JP2009020404A - Optical scanner and image forming apparatus - Google Patents

Optical scanner and image forming apparatus Download PDF

Info

Publication number
JP2009020404A
JP2009020404A JP2007184215A JP2007184215A JP2009020404A JP 2009020404 A JP2009020404 A JP 2009020404A JP 2007184215 A JP2007184215 A JP 2007184215A JP 2007184215 A JP2007184215 A JP 2007184215A JP 2009020404 A JP2009020404 A JP 2009020404A
Authority
JP
Japan
Prior art keywords
control gain
time
control
vibration
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007184215A
Other languages
Japanese (ja)
Inventor
Eijiro Ohashi
栄二郎 大橋
Kenjiro Hori
謙治郎 堀
Shinpei Matsuo
信平 松尾
Hirotaka Itsutougi
浩孝 一藤木
Tatsuya Hoka
達也 補伽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007184215A priority Critical patent/JP2009020404A/en
Publication of JP2009020404A publication Critical patent/JP2009020404A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical scanner in which jitter at a vibration is reduced even when variation in the characteristic of a vibration system, such as a temperature change, a change with time or machining accuracy when manufactured, is present, and to provide an image forming apparatus. <P>SOLUTION: The optical scanner comprises: the vibration system 100 having a rocking body and a torsion spring; a reflection mirror formed on the rocking body; a light source 131 which generates a light beam; a coil 161 which applies driving force to the vibration system 100; a light receiving element 140 which clocks time when the rocking body takes a dislocation angle θ BD; a driving control part 600 which controls the coil 161; and a control gain adjuster 620 which adjusts the control gain of the driving control part 600, wherein the driving control part 600 calculates the time difference 153 between the time 151 detected by the light receiving element 140 and a target time 152, and controls the vibration system 100 on the basis of the time difference 153, and the control gain adjuster 620 adjusts the control gain on the basis of the time difference 153 and sets the control gain to the driving control part 600. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光走査装置及び画像形成装置に関する。特に、マイクロ揺動構造体などの揺動体を有する光偏向装置に関する。また、この光偏向装置を使用した走査型ディスプレイやレーザビームプリンタやデジタル複写機等の画像形成装置に関するものである。   The present invention relates to an optical scanning device and an image forming apparatus. In particular, the present invention relates to an optical deflection apparatus having an oscillating body such as a micro oscillating structure. The present invention also relates to an image forming apparatus such as a scanning display, a laser beam printer, and a digital copying machine using the optical deflection apparatus.

従来、反射ミラーが共振駆動される揺動体である光偏向器(光走査装置)が色々と提案されている。共振型揺動体は、ポリゴンミラー等の回転多面鏡を使用した光走査光学系に比べて、大幅に小型化することが可能である。また、消費電力が少ないこと、面倒れが理論的に存在しないこと、特に半導体プロセスによって製造されるSi単結晶からなる揺動体は理論上金属疲労が無く耐久性にも優れていること等の特徴がある(例えば、特許文献1)。このような共振型揺動体を、以下、共振型光偏向器と記す。   Conventionally, various optical deflectors (optical scanning devices), which are oscillating bodies in which a reflecting mirror is driven to resonate, have been proposed. The resonant oscillator can be significantly reduced in size compared to an optical scanning optical system using a rotating polygonal mirror such as a polygon mirror. In addition, the features such as low power consumption, theoretically no surface tilt, especially the oscillator made of Si single crystal manufactured by semiconductor process is theoretically free from metal fatigue and excellent in durability, etc. (For example, Patent Document 1). Such a resonant oscillator is hereinafter referred to as a resonant optical deflector.

また、共振型光偏向器においては、原理的に反射ミラーの偏向角(変位角)が正弦的に変化するため、角速度が一定でない。この特性を補正するために、次のような手法が提案されている(例えば、特願2006−035491参照)。なお、本明細書では、反射ミラーの偏向角と反射ミラーで偏向・走査される走査光の走査角は一定の関係にあって同等に扱えるので、偏向角(変位角)と走査角は同等な意味で用いる。   Further, in the resonance type optical deflector, since the deflection angle (displacement angle) of the reflecting mirror changes sinusoidally in principle, the angular velocity is not constant. In order to correct this characteristic, the following method has been proposed (for example, see Japanese Patent Application No. 2006-035491). In this specification, the deflection angle of the reflecting mirror and the scanning angle of the scanning light deflected / scanned by the reflecting mirror have a fixed relationship and can be treated equally, so the deflection angle (displacement angle) and the scanning angle are equivalent. Used in meaning.

特願2006−035491に記載の手法では、2つの揺動体を有する共振型光偏向器を用い、一方の揺動体に基本周波数の振動を、他方の揺動体に基本周波数の整数倍の周波数の振動を発生させる構成である。基本周波数と、基本周波数の2倍の周波数の振動を発生させることで、略鋸波駆動を実現することができる。図13に略鋸波駆動を実現した共振型光偏向器を示す。   In the method described in Japanese Patent Application No. 2006-035491, a resonance type optical deflector having two oscillators is used, vibration at a fundamental frequency is applied to one oscillator, and vibration at an integral multiple of the fundamental frequency is applied to the other oscillator. It is the structure which generates. By generating vibrations having a fundamental frequency and twice the fundamental frequency, substantially sawtooth drive can be realized. FIG. 13 shows a resonance type optical deflector that realizes substantially sawtooth driving.

振動系400は揺動体401、402、ねじりバネ411、412、支持部421、駆動部420、光源431、第1及び第2の受光素子441,442、駆動制御部450から構成される。また、432は光源431からの光ビーム、433は揺動体401により反射された走査光である。この振動系は、基本周波数と基本周波数の整数倍の共振周波数を持ち、基本周波数と基本周波数の整数倍の周波数との合成周波数で駆動する。基本周波数と基本周波数の例えば2倍の周波数との合成周波数で駆動するとき、反射面を有する揺動体401が略鋸波駆動で駆動し、その偏向角は正弦波駆動に比べて角速度の変化の少ない光偏向を実現する。駆動制御部450により目標振動波形を実現するために必要な駆動信号を生成し、駆動部420が振動系400を駆動している。   The vibration system 400 includes oscillators 401 and 402, torsion springs 411 and 412, a support part 421, a drive part 420, a light source 431, first and second light receiving elements 441 and 442, and a drive control part 450. Reference numeral 432 denotes a light beam from the light source 431, and reference numeral 433 denotes scanning light reflected by the oscillator 401. This vibration system has a fundamental frequency and a resonance frequency that is an integral multiple of the fundamental frequency, and is driven at a combined frequency of the fundamental frequency and a frequency that is an integral multiple of the fundamental frequency. When driving at a combined frequency of the fundamental frequency and a frequency that is, for example, twice the fundamental frequency, the oscillating body 401 having a reflecting surface is driven by substantially sawtooth drive, and the deflection angle thereof changes in angular velocity compared to sine wave drive. Achieves less light deflection. The drive control unit 450 generates a drive signal necessary for realizing the target vibration waveform, and the drive unit 420 drives the vibration system 400.

図14に特願2006−035491の駆動制御部450を示す。図中、351、352は2000Hz及び4000Hzの正弦波を生成する任意波形発生器である。それぞれの正弦波の位相及び振幅は演算部454の指令により任意に変更可能である。生成された2つの正弦波は加算器370で足し合わされた後に増幅器380により増幅され、例えばコイルなどの駆動部420に電流が流される。コイルなど駆動部420に流れる電流により、揺動体402に取り付けられた例えば永久磁石などの駆動部420にトルクが作用し、揺動体402を駆動する。   FIG. 14 shows a drive control unit 450 of Japanese Patent Application No. 2006-035491. In the figure, reference numerals 351 and 352 denote arbitrary waveform generators that generate sine waves of 2000 Hz and 4000 Hz. The phase and amplitude of each sine wave can be arbitrarily changed by a command from the calculation unit 454. The two generated sine waves are added by an adder 370 and then amplified by an amplifier 380, and a current is supplied to a driving unit 420 such as a coil. Torque is applied to the driving unit 420 such as a permanent magnet attached to the rocking body 402 by the current flowing through the driving unit 420 such as a coil to drive the rocking body 402.

第1及び第2の受光素子441、442は後述の実施例で説明する図7に示す受光素子141、142のように配置される。第1及び第2の受光素子441、442からの出力451は予め設定された基準となる値452とに基づき得られる値453となって演算部454に取り込まれる。演算部454は、第1及び第2の受光素子441、442の出力451が任意の値を示すように任意波形発生器351,352に操作量455を出力する。つまり光偏向装置の走査光433が所望する任意の時間で第1及び第2の受光素子441、442を通過するように、任意波形発生器351,352のそれぞれの正弦波の位相及び振幅を制御する。
特開昭57−8520号公報
The first and second light receiving elements 441 and 442 are arranged like the light receiving elements 141 and 142 shown in FIG. Outputs 451 from the first and second light receiving elements 441 and 442 become a value 453 obtained based on a preset reference value 452 and are taken into the calculation unit 454. The calculation unit 454 outputs an operation amount 455 to the arbitrary waveform generators 351 and 352 so that the outputs 451 of the first and second light receiving elements 441 and 442 indicate arbitrary values. That is, the phase and amplitude of each sine wave of the arbitrary waveform generators 351 and 352 are controlled so that the scanning light 433 of the optical deflecting device passes through the first and second light receiving elements 441 and 442 at an arbitrary time desired. To do.
JP 57-8520 A

上記半導体プロセスで製造された揺動体の共振周波数は可動板及び弾性支持部の材質及び形状の加工精度により決定されるため、材質や加工精度によって、作成した揺動体の共振周波数、慣性モーメント、ねじりバネのバネ定数等に固体差が生じる。そのため、作製した全ての揺動体を同一の駆動周波数と同一の制御ゲインで駆動しようとすると、駆動可能なものを選別して使用しなければならず、歩留まりを下げるおそれがある。   Since the resonance frequency of the oscillator manufactured by the above semiconductor process is determined by the processing accuracy of the material and shape of the movable plate and the elastic support portion, the resonance frequency, moment of inertia, and torsion of the oscillator manufactured are determined by the material and processing accuracy. Solid differences occur in the spring constant of the spring. Therefore, if all the manufactured oscillators are to be driven with the same drive frequency and the same control gain, the driveable ones must be selected and used, which may reduce the yield.

また、この個体差を有する揺動体を、同一の駆動周波数及び同一の制御ゲインを設定した駆動制御部450により制御すると、揺動体の慣性モーメントやねじりバネのバネ定数の個体差により、振動運動のジッタが大きくなる可能性がある。   Further, when the oscillator having this individual difference is controlled by the drive control unit 450 having the same drive frequency and the same control gain, the oscillatory motion is caused by the individual difference of the inertia of the oscillator and the spring constant of the torsion spring. Jitter may increase.

更に、温度変化や経年変化により揺動体の慣性モーメント、ねじりバネのバネ定数、固有周波数等が変化する。従って、同一の制御ゲインを設定した駆動制御部450により制御する場合、揺動体の温度変化や経年変化によって振動運動のジッタが大きくなるという問題がある。   Furthermore, the moment of inertia of the oscillator, the spring constant of the torsion spring, the natural frequency, and the like change due to temperature changes and secular changes. Therefore, when the control is performed by the drive control unit 450 in which the same control gain is set, there is a problem that the jitter of the oscillating motion increases due to the temperature change or aging change of the oscillating body.

本発明は以上の点に鑑みて成されたもので、揺動体の振動波形と目標振動波形とのずれが少なくなるような制御ゲインを選択でき、光走査の精度を高めることができる光走査装置及び画像形成装置を提供することを課題とする。   The present invention has been made in view of the above points, and an optical scanning device capable of selecting a control gain that reduces a deviation between a vibration waveform of a rocking body and a target vibration waveform and improving the accuracy of optical scanning. It is another object of the present invention to provide an image forming apparatus.

前記課題を解決するために、本発明の光走査装置及び画像形成装置は以下の構成を備える。   In order to solve the above problems, an optical scanning device and an image forming apparatus of the present invention have the following configuration.

(1)1つ以上の揺動体と前記揺動体に連結された1つ以上のねじりバネとを有する振動系と、前記揺動体の少なくとも1つに形成された反射ミラーと、光ビームを発生する光源と、所定の周波数で振動運動を行わせるために前記振動系に駆動力を印加する駆動手段と、前記揺動体の少なくとも1つが、少なくとも1つ以上の変位角をなすときの時間を計測するための変位角検出手段と、前記変位角検出手段により計測された時間に基づき前記駆動手段を制御する駆動制御手段とを備え、前記反射ミラーに前記光ビームを照射して光を走査する光走査装置であって、前記駆動制御手段の制御ゲインを調整する制御ゲイン調整手段を備え、前記駆動制御手段は、前記周波数の1周期内における所定の時間を基準または原点の時間とした場合に、前記揺動体が少なくとも1つ以上の所定の変位角をなすときの少なくとも1つの時間と予め設定した設定時間との時間差を算出し、前記時間差に基づき前記振動運動の振動波形の振幅と位相のうち少なくとも1つを制御し、前記制御ゲイン調整手段は、前記時間差に基づき前記制御ゲインを調整し、前記駆動制御手段に設定することを特徴とする光走査装置。   (1) A vibration system having one or more oscillating bodies and one or more torsion springs connected to the oscillating bodies, a reflection mirror formed on at least one of the oscillating bodies, and a light beam are generated. Time is measured when at least one of the light source, the driving means for applying a driving force to the vibration system in order to perform a vibration motion at a predetermined frequency, and at least one of the oscillating bodies forms at least one displacement angle. And a scanning controller that controls the driving unit based on the time measured by the displacement angle detecting unit, and scans the light by irradiating the light beam on the reflecting mirror. The apparatus includes a control gain adjustment unit that adjusts a control gain of the drive control unit, and the drive control unit has a predetermined time within one cycle of the frequency as a reference or origin time, A time difference between at least one time when the oscillator makes at least one predetermined displacement angle and a preset time is calculated, and based on the time difference, the amplitude and phase of the vibration waveform of the vibration motion At least one is controlled, The said control gain adjustment means adjusts the said control gain based on the said time difference, The optical scanning apparatus characterized by the above-mentioned.

