形のスペクトル、(f)はAM波と搬送波とを乗算して復調波形を得た場合のスペクトル、(g)はキャンセル波形加算後のスペクトルを示す。キャンセル波形レベルを順次大きくすると、(g)に示すスペクトルのレベルは次第に小さくなり、(e)のAM波形のスペクトルのレベルと同じにした場合に最小の零となる。   FIG. 2 is a conceptual explanatory diagram of a noise component and a cancel waveform, where (a) shows an AM signal waveform in which a radio frequency signal is amplitude-modulated by an audio signal or the like, and (b) shows a carrier wave. (C) shows a case where demodulation is performed by multiplying an AM wave signal and a carrier wave, and (d) shows a case where a cancel signal is added to the AM signal to perform cancellation processing. (E) shows the spectrum of the AM waveform, (f) shows the spectrum when the demodulated waveform is obtained by multiplying the AM wave and the carrier wave, and (g) shows the spectrum after adding the cancel waveform. When the cancel waveform level is increased successively, the spectrum level shown in (g) gradually decreases, and when it is the same as the spectrum level of the AM waveform in (e), it becomes the minimum zero.

図3は、PLC信号とキャンセル信号との概念説明図であり、(a)はOFDM方式によるPLC信号、(b)は妨害を与える無線周波数のAM信号、(c)はキャンセル信号、(D)はキャンセル後の信号を示す。PLC信号は、複数のサブキャリアによりデータを伝送するもので、(a)に示すように、所定期間毎に一定周期の伝送休止期間を設けるものである。この伝送休止期間の信号は電力線に誘起したノイズ成分を示すことになるから、その伝送休止期間に抽出した信号を連続信号とした状態を(c)に示し、これをキャンセル信号とする。このキャンセル信号を、(b)のAM信号の搬送波と逆位相として加算することにより、(d)に示す信号となる。これは音声信号成分となるが、音声レベルは連続で高いレベルが継続することは殆どないことから、(d)に示すように振幅変調のレベルは低いものとなり、演算増幅器10の飽和を確実に防止することができる。   FIG. 3 is a conceptual explanatory diagram of a PLC signal and a cancel signal, where (a) is a PLC signal according to the OFDM system, (b) is a radio frequency AM signal that interferes, (c) is a cancel signal, and (D). Indicates a signal after cancellation. The PLC signal transmits data by a plurality of subcarriers, and as shown in (a), provides a transmission suspension period of a fixed period every predetermined period. Since the signal in the transmission suspension period indicates a noise component induced in the power line, a state in which the signal extracted in the transmission suspension period is a continuous signal is shown in FIG. By adding this cancel signal as an opposite phase to the carrier wave of the AM signal of (b), the signal shown in (d) is obtained. Although this is an audio signal component, since the audio level is continuous and hardly high, the amplitude modulation level is low as shown in (d), and saturation of the operational amplifier 10 is ensured. Can be prevented.

図4は、ノイズ成分抽出の概念説明図であり、(a)はOFDM方式によるPLC信号、(b)は一定周期の伝送休止期間に抽出したノイズ成分、(c)は断続的な抽出ノイズ成分の周波数と同一の周波数の連続化した信号、(d)はキャンセル後の信号をそれぞれ示す。前述のように、PLC信号の一定周期の伝送休止期間に抽出した(b)に示す断続的なノイズ成分を、(c)に示すように、連続波信号とし、この位相をノイズ成分の搬送波と逆位相として、受信PLC信号に加算することにより、ノイズ成分を打ち消すものであり、図3の(d)と同様なレベルの低い信号となる。   FIG. 4 is a conceptual explanatory diagram of noise component extraction, where (a) is a PLC signal based on OFDM, (b) is a noise component extracted during a transmission suspension period of a certain period, and (c) is intermittent extracted noise component. (D) shows the signal after cancellation, respectively. As described above, the intermittent noise component shown in (b) extracted during the transmission suspension period of the fixed period of the PLC signal is a continuous wave signal as shown in (c), and this phase is set as the noise component carrier. By adding to the received PLC signal as an opposite phase, the noise component is canceled out, and the signal becomes a low level signal similar to (d) of FIG.

