JP2009017277A - Quantum cryptography reception apparatus and quantum cryptography reception method employing the same - Google Patents

Quantum cryptography reception apparatus and quantum cryptography reception method employing the same Download PDF

Info

Publication number
JP2009017277A
JP2009017277A JP2007177278A JP2007177278A JP2009017277A JP 2009017277 A JP2009017277 A JP 2009017277A JP 2007177278 A JP2007177278 A JP 2007177278A JP 2007177278 A JP2007177278 A JP 2007177278A JP 2009017277 A JP2009017277 A JP 2009017277A
Authority
JP
Japan
Prior art keywords
polarization
quantum cryptography
photon
transmitted
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177278A
Other languages
Japanese (ja)
Other versions
JP5019979B2 (en
Inventor
Takeshi Nishioka
毅 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007177278A priority Critical patent/JP5019979B2/en
Publication of JP2009017277A publication Critical patent/JP2009017277A/en
Application granted granted Critical
Publication of JP5019979B2 publication Critical patent/JP5019979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantum cryptography reception apparatus which keeps high an interference sharpness degree and a baud rate regardless of random rotations of a polarization plane of a photon in the middle of transmission and does not require feedback polarization plane control using light of high intensity different from the transmission photon. <P>SOLUTION: A quantum cryptography reception apparatus comprises two unsymmetrical Mach-Zehnder interferometer for identifying the kind of a relative phase difference between two serial photon pulses, transmitted from a quantum cryptography transmission apparatus using the asymmetrical Mach-Zehnder interferometer, with four kinds of the relative phase difference and a time difference; and a polarization beam splitter for guiding to any one of the two asymmetrical Mach-Zehnder interferometer in accordance with a polarization state of transmitted and input photons. The quantum cryptography reception apparatus includes a polarization rotator, provided on a pre-stage of an input port of the polarization beam splutter, for rotating the polarization state of photons to be input in such a way as to incur the same number of detection events in both the two asymmetrical Mach-Zehnder interferometers. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、量子暗号のキーとなる量子信号を受信するための量子暗号受信装置およびそれを使用する量子暗号受信方法に関するものである。   The present invention relates to a quantum cryptography receiving apparatus for receiving a quantum signal which is a key for quantum cryptography and a quantum cryptography receiving method using the same.

量子暗号システムは、一般に量子暗号送信装置、量子暗号受信装置、両装置間をつなぐ量子通信路および古典通信路から構成される。位相変調方式を用いる量子暗号プロトコルであるBB84プロトコルを実装する場合、量子暗号送信装置から量子暗号受信装置に光子が伝送される。
このとき、従来の量子暗号送信装置では、光路長差が異なる非対称マッハツェンダ干渉計(Asymmetric Mach−Zehnder Interferometer、以下「AMZI」と称する)を用いて、単一の光子パルスから時間差を有する2連光子パルスを生成する。この2連光子パルスの相対位相差を0、π、π/2、−π/2の4つに変調して送信している。
A quantum cryptography system is generally composed of a quantum cryptography transmission device, a quantum cryptography reception device, a quantum communication channel that connects both devices, and a classical communication channel. When the BB84 protocol, which is a quantum cryptography protocol using a phase modulation method, is implemented, photons are transmitted from the quantum cryptography transmission device to the quantum cryptography reception device.
At this time, in the conventional quantum cryptography transmitter, an asymmetric Mach-Zehnder interferometer (hereinafter referred to as “AMZI”) having a different optical path length is used to form a double photon having a time difference from a single photon pulse. Generate a pulse. The relative phase difference of the double photon pulse is modulated into four of 0, π, π / 2, and −π / 2 and transmitted.

一方、従来の量子暗号受信装置は、2つのAMZIを備え、伝送された光子をビームスプリッタ(以下、「BS」と称する)により分岐させ2つのAMZIのうちのいずれかに導くことで、2つの観測基底を決定するBB84プロトコルの受信装置の要件を満足している(例えば、非特許文献1参照)。   On the other hand, a conventional quantum cryptography receiving device includes two AMZIs, and splits a transmitted photon by a beam splitter (hereinafter referred to as “BS”) and guides it to one of the two AMZIs. The requirements of the receiving device of the BB84 protocol for determining the observation base are satisfied (for example, see Non-Patent Document 1).