(2)1つ以上の揺動体と前記揺動体に連結された1つ以上のねじりバネとを有する振動系と、前記揺動体の少なくとも1つに形成された反射ミラーと、光ビームを発生する光源と、所定の周波数で振動運動を行わせるために前記振動系に駆動力を印加する駆動手段と、前記揺動体の少なくとも1つが、異なる第1及び第2の変位角をなすときの時間を計測するための変位角検出手段と、前記変位角検出手段により計測された時間に基づき前記駆動手段を制御する駆動制御手段とを備え、前記反射ミラーに前記光ビームを照射して光を走査する光走査装置であって、前記駆動制御手段の制御ゲインを調整する制御ゲイン調整手段を備え、前記駆動制御手段は、前記周波数の1周期内における所定の時間を基準または原点の時間とした場合に、前記揺動体の1つが前記第1の変位角をなすときの互いに異なる時間と、前記揺動体の1つが前記第2の変位角をなすときの互いに異なる時間と、から成る複数の時間の内の少なくとも2つの時間と設定時間との時間差を算出し、前記時間差に基づき前記振動運動の振動波形の振幅と位相のうち少なくとも1つを制御し、前記制御ゲイン調整手段は、前記時間差に基づき前記制御ゲインを調整し、前記駆動制御手段に設定することを特徴とする光走査装置。   (2) A vibration system having one or more oscillating bodies and one or more torsion springs connected to the oscillating bodies, a reflection mirror formed on at least one of the oscillating bodies, and a light beam. Time when at least one of the light source, the driving means for applying a driving force to the vibration system in order to cause the vibration motion at a predetermined frequency, and the oscillator to form different first and second displacement angles is set. Displacement angle detection means for measuring, and drive control means for controlling the drive means based on the time measured by the displacement angle detection means, and scanning the light by irradiating the light beam on the reflection mirror The optical scanning device includes a control gain adjusting unit that adjusts a control gain of the drive control unit, and the drive control unit has a predetermined time within one cycle of the frequency as a reference or origin time. , A plurality of times when one of the oscillating bodies forms the first displacement angle and a different time when one of the oscillating bodies forms the second displacement angle. A time difference between at least two times and a set time is calculated, and at least one of amplitude and phase of a vibration waveform of the vibration motion is controlled based on the time difference, and the control gain adjusting means is configured to control the control based on the time difference. An optical scanning device characterized in that a gain is adjusted and set in the drive control means.

(3)前記(1)または(2)に記載の光走査装置を備える画像形成装置であって、前記制御ゲイン調整手段は、画像形成時以外に前記制御ゲインを前記駆動制御手段に設定することを特徴とする画像形成装置。   (3) An image forming apparatus including the optical scanning device according to (1) or (2), wherein the control gain adjusting unit sets the control gain in the drive control unit other than during image formation. An image forming apparatus.

本発明によれば、製造工程で揺動体の慣性モーメント、ねじりバネのバネ定数、固有周波数等に個体差が生じた場合でも、揺動体の振動と目標振動波形とのずれが最も少なくなるような制御ゲインを選択することができる。そのため、揺動体の振動運動におけるジッタを改善できる。更に、従来、ある範囲の共振周波数から外れた揺動体はジッタが大きくなるため不良とみなしていたが、揺動体の個体差に適した制御ゲインを設定することでジッタが低減され、歩留まりを改善することができる。   According to the present invention, even when individual differences occur in the moment of inertia of the oscillator, the spring constant of the torsion spring, the natural frequency, etc. in the manufacturing process, the deviation between the oscillation of the oscillator and the target vibration waveform is minimized. A control gain can be selected. Therefore, it is possible to improve jitter in the vibration motion of the rocking body. Furthermore, in the past, oscillators that deviated from a certain range of resonance frequency were regarded as defective because of increased jitter. However, setting a control gain suitable for individual differences between oscillators reduces jitter and improves yield. can do.

さらに、温度変化や経年変化により揺動体の慣性モーメント、ねじりバネのバネ定数、固有周波数等が変化した場合でも、揺動体の振動波形と目標振動波形とのずれが最も少なくなるような制御ゲインを選択することができるようになる。その結果、揺動体の振動が目標振動波形に近づくため、光走査の精度を高めることができる。   Furthermore, even when the moment of inertia of the oscillator, the spring constant of the torsion spring, the natural frequency, etc. change due to temperature change or secular change, a control gain that minimizes the deviation between the oscillation waveform of the oscillator and the target vibration waveform is set. You will be able to choose. As a result, the vibration of the oscillating body approaches the target vibration waveform, so that the accuracy of optical scanning can be improved.

本発明の光偏向装置(光走査装置)の実施例を、以下に詳しく説明する。実施例1は揺動体の数が1つ、実施例3は揺動体の数が2つの共振型光偏向装置としてそれぞれ構成されている。以下に、本発明の更に具体的な実施例を図面に沿って説明する。   An embodiment of the optical deflecting device (optical scanning device) of the present invention will be described in detail below. The first embodiment is configured as a resonance type optical deflecting device having one oscillator and the third embodiment is having two oscillators. Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings.

実施例1においては、1つの揺動体とその揺動体に連結された少なくとも1つのねじりバネとで振動系を構成している。揺動体には反射ミラーを形成している。そして、変位角計測部は、反射ミラー付き揺動体がある変位角を取るときの走査光で照射される位置に配された受光素子(変位角計測手段)を少なくとも1つ有する。また、走査光は、直接受光素子に入射するようにしてもよいし、少なくとも1つの反射部材を経て受光素子に入射するようにしてもよい。すなわち、少なくとも1つの受光素子が、反射ミラー付き揺動体がある変位角を取ってある偏向角(走査角)になった走査光を受光して検出できるように配置されていればよい。   In the first embodiment, a vibration system is constituted by one rocking body and at least one torsion spring connected to the rocking body. A reflection mirror is formed on the oscillator. The displacement angle measuring unit has at least one light receiving element (displacement angle measuring means) disposed at a position irradiated with the scanning light when the oscillating body with the reflection mirror takes a certain displacement angle. Further, the scanning light may be directly incident on the light receiving element, or may be incident on the light receiving element via at least one reflecting member. That is, it is sufficient that at least one light receiving element is arranged so as to receive and detect scanning light having a certain deflection angle (scanning angle) with a certain oscillating body with a reflecting mirror.

実施例1の光偏向装置を説明する。実施例1の光偏向装置の振動系は、1つの揺動体とその揺動体に連結する少なくとも1つのねじりバネを含み、基本共振周波数での振動運動を発生可能である。そして、光偏向装置は、振動系を動作させる駆動部(駆動手段)と、揺動体に形成された反射ミラーと、光ビームを照射する光源とを更に有して、反射ミラーに光ビームを照射して光を走査する。   The optical deflecting device of Example 1 will be described. The vibration system of the optical deflecting device according to the first embodiment includes one oscillator and at least one torsion spring coupled to the oscillator, and can generate an oscillation motion at the fundamental resonance frequency. The light deflection apparatus further includes a drive unit (drive means) that operates the vibration system, a reflection mirror formed on the oscillating body, and a light source that irradiates the light beam, and irradiates the reflection mirror with the light beam. And scan the light.

本実施例による光偏向装置のブロック図を図1に示す。振動系100は、揺動体102を含み、揺動体102と支持部121を連結するねじりバネ112が設けられている。   A block diagram of an optical deflecting device according to the present embodiment is shown in FIG. The vibration system 100 includes a rocking body 102, and a torsion spring 112 that connects the rocking body 102 and the support portion 121 is provided.

駆動制御部(駆動制御手段)600は、揺動体102に、電磁・静電・圧電などにより振動系100の固有振動モードを同時に励振する駆動力を加える(印加する)。本実施例では駆動制御部600はコイル161に適当な電流を流すように制御する信号を送るものとする。コイル161に流れる電流により、揺動体102に取り付けられた永久磁石162にトルクが作用し、振動系100を駆動する。揺動体102は表面に反射ミラーを有し、光源131からの光ビーム132を走査する。走査光133は、各周期の往復走査において、受光素子140を2回通過する。駆動制御部600は、走査光133が受光素子140を2回通過する時間に基づいて、コイル161への駆動信号を生成する。なお、620は、後述する制御ゲイン調整器(制御ゲイン調整手段)である。   The drive control unit (drive control means) 600 applies (applies) a driving force to the oscillator 102 to simultaneously excite the natural vibration mode of the vibration system 100 by electromagnetic, electrostatic, piezoelectric, or the like. In this embodiment, it is assumed that the drive control unit 600 sends a signal for controlling the coil 161 to pass an appropriate current. Torque acts on the permanent magnet 162 attached to the oscillating body 102 by the current flowing through the coil 161 to drive the vibration system 100. The oscillator 102 has a reflecting mirror on the surface, and scans the light beam 132 from the light source 131. The scanning light 133 passes through the light receiving element 140 twice in each cycle of reciprocating scanning. The drive control unit 600 generates a drive signal to the coil 161 based on the time that the scanning light 133 passes through the light receiving element 140 twice. Reference numeral 620 denotes a control gain adjuster (control gain adjusting means) described later.

図2に本実施例に係る光偏向装置の偏向角(走査角)について示す。揺動体102は表面に反射ミラーを有し、光源131からの光ビーム132を走査する。光偏向装置は受光素子140を有し、受光素子140は光偏向装置の最大偏向角より小さい偏向角の位置(θBDの位置)に配置される。図2では光偏向装置の直接の走査光路に受光素子140を配置したが、上述したように、別の反射ミラー(反射部材)等によって更に偏向された走査光の光路に受光素子140を配置してもよい。   FIG. 2 shows the deflection angle (scanning angle) of the optical deflection apparatus according to this embodiment. The oscillator 102 has a reflecting mirror on the surface, and scans the light beam 132 from the light source 131. The light deflection apparatus has a light receiving element 140, and the light receiving element 140 is disposed at a position of a deflection angle (position of θBD) smaller than the maximum deflection angle of the light deflection apparatus. In FIG. 2, the light receiving element 140 is arranged in the direct scanning optical path of the optical deflecting device. However, as described above, the light receiving element 140 is arranged in the optical path of the scanning light further deflected by another reflecting mirror (reflecting member) or the like. May be.

本実施例の光偏向装置の偏向角θ(ここでは図2に示すように走査中心160の位置を基準として測っている)は、振動運動の振幅、角周波数、位相をA、ω、φ、適当な時間を原点または基準時間としたときの時間をtとしたときに、次式のように表現できる。
θ(t)=Asin(ωt+φ) 式2
The deflection angle θ (measured here with reference to the position of the scanning center 160 as shown in FIG. 2) of the optical deflection apparatus of the present embodiment is the amplitude, angular frequency, and phase of the vibration motion A, ω, φ, When the time when the appropriate time is the origin or the reference time is t, it can be expressed as the following equation.
θ (t) = Asin (ωt + φ) Equation 2

走査光133が照射される所望の位置に受光素子140を配置し、振動運動の1周期内において所望の互いに異なる2つの時間に走査光133が受光素子140上を通過するように振動運動の振幅、位相を調整する。こうして、所望する任意の光偏向装置の偏向角θを得ることができる。この際、2つの時間は、受光素子140の位置に相当する偏向角をθBD(図2参照)とした場合、次のようになる。
ある時間t1及びt2において、
θ(t1)=θ(t2)=θBD 式3
The light receiving element 140 is arranged at a desired position where the scanning light 133 is irradiated, and the amplitude of the vibration motion is such that the scanning light 133 passes over the light receiving element 140 at two different times within one cycle of the vibration motion. , Adjust the phase. In this way, the desired deflection angle θ of the optical deflecting device can be obtained. At this time, the two times are as follows when the deflection angle corresponding to the position of the light receiving element 140 is θBD (see FIG. 2).
At certain times t1 and t2,
θ (t1) = θ (t2) = θBD Equation 3

駆動制御部600により、2つの時間t1、t2がそれぞれ所望する任意の時間t10、t20となるように制御することで、振動運動の振幅と位相を一意に決定できる。より具体的には、駆動制御部600は2つの時間をそれぞれ任意の時間にするために、コイル161に適当な電流が流れるように制御することで振動運動の振幅、位相を制御する。   By controlling the two times t1 and t2 to be desired times t10 and t20 by the drive control unit 600, the amplitude and phase of the vibration motion can be uniquely determined. More specifically, the drive control unit 600 controls the amplitude and phase of the oscillating motion by controlling an appropriate current to flow through the coil 161 in order to set the two times to arbitrary times.

ここで、本実施例の光偏向装置において、振動運動の振幅Aのみを制御すればよく、位相φを制御する必要が無い場合には、2つの時間t1、t2の相対時間を考えるのみでよい。具体的には、例えば受光素子140を走査光133が通過する目標時間(設定時間)t10、t20の内のt10を基準の時間とする。受光素子140を走査光133が通過する検出相対時間tA=t2−t1が目標相対時間tA0=t20−t10になるように駆動制御部600により駆動信号を制御することで、振動運動の振幅Aを制御することができる。   Here, in the optical deflecting device of the present embodiment, only the amplitude A of the oscillating motion needs to be controlled, and when it is not necessary to control the phase φ, it is only necessary to consider the relative time between the two times t1 and t2. . Specifically, for example, t10 out of target times (set times) t10 and t20 through which the scanning light 133 passes through the light receiving element 140 is set as a reference time. The drive signal is controlled by the drive control unit 600 so that the detected relative time tA = t2−t1 when the scanning light 133 passes through the light receiving element 140 becomes the target relative time tA0 = t20−t10, whereby the amplitude A of the vibration motion is set. Can be controlled.

tAとtA0との時間差ΔtAとすると、ΔtAは以下のように表される。
ΔtA=tA−tA0=(t2−t1)−(t20−t10) 式4
Assuming that time difference ΔtA between tA and tA0, ΔtA is expressed as follows.
ΔtA = tA−tA0 = (t2−t1) − (t20−t10) Equation 4

本実施例の制御方法を詳述する。光偏向装置の振幅Aを含む制御パラメータXが目標値から微小に変化した場合に受光素子140を走査光133が通過する検出相対時間tA=t2−t1の変化を表す係数Mを予め求めておく。これは次のように表される。

Figure 2009020404
Figure 2009020404
The control method of the present embodiment will be described in detail. Obtained in advance the coefficients M A representing a change in the control parameter X is detected relative time the scanning light 133 and the light receiving element 140 when changes minutely from the target value is passed through tA = t2-t1 including amplitude A of the optical deflecting device deep. This is expressed as follows.
Figure 2009020404
Figure 2009020404

したがって、反射ミラーの振幅の操作量ΔAは、検出相対時間tAと目標相対時間tA0との時間差ΔtAによって、次の式で求まる。

Figure 2009020404
Therefore, the operation amount ΔA of the amplitude of the reflecting mirror can be obtained by the following equation based on the time difference ΔtA between the detected relative time tA and the target relative time tA0.
Figure 2009020404

上記関係式により、時間差ΔtAから操作量ΔAが算出される。そして、その値に基づき駆動制御部600の出力を変更する。以上の制御を繰り返すことでtAが目標相対時間tA0に収束し、所望の偏向角θを得ることができる。   The manipulated variable ΔA is calculated from the time difference ΔtA by the above relational expression. And the output of the drive control part 600 is changed based on the value. By repeating the above control, tA converges to the target relative time tA0, and a desired deflection angle θ can be obtained.