図5は、直交性を有するサブキャリアの一例の概要を示すもので、F1=61kHzの1周期に於けるF2=122kHz,F3=183kHz,・・・F512=31.25MHzの概要波形を示す。実際のPLC信号は、前述のように、2MHz〜30MHzの周波数範囲内の複数のサブキャリアを使用するものである。   FIG. 5 shows an outline of an example of subcarriers having orthogonality, and shows outline waveforms of F2 = 122 kHz, F3 = 183 kHz,... F512 = 31.25 MHz in one cycle of F1 = 61 kHz. As described above, the actual PLC signal uses a plurality of subcarriers in the frequency range of 2 MHz to 30 MHz.

図6は、受信PLC信号に重畳された無線周波数のノイズ成分の信号とそのキャンセル信号との原理説明図、図7はそのキャンセル信号生成原理説明図、図8は実数軸Reと虚数軸Xeとによる複素平面上のベクトル説明図である。図6の(a)はノイズ成分信号として、受信PLC信号に重畳され、それを一定周期の伝送休止期間に於いて検出した周波数の振幅値Aの信号Acos(ωt+θ)の一例を示し、これを複素平面上で示すと、図8の(a)に示すものとなる。この信号に、同一周波数の図6の(b)に示すsinωtとcosωtとを乗算する。この乗算構成を図7の(a)に示す。乗算結果は、図6の(c),(d)に示す信号となり、積分することにより、−A/2{sinθ}及びA/2{cosθ}を得ることができ、この複素平面上では、図8の(b)に示すようになる。前述のようにノイズ成分となるAM波信号の位相θと振幅A/2を示す。そこで、図7の(b)に示す乗算部と加算部とにより、sinωtを−A/2{sinθ}倍し、cosωtをA/2{cosθ}倍して、加算すると、キャンセル用の信号−Acos(ωt+θ)を得ることができ、複素平面上では、図8の(c)に示すように、図8の(b)の検出ノイズの位相成分と逆位相の成分となり、図1の演算増幅器10の前段に於いて、受信PLC信号に、キャンセル信号を加算することによって、AM信号として重畳されたノイズ成分を打ち消すことができ、完全に打ち消さないまでも、ノイズ成分のレベルを大幅に低減させることができる。   FIG. 6 is a diagram illustrating the principle of a radio frequency noise component superimposed on the received PLC signal and its cancel signal, FIG. 7 is a diagram illustrating the cancel signal generation principle, and FIG. 8 is a diagram illustrating real axis Re and imaginary axis Xe. It is vector explanatory drawing on a complex plane by. FIG. 6A shows an example of a signal Acos (ωt + θ) of an amplitude value A of a frequency that is superimposed on a received PLC signal as a noise component signal and detected in a transmission pause period of a certain period. If it shows on a complex plane, it will become what is shown to (a) of FIG. This signal is multiplied by sin ωt and cos ωt shown in FIG. 6B of the same frequency. This multiplication configuration is shown in FIG. The multiplication results are the signals shown in (c) and (d) of FIG. 6, and −A / 2 {sin θ} and A / 2 {cos θ} can be obtained by integration. On this complex plane, As shown in FIG. As described above, the phase θ and the amplitude A / 2 of the AM wave signal that becomes a noise component are shown. Therefore, when the multiplication unit and the addition unit shown in FIG. 7B multiply sin ωt by −A / 2 {sin θ} and cos ωt by A / 2 {cos θ}, and add, Acos (ωt + θ) can be obtained, and on the complex plane, as shown in FIG. 8C, the phase component of the detection noise in FIG. In the preceding stage, the noise component superimposed as the AM signal can be canceled by adding the cancel signal to the received PLC signal, and the level of the noise component is greatly reduced even if it is not completely canceled. be able to.