具体的には、量子暗号受信装置に伝送された光子は、BSで50対50の割合で2つある出力ポートのいずれかに出力される。BSの出力ポートにはそれぞれAMZIが接続されている。この2つのAMZIは量子暗号送信装置に備わるAMZIと同じ光路長差を有しており、干渉が生じるようになっている。
一方のAMZIでは、波長オーダーで光路長差が微調整されており、入力された位相差0の2連光子パルスは必ず特定の一方の出力ポートに導かれる。また、入力された位相差πの2連光子パルスは必ず特定の他方の出力ポートに導かれる。一方、入力された位相差±π/2の2連光子パルスはいずれの出力ポートに導かれるかは不定である。
同様に、他方のAMZIでも波長オーダーで光路長差が微調整されており、入力された位相差π/2の2連光子パルスは必ず特定の一方の出力ポートに導かれる。また、入力された位相差−π/2の2連光子パルスは、必ず特定の他方の出力ポートに導かれる。一方、入力された位相差0、πの2連光子パルスはいずれの出力ポートに導かれるかは不定である。
Specifically, photons transmitted to the quantum cryptography receiver are output to one of two output ports at a ratio of 50:50 at the BS. Each AMZI is connected to an output port of the BS. These two AMZIs have the same optical path length difference as the AMZI provided in the quantum cryptography transmission device, so that interference occurs.
In one AMZI, the optical path length difference is finely adjusted in the wavelength order, and the input double photon pulse having a phase difference of 0 is always guided to one specific output port. Also, the input double photon pulse having a phase difference of π is always guided to the other specific output port. On the other hand, it is undefined to which output port an input double photon pulse with a phase difference of ± π / 2 is led.
Similarly, in the other AMZI, the optical path length difference is finely adjusted in the wavelength order, and the input double photon pulse having a phase difference of π / 2 is always guided to one specific output port. The input double photon pulse having a phase difference of −π / 2 is always guided to the other specific output port. On the other hand, it is indeterminate which output port the input double photon pulses with phase differences of 0 and π are led to.

そして、2つのAMZIの計4つの出力ポートにそれぞれ光子検出器を設けると、どの光子検出器が発火したかによりビット値が「0」または「1」のいずれであるかが決定される。2つの基底:+基底(0、π)と×基底(π/2、−π/2)のいずれを選択したかは、発火した光子検出器がどのAMZIに接続しているかで決定される。BSが50対50の割合で分岐することが、ランダムに基底を選択することに対応している。   If a photon detector is provided in each of the four AMZI total output ports, it is determined whether the bit value is “0” or “1” depending on which photon detector fires. Which of the two bases: + base (0, π) and × base (π / 2, −π / 2) is selected is determined by which AMZI the fired photon detector is connected to. The fact that the BS branches at a ratio of 50:50 corresponds to selecting a base at random.

しかし、従来の量子暗号受信装置では、伝送された光子をBSを介してAMZIへと導くため、伝送途中で光子の偏波面が回転してしまい、直交する2つの偏波モードの光子がいずれもがAMZIに入力していた。そして、AMZIは一般に複屈折性の媒質で構成されているため、2つの偏波モードでは光路長に差が生じてしまい干渉明瞭度が低下する、即ち、エラー率が増大するという問題があった。
そこで、AMZIの前段に偏光子を設け、単一の偏波モードのみ入力を許すことで干渉明瞭度の低下を防ぐことは容易にできるが、入力できなかった他方の偏波モードは捨てているので、通信速度が低下するという問題があった。
However, in the conventional quantum cryptography receiving device, since the transmitted photon is guided to AMZI through the BS, the polarization plane of the photon is rotated during the transmission, and the photons in two orthogonal polarization modes are both Had entered AMZI. Since AMZI is generally composed of a birefringent medium, there is a problem in that the optical path length differs between the two polarization modes, resulting in reduced interference clarity, that is, increased error rate. .
Therefore, it is easy to prevent a decrease in the interference intelligibility by providing a polarizer in front of AMZI and allowing only a single polarization mode to be input, but discarding the other polarization mode that could not be input. Therefore, there was a problem that the communication speed decreased.