上記工程を図3のブロック図により説明する。図3は、本実施例に係る光偏向装置の制御を説明するブロック図である。光源131からの光ビーム132を光偏向装置の駆動部120が駆動した振動系100により偏向することで、走査光133(偏向光)は受光素子140を通過する。駆動制御部600では、受光素子140で検出された検出時間151と目標時間152とを差分し、時間差153を算出する。さらに、式7に示すように時間差153に基づいて演算器154により演算することで操作量155を算出し、制御器610と増幅器180によって光偏向装置の駆動部120のコイル161(駆動手段)に入力する信号を生成する。この場合、t10を基準時間としているので、図3に示す制御器610への操作量155は1つになる。   The above process will be described with reference to the block diagram of FIG. FIG. 3 is a block diagram for explaining the control of the optical deflection apparatus according to the present embodiment. The scanning beam 133 (deflected light) passes through the light receiving element 140 by deflecting the light beam 132 from the light source 131 by the vibration system 100 driven by the drive unit 120 of the light deflector. The drive control unit 600 calculates a time difference 153 by subtracting the detection time 151 detected by the light receiving element 140 from the target time 152. Further, as shown in Expression 7, the operation amount 155 is calculated by calculating with the calculator 154 based on the time difference 153, and the controller 161 and the amplifier 180 apply the operation amount 155 to the coil 161 (drive means) of the drive unit 120 of the optical deflector. Generate the input signal. In this case, since t10 is set as the reference time, the operation amount 155 for the controller 610 shown in FIG.

以上の構成に加えて本実施例では、時間差ΔtA(153)を制御ゲイン調整器620(図1及び図3に示す)に入力し、制御ゲイン調整器620においては時間差ΔtAに基づいて、制御器610の制御ゲインを調整する信号を出力し、制御ゲインを調整している。   In addition to the above configuration, in this embodiment, the time difference ΔtA (153) is input to the control gain adjuster 620 (shown in FIGS. 1 and 3), and the control gain adjuster 620 controls the controller based on the time difference ΔtA. A signal for adjusting the control gain 610 is output to adjust the control gain.

ここで、振動運動の振幅、角周波数をそれぞれA、ω、振動運動の1周期内の任意の基準時間を原点(0)としたときの時間をtとする。このとき、本実施例に係る光偏向装置の偏向角θは、式2のように表現できる。但し、φ=0とおく。ここで、A=1、ω=2π×2000とすると、本実施例に係る光偏向装置の偏向角θは図4に示すようになる。図4は、本実施例に係る光偏向装置の偏向角θの時間変化を示すグラフである。   Here, the amplitude and angular frequency of the vibration motion are A and ω, respectively, and the time when an arbitrary reference time within one cycle of the vibration motion is the origin (0) is t. At this time, the deflection angle θ of the optical deflector according to the present embodiment can be expressed as shown in Equation 2. However, φ = 0 is set. Here, assuming that A = 1 and ω = 2π × 2000, the deflection angle θ of the optical deflection apparatus according to this embodiment is as shown in FIG. FIG. 4 is a graph showing a time change of the deflection angle θ of the optical deflecting device according to the present embodiment.

この際、受光素子140をAの8割、つまり偏向角θが0.8となる位置に配置すると、偏向角θが0(走査中心160)の時間を0とした場合、次のようになる。すなわち、受光素子140を走査光133が通過する目標時間t10、t20は、0.074msec、0.176msecとなる。これら目標時間は予め求められて記憶されている(こうしたことは、以下の実施例でも同様である)。よって、受光素子140を走査光133が通過する2つの時間t1、t2が上記値になるように駆動制御部600により駆動信号を制御することで、図4に示す光偏向装置の偏向角θを得ることができる。   At this time, if the light receiving element 140 is arranged at 80% of A, that is, at a position where the deflection angle θ is 0.8, the time when the deflection angle θ is 0 (scanning center 160) is 0 is as follows. . That is, the target times t10 and t20 for the scanning light 133 to pass through the light receiving element 140 are 0.074 msec and 0.176 msec. These target times are obtained and stored in advance (this is the same in the following embodiments). Accordingly, the drive signal is controlled by the drive control unit 600 so that the two times t1 and t2 during which the scanning light 133 passes through the light receiving element 140 becomes the above value, whereby the deflection angle θ of the optical deflector shown in FIG. Obtainable.

本実施例では、光偏向装置の走査中心160から偏向角θが0.8となる位置に受光素子140を配置したが、任意の偏向角θでもよい。また、本実施例では、偏向角θが0の時間を0としたが、第1の振動運動の角周波数の1周期の任意の時間を原点(0)としてもよい。   In the present embodiment, the light receiving element 140 is disposed at a position where the deflection angle θ is 0.8 from the scanning center 160 of the optical deflecting device, but an arbitrary deflection angle θ may be used. In this embodiment, the time when the deflection angle θ is 0 is set to 0. However, an arbitrary time of one cycle of the angular frequency of the first vibration motion may be set as the origin (0).

検出時間t1、t2を式3のように表すと、t2−t1が0.102msecになるように制御器610で制御することができれば、振動運動の振幅Aを所望のAとすることができる。本実施例では、決める値は1つなので、この方法でAを求めることができる。   When the detection times t1 and t2 are expressed as in Expression 3, the amplitude A of the vibration motion can be set to a desired A if the controller 610 can control the t2-t1 to be 0.102 msec. In this embodiment, since one value is determined, A can be obtained by this method.

t2とt1との差をtAとする。tA=t2−t1である。tAの目標値tA0とtAとの差を時間差ΔtAとする。ΔtA=tA−tA0=(t2−t1)−(t20−t10)である。ΔtAは式7により振幅Aの操作量ΔAを算出することができる。この操作量ΔAを制御器610に入力し、増幅器180によって光偏向装置の駆動部120のコイル161(駆動手段)に入力する信号を生成し、振動系100を駆動する。   Let tA be the difference between t2 and t1. tA = t2-t1. A difference between the target value tA0 of tA and tA is defined as a time difference ΔtA. ΔtA = tA−tA0 = (t2−t1) − (t20−t10). As for ΔtA, the operation amount ΔA of the amplitude A can be calculated by Expression 7. The manipulated variable ΔA is input to the controller 610, and a signal input to the coil 161 (driving means) of the driving unit 120 of the optical deflecting device is generated by the amplifier 180 to drive the vibration system 100.

本実施例ではt10、t20を決まった値としたが、ある範囲を持った値としてもよい。   In this embodiment, t10 and t20 are determined values, but may be values having a certain range.

ここで、N回測定した平均の値を評価関数として用いることとし、k回目の測定(k回測定)の時の時間差ΔtAをΔtA(k)とするとき、評価関数Jを例えば次のように表すことにする。

Figure 2009020404
Nは測定回数であり、任意に値を定めることができる。この評価関数Jを最小にするように、制御ゲイン調整器620が制御器610の制御ゲインを決定する構成を以下に述べる。 Here, when the average value measured N times is used as the evaluation function, and the time difference ΔtA at the k-th measurement (k-th measurement) is ΔtA (k), the evaluation function J is, for example, as follows: I will represent it.
Figure 2009020404
N is the number of measurements, and can be arbitrarily determined. A configuration in which the control gain adjuster 620 determines the control gain of the controller 610 so as to minimize the evaluation function J will be described below.

制御器610がPI制御器であるとき、制御器610への入力をΔAとし、Adefをある固定値とすると、出力は以下の式で表される。
KA(1+KA’/s)ΔA+Adef 式9
KA及びKA’は制御ゲインであり、KA’はPI制御器の積分時間の逆数を意味する。sはラプラス演算子である。本実施例ではKA’の調整および変更は行わず、評価関数Jを用いてKAのみを調整する構成を示す。
When the controller 610 is a PI controller, if the input to the controller 610 is ΔA and Adef is a fixed value, the output is expressed by the following equation.
KA (1 + KA ′ / s) ΔA + Adef Equation 9
KA and KA ′ are control gains, and KA ′ means the reciprocal of the integration time of the PI controller. s is a Laplace operator. In the present embodiment, a configuration in which only KA is adjusted using the evaluation function J without adjusting and changing KA ′ is shown.

図5は、評価関数Jを用いて制御ゲインKAを決定する処理を説明するフローチャートである。   FIG. 5 is a flowchart illustrating a process for determining the control gain KA using the evaluation function J.

x個の制御ゲイン候補KAi(iは1からxまでの自然数)を予め定めておき、1つずつ順番にKA=KAiとなるように制御器610の制御ゲインの値を設定するための信号を、制御ゲイン調整器620から制御器610に送る。例えば、最初はi=1とし、KA=KA1となるように設定する(ステップS101、S102)(以下、「ステップ」を省略する)。   x control gain candidates KAi (i is a natural number from 1 to x) are determined in advance, and a signal for setting the control gain value of the controller 610 so that KA = KAi is sequentially set one by one. , And sent from the control gain adjuster 620 to the controller 610. For example, initially, i = 1 and KA = KA1 are set (steps S101 and S102) (hereinafter, “step” is omitted).

まず、制御ゲインKAにKAi(例えば、i=1のときKA1)を設定した状態で、時間差ΔtAを演算器154に送ることで操作量155(ΔA)を算出する。そして、制御器610、増幅器180によって光偏向装置の駆動部120のコイル161(駆動手段)に入力する信号を生成し、振動系100を駆動する。振動系100の振動運動を制御し、一定時間経過した後に(S103、振動運動が定常状態とみなせるようになったとき)、検出された時間差ΔtAをN回分測定した値を用いて評価関数Jを計算する(S104)。但し、本実施例においてはN=1とする。その際に、評価関数Jの値と、その時の制御ゲインKAの値の組を、制御ゲイン調整器620に記憶する(S105)。   First, with the control gain KA set to KAi (for example, KA1 when i = 1), the operation amount 155 (ΔA) is calculated by sending the time difference ΔtA to the calculator 154. Then, the controller 610 and the amplifier 180 generate a signal to be input to the coil 161 (drive means) of the drive unit 120 of the optical deflection apparatus, and drive the vibration system 100. After the vibration motion of the vibration system 100 is controlled and a fixed time has elapsed (S103, when the vibration motion can be regarded as a steady state), the evaluation function J is calculated using the value obtained by measuring the detected time difference ΔtA N times. Calculate (S104). However, in this embodiment, N = 1. At that time, a set of the value of the evaluation function J and the value of the control gain KA at that time is stored in the control gain adjuster 620 (S105).

次に、全ての制御ゲイン候補を制御ゲインとして設定したかを確認する(iがxより大きいか否かを確認する)(S107)。まだ設定していない制御ゲイン候補がある場合には、S102に戻る。すなわち、制御器610の制御ゲインを、異なる制御ゲイン候補に設定し直す(例えば、iに1を加え(S106)、KA=KA2とする)信号を、制御ゲイン調整器620が制御器610に送り、制御ゲインを設定し直す(S102)。制御ゲインを設定した後に、時間差ΔtAを演算器154に送ることで操作量155を算出し、制御器610、増幅器180によって光偏向装置の駆動部120のコイル161(駆動手段)に入力する信号を生成し、振動系100を駆動する。その際に、評価関数Jを計算し(S104)、評価関数Jの値とその時の制御ゲインKAの値の組を、制御ゲイン調整器620に記憶する(S105)。   Next, it is confirmed whether all control gain candidates have been set as control gains (check whether i is greater than x) (S107). If there is a control gain candidate that has not yet been set, the process returns to S102. That is, the control gain adjuster 620 sends a signal to the controller 610 to reset the control gain of the controller 610 to a different control gain candidate (for example, 1 is added to i (S106), and KA = KA2). Then, the control gain is reset (S102). After setting the control gain, the operation amount 155 is calculated by sending the time difference ΔtA to the computing unit 154, and a signal input to the coil 161 (driving means) of the driving unit 120 of the optical deflector by the controller 610 and the amplifier 180 is obtained. Generate and drive the vibration system 100. At that time, the evaluation function J is calculated (S104), and the set of the value of the evaluation function J and the value of the control gain KA at that time is stored in the control gain adjuster 620 (S105).

上記の工程をx回繰り返し、全ての制御ゲイン候補を実際に制御ゲインとして設定する。全ての制御ゲイン候補を制御ゲインとして設定した場合には(S107でYESであれば)、x個の評価関数Jの値とその時の制御ゲインの値の組が、制御ゲイン調整器620に記憶されている。制御ゲイン調整器620では、それぞれの評価関数Jの値を比較し(S108)、評価関数Jが最小であるときの制御ゲインの値を制御器610に設定するための信号を送る(S109)。この後は、一定時間経過した後に(S110)上記のように設定した制御ゲインを用いて、光偏向を行う。   The above process is repeated x times, and all control gain candidates are actually set as control gains. When all control gain candidates are set as control gains (if YES in S107), a set of x evaluation function J values and control gain values at that time is stored in the control gain adjuster 620. ing. The control gain adjuster 620 compares the values of the evaluation functions J (S108), and sends a signal for setting the control gain value when the evaluation function J is minimum to the controller 610 (S109). Thereafter, after a predetermined time has elapsed (S110), light deflection is performed using the control gain set as described above.