前述のように、受信PLC信号に重畳されたノイズ成分のAM波の信号と、その位相が反対のキャンセル信号とは、次の(1)〜(6)式により表すことができる。即ち、検出した(1)式に示すAM波信号F(ω)に対して、逆位相の(6)式に示すキャンセル信号−F(ω)を得ることができ、このキャンセル信号−F(ω)により、受信PLC信号に重畳されたノイズ成分を打ち消すことができる。

Figure 2009021678
As described above, the AM component signal of the noise component superimposed on the received PLC signal and the cancel signal having the opposite phase can be expressed by the following equations (1) to (6). That is, with respect to the detected AM wave signal F (ω) shown in the equation (1), a cancel signal −F (ω) shown in the equation (6) having an opposite phase can be obtained, and this cancel signal −F (ω ), The noise component superimposed on the received PLC signal can be canceled.
Figure 2009021678

図9は、本発明の実施例2の説明図であり、図1と同一符号は同一名称部分を示し、31は減衰器(ATT)、32は副演算増幅器、33はキャリアスペクトル検出回路、34は連続信号化回路、35は高速逆フーリエ変換部(IFFT)、36はD/Aコンバータ、37はローパスフィルタ(LPF)、38,39は演算増幅器を示す。OFDM信号処理部1から演算増幅器10に対しては、受信PLC信号の一定周期の伝送休止期間以外の期間は増幅動作させ、副演算増幅器32に対しては、受信PLC信号の一定周期の伝送休止期間のみ増幅動作させて、それぞれの増幅出力信号をA/Dコンバータ11によりディジタル信号に変換し、高速フーリエ変換部12に於いてフーリエ変換し、OFDM信号処理部1とキャリアスペクトル検出回路33とに入力する。即ち、ノイズ成分についても、A/Dコンバータ11と高速フーリエ変換部12とを共用し、OFDM信号処理部1からの一定周期の伝送休止期間を示す信号に従って、副演算増幅器32と、キャリアスペクトル検出回路33とを動作させて、ノイズ成分を検出する。   FIG. 9 is an explanatory diagram of Embodiment 2 of the present invention. The same reference numerals as those in FIG. 1 denote the same parts, 31 is an attenuator (ATT), 32 is a sub-operational amplifier, 33 is a carrier spectrum detection circuit, 34 Is a continuous signal converting circuit, 35 is a fast inverse Fourier transform unit (IFFT), 36 is a D / A converter, 37 is a low-pass filter (LPF), and 38 and 39 are operational amplifiers. From the OFDM signal processing unit 1 to the operational amplifier 10, an amplification operation is performed during a period other than the transmission pause period of the fixed period of the received PLC signal, and the transmission pause of the received PLC signal is fixed to the sub-operational amplifier 32. Amplifying operation is performed only for a period, and each amplified output signal is converted into a digital signal by the A / D converter 11, Fourier-transformed by the fast Fourier transform unit 12, and sent to the OFDM signal processing unit 1 and the carrier spectrum detection circuit 33. input. That is, with respect to the noise component as well, the A / D converter 11 and the fast Fourier transform unit 12 are shared, and the sub-operation amplifier 32 and the carrier spectrum detection are performed according to a signal indicating a fixed transmission period from the OFDM signal processing unit 1. The circuit 33 is operated to detect a noise component.