そこで、量子暗号受信装置の前段に偏波補償器を設け、AMZIに入力する光子を最大にするように偏波面を回転することが行われている。例えば、非特許文献1では静的な偏波回転器を用いて偏波面を調節している。   Therefore, a polarization compensator is provided in the front stage of the quantum cryptography receiving apparatus, and the polarization plane is rotated so as to maximize the photons input to the AMZI. For example, in Non-Patent Document 1, the plane of polarization is adjusted using a static polarization rotator.

R T Thew著、外8名、「Low jitter up−conversion detectors for telecom wavelength GHz QKD」、New Journal of Physics、2006年、3月、vol.8、no.32、pp.1−12R T Thew, Eight others, “Low jitter up-conversion detectors for telecom wavelength GHz QKD”, New Journal of Physics, March 2006, vol. 8, no. 32, pp. 1-12

しかし、実用的には伝送路中で光子の偏波面は時々刻々ランダムに回転してしまうため、偏波モニタと偏波制御器を組み合わせ、かつ、偏波モニタが動作可能な強度の強い光を光子と共に伝送し、フィードバックする偏波面制御という複雑な制御を行なう必要があるという問題がある。   However, practically, the plane of polarization of photons in the transmission path rotates randomly from moment to moment. Therefore, a combination of a polarization monitor and a polarization controller, and strong light that can operate the polarization monitor. There is a problem that it is necessary to perform complicated control such as polarization plane control that transmits and feeds back with photons.

この発明の目的は、伝送途中での光子の偏波面のランダムな回転に関わりなく、干渉明瞭度と通信速度を高く保持し、且つ、伝送光子とは別の強度の高い光を用いたフィードバック偏波面制御を不要とする量子暗号受信装置およびそれを使用する量子暗号受信方法を提供することである。   The object of the present invention is to maintain high intelligibility and communication speed regardless of random rotation of the polarization plane of a photon during transmission, and to provide feedback polarization using high-intensity light different from the transmitted photon. It is an object to provide a quantum cryptography reception device that does not require wavefront control and a quantum cryptography reception method that uses the quantum cryptography reception device.

この発明に係る量子暗号受信装置は、非対称マッハツェンダ干渉計を用いて量子暗号送信装置から伝送された4種類の相対位相差があり且つ時間差を有する2連光子パルスの相対位相差の種類を識別するための2つの非対称マッハツェンダ干渉計および伝送されて入力する光子の偏波状態に従って上記2つの非対称マッハツェンダ干渉計のいずれかに導く偏光ビームスプリッタを備える量子暗号受信装置において、上記2つの非対称マッハツェンダ干渉計の双方に同数の検出イベントが生じるよう入力する光子の偏波状態を回転し、且つ上記偏光ビームスプリッタの入力ポートの前段に設けられた動的な偏波回転器を備える。   The quantum cryptography receiving device according to the present invention identifies the type of relative phase difference of a double photon pulse having four types of relative phase differences and having a time difference transmitted from the quantum cryptography transmission device using an asymmetric Mach-Zehnder interferometer. In the quantum cryptography receiving device comprising two asymmetric Mach-Zehnder interferometers and a polarization beam splitter that leads to one of the two asymmetric Mach-Zehnder interferometers according to the polarization state of the transmitted and input photons, the two asymmetric Mach-Zehnder interferometers The polarization state of the input photon is rotated so that the same number of detection events occur in both, and a dynamic polarization rotator is provided in front of the input port of the polarization beam splitter.

この発明に係る量子暗号受信方法は、量子暗号送信装置から非対称マッハツェンダ干渉計を用いて量子暗号送信装置から伝送された4種類の相対位相差があり且つ時間差を有する2連光子パルスの相対位相差の種類を2つの非対称マッハツェンダ干渉計により識別する量子暗号受信方式において、伝送された2つの偏波モードを有する光子を偏光ビームスプリッタにより偏波モード別に2つに分岐し、且つ単一偏波モードのみを後段の上記非対称マッハツェンダ干渉計に導いて光子干渉を測定する。   The quantum cryptography reception method according to the present invention includes four types of relative phase differences transmitted from a quantum cryptography transmission device using an asymmetric Mach-Zehnder interferometer from the quantum cryptography transmission device, and relative phase differences between two photon pulses having a time difference. In a quantum cryptography receiving system that distinguishes two types by two asymmetric Mach-Zehnder interferometers, a transmitted photon having two polarization modes is branched into two by a polarization beam splitter by a polarization beam splitter, and a single polarization mode Only this is guided to the asymmetric Mach-Zehnder interferometer in the subsequent stage to measure photon interference.