以上の説明では、制御ゲインKAの値と評価関数Jの値の組を制御ゲイン調整器620にx組分を全て記憶し、記憶した組の中から評価関数Jを最小にする制御ゲインKAを選択し、設定した。しかしながら、制御ゲイン調整器620では評価関数Jの値とそのときの制御ゲインKAの値の組を1組のみ記憶するようにして、以下のような操作を行ってもよい。すなわち、制御ゲインKAを変更し、そのときの評価関数Jの値が、制御ゲイン調整器620の記憶器(記憶手段)に記憶されている評価関数Jの値よりも小さいときにのみ、その評価関数Jと制御ゲインKAの組を記憶器に上書きして記憶するという操作である。このときも同様に、評価関数Jを最小とする制御ゲインKAを得ることができる。   In the above description, a set of the values of the control gain KA and the evaluation function J is stored in the control gain adjuster 620 for all x sets, and the control gain KA that minimizes the evaluation function J is stored in the stored set. Selected and set. However, the control gain adjuster 620 may perform the following operation by storing only one set of the value of the evaluation function J and the value of the control gain KA at that time. That is, only when the control gain KA is changed and the value of the evaluation function J at that time is smaller than the value of the evaluation function J stored in the storage unit (storage means) of the control gain adjuster 620, the evaluation is performed. This is an operation of overwriting and storing the set of the function J and the control gain KA in the storage device. At this time as well, the control gain KA that minimizes the evaluation function J can be obtained.

また、本実施例では制御器610をPI制御器とし、その最適な制御ゲインの値を1つ決定した。ここで、制御器610はP制御器であっても良く、その場合は、KA’を0に設定することで、本実施例と同様の構成で実現することができる。   In this embodiment, the controller 610 is a PI controller, and one optimal control gain value is determined. Here, the controller 610 may be a P controller. In this case, by setting KA ′ to 0, the controller 610 can be realized with the same configuration as in the present embodiment.

本実施例では制御ゲインKA’の調整は行わず、KAのみを調整する構成を示した。KAとKA’の両方を変更する場合においては、制御ゲインの組み合わせが増えるのみで、基本的な構成は変えずに本実施例の構成を適用することができる。例えば、制御ゲインKAの候補をx個、制御ゲインKA’の候補をy通り定めた場合、x×y通りの制御ゲインの組み合わせを試せばよい。   In this embodiment, the control gain KA 'is not adjusted, and only the KA is adjusted. When both KA and KA ′ are changed, only the combination of control gains is increased, and the configuration of this embodiment can be applied without changing the basic configuration. For example, if x control gains KA candidates and y control gains KA 'candidates are defined, x x y combinations of control gains may be tried.

本実施例では、時間差をΔtA=tA−tA0=(t2−t1)−(t20−t10)と定義し、評価関数Jを式8のように定義している。しかし、k回目の測定時の時間差をΔt1(k)=t1−t10、Δt2(k)=t2−t20と定義して、Nを測定回数、mを自然数、Wiを重みを表す0以上の任意の実数として、評価関数Jを以下のように定義してもよい。

Figure 2009020404
In this embodiment, the time difference is defined as ΔtA = tA−tA0 = (t2−t1) − (t20−t10), and the evaluation function J is defined as Equation 8. However, the time difference at the time of the k-th measurement is defined as Δt1 (k) = t1−t10, Δt2 (k) = t2−t20, N is the number of times of measurement, m is a natural number, and Wi is a weight that is 0 or more. As a real number, the evaluation function J may be defined as follows.
Figure 2009020404

式8及び式10のNの値を大きくすることで測定誤差を少なくすることができるが、測定時間が長くなってしまう。また、Nの値を小さくすることで、制御ゲインを変更する周期が短くなり、振動系の振動運動のジッタが大きくなってしまう可能性がある。以上のことに鑑みてNの値を定める必要がある。   Although the measurement error can be reduced by increasing the value of N in Expression 8 and Expression 10, the measurement time becomes longer. Also, by reducing the value of N, the period for changing the control gain is shortened, and the jitter of the vibration motion of the vibration system may increase. In view of the above, it is necessary to determine the value of N.

本実施例において、一定時間経過するのを待つという動作(図5のS103、S110)は、制御ゲインの変更に伴って、振動運動が過渡状態となっている可能性を踏まえている。評価関数Jを算出する際に、この過渡状態における測定値を無視するために、一定時間経過するのを待つという動作を加えている。従って、過渡状態が極めて短い場合や、無視できるほどであれば、一定時間待つという動作を省いてもよい。このことは他の実施例においても同様である。   In the present embodiment, the operation of waiting for a certain period of time (S103 and S110 in FIG. 5) is based on the possibility that the vibration motion is in a transient state with the change of the control gain. When calculating the evaluation function J, in order to ignore the measured value in the transient state, an operation of waiting for a certain time to pass is added. Therefore, when the transient state is extremely short or negligible, the operation of waiting for a certain time may be omitted. The same applies to the other embodiments.

本発明の実施例2による光偏向装置を説明する。光偏向装置の構成は実施例1と基本的に同じであるが、以下の点が異なる。   An optical deflecting device according to Embodiment 2 of the present invention will be described. The configuration of the optical deflection apparatus is basically the same as that of the first embodiment, except for the following points.

駆動制御部600が振動系100を制御する周期を第1の周期、制御ゲイン調整器620で制御ゲインを変更する周期を第2の周期とする。このとき、本実施例において、第2の周期を第1の周期と比べて長く設定する。   The cycle in which the drive control unit 600 controls the vibration system 100 is a first cycle, and the cycle in which the control gain adjuster 620 changes the control gain is a second cycle. At this time, in this embodiment, the second period is set longer than the first period.

第2の周期は時間差ΔtAの値を用いて、制御ゲイン調整器620によって制御ゲインを変更する周期である。制御ゲイン調整器620によって制御器610の制御ゲインを変更すると、その変更された制御ゲインを用いて制御器610、増幅器180によって光偏向装置の駆動部120のコイル161に入力する信号を生成し、振動系100を駆動する。制御ゲインを変更し、一定時間経過した後に揺動体102の振動運動が定常状態に達した時の時間差ΔtAを測定し、評価関数Jを計算する。   The second period is a period in which the control gain is changed by the control gain adjuster 620 using the value of the time difference ΔtA. When the control gain of the controller 610 is changed by the control gain adjuster 620, a signal to be input to the coil 161 of the driving unit 120 of the optical deflector is generated by the controller 610 and the amplifier 180 using the changed control gain, The vibration system 100 is driven. The control gain is changed, the time difference ΔtA when the oscillating motion of the oscillating body 102 reaches a steady state after a certain time has elapsed is measured, and the evaluation function J is calculated.

制御ゲインを変更した直後の揺動体102の振動運動は、変更する前の制御ゲインの影響により、または制御ゲインを変更したことにより、振動運動が定常状態ではない可能性がある。従って、制御ゲイン変更直後のΔtAを用いて計算された評価関数Jは、定常状態のジッタの状態を評価できるとは限らない。   The vibration motion of the oscillating body 102 immediately after the control gain is changed may not be in a steady state due to the influence of the control gain before the change or the control gain is changed. Therefore, the evaluation function J calculated using ΔtA immediately after the control gain change cannot always evaluate the steady state jitter state.

そこで、第2の制御周期を第1の制御周期と比べて長く設定することで、変更後の制御ゲインに対応した評価関数Jの値を得ることができる。   Therefore, by setting the second control period to be longer than the first control period, the value of the evaluation function J corresponding to the changed control gain can be obtained.

本実施例においては、2つの揺動体とその揺動体を直列に連結する同軸上に配置された複数のねじりバネとで振動系を構成している。少なくとも1つの揺動体に反射ミラーが形成されている。そして、変位角計測部は、反射ミラー付き揺動体が第1の変位角を取るときの走査光で照射される位置に配された第1の受光素子(変位角計測手段)を有する。さらに、反射ミラー付き揺動体が第2の変位角を取るときの走査光で照射される位置に配された第2の受光素子を有する。第1及び第2の受光素子は、異なる素子でもよいし、同じ素子でもよい。また、走査光は、直接受光素子に入射するようにしてもよいし、少なくとも1つの反射部材を経て受光素子に入射するようにしてもよい。すなわち、少なくとも1つの受光素子が、反射ミラー付き揺動体が第1及び第2の変位角を取って第1及び第2の偏向角(走査角)になった走査光を受光して検出できるように配置されていればよい。   In this embodiment, a vibration system is constituted by two oscillating bodies and a plurality of torsion springs arranged on the same axis for connecting the oscillating bodies in series. A reflection mirror is formed on at least one oscillator. The displacement angle measuring unit includes a first light receiving element (displacement angle measuring means) arranged at a position irradiated with the scanning light when the oscillating body with the reflecting mirror takes the first displacement angle. Furthermore, the oscillating body with the reflection mirror has a second light receiving element arranged at a position irradiated with the scanning light when the second displacement angle is taken. The first and second light receiving elements may be different elements or the same element. Further, the scanning light may be directly incident on the light receiving element, or may be incident on the light receiving element via at least one reflecting member. In other words, at least one light receiving element can detect and detect the scanning light in which the oscillating body with the reflection mirror takes the first and second displacement angles and becomes the first and second deflection angles (scanning angles). It suffices if they are arranged.

次に、本実施例の光偏向装置を説明する。本実施例の光偏向装置の振動系は、2つの揺動体とそれらの揺動体を直列に連結する複数のねじりバネを含む。また、分離した基本共振周波数(第1の周波数)で運動する第1の振動運動(第1の周期的駆動力)とその整数倍の共振周波数(第2の周波数)で運動する第2の振動運動(第2の周期的駆動力)とを発生可能(印加可能)である。そして、光偏向装置は、振動系を動作させる駆動手段と、揺動体の少なくとも1つに形成された反射ミラーと、光ビームを照射する光源とを更に有して、反射ミラーに光ビームを照射して光を走査する。   Next, the optical deflecting device of this embodiment will be described. The vibration system of the optical deflecting device of the present embodiment includes two oscillating bodies and a plurality of torsion springs connecting the oscillating bodies in series. Also, a first vibration motion (first periodic driving force) that moves at a separated fundamental resonance frequency (first frequency) and a second vibration that moves at a resonance frequency (second frequency) that is an integral multiple of the first vibration motion (first periodic driving force). Movement (second periodic driving force) can be generated (applicable). The optical deflection apparatus further includes a driving unit that operates the vibration system, a reflection mirror formed on at least one of the oscillators, and a light source that irradiates the light beam, and irradiates the reflection mirror with the light beam. And scan the light.

本実施例による光偏向装置のブロック図を図6に示す。振動系100は、揺動体101、102を含み、揺動体101と102を直列に連結するねじりバネ111及び揺動体102と支持部121を連結するねじりバネ112が設けられている。   FIG. 6 shows a block diagram of the optical deflecting device according to this embodiment. The vibration system 100 includes oscillating bodies 101 and 102, and a torsion spring 111 that connects the oscillating bodies 101 and 102 in series and a torsion spring 112 that connects the oscillating body 102 and the support portion 121 are provided.

駆動制御部(駆動制御手段)600は、揺動体102に、電磁・静電・圧電などにより振動系100の複数の固有振動モードを同時に励振する駆動力を加える。本実施例では駆動制御部600はコイル161に適当な電流を流すように制御する信号を送るものとする。コイル161に流れる電流により、揺動体102に取り付けられた永久磁石162にトルクが作用し、振動系100を駆動する。揺動体101は表面に反射ミラーを有し、光源131からの光ビーム132を走査する。走査光133は、各周期の往復走査において、第1及び第2の受光素子141、142をそれぞれ2回通過する。駆動制御部(駆動制御手段)600は、走査光133が第1及び第2の受光素子141、142をそれぞれ2回通過する時間に基づいて、コイル161へ適当な電流を流す信号を生成する。   The drive control unit (drive control means) 600 applies a driving force that simultaneously excites a plurality of natural vibration modes of the vibration system 100 to the oscillator 102 by electromagnetic, electrostatic, piezoelectric, or the like. In the present embodiment, it is assumed that the drive control unit 600 sends a signal for controlling the coil 161 to pass an appropriate current. Torque acts on the permanent magnet 162 attached to the oscillating body 102 by the current flowing through the coil 161 to drive the vibration system 100. The oscillator 101 has a reflection mirror on the surface, and scans the light beam 132 from the light source 131. The scanning light 133 passes through the first and second light receiving elements 141 and 142 twice in each cycle of reciprocating scanning. The drive control unit (drive control means) 600 generates a signal for causing an appropriate current to flow to the coil 161 based on the time during which the scanning light 133 passes through the first and second light receiving elements 141 and 142 twice.

図7に本実施例の光偏向装置の偏向角(走査角)について示す。揺動体101は表面に反射ミラーを有し、光源131からの光ビーム132を走査する。光偏向装置は2つの受光素子を有し、第1及び第2の受光素子141、142はそれぞれ光偏向装置の最大偏向角より小さい偏向角の位置(θBD1とθBD2の位置)に配置される。図7では光偏向装置の直接の走査光路に第1及び第2の受光素子141、142を配置したが、上述したように、別の反射ミラー(反射部材)等によって更に偏向された走査光の光路に第1及び第2の受光素子141、142を配置してもよい。   FIG. 7 shows the deflection angle (scanning angle) of the optical deflecting device of this embodiment. The oscillator 101 has a reflection mirror on the surface, and scans the light beam 132 from the light source 131. The optical deflection apparatus has two light receiving elements, and the first and second light receiving elements 141 and 142 are arranged at positions of deflection angles (positions θBD1 and θBD2) smaller than the maximum deflection angle of the optical deflection apparatus. In FIG. 7, the first and second light receiving elements 141 and 142 are arranged in the direct scanning optical path of the optical deflecting device. However, as described above, the scanning light further deflected by another reflecting mirror (reflecting member) or the like is used. The first and second light receiving elements 141 and 142 may be disposed in the optical path.