キャリアスペクトル検出回路33は、図1に示すキャリアスペクトル検出回路17と同様に、受信PLC信号の一定周期の伝送休止期間の位相成分を含むノイズ成分を検出し、連続信号化回路34により連続波の信号とし、高速逆フーリエ変換部35によりノイズ成分のキャリア位相成分を含む連続波のキャンセル信号を生成し、D/Aコンバータ36によりアナログ信号に変換し、ローパスフィルタ37によりD/A変換時の量子化ノイズを除去し、演算増幅器38,39により増幅して、演算増幅器10に、ノイズ成分に対して逆位相のキャンセル信号を入力して、ノイズ成分をキャンセルする。この実施例2は、受信信号処理とノイズ信号検出処理との制御手段を共用化したことにより、図1に示す実施例1に比較して、構成が簡単となる利点がある。   Similarly to the carrier spectrum detection circuit 17 shown in FIG. 1, the carrier spectrum detection circuit 33 detects a noise component including a phase component of a transmission pause period of a certain period of the received PLC signal, and the continuous signal conversion circuit 34 generates a continuous wave. The signal is generated as a signal, a continuous wave cancel signal including a carrier phase component of a noise component is generated by the fast inverse Fourier transform unit 35, converted to an analog signal by the D / A converter 36, and quantum at the time of D / A conversion by the low-pass filter 37. The noise is removed, amplified by the operational amplifiers 38 and 39, and a cancel signal having an opposite phase to the noise component is input to the operational amplifier 10 to cancel the noise component. The second embodiment has an advantage that the configuration is simplified as compared with the first embodiment shown in FIG. 1 by sharing the control means for the received signal processing and the noise signal detection processing.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. ノイズ成分とキャンセル波形との概念説明図である。It is a conceptual explanatory drawing of a noise component and a cancellation waveform. PLC信号とキャンセル信号との概念説明図である。It is a conceptual explanatory drawing of a PLC signal and a cancellation signal. ノイズ成分抽出の概念説明図である。It is a conceptual explanatory view of noise component extraction. 直交性を有するサブキャリアの一例の概要説明図である。It is outline | summary explanatory drawing of an example of the subcarrier which has orthogonality. ノイズ成分の信号とそのキャンセル信号との原理説明図である。It is principle explanatory drawing of the signal of a noise component, and its cancellation signal. キャンセル信号生成原理説明図である。It is a cancellation signal generation principle explanatory drawing. 実数軸Reと虚数軸Xeとによる複素平面上のベクトル説明図である。It is vector explanatory drawing on the complex plane by the real number axis | shaft Re and the imaginary number axis | shaft Xe. 本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention. PLCシステムの概要説明図である。It is an outline explanatory view of a PLC system. OFDM方式のサブキャリアとノイズとの説明図である。It is explanatory drawing of the subcarrier and noise of an OFDM system. 従来例のPLCモデムの説明図である。It is explanatory drawing of the PLC modem of a prior art example. OFDM信号生成の概念説明図である。It is a conceptual explanatory view of OFDM signal generation.

符号の説明Explanation of symbols

1 OFDM信号処理部
2 高速逆フーリエ変換部(OFDMIFFT)
3 D/Aコンバータ
4 ローパスフィルタ(LPF)
5,6 高速大電流演算増幅器
7 結合トランス
8 結合コンデンサ
9 減衰器(ATT)
10 演算増幅器
11 A/Dコンバータ(A/D)
12 高速フーリエ変換部(OFDMFFT)
13 副減衰器(ATT)
14 副演算増幅器
15 A/Dコンバータ(A/D)
16 高速フーリエ変換部{FFT)
17 キャリアスペクトル検出回路
18 連続信号化回路
19 高速逆フーリエ変換部(IFFT)
20 D/Aコンバータ{D/A)
21 ローパスフィルタ(LPF)
22,23 演算増幅器
1 OFDM signal processing unit 2 Fast inverse Fourier transform unit (OFDM IFFT)
3 D / A converter 4 Low-pass filter (LPF)
5,6 High-speed high-current operational amplifier 7 Coupling transformer 8 Coupling capacitor 9 Attenuator (ATT)
10 operational amplifier 11 A / D converter (A / D)
12 Fast Fourier Transform (OFDMFT)
13 Sub-attenuator (ATT)
14 Sub operational amplifier 15 A / D converter (A / D)
16 Fast Fourier transform unit {FFT)
17 Carrier Spectrum Detection Circuit 18 Continuous Signal Conversion Circuit 19 Fast Inverse Fourier Transform (IFFT)
20 D / A converter {D / A)
21 Low-pass filter (LPF)
22, 23 operational amplifier

Claims (6)