この発明に係る量子暗号受信装置の効果は、偏光ビームスプリッタを用いて伝送された光子を2つの非対称マッハツェンダ干渉計のいずれかに導いているので、どのような偏波面を持った光子でも光子伝送に使うことができ、通信速度(ビットレート)の低下を防ぐことができるということである。
また、非対称マッハツェンダ干渉計には1つの偏波モードの光子しか導かれないため、複屈折性による干渉明瞭度の低下、即ち、ビットエラーレートの増加を防ぐことができるということである。
The effect of the quantum cryptography receiver according to the present invention is that the photon transmitted using the polarization beam splitter is guided to one of the two asymmetric Mach-Zehnder interferometers, so that any photon having any polarization plane can be transmitted. This means that it is possible to prevent a decrease in communication speed (bit rate).
Further, since only a single polarization mode photon is guided to the asymmetric Mach-Zehnder interferometer, it is possible to prevent a reduction in interference clarity due to birefringence, that is, an increase in bit error rate.

図1は、この発明の実施の形態に係る量子暗号受信装置を含む量子暗号システムの構成を示すブロック構成図である。
この発明の実施の形態に係る量子暗号システムは、図1に示すように、量子暗号送信装置1、量子暗号受信装置2、主に光ファイバで構成される量子通信路3、および古典通信路4から構成される。
量子通信路3では、光子が量子暗号送信装置1から量子暗号受信装置2に伝送される。 古典通信路4では、量子暗号通信を行うための制御情報およびBB84などの量子暗号プロトコルを実施するのに必要とする古典情報が伝送される。
FIG. 1 is a block configuration diagram showing the configuration of a quantum cryptography system including a quantum cryptography reception device according to an embodiment of the present invention.
As shown in FIG. 1, a quantum cryptography system according to an embodiment of the present invention includes a quantum cryptography transmission device 1, a quantum cryptography reception device 2, a quantum communication channel 3 mainly composed of optical fibers, and a classical communication channel 4. Consists of
In the quantum communication path 3, photons are transmitted from the quantum cryptography transmission device 1 to the quantum cryptography reception device 2. The classical communication path 4 transmits control information for performing quantum cryptography communication and classical information necessary for implementing a quantum cryptography protocol such as BB84.

図2は、この発明の実施の形態に係る量子暗号送信装置の構成を示す構成図である。
この発明の実施の形態に係る量子暗号送信装置1は、図2に示すように、光子源であるLASER11と、出力された光子の偏波面を回転・調整する偏波制御子12、光子を位相変調可能な時間差を有する2連パルスに変換する非対称マッハツェンダ干渉計(AMZI)13、AMZI13から出力された2連パルスの後続パルスに位相変調を施す位相変調器(以下、「PMA」と略称する)14、PMA14から出力された2連パルスを量子暗号の要求する強度まで減光するアッテネータ(以下、「ATT」と略称する)15、LASER11およびPMA14を制御し、量子暗号受信装置2と古典通信を行う送信側制御装置16を備える。
FIG. 2 is a configuration diagram showing the configuration of the quantum cryptography transmission device according to the embodiment of the present invention.
As shown in FIG. 2, the quantum cryptography transmitter 1 according to the embodiment of the present invention includes a LASER 11 that is a photon source, a polarization controller 12 that rotates and adjusts the polarization plane of the output photon, and a phase that causes the photon to be phased. An asymmetric Mach-Zehnder interferometer (AMZI) 13 for converting into a double pulse having a time difference that can be modulated, and a phase modulator (hereinafter abbreviated as “PMA”) for performing phase modulation on the subsequent pulse of the double pulse output from the AMZI 13 14. Controls an attenuator (hereinafter abbreviated as “ATT”) 15, LASER 11 and PMA 14 for dimming the double pulse output from the PMA 14 to the intensity required by the quantum cryptography, and performs classical communication with the quantum cryptography receiver 2 A transmission side control device 16 is provided.

偏波制御子12は、AMZI13に単一の偏波