本実施例の光偏向装置の偏向角θ(ここでは図7に示す如く走査中心160の位置を基準として測っている)は、次式のように表現できる。なお、第1の振動運動の振幅、角周波数、位相をそれぞれA1、ω1、φ1、第2の振動運動の振幅、角周波数、位相をそれぞれA2、ω2、φ2、適当な時間を原点または基準時間としたときの時間をtとしている。
θ(t)=A1sin(ω1t+φ1)+A2sin(ω2t+φ2) 式11
The deflection angle θ (measured here with reference to the position of the scanning center 160 as shown in FIG. 7) of the optical deflection apparatus of the present embodiment can be expressed as the following equation. The amplitude, angular frequency, and phase of the first vibration motion are A1, ω1, and φ1, respectively, the amplitude, angular frequency, and phase of the second vibration motion are A2, ω2, and φ2, and the appropriate time is the origin or reference time. T is the time.
θ (t) = A1sin (ω1t + φ1) + A2sin (ω2t + φ2) Equation 11

また、光偏向装置の偏向角θは、第1の振動運動の振幅、角周波数をそれぞれA1、ω1、第2の振動運動の振幅、角周波数をそれぞれA2、ω2、2つの周波数の相対位相をφ、適当な時間を基準時間としたときの時間をtとしたときに、次式のように表現できる。
θ(t)=A1sin(ω1t)+A2sin(ω2t+φ) 式12
若しくは
θ(t)=A1sin(ω1t+φ)+A2sin(ω2t) 式13
In addition, the deflection angle θ of the optical deflecting device is such that the amplitude and angular frequency of the first vibration motion are A1 and ω1, respectively, the amplitude and angular frequency of the second vibration motion are A2 and ω2, and the relative phases of the two frequencies are respectively. φ, where t is a time when an appropriate time is a reference time, and can be expressed as the following equation.
θ (t) = A1sin (ω1t) + A2sin (ω2t + φ) Equation 12
Or θ (t) = A1sin (ω1t + φ) + A2sin (ω2t) Equation 13

式13は、制御時に基本波ω1側の位相を制御する可能性がある場合に、対応するものである。式11と式12並びに式13は、基準または原点の時間の取り方で表現の形が異なっているのみで、4つの未知の値を含む式である点(例えば、式12並びに式13中のφはφ1−φ2若しくはφ2−φ1と表せる)において本質的に同じものである。   Equation 13 corresponds to the case where the phase on the fundamental wave ω1 side may be controlled during control. Expressions 11 and 12 and 13 differ only in the form of expression depending on how the reference or origin time is taken, and are expressions including four unknown values (for example, in Expression 12 and Expression 13) φ can be expressed as φ1-φ2 or φ2-φ1).

ここで、走査光が照射される所望の位置に第1及び第2の受光素子141、142を配置する。そして、第1の振動運動の1周期内において所望の互いに異なる4つの時間に走査光が第1及び第2の受光素子141、142上を通過するように第1及び第2の振動運動の振幅、位相を調整する。こうして、4つの未知の値を決定する。このことで、所望する任意の光偏向装置の偏向角θを得ることができる。この際、この4つの時間は、第1及び第2の受光素子141、142の位置に相当する偏向角をそれぞれθBD1、θBD2(図7参照)とした場合、次のようになる。
ある時間t1及びt2において、
θ(t1)=θ(t2)=θBD1 式14
ある時間t3及びt4において、
θ(t3)=θ(t4)=θBD2 式15
Here, the first and second light receiving elements 141 and 142 are arranged at desired positions where the scanning light is irradiated. Then, the amplitudes of the first and second vibration motions so that the scanning light passes over the first and second light receiving elements 141 and 142 at four different desired times within one cycle of the first vibration motion. , Adjust the phase. Thus, four unknown values are determined. This makes it possible to obtain a desired deflection angle θ of the optical deflection device. At this time, these four times are as follows when the deflection angles corresponding to the positions of the first and second light receiving elements 141 and 142 are θBD1 and θBD2 (see FIG. 7), respectively.
At certain times t1 and t2,
θ (t1) = θ (t2) = θBD1 Equation 14
At certain times t3 and t4
θ (t3) = θ (t4) = θBD2 Equation 15

駆動制御部600により4つの時間t1、t2、t3、t4がそれぞれ所望する任意の時間t10、t20、t30、t40となるように制御することで、第1及び第2の振動運動の振幅と位相を一意に決定できる。より具体的には、駆動制御部600は4つの時間をそれぞれ任意の時間にするために、コイル161に適当な電流が流れるように制御することで、第1及び第2の振動運動のそれぞれの振幅、位相または相対位相を制御する。   The drive controller 600 controls the four times t1, t2, t3, and t4 to be the desired times t10, t20, t30, and t40, respectively, and thereby the amplitude and phase of the first and second vibration motions. Can be determined uniquely. More specifically, the drive control unit 600 controls each of the first and second vibration motions by controlling an appropriate current to flow through the coil 161 in order to set the four times to arbitrary times. Control amplitude, phase or relative phase.

光偏向装置の偏向角θが式11の何れか一項のみで表現される場合には、所望する少なくとも2つの時間に走査光が第1または第2の受光素子140、141上を通過するように第1または第2の振動運動の振幅、位相を調整すればよい。   When the deflection angle θ of the optical deflecting device is expressed by only one term of Expression 11, the scanning light passes over the first or second light receiving element 140, 141 at least at two desired times. In addition, the amplitude and phase of the first or second vibration motion may be adjusted.

ここで、光偏向装置において、この第1及び第2の振動運動の振幅と、第1の振動運動と第2の振動運動との相対位相を制御すればよい場合には、4つの時間t1、t2、t3、t4の相対時間を考えればよい。具体的には、例えば第1及び第2の受光素子141、142を走査光133が通過する目標時間t10、t20、t30、t40の内のt10を基準の時間とする。第1及び第2の受光素子141、142を走査光133が通過する3つの検出相対時間t2−t1、t3−t1、t4−t1が目標相対時間t20−t10、t30−t10、t40−t10になるように駆動制御部600により駆動信号を制御する。これにより、第1及び第2の振動運動の振幅と、第1の振動運動と第2の振動運動との相対位相を制御することができる。   Here, in the optical deflecting device, when the amplitudes of the first and second vibration motions and the relative phase between the first vibration motion and the second vibration motion are to be controlled, four times t1, The relative time of t2, t3, and t4 may be considered. Specifically, for example, t10 out of target times t10, t20, t30, and t40 through which the scanning light 133 passes through the first and second light receiving elements 141 and 142 is set as a reference time. Three detection relative times t2-t1, t3-t1, and t4-t1 during which the scanning light 133 passes through the first and second light receiving elements 141 and 142 become target relative times t20-t10, t30-t10, and t40-t10. Thus, the drive signal is controlled by the drive control unit 600. As a result, the amplitudes of the first and second vibration motions and the relative phases of the first vibration motion and the second vibration motion can be controlled.

この検出相対時間と目標相対時間との時間差をΔt2、Δt3、Δt4、とすると、時間差Δt2、Δt3、Δt4は以下のように表される。
Δti=(ti−t1)−(ti0−t10),(i=2,3,4) 式16
When the time differences between the detected relative time and the target relative time are Δt2, Δt3, and Δt4, the time differences Δt2, Δt3, and Δt4 are expressed as follows.
Δti = (ti−t1) − (ti0−t10), (i = 2, 3, 4) Equation 16

本実施例の制御方法を詳述する。光偏向装置のA1、A2、φの何れかを含む制御パラメータXが目標値から微小に変化した場合に、走査光133が第1及び第2の受光素子141、142を通過する時間の相対時間t2−t1、t3−t1、t4−t1の変化を表す係数及び行列Mを予め求めておく。これらは次のように表される。

Figure 2009020404
Figure 2009020404
The control method of the present embodiment will be described in detail. When the control parameter X including any one of A1, A2, and φ of the optical deflecting device slightly changes from the target value, the relative time of the scanning light 133 passing through the first and second light receiving elements 141 and 142 A coefficient and a matrix M representing changes in t2-t1, t3-t1, and t4-t1 are obtained in advance. These are expressed as follows:
Figure 2009020404
Figure 2009020404

したがって、反射ミラーの振幅と位相の操作量ΔA1、ΔA2、Δφは、検出相対時間t2−t1、t3−t1、t4−t1と目標相対時間t20−t10、t30−t10、t40−t10との時間差Δt2、Δt3、Δt4によって、次の式で求まる。

Figure 2009020404
Accordingly, the operation amounts ΔA1, ΔA2, and Δφ of the amplitude and phase of the reflecting mirror are time differences between the detected relative times t2-t1, t3-t1, t4-t1 and the target relative times t20-t10, t30-t10, t40-t10. From Δt2, Δt3, and Δt4, the following equation is obtained.
Figure 2009020404

上記関係式により、時間差Δt2、Δt3、Δt4から操作量ΔA1、ΔA2、Δφが算出される。そして、その値に基づき駆動制御部600の出力を変更する。以上の制御を繰り返すことで、この検出相対時間t2−t1、t3−t1、t4−t1が目標相対時間t20−t10、t30−t10、t40−t10に収束し、所望の偏向角θを得ることができる。   From the above relational expressions, the operation amounts ΔA1, ΔA2, and Δφ are calculated from the time differences Δt2, Δt3, and Δt4. And the output of the drive control part 600 is changed based on the value. By repeating the above control, the detected relative times t2-t1, t3-t1, and t4-t1 converge to the target relative times t20-t10, t30-t10, t40-t10, and a desired deflection angle θ is obtained. Can do.

上記工程を図8のブロック図により説明する。光源131からの光ビーム132を光偏向装置の駆動部120が駆動した振動系100により偏向することで、偏向光(走査光)133は第1及び第2の受光素子141、142を通過する。駆動制御部600では、第1及び第2の受光素子141、142で検出された検出時間151と目標時間152とを差分し、時間差153(Δt2、Δt3、Δt4)を算出する。図8の151、152、153の太い矢印は、数個(ここでは3個)の時間情報を伝達していることを示す。さらに、式19に示すように時間差153に基づいて演算器154により行列演算することで操作量155を算出し、制御器611、612と加算器170と増幅器180によって光偏向装置の駆動部120の駆動手段(コイル161)に入力する信号を生成する。この場合、t10を基準時間としているので、図8に示す制御器611への操作量155が2つではなく、1つになるか、若しくは制御器612への操作量155が2つではなく、1つになる。つまり、2つの周波数のそれぞれの位相差φは、制御器611と制御器612のどちらによってでも調整され得る。   The above process will be described with reference to the block diagram of FIG. The deflected light (scanning light) 133 passes through the first and second light receiving elements 141 and 142 by deflecting the light beam 132 from the light source 131 by the vibration system 100 driven by the drive unit 120 of the light deflector. The drive control unit 600 calculates the time difference 153 (Δt2, Δt3, Δt4) by subtracting the detection time 151 detected by the first and second light receiving elements 141, 142 from the target time 152. Thick arrows 151, 152, and 153 in FIG. 8 indicate that several pieces (three in this case) of time information are transmitted. Further, as shown in Expression 19, the operation amount 155 is calculated by performing a matrix operation by the arithmetic unit 154 based on the time difference 153, and the controllers 611 and 612, the adder 170, and the amplifier 180 are used to calculate the operation amount 120 of the optical deflection device 120. A signal to be input to the driving means (coil 161) is generated. In this case, since t10 is set as the reference time, the operation amount 155 to the controller 611 shown in FIG. 8 is not one, or the operation amount 155 to the controller 612 is not two. Become one. That is, the phase difference φ between the two frequencies can be adjusted by either the controller 611 or the controller 612.

以上の構成に加えて本実施例では、時間差Δt2、Δt3、Δt4を制御ゲイン調整器620に入力する。そして、制御ゲイン調整器620においては時間差Δt2、Δt3、Δt4に基づいて、制御器611、612の制御ゲインを調整する信号を出力し、制御ゲインを調整している。   In addition to the above configuration, in this embodiment, the time differences Δt2, Δt3, and Δt4 are input to the control gain adjuster 620. The control gain adjuster 620 outputs a signal for adjusting the control gains of the controllers 611 and 612 based on the time differences Δt2, Δt3, and Δt4, thereby adjusting the control gain.

本実施例の光偏向装置は、変位角検出手段として2つの受光素子141、142を有している。2つの受光素子141、142は、光偏向装置の揺動体101の反射ミラーで反射された走査光133が、異なる2つの偏向角(走査角)に位置することを検出するために設けられている。しかしながら、必ずしも2つの受光素子141、142を用いなくてもよい。すなわち、例えば図7における第2の受光素子142の位置に反射板を設置し、反射板により走査光133が偏向され、その偏向光が直接、または少なくとも1つの反射部材を経て第1の受光素子141を通過する構成としてもよい。この場合も、1つの受光素子を用いて、振動運動の1周期に、互いに異なる4つのタイミング(時間)を検出することができる。この4つのタイミング(時間)をそれぞれt1、t2、t3、t4とすることで、受光素子を1つのみ有する光偏向装置に対しても本実施例を適用することができる。   The light deflecting device of this embodiment has two light receiving elements 141 and 142 as displacement angle detecting means. The two light receiving elements 141 and 142 are provided to detect that the scanning light 133 reflected by the reflection mirror of the oscillator 101 of the optical deflector is positioned at two different deflection angles (scanning angles). . However, the two light receiving elements 141 and 142 are not necessarily used. That is, for example, a reflecting plate is installed at the position of the second light receiving element 142 in FIG. 7, and the scanning light 133 is deflected by the reflecting plate, and the deflected light is transmitted directly or through at least one reflecting member. 141 may be adopted. Also in this case, four different timings (time) can be detected in one cycle of the vibration motion by using one light receiving element. By setting these four timings (time) to t1, t2, t3, and t4, respectively, this embodiment can be applied to an optical deflecting device having only one light receiving element.

本実施例に係る光偏向装置を説明する。揺動体101、102及びねじりバネ111、112を含む振動系100は2つの振動モードを有するが、それらの周波数の一方が他方の略2倍になるように調整が施されている。例として、揺動体101、102の慣性モーメントをI1、I2とし、ねじりバネ111、112のバネ定数をk1/2、k2/2とする。2つの固有角振動数は、ω1=2π×2000[Hz](第1の周波数)、ω2=2π×4000[Hz](第2の周波数)とする。   An optical deflecting device according to this embodiment will be described. The vibration system 100 including the oscillating bodies 101 and 102 and the torsion springs 111 and 112 has two vibration modes, but is adjusted so that one of those frequencies is approximately twice the other. As an example, the inertia moments of the oscillators 101 and 102 are I1 and I2, and the spring constants of the torsion springs 111 and 112 are k1 / 2 and k2 / 2. The two natural angular frequencies are ω1 = 2π × 2000 [Hz] (first frequency) and ω2 = 2π × 4000 [Hz] (second frequency).