電力線を介してPLCモデム間でデータをOFDM方式により変調して送受信する電力線通信システムに於いて、
前記PLCモデムは、前記電力線を伝送して受信した受信信号に重畳されたノイズ成分を、一定周期の伝送休止期間に於いて検出する検出手段と、
該検出手段により検出した前記ノイズ成分の振幅と周波数とに対して、同一又はそれに近い値の振幅で、且つ逆位相の連続波としたキャンセル信号を生成する生成手段と、
該生成手段により生成した前記キャンセル信号を、前記受信信号に加算するノイズキャンセル手段と、
を含む構成を有することを特徴とする電力線通信システム。
In a power line communication system for transmitting and receiving data modulated by an OFDM method between PLC modems via a power line,
The PLC modem has a detecting means for detecting a noise component superimposed on a received signal transmitted through the power line in a transmission suspension period of a fixed period;
Generating means for generating a cancellation signal that is the same or close to the amplitude and frequency of the noise component detected by the detecting means and a continuous wave of opposite phase;
Noise cancellation means for adding the cancellation signal generated by the generation means to the received signal;
A power line communication system having a configuration including:
前記PLCモデムは、受信信号を増幅する演算増幅器と、該演算増幅器により増幅した受信信号をディジタル信号に変換し、高速フーリエ変換によりサブキャリア対応の信号に分離して受信処理する処理手段と、前記演算増幅器と並列的に前記受信信号を副演算増幅器により増幅し、前記処理手段からの一定周期の伝送休止期間の情報に従って、該伝送休止期間のノイズ成分を検出する検出手段と、該検出手段により検出した前記ノイズ成分をフーリエ変換して前記ノイズ成分の振幅と周波数とに対して同一又はそれに近い値の振幅で且つ逆位相の連続波としたキャンセル信号を生成する生成手段と、該生成手段により生成された前記キャンセル信号を前記演算増幅器に前記受信信号と共に入力するノイズキャンセル手段とを含む構成を有することを特徴とする請求項1記載の電力線通信システム。   The PLC modem includes an operational amplifier for amplifying a received signal, processing means for converting the received signal amplified by the operational amplifier into a digital signal, separating the signal into a signal corresponding to a subcarrier by fast Fourier transform, In parallel with the operational amplifier, the received signal is amplified by a sub-operational amplifier, and in accordance with information on the transmission pause period of a fixed period from the processing means, a detection means for detecting a noise component in the transmission pause period, and the detection means Generation means for generating a cancel signal having a Fourier transform of the detected noise component and having an amplitude that is the same as or close to the amplitude and frequency of the noise component and a continuous wave having an opposite phase; and Noise cancellation means for inputting the generated cancellation signal to the operational amplifier together with the received signal. Power line communication system according to claim 1, wherein a. 前記PLCモデムは、受信信号をそれぞれ増幅する演算増幅器と副演算増幅器と、一定周期の伝送休止期間は前記副演算増幅器の増幅出力信号を選択し、それ以外の期間は前記演算増幅器の増幅出力信号を選択して、それぞれディジタル信号に変換し、高速フーリエ変換によりサブキャリアを含む各周波数成分と振幅値とを求めて受信処理する処理手段と、該処理手段の前記高速フーリエ変換により前記伝送休止期間の受信信号を基に求めた周波数と振幅と同一又はそれに近い値の振幅で且つ逆位相の連続波としてのキャンセル信号を生成する生成手段と、該生成手段により生成した前記キャンセル信号を前記演算増幅器に前記受信信号と共に入力するノイズキャンセル手段とを含むことを特徴とする請求項1記載の電力線通信システム。   The PLC modem selects an operational amplifier and a sub operational amplifier for amplifying the received signal, and selects an amplified output signal of the sub operational amplifier during a transmission suspension period of a fixed period, and an amplified output signal of the operational amplifier during other periods. And processing means for obtaining each frequency component and amplitude value including subcarriers by fast Fourier transform and receiving processing, and the transmission pause period by the fast Fourier transform of the processing means Generating means for generating a cancellation signal as a continuous wave having the same or close to the frequency and amplitude as the frequency and amplitude obtained from the received signal, and the opposite phase, and the operational amplifier for generating the cancellation signal generated by the generating means The power line communication system according to claim 1, further comprising noise canceling means for inputting the received signal together with the received signal. 電力線を介してPLCモデム間でデータをOFDM方式により変調して送受信し、前記電力線に重畳されたノイズ成分を除去するノイズ成分除去制御方法に於いて、
前記電力線を介して受信した受信信号に重畳されたノイズ成分を、一定周期の伝送休止期間に於いて検出し、該ノイズ成分のキャリアと同一周波数で、且つ逆位相の連続波をキャンセル信号として生成し、該キャンセル信号を前記受信信号に加算して、前記データの受信処理を行う制御過程を含む
ことを特徴とするノイズ成分除去制御方法。
In a noise component removal control method for removing and transmitting noise components superimposed on the power line by modulating and transmitting data between PLC modems via a power line in accordance with the OFDM method,
A noise component superimposed on a received signal received via the power line is detected during a transmission suspension period of a fixed period, and a continuous wave having the same frequency as that of the carrier of the noise component and an opposite phase is generated as a cancel signal. And a control process of adding the cancel signal to the received signal and performing the data receiving process.
電力線を介して伝送された受信信号を演算増幅器と副演算増幅器とにより並列的に増幅し、前記副演算増幅器により増幅した受信信号を、一定周期の伝送休止期間に於いて処理して、前記受信信号に重畳されたノイズ成分を検出し、該ノイズ成分と同一周波数で、且つ逆位相の連続波のキャンセル信号を生成し、該キャンセル信号を前記演算増幅器に前記受信信号と加算して入力し、該演算増幅器により増幅した受信信号をディジタル信号に変換し、高速フーリエ変換によりサブキャリア対応の信号に分離して、データの受信処理を行う過程を含むことを特徴とする請求項4記載のノイズ成分除去制御方法。   A reception signal transmitted through a power line is amplified in parallel by an operational amplifier and a sub-operational amplifier, and the reception signal amplified by the sub-operational amplifier is processed in a transmission suspension period of a predetermined period, and the reception Detecting a noise component superimposed on the signal, generating a cancellation signal of a continuous wave having the same frequency and opposite phase as the noise component, and adding the cancellation signal to the operational amplifier in addition to the received signal; 5. The noise component according to claim 4, further comprising a step of converting the received signal amplified by the operational amplifier into a digital signal, separating the signal into a signal corresponding to a subcarrier by fast Fourier transform, and performing a data reception process. Removal control method. 電力線を介して伝送された受信信号を演算増幅器と副演算増幅器とにより並列的に増幅し、一定周期の伝送休止期間は、前記副演算増幅器の増幅出力信号を選択し、それ以外の期間は前記演算増幅器の増幅出力信号を選択して、それぞれディジタル信号に変換し、高速フーリエ変換によりサブキャリアを含む各周波数成分と振幅値とを求めて受信処理し、前記伝送休止期間に於いて前記高速フーリエ変換により求めた信号の周波数と振幅と同一又はそれに近い値の振幅で且つ逆位相の連続波としてのキャンセル信号を生成し、該キャンセル信号を前記演算増幅器に前記受信信号と共に入力して、データの受信処理を行う過程を含むことを特徴とする請求項4記載のノイズ成分除去制御方法。   The reception signal transmitted through the power line is amplified in parallel by the operational amplifier and the sub operational amplifier, the transmission suspension period of a certain period is selected from the amplified output signal of the sub operational amplifier, and the other period is the above The amplified output signal of the operational amplifier is selected, converted into a digital signal, and each frequency component including the subcarrier and the amplitude value are obtained by fast Fourier transform and received, and the fast Fourier is transmitted during the transmission pause period. A cancel signal is generated as a continuous wave having the same or close to the frequency and amplitude of the signal obtained by the conversion and having an opposite phase, and the cancel signal is input to the operational amplifier together with the received signal. 5. The noise component removal control method according to claim 4, further comprising a step of performing reception processing.
JP2007180963A 2007-07-10 2007-07-10 Power line communication system, and noise component removal control method Pending JP2009021678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180963A JP2009021678A (en) 2007-07-10 2007-07-10 Power line communication system, and noise component removal control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180963A JP2009021678A (en) 2007-07-10 2007-07-10 Power line communication system, and noise component removal control method