本実施例に係る光偏向装置の偏向角θは、式11のように表現される。ここで、A1=1、A2=0.2、φ1=0、φ2=0、ω1=2π×2000、ω2=2π×4000とすると、本実施例に係る光偏向装置の偏向角θの時間変化は図9に示すようになる。図9の実線で示す偏向角θは、正弦波(破線で示す)に比べ鋸波に近くなり、ある領域において略等角速度で運動することができる。本実施例ではA1=1、A2=0.2、φ1=0、φ2=0、ω1=2π×2000、ω2=2π×4000とするが、偏向角の角速度の変化量が正弦波に比べ略等角速度領域において少なくなる如何なるA1、A2、φ1、φ2、ω1、ω2としてもよい。   The deflection angle θ of the optical deflection apparatus according to the present embodiment is expressed as shown in Expression 11. Here, when A1 = 1, A2 = 0.2, φ1 = 0, φ2 = 0, ω1 = 2π × 2000, and ω2 = 2π × 4000, the time change of the deflection angle θ of the optical deflector according to the present embodiment. Is as shown in FIG. The deflection angle θ shown by a solid line in FIG. 9 is closer to a sawtooth wave than a sine wave (shown by a broken line), and can move at a substantially constant angular velocity in a certain region. In this embodiment, A1 = 1, A2 = 0.2, φ1 = 0, φ2 = 0, ω1 = 2π × 2000, and ω2 = 2π × 4000, but the change amount of the angular velocity of the deflection angle is substantially smaller than that of the sine wave. Any A1, A2, φ1, φ2, ω1, and ω2 that are reduced in the equiangular velocity region may be used.

この際、第1及び第2の受光素子141、142をA1の8割、つまり偏向角θが0.8となる光偏向装置の走査中心160から対称の位置にそれぞれ配置すると、次のようになる。すなわち、第1及び第2の受光素子141、142を走査光133が通過する所望の目標時間t10、t20、t30、t40(図9参照)は0.052msec、0.154msec、0.346msec、0.448msecとなる。よって、第1及び第2の受光素子141、142を走査光133が通過する検出時間t1、t2、t3、t4が上記所望値になるように、制御器611,612により駆動信号を制御することで、図9の実線で示す光偏向装置の偏向角θを得ることができる。本実施例では、偏向角θが0.8となる光偏向装置の走査中心160から対称の位置に第1及び第2の受光素子141、142を配置したが、任意の偏向角θの所でもよい。   At this time, if the first and second light receiving elements 141 and 142 are arranged at positions symmetrical to the scanning center 160 of the optical deflecting device in which 80% of A1, that is, the deflection angle θ is 0.8, respectively, as follows. Become. That is, desired target times t10, t20, t30, and t40 (see FIG. 9) for the scanning light 133 to pass through the first and second light receiving elements 141 and 142 are 0.052 msec, 0.154 msec, 0.346 msec, 0 .448 msec. Therefore, the drive signals are controlled by the controllers 611 and 612 so that the detection times t1, t2, t3, and t4 during which the scanning light 133 passes through the first and second light receiving elements 141 and 142 become the desired values. Thus, the deflection angle θ of the optical deflecting device indicated by the solid line in FIG. 9 can be obtained. In the present embodiment, the first and second light receiving elements 141 and 142 are arranged at symmetrical positions from the scanning center 160 of the optical deflecting device in which the deflection angle θ is 0.8, but even at an arbitrary deflection angle θ. Good.

本実施例における、より具体的な偏向角θの制御の方法を以下に説明する。   A more specific method of controlling the deflection angle θ in the present embodiment will be described below.

時間t1、t2、t3、t4について、t1を基準とした相対時間を考える。反射ミラーの振幅と位相の操作量ΔA1、ΔA2、Δφは、3つの検出相対時間t2−t1、t3−t1、t4−t1と3つの目標相対時間t20−t10、t30−t10、t40−t10との時間差Δt2、Δt3、Δt4によって、式19で求まる。式19と時間差Δt2、Δt3、Δt4の値により振幅A1、A2、相対位相φの操作量ΔA1、ΔA2、Δφを算出することができる。操作量ΔA1、ΔA2、Δφを制御器611,612に入力し、増幅器180によって光偏向装置の駆動部120(駆動手段)のコイル161に入力する信号を生成し、振動系100を駆動する。   For the times t1, t2, t3, and t4, a relative time based on t1 is considered. The operation amounts ΔA1, ΔA2, and Δφ of the amplitude and the phase of the reflecting mirror are three detection relative times t2-t1, t3-t1, t4-t1, and three target relative times t20-t10, t30-t10, t40-t10. The time differences Δt2, Δt3, and Δt4 are obtained by Expression 19. The manipulated variables ΔA1, ΔA2, and Δφ of the amplitudes A1 and A2 and the relative phase φ can be calculated from Expression 19 and the values of the time differences Δt2, Δt3, and Δt4. The manipulated variables ΔA1, ΔA2, and Δφ are input to the controllers 611 and 612, and a signal input to the coil 161 of the driving unit 120 (driving unit) of the optical deflector is generated by the amplifier 180 to drive the vibration system 100.

更にこの時間差Δt2、Δt3、Δt4を、制御ゲイン調整器620に送る。制御ゲイン調整器620では、このΔt2、Δt3、Δt4に基づいて、Δt2、Δt3、Δt4を変数に持つ評価関数が最適な値となるように、制御ゲインを変更する信号を制御器611,612に送る。   Further, the time differences Δt 2, Δt 3 and Δt 4 are sent to the control gain adjuster 620. Based on these Δt2, Δt3, and Δt4, the control gain adjuster 620 sends a signal for changing the control gain to the controllers 611 and 612 so that the evaluation function having Δt2, Δt3, and Δt4 as variables becomes an optimum value. send.

本実施例ではt1、t2、t3、t4、t10、t20、t30、t40を決まった値としたが、一定の範囲を持った値としてもよい。t20−t10、t30−t10、t40−t10も決まった値としたが、ある範囲を持った値としてもよい。また、本実施例ではt1、t2、t3、t4、t10、t20、t30、t40を時刻として取り扱ったが、あるクロックを基準とするカウンタ値でもよい。また、これらのことは、他の実施例でも同様である。   In the present embodiment, t1, t2, t3, t4, t10, t20, t30, and t40 are determined values, but may be values having a certain range. Although t20-t10, t30-t10, and t40-t10 are determined values, they may be values having a certain range. In this embodiment, t1, t2, t3, t4, t10, t20, t30, and t40 are handled as times, but a counter value based on a certain clock may be used. These are the same in other embodiments.

Nを測定回数、nを該時間差の個数、mを自然数、Wiを重みを表す0以上の任意の実数としたとき、この時間差Δt2、Δt3、Δt4を変数とする評価関数Jを、次のように表すことにする。

Figure 2009020404
ここで、本実施例ではN=1、m=2、Wi=1とする。また、n=3であり、評価関数Jは以下のように表される。
Figure 2009020404
この評価関数Jを最小にするような、制御器611,612の制御ゲインを決定する。 When N is the number of measurements, n is the number of the time differences, m is a natural number, and Wi is an arbitrary real number greater than or equal to 0 representing the weight, an evaluation function J using the time differences Δt2, Δt3, and Δt4 as variables is as follows: I will express it in
Figure 2009020404
Here, in this embodiment, N = 1, m = 2, and Wi = 1. Further, n = 3, and the evaluation function J is expressed as follows.
Figure 2009020404
Control gains of the controllers 611 and 612 are determined so as to minimize the evaluation function J.

制御器611,612がA1、A2、φのそれぞれに対してPI制御器を構成しているとき、制御器611,612への入力をΔA1、ΔA2、Δφとし、A1def、A2def、Aφdefを固定値とすると、それぞれの出力は以下の式で表される。
K1(1+K1’/s)ΔA1+A1def 式22
K2(1+K2’/s)ΔA2+A2def 式23
K3(1+K3’/s)Δφ+φdef 式24
K1、K2、K3、K1’、K2’、K3’はそれぞれ制御ゲインであり、K1’、K2’、K3’はPI制御器の積分時間の逆数を意味する。sはラプラス演算子である。本実施例ではK1’、K2’、K3’の調整は行わず、評価関数Jを用いてK1、K2、K3のみを調整する構成を示す。
When the controllers 611, 612 constitute a PI controller for each of A1, A2, and φ, the inputs to the controllers 611, 612 are ΔA1, ΔA2, and Δφ, and A1def, A2def, and Aφdef are fixed values. Then, each output is expressed by the following formula.
K1 (1 + K1 ′ / s) ΔA1 + A1def Equation 22
K2 (1 + K2 ′ / s) ΔA2 + A2def Equation 23
K3 (1 + K3 ′ / s) Δφ + φdef Equation 24
K1, K2, K3, K1 ′, K2 ′, and K3 ′ are control gains, and K1 ′, K2 ′, and K3 ′ represent reciprocals of the integration time of the PI controller. s is a Laplace operator. In the present embodiment, a configuration is shown in which K1 ′, K2 ′, and K3 ′ are not adjusted, and only K1, K2, and K3 are adjusted using the evaluation function J.

予め定めたx個の制御ゲイン候補K1p(pは1からxまでの自然数)、y個の制御ゲイン候補K2q(qは1からyまでの自然数)、z個の制御ゲイン候補K1r(rは1からzまでの自然数)を制御器611,612の制御ゲインとして設定する操作を行う。この組み合わせはx×y×z通りとなる。   Predetermined x control gain candidates K1p (p is a natural number from 1 to x), y control gain candidates K2q (q is a natural number from 1 to y), z control gain candidates K1r (r is 1) The natural number from to z is set as the control gain of the controllers 611 and 612. This combination is x × y × z.

ここで、図10のフローチャートを用いて説明する。制御ゲインを制御ゲイン候補の1組に設定する。例えば、ステップS201(以下、単にS201のように記す)でp=q=r=1とし、K1=K11、K2=K21、K3=K31とする(S202、S203、S204)。このようにした状態で、時間差Δt2、Δt3、Δt4(153)を演算器154に送ることで操作量155を算出する。そして、制御器611,612、加算器170、増幅器180によって光偏向装置の駆動部120(駆動手段)のコイル161に入力する信号を生成し、振動系100を駆動する。   Here, it demonstrates using the flowchart of FIG. The control gain is set to one set of control gain candidates. For example, in step S201 (hereinafter simply referred to as S201), p = q = r = 1, K1 = K11, K2 = K21, and K3 = K31 (S202, S203, S204). In this state, the operation amount 155 is calculated by sending the time differences Δt2, Δt3, Δt4 (153) to the calculator 154. Then, the controller 611, 612, the adder 170, and the amplifier 180 generate a signal to be input to the coil 161 of the driving unit 120 (driving means) of the optical deflection apparatus, and drive the vibration system 100.

制御ゲインを変更した後に振動系100の振動運動を制御し、一定時間経過した後に(S205)、時間差Δt2、Δt3、Δt4をN回分測定した値を用いて評価関数Jを計算する(S206)。本実施例ではN=1としているため、1回測定した値を用いる。その際に、評価関数Jを計算した値と、その時の制御ゲインK1、K2、K3の値の組を、制御ゲイン調整器620に記憶する(S207)。   After changing the control gain, the vibration motion of the vibration system 100 is controlled, and after a predetermined time has elapsed (S205), the evaluation function J is calculated using the values obtained by measuring the time differences Δt2, Δt3, and Δt4 N times (S206). In this embodiment, since N = 1, the value measured once is used. At that time, a set of the value obtained by calculating the evaluation function J and the values of the control gains K1, K2, and K3 at that time is stored in the control gain adjuster 620 (S207).

次に制御器611,612の制御ゲインを、異なる制御ゲイン候補に設定し直す信号を、制御ゲイン調整器620が制御器611,612に送り、制御ゲインを設定し直す。rに1を加え(S208)、rがz未満である間はS204の処理に戻り、例えばK3=K32とすることで、次の制御ゲインの1組を、K1=K11、K2=K21、K3=K32とする。   Next, the control gain adjuster 620 sends a signal to reset the control gains of the controllers 611 and 612 to different control gain candidates to the controllers 611 and 612 to reset the control gain. 1 is added to r (S208), and while r is less than z, the process returns to S204. For example, by setting K3 = K32, one set of the next control gain is K1 = K11, K2 = K21, K3. = K32.

制御ゲインを設定した後に、時間差Δt2、Δt3、Δt4(153)を演算器154に送ることで操作量155を算出する。そして、制御器611,612、加算器170、増幅器180によって光偏向装置の駆動部120(駆動手段)に入力する信号を生成し、振動系100を駆動する。一定時間経過した後に(S205)、評価関数Jを計算し(S206)、評価関数Jの値とその時の制御ゲインK1、K2、K3の値の組を、制御ゲイン調整器620に記憶する(S207)。   After setting the control gain, the operation amount 155 is calculated by sending the time differences Δt2, Δt3, Δt4 (153) to the calculator 154. Then, the controller 611, 612, the adder 170, and the amplifier 180 generate a signal to be input to the drive unit 120 (drive means) of the optical deflector, and drive the vibration system 100. After a predetermined time has elapsed (S205), the evaluation function J is calculated (S206), and the set of the evaluation function J value and the control gain values K1, K2, and K3 at that time is stored in the control gain adjuster 620 (S207). ).

上記の工程をx×y×z回繰り返し、全ての制御ゲイン候補を実際に制御ゲインとして設定する。S208からS215の工程により、制御ゲインの候補の組み合わせを全通り設定することが可能である。S208からS215の工程と同じでなくとも、x×y×z通りの制御ゲインの組み合わせが行えればよい。S215までの処理を行うことで、x×y×z個の評価関数Jの値とその時の制御ゲインの値の組が、制御ゲイン調整器620に記憶される。制御ゲイン調整器620では、それぞれの評価関数Jの値を比較し(S216)、評価関数Jが最小であるときの制御ゲインの値を制御器611,612に設定するための信号を送る(S217)。一定時間経過した後(S218)、上記のように設定した制御ゲインK1、K2、K3を用いて、光偏向を行う。   The above process is repeated x × y × z times, and all control gain candidates are actually set as control gains. Through the steps S208 to S215, all combinations of control gain candidates can be set. Even if it is not the same as the process of S208 to S215, the combination of the control gain of xxyxz should just be performed. By performing the processing up to S 215, a set of x × y × z evaluation function J values and control gain values at that time is stored in the control gain adjuster 620. The control gain adjuster 620 compares the values of the evaluation functions J (S216), and sends a signal for setting the control gain value when the evaluation function J is minimum to the controllers 611 and 612 (S217). ). After a predetermined time has elapsed (S218), light deflection is performed using the control gains K1, K2, and K3 set as described above.

本実施例において、制御ゲインK1、K2、K3と評価関数Jの組を制御ゲイン調整器620に全て記憶し、評価関数Jを最小にする制御ゲインの組み合わせを選択し、設定する操作を行った。しかしながら、制御ゲイン調整器620では評価関数Jとそのときの制御ゲインの組を1組のみ記憶するようにして、以下のような操作を行ってもよい。すなわち、制御ゲインK1、K2、K3を変更し、そのときの評価関数Jの値が、記憶されている評価関数Jの値よりも小さいときにのみ、その評価関数Jと制御ゲインの組を前の値に上書きして記憶するという操作を行う。このときも同様に、評価関数Jを最小とする制御ゲインK1、K2、K3を得ることができる。   In this embodiment, all the combinations of the control gains K1, K2, and K3 and the evaluation function J are stored in the control gain adjuster 620, and the control gain combination that minimizes the evaluation function J is selected and set. . However, the control gain adjuster 620 may perform the following operations by storing only one set of the evaluation function J and the control gain at that time. That is, only when the control gains K1, K2, and K3 are changed and the value of the evaluation function J at that time is smaller than the value of the stored evaluation function J, the set of the evaluation function J and the control gain is changed to the previous one. The operation of overwriting and storing the value of is performed. Similarly, control gains K1, K2, and K3 that minimize the evaluation function J can be obtained.

また、本実施例では制御器611,612をPI制御器とし、その最適な制御ゲインの組を1つ決定した。ここで、制御器611,612はP制御器であっても良く、その場合は、K1’、K2’、K3’を0に設定することで、本実施例と同様の構成で実現することができる。   In this embodiment, the controllers 611 and 612 are PI controllers, and one optimal control gain group is determined. Here, the controllers 611 and 612 may be P controllers. In that case, by setting K1 ′, K2 ′, and K3 ′ to 0, the controller 611 and 612 can be realized with the same configuration as in the present embodiment. it can.

本実施例では制御ゲインK1’、K2’、K3’の調整は行わず、K1、K2、K3のみを調整する構成を示した。K1、K2、K3に加えてK1’、K2’、K3’の全ての制御ゲインを変更する場合においても、制御ゲインの組み合わせが増えるのみで、基本的な構成は変えずに本実施例の構成を適用することができる。例えば、制御ゲインK1’、K2’、K3’の候補の個数をそれぞれx’個、y’個、z’個とすれば、x×y×z×x’×y’×z’通りの組み合わせを考えればよい。   In the present embodiment, the control gains K1 ', K2', and K3 'are not adjusted, and only K1, K2, and K3 are adjusted. Even when all the control gains of K1 ′, K2 ′, and K3 ′ are changed in addition to K1, K2, and K3, only the combination of the control gains is increased, and the basic configuration remains unchanged. Can be applied. For example, if the number of control gains K1 ′, K2 ′, and K3 ′ is x ′, y ′, and z ′, there are x × y × z × x ′ × y ′ × z ′ combinations. Should be considered.

本実施例では、時間差をΔti=(ti−t1)−(ti0−t10),(i=2,3,4)と定義し、評価関数Jを式20のように定義している。しかし、時間差をΔti=ti−ti0,(i=1,2,3,4)と定義して、式20の評価関数Jを用いてもよい。この場合、n=4となる。   In this embodiment, the time difference is defined as Δti = (ti−t1) − (ti0−t10), (i = 2, 3, 4), and the evaluation function J is defined as Equation 20. However, the time difference may be defined as Δti = ti−ti0, (i = 1, 2, 3, 4), and the evaluation function J of Expression 20 may be used. In this case, n = 4.

また、時間差Δti(i=2,3,4)を、図11に示すようにΔt2=t2−t1、Δt3=t3−t2、Δt4=t4−t3、というように設定しても、同様に評価関数Jを用いて制御ゲインを調整することができる。式20の評価関数Jにおいて、Wiを用いて重み付けを行っているため、Δtiの定義が本実施例と異なる場合にも、本発明を適用することができる。Δtiの定義を変更する場合は、式18及び式19に示した行列演算も変更する必要がある。   Further, even when the time difference Δti (i = 2, 3, 4) is set as shown in FIG. 11 such as Δt2 = t2−t1, Δt3 = t3−t2, Δt4 = t4−t3, the evaluation is similarly performed. The control gain can be adjusted using the function J. In the evaluation function J of Expression 20, since weighting is performed using Wi, the present invention can be applied even when the definition of Δti is different from the present embodiment. When changing the definition of Δti, it is also necessary to change the matrix operations shown in Equation 18 and Equation 19.

Δti=ti−ti0(i=1,2,3,4)と定義した場合に、ΔtiからΔA1、ΔA2、Δφ1、Δφ2を求める関係式が特願2006−035491に開示されている。この関係式に基づいて、時間差をΔti=ti−ti0(i=1,2,3,4)と定義した場合に評価関数Jを最適な値とする制御ゲインを求めてもよい。この場合も、Δtiの定義の変更に伴って、式18及び式19に示した行列演算を変更する必要がある。   Japanese Patent Application No. 2006-035491 discloses a relational expression for obtaining ΔA1, ΔA2, Δφ1, and Δφ2 from Δti when Δti = ti−ti0 (i = 1, 2, 3, 4). Based on this relational expression, when the time difference is defined as Δti = ti−ti0 (i = 1, 2, 3, 4), a control gain that sets the evaluation function J to an optimum value may be obtained. Also in this case, it is necessary to change the matrix operations shown in Expression 18 and Expression 19 in accordance with the change in the definition of Δti.

本実施例では、この評価関数Jを最適な値にする制御ゲインを設定している。但し、評価関数Jが最適であったとしても、少なくとも1つ以上のある時間差(例えばΔt2)の値が設定した範囲から外れてしまった場合に、所望とする光走査が実現されなくなる可能性がある。この場合の評価関数Jが最適(最小)であったとしても、所望の光走査が実現できなくなるため、制御ゲインの値としては不適当である。   In this embodiment, a control gain that sets the evaluation function J to an optimum value is set. However, even if the evaluation function J is optimal, if the value of at least one certain time difference (for example, Δt2) deviates from the set range, there is a possibility that the desired optical scanning may not be realized. is there. Even if the evaluation function J in this case is optimum (minimum), the desired optical scanning cannot be realized, so that the value of the control gain is inappropriate.

そこで、この時間差Δtiについて、それぞれもしくはある時間差が設定された範囲から外れた場合には、その時の評価関数Jが如何なる値であっても、そのときの制御ゲインの値は制御器611,612に再設定しないという操作を行ってもよい。   Therefore, when this time difference Δti is out of the set range or each time difference, the value of the control gain at that time is given to the controllers 611 and 612 regardless of the value of the evaluation function J at that time. An operation of not resetting may be performed.

この場合、その時間差と設定した時間とを比較する手段とを有する構成とする。そして、設定された範囲からその時間差が外れた場合には、その時の評価関数Jの値と制御ゲインの値の組を記憶しない、若しくは記憶してもその制御ゲインを用いないようにするという内容を記憶する手段等が必要である。このことは、他の実施例でも同様である。   In this case, the time difference is set to have a means for comparing the set time. When the time difference deviates from the set range, the set of the evaluation function J value and the control gain value at that time is not stored, or the control gain is not used even if stored. It is necessary to have a means for storing. The same applies to other embodiments.

本実施例では、3つの制御ゲインを変更している。変更すべき制御ゲインの数を限定せずにこの評価関数Jを最適化する方法として、実施例1から3で行った方法以外に、次のような方法が挙げられる。例えば、実験計画法、品質工学の手法、応答曲面法、感度解析、ニュートン法、準ニュートン法、最急降下法、共役勾配法、ニューラルネットの手法、焼きなまし法、タブー探索法、遺伝的アルゴリズムの手法などがある。本発明における光偏向装置はその手法を限定されない。多数の制御ゲインを変更する場合に、解の収束性や計算時間を考慮して、最適化する手法を選択すればよい。このことは、他の実施例においても同様である。   In this embodiment, three control gains are changed. As a method for optimizing the evaluation function J without limiting the number of control gains to be changed, the following method can be cited in addition to the methods performed in the first to third embodiments. For example, experimental design method, quality engineering method, response surface method, sensitivity analysis, Newton method, quasi-Newton method, steepest descent method, conjugate gradient method, neural network method, annealing method, tabu search method, genetic algorithm method and so on. The method of the optical deflecting device in the present invention is not limited. When a large number of control gains are changed, an optimization method may be selected in consideration of solution convergence and calculation time. The same applies to the other embodiments.

評価関数Jを最適化する上記の手法等を用いることで、制御ゲインを変更する回数を少なくすることができる。その結果、ゲイン調整に要する時間を短縮することができ、最適なゲインを早く得ることができる。   By using the above method for optimizing the evaluation function J, the number of times of changing the control gain can be reduced. As a result, the time required for gain adjustment can be shortened, and an optimum gain can be obtained quickly.

本発明の実施例4による画像形成装置を説明する。本実施例の光偏向装置のブロック図は図1または図6に示されるものと同じである。また、その構成は図3または図8に示されるものと同じである。   An image forming apparatus according to Embodiment 4 of the present invention will be described. The block diagram of the optical deflecting device of this embodiment is the same as that shown in FIG. 1 or FIG. The configuration is the same as that shown in FIG. 3 or FIG.

本実施例の全体の外観構成を図12の斜視図に示す。光源131から出射した光は、コリメータレンズ520で整形された後、光偏向装置の駆動部120が駆動した振動系100によって1次元に偏向される。走査光は結合レンズ530を経て感光ドラム540上に結像する。感光ドラム540の有効領域を画成する範囲以外にある振動系100の偏向角の所に、2つの受光素子141,142が配置される。そして、上記実施例1、2、3などで説明した制御方法によって、光偏向装置の振動系100の偏向角θの角速度を所定の領域(略等角速度領域)で略等角速度になるように制御する。その結果、結合レンズ530に所謂fθ機能を持たせることで感光ドラム540の有効領域上で略等速度に光走査できるようになる。本実施例により、正弦波で駆動した場合に比べ角速度の変化が少ないため、良好な印字が可能となる。   The overall appearance configuration of the present embodiment is shown in the perspective view of FIG. The light emitted from the light source 131 is shaped by the collimator lens 520 and then deflected one-dimensionally by the vibration system 100 driven by the drive unit 120 of the light deflection apparatus. The scanning light forms an image on the photosensitive drum 540 through the coupling lens 530. Two light receiving elements 141 and 142 are disposed at the deflection angle of the vibration system 100 outside the range that defines the effective area of the photosensitive drum 540. Then, the angular velocity of the deflection angle θ of the vibration system 100 of the optical deflection apparatus is controlled to be substantially equal angular velocity in a predetermined region (substantially equal angular velocity region) by the control method described in the first, second, third, etc. To do. As a result, by providing the coupling lens 530 with a so-called fθ function, optical scanning can be performed at a substantially constant speed on the effective area of the photosensitive drum 540. According to this embodiment, since the change in the angular velocity is smaller than that in the case of driving with a sine wave, good printing can be performed.

図12では、2つの受光素子141,142を配置しているが、上述のとおり、2つの受光素子を用いなくてもよい。すなわち、少なくとも1つの受光素子を有していれば、検出したい偏向角の位置に反射板を設置し、反射板により走査光が偏向され、その偏向光が直接、または少なくとも1つの反射部材を経てその受光素子を通過する構成としてもよい。   In FIG. 12, the two light receiving elements 141 and 142 are arranged, but as described above, the two light receiving elements may not be used. That is, if it has at least one light receiving element, a reflecting plate is installed at the position of the deflection angle to be detected, and the scanning light is deflected by the reflecting plate, and the deflected light is directly or through at least one reflecting member. It is good also as a structure which passes the light receiving element.

本実施例において、制御ゲインを調整する構成は、実施例1から3に示した何れを用いてもよい。本実施例の画像形成装置において、制御ゲインを調整し最適な制御ゲインを求める操作を行うタイミングを、画像形成時以外とする。   In the present embodiment, any of the configurations shown in the first to third embodiments may be used for adjusting the control gain. In the image forming apparatus according to the present exemplary embodiment, the timing for adjusting the control gain and obtaining the optimum control gain is set to a timing other than the time of image formation.

制御ゲインを調整することは、上述のとおり振動系100のジッタを大きくさせてしまう可能性がある。その結果、画像形成時に制御ゲイン調整を行うことで、画像形成の精度が低下してしまう可能性がある。そこで、本実施例では、画像形成時以外、具体的には、画像形成装置の感光ドラム540の前多回転時やクリーニング時等で画像形成を行っていない状態において、評価関数Jを最適化する制御ゲインの調整を行う。   Adjusting the control gain may increase the jitter of the vibration system 100 as described above. As a result, performing control gain adjustment during image formation may reduce the accuracy of image formation. Therefore, in this embodiment, the evaluation function J is optimized except when the image is formed, specifically, when the photosensitive drum 540 of the image forming apparatus is not performing image formation at the time of multiple rotations or cleaning. Adjust the control gain.

調整する制御ゲインの数が増加するに従い、また制御ゲイン候補の数が増加するに従って、制御ゲイン調整の時間が長くなる。制御ゲインの組み合わせが多くなれば、制御ゲイン調整の時間も長くなるため、ファーストプリントアウト時間が長くなってしまう可能性もある。そこで、画像形成装置の前多回転時間内でゲイン調整が終わるように、制御ゲインの個数、制御ゲイン候補の組み合わせの個数、測定回数N、評価関数Jの最適化手法等を定める必要がある。   As the number of control gains to be adjusted increases and as the number of control gain candidates increases, the control gain adjustment time becomes longer. If the number of combinations of control gains increases, the control gain adjustment time also increases, and therefore the first printout time may increase. Therefore, it is necessary to determine the number of control gains, the number of combinations of control gain candidates, the number of times of measurement N, the optimization method of the evaluation function J, and the like so that the gain adjustment is completed within the previous multi-rotation time of the image forming apparatus.