Publications (1)

Publication Number Publication Date
JP2009021678A true JP2009021678A (en) 2009-01-29

Family

ID=40360947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180963A Pending JP2009021678A (en) 2007-07-10 2007-07-10 Power line communication system, and noise component removal control method

Country Status (1)

Country Link
JP (1) JP2009021678A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209850A (en) * 2011-03-30 2012-10-25 Murata Mfg Co Ltd Noise cancellation device
CN103338080A (en) * 2013-05-28 2013-10-02 徐忠义 Suppression method of strong interference noise of power line carrier channel, and circuit structure thereof
CN103684530A (en) * 2013-09-13 2014-03-26 瑞仪光电股份有限公司 Adaptive control method and system
EP3675377A2 (en) 2018-12-28 2020-07-01 Renesas Electronics Corporation Power line communication device
CN112910505A (en) * 2021-02-03 2021-06-04 青岛鼎信通讯股份有限公司 Noise elimination circuit applied to medium-voltage power line communication equipment
CN113438012A (en) * 2021-06-25 2021-09-24 中国电子科技集团公司第五十四研究所 Multi-channel satellite communication device based on VPX framework
CN113783633A (en) * 2021-09-18 2021-12-10 广东电网有限责任公司 Multi-band noise simulation device and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209850A (en) * 2011-03-30 2012-10-25 Murata Mfg Co Ltd Noise cancellation device
CN103338080A (en) * 2013-05-28 2013-10-02 徐忠义 Suppression method of strong interference noise of power line carrier channel, and circuit structure thereof
CN103338080B (en) * 2013-05-28 2015-05-20 徐忠义 Suppression method of strong interference noise of power line carrier channel, and circuit structure thereof
CN103684530A (en) * 2013-09-13 2014-03-26 瑞仪光电股份有限公司 Adaptive control method and system
US9432157B2 (en) 2013-09-13 2016-08-30 Radiant Opto-Electronics Corporation Adaptive control system and method
KR20200083270A (en) 2018-12-28 2020-07-08 르네사스 일렉트로닉스 가부시키가이샤 Power line communication device
EP3675377A2 (en) 2018-12-28 2020-07-01 Renesas Electronics Corporation Power line communication device
JP2020108046A (en) * 2018-12-28 2020-07-09 ルネサスエレクトロニクス株式会社 Power line communication device
US11146309B2 (en) 2018-12-28 2021-10-12 Renesas Electronics Corporation Power line communication device
JP7065021B2 (en) 2018-12-28 2022-05-11 ルネサスエレクトロニクス株式会社 Power line communication device
US11569867B2 (en) 2018-12-28 2023-01-31 Renesas Electronics Corporation Power line communication device
CN112910505A (en) * 2021-02-03 2021-06-04 青岛鼎信通讯股份有限公司 Noise elimination circuit applied to medium-voltage power line communication equipment
CN113438012A (en) * 2021-06-25 2021-09-24 中国电子科技集团公司第五十四研究所 Multi-channel satellite communication device based on VPX framework
CN113783633A (en) * 2021-09-18 2021-12-10 广东电网有限责任公司 Multi-band noise simulation device and method
CN113783633B (en) * 2021-09-18 2023-09-22 广东电网有限责任公司 Simulation device and method for multiband noise

Similar Documents

Publication Publication Date Title
JP2009021678A (en) Power line communication system, and noise component removal control method
CN107005513B (en) A kind of the slicing processing method and equipment of signal
JP5287521B2 (en) Communication device
KR100834256B1 (en) Data transmission system
JP4823107B2 (en) OFDM modulator
JP2011193079A (en) Wireless communication-receiving circuit
JPH11313042A (en) Radio communication equipment
WO2011055466A1 (en) Receiving apparatus and method
TW200401513A (en) Noise elimination method and apparatus
JP2013162298A (en) Communication device and communication method
CN110460355A (en) For handling the method and receiver of the signal from transmission channel
KR20090115159A (en) Method of transmitting data and modem
JP4740069B2 (en) Wraparound canceller
JP2010213107A (en) Communication apparatus
JP2006186733A (en) Communication apparatus and communication method
JPH11289312A (en) Multicarrier radio communication device
CN110086504B (en) Method and transmitter for transmitting information over a communication channel
JP2007020113A (en) Power line communication apparatus
JP2001285167A (en) Repeating installation
JP2009100390A (en) Peak factor reduction apparatus and wireless transmitter
KR20160020170A (en) Method for Ultrasonic wave Signal Transmission and Reception
WO2016199355A1 (en) Distance estimation device
US20210306188A1 (en) Processing amplitude modulation signals with noise estimation
JP2004032450A (en) Multi-carrier transmitting device and its power clipping system
JP3821666B2 (en) Acoustic communication device and acoustic signal communication method