実施例1に係る光偏向装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an optical deflecting device according to Embodiment 1. FIG. 実施例1に係る光偏向装置の偏向角の平面図である。6 is a plan view of a deflection angle of the optical deflecting device according to Embodiment 1. FIG. 実施例1に係る光偏向装置の制御を説明するブロック図である。FIG. 3 is a block diagram illustrating control of the optical deflection apparatus according to the first embodiment. 実施例1に係る光偏向装置の偏向角の時間変化を示すグラフである。6 is a graph showing a change with time of a deflection angle of the optical deflection apparatus according to the first embodiment. 実施例1に係る評価関数を用いて制御ゲインを決定する処理を説明するフローチャートである。6 is a flowchart for describing processing for determining a control gain using an evaluation function according to the first embodiment. 実施例3に係る光偏向装置の構成を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration of an optical deflecting device according to a third embodiment. 実施例3に係る光偏向装置の偏向角の平面図である。6 is a plan view of a deflection angle of an optical deflecting device according to Embodiment 3. FIG. 実施例3に係る光偏向装置の制御を説明するブロック図である。FIG. 9 is a block diagram for explaining control of an optical deflection apparatus according to Embodiment 3. 実施例3に係る光偏向装置の偏向角の時間変化を示すグラフである。12 is a graph showing a change with time of the deflection angle of the optical deflecting device according to Example 3. 実施例3に係る評価関数を用いて制御ゲインを決定する処理を説明するフローチャートである。12 is a flowchart for describing processing for determining a control gain using an evaluation function according to a third embodiment. 実施例3に係る光偏向装置の偏向角の時間変化を示すグラフである。12 is a graph showing a change with time of the deflection angle of the optical deflecting device according to Example 3. 実施例4に係る光偏向装置の感光ドラムへの走査を説明する上面斜視図である。FIG. 10 is a top perspective view illustrating scanning of a light deflection apparatus according to a fourth embodiment onto a photosensitive drum. 従来例に係る光偏向装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical deflection apparatus which concerns on a prior art example. 従来例に係る光偏向装置の制御を説明するブロック図である。It is a block diagram explaining control of the optical deflection apparatus concerning a conventional example.

符号の説明Explanation of symbols

100 振動系
101、102 揺動体
111、112 ねじりバネ
120 駆動部(駆動手段)
121 支持部
131 光源
132 光ビーム
133 走査光
140 受光素子(変位角計測手段)
141 第1の受光素子(変位角計測手段)
142 第2の受光素子(変位角計測手段)
160 走査中心
161 コイル(駆動手段)
162 永久磁石(駆動手段)
170 加算器
180 増幅器
420 駆動部(駆動手段)
431 光源
432 走査光
441 第1の受光素子(変位角計測手段)
442 第2の受光素子(変位角計測手段)
450 駆動制御部(駆動制御手段)
454 演算器
520 コリメータレンズ
530 結合レンズ
540 感光ドラム
600 駆動制御部(駆動制御手段)
610 制御器
611,612 制御器
620 制御ゲイン調整器
DESCRIPTION OF SYMBOLS 100 Vibration system 101,102 Oscillator 111,112 Torsion spring 120 Drive part (drive means)
121 Supporting part 131 Light source 132 Light beam 133 Scanning light 140 Light receiving element (displacement angle measuring means)
141 1st light receiving element (displacement angle measurement means)
142 Second light receiving element (displacement angle measuring means)
160 Scanning Center 161 Coil (Drive Unit)
162 Permanent magnet (drive means)
170 Adder 180 Amplifier 420 Driver (Driver)
431 Light source 432 Scanning light 441 First light receiving element (displacement angle measuring means)
442 Second light receiving element (displacement angle measuring means)
450 Drive control unit (drive control means)
454 Calculator 520 Collimator lens 530 Coupling lens 540 Photosensitive drum 600 Drive control unit (drive control means)
610 Controller 611, 612 Controller 620 Control gain adjuster

Claims (9)

1つ以上の揺動体と前記揺動体に連結された1つ以上のねじりバネとを有する振動系と、前記揺動体の少なくとも1つに形成された反射ミラーと、光ビームを発生する光源と、所定の周波数で振動運動を行わせるために前記振動系に駆動力を印加する駆動手段と、前記揺動体の少なくとも1つが、少なくとも1つ以上の変位角をなすときの時間を計測するための変位角検出手段と、前記変位角検出手段により計測された時間に基づき前記駆動手段を制御する駆動制御手段とを備え、前記反射ミラーに前記光ビームを照射して光を走査する光走査装置であって、
前記駆動制御手段の制御ゲインを調整する制御ゲイン調整手段を備え、
前記駆動制御手段は、前記周波数の1周期内における所定の時間を基準または原点の時間とした場合に、前記揺動体が少なくとも1つ以上の所定の変位角をなすときの少なくとも1つの時間と予め設定した設定時間との時間差を算出し、前記時間差に基づき前記振動運動の振動波形の振幅と位相のうち少なくとも1つを制御し、
前記制御ゲイン調整手段は、前記時間差に基づき前記制御ゲインを調整し、前記駆動制御手段に設定することを特徴とする光走査装置。
A vibration system having one or more oscillating bodies and one or more torsion springs connected to the oscillating bodies; a reflection mirror formed on at least one of the oscillating bodies; and a light source for generating a light beam; Displacement for measuring time when at least one of the driving means for applying a driving force to the vibration system and causing the oscillating body to make vibration motion at a predetermined frequency and at least one displacement angle. An optical scanning device comprising: an angle detection unit; and a drive control unit that controls the drive unit based on a time measured by the displacement angle detection unit, and irradiates the light beam onto the reflection mirror to scan the light. And
A control gain adjusting means for adjusting a control gain of the drive control means;
When the predetermined time within one cycle of the frequency is set as a reference or origin time, the drive control means has at least one time when the oscillating body forms at least one predetermined displacement angle. Calculating a time difference from the set time, and controlling at least one of the amplitude and phase of the vibration waveform of the vibration motion based on the time difference;
The optical scanning device characterized in that the control gain adjusting means adjusts the control gain based on the time difference and sets the control gain in the drive control means.
1つ以上の揺動体と前記揺動体に連結された1つ以上のねじりバネとを有する振動系と、前記揺動体の少なくとも1つに形成された反射ミラーと、光ビームを発生する光源と、所定の周波数で振動運動を行わせるために前記振動系に駆動力を印加する駆動手段と、前記揺動体の少なくとも1つが、異なる第1及び第2の変位角をなすときの時間を計測するための変位角検出手段と、前記変位角検出手段により計測された時間に基づき前記駆動手段を制御する駆動制御手段とを備え、前記反射ミラーに前記光ビームを照射して光を走査する光走査装置であって、
前記駆動制御手段の制御ゲインを調整する制御ゲイン調整手段を備え、
前記駆動制御手段は、前記周波数の1周期内における所定の時間を基準または原点の時間とした場合に、前記揺動体の1つが前記第1の変位角をなすときの互いに異なる時間と、前記揺動体の1つが前記第2の変位角をなすときの互いに異なる時間と、から成る複数の時間の内の少なくとも2つの時間と設定時間との時間差を算出し、前記時間差に基づき前記振動運動の振動波形の振幅と位相のうち少なくとも1つを制御し、
前記制御ゲイン調整手段は、前記時間差に基づき前記制御ゲインを調整し、前記駆動制御手段に設定することを特徴とする光走査装置。
A vibration system having one or more oscillating bodies and one or more torsion springs connected to the oscillating bodies; a reflection mirror formed on at least one of the oscillating bodies; and a light source for generating a light beam; In order to measure a time when at least one of the driving means for applying a driving force to the vibration system to cause the vibration system to perform a vibration motion at a predetermined frequency and at least one of the oscillators have different first and second displacement angles. And a drive control means for controlling the drive means based on the time measured by the displacement angle detection means, and scanning the light by irradiating the light beam onto the reflection mirror. Because
A control gain adjusting means for adjusting a control gain of the drive control means;
When the predetermined time within one cycle of the frequency is set as a reference or origin time, the drive control means is configured so that different times when one of the oscillating bodies forms the first displacement angle are different from each other. Calculating a time difference between a set time and at least two of a plurality of times when one of the moving bodies forms the second displacement angle, and vibration of the vibration motion based on the time difference Control at least one of the amplitude and phase of the waveform;
The optical scanning apparatus characterized in that the control gain adjustment means adjusts the control gain based on the time difference and sets the control gain in the drive control means.
前記振動系が、基本周波数である第1の周波数で運動する第1の振動運動と、基本周波数の整数倍の周波数である第2の周波数で運動する第2の振動運動とを同時に発生可能であり、前記駆動手段は、前記第1の周波数を有する第1の周期的駆動力と前記第2の周波数を有する第2の周期的駆動力を前記振動系に印加可能であることを特徴とする請求項2に記載の光走査装置。   The vibration system can simultaneously generate a first vibration motion that moves at a first frequency that is a fundamental frequency and a second vibration motion that moves at a second frequency that is an integer multiple of the fundamental frequency. And the driving means is capable of applying a first periodic driving force having the first frequency and a second periodic driving force having the second frequency to the vibration system. The optical scanning device according to claim 2. 前記制御ゲイン調整手段により前記制御ゲインを調整する周期が、前記駆動制御手段により前記揺動体を制御する周期と比べて長いことを特徴とする請求項1ないし3のいずれかに記載の光走査装置。   4. The optical scanning device according to claim 1, wherein a period in which the control gain is adjusted by the control gain adjusting unit is longer than a period in which the oscillator is controlled by the drive control unit. . 前記制御ゲイン調整手段が、前記時間差を変数とする評価関数を計算する手段と、前記計算された評価関数に基づき前記駆動制御手段に前記制御ゲインを設定する手段と、を有することを特徴とする請求項1ないし4のいずれかに記載の光走査装置。   The control gain adjusting means includes means for calculating an evaluation function using the time difference as a variable, and means for setting the control gain in the drive control means based on the calculated evaluation function. The optical scanning device according to claim 1. 前記制御ゲインを設定し、前記時間差をk回測定したときの前記時間差の値をΔti(k)として、Nを測定回数、nを前記時間差の個数、mを自然数、Wiを重みを表す0以上の任意の実数としたとき、前記評価関数が、次式にて表されることを特徴とする請求項5に記載の光走査装置。
Figure 2009020404
When the control gain is set and the time difference is measured k times, the time difference value is Δti (k), N is the number of times of measurement, n is the number of the time differences, m is a natural number, and Wi is a weight of 0 or more. The optical scanning apparatus according to claim 5, wherein the evaluation function is represented by the following expression when an arbitrary real number is:
Figure 2009020404
前記制御ゲイン調整手段は、記憶手段を有し、
前記記憶手段は、複数の制御ゲインの値と、前記式1により求めた前記複数の制御ゲインに対応する複数の評価関数の値とを記憶し、
前記制御ゲイン調整手段は、前記記憶手段により記憶した前記複数の評価関数の中から最小となる値をもつ評価関数を選択し、前記最小となる値をもつ評価関数に対応する制御ゲインを前記駆動制御手段に設定することを特徴とする請求項6に記載の光走査装置。
The control gain adjustment means has storage means,
The storage means stores a plurality of control gain values and a plurality of evaluation function values corresponding to the plurality of control gains obtained by the equation 1,
The control gain adjusting unit selects an evaluation function having a minimum value from the plurality of evaluation functions stored by the storage unit, and drives the control gain corresponding to the evaluation function having the minimum value. The optical scanning device according to claim 6, wherein the optical scanning device is set in a control unit.
前記制御ゲイン調整手段は、前記時間差の値が設定した範囲から外れた場合には、前記評価関数の値に関わらず、このときの制御ゲインの値を、前記駆動制御手段の制御ゲインとして設定しないことを特徴とする請求項5ないし7のいずれかに記載の光走査装置。   The control gain adjusting means does not set the value of the control gain at this time as the control gain of the drive control means regardless of the value of the evaluation function when the value of the time difference is out of the set range. 8. An optical scanning device according to claim 5, wherein 請求項1ないし8のいずれかに記載の光走査装置を備える画像形成装置であって、
前記制御ゲイン調整手段は、画像形成時以外に前記制御ゲインを前記駆動制御手段に設定することを特徴とする画像形成装置。
An image forming apparatus comprising the optical scanning device according to claim 1,
The image forming apparatus, wherein the control gain adjusting unit sets the control gain in the drive control unit except during image formation.
JP2007184215A 2007-07-13 2007-07-13 Optical scanner and image forming apparatus Pending JP2009020404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184215A JP2009020404A (en) 2007-07-13 2007-07-13 Optical scanner and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184215A JP2009020404A (en) 2007-07-13 2007-07-13 Optical scanner and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2009020404A true JP2009020404A (en) 2009-01-29

Family

ID=40360070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184215A Pending JP2009020404A (en) 2007-07-13 2007-07-13 Optical scanner and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2009020404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208289A (en) * 2011-03-29 2012-10-25 Kyocera Document Solutions Inc Optical scanner and image forming apparatus with the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720400A (en) * 1993-06-29 1995-01-24 Nikon Corp Amplitude controller for vibration optical element
JPH08313839A (en) * 1995-05-22 1996-11-29 S K S Kk Resonance type scanner
JP2004279947A (en) * 2003-03-18 2004-10-07 Ricoh Co Ltd Optical scanner and image forming device
JP2005326746A (en) * 2004-05-17 2005-11-24 Canon Inc Optical deflector and its control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720400A (en) * 1993-06-29 1995-01-24 Nikon Corp Amplitude controller for vibration optical element
JPH08313839A (en) * 1995-05-22 1996-11-29 S K S Kk Resonance type scanner
JP2004279947A (en) * 2003-03-18 2004-10-07 Ricoh Co Ltd Optical scanner and image forming device
JP2005326746A (en) * 2004-05-17 2005-11-24 Canon Inc Optical deflector and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208289A (en) * 2011-03-29 2012-10-25 Kyocera Document Solutions Inc Optical scanner and image forming apparatus with the same

Similar Documents

Publication Publication Date Title
JP5064864B2 (en) Optical deflection apparatus, image forming apparatus, and driving method of optical deflection apparatus
JP4533407B2 (en) Image forming apparatus
JP5441309B2 (en) Oscillator device and optical deflection device
JP5404102B2 (en) Oscillator device and optical deflection device using the same
CN109991732B (en) Scanning reflector device and method for driving a reflector system
JP5184909B2 (en) Oscillator device and optical deflection device
US8270057B2 (en) Oscillator device, optical deflecting device and method of controlling the same
JP5283966B2 (en) Optical deflection apparatus and image forming apparatus
JP2009058616A (en) Oscillating body apparatus, light deflector and image forming apparatus using the same
JP2009020404A (en) Optical scanner and image forming apparatus
JP5341372B2 (en) Oscillator device and image forming apparatus using the oscillator device
JP2009265285A (en) Rocking member apparatus
JP2010048928A (en) Oscillating body device and light deflector using the same
JP2009034961A (en) Image forming apparatus
US7542187B2 (en) Image forming apparatus, control method therefor, and computer program
JP5408887B2 (en) Oscillator device and image forming apparatus using the oscillator device
JP5058661B2 (en) Image forming apparatus
US20230221546A1 (en) Optical scanning device and control method thereof
JP2009109928A (en) Optical scanner and optical equipment using the same
JP2009042579A (en) Optical deflector and method of suppressing jitter of rocking body
JP2006039377A (en) Method of adjusting oscillating body and oscillating body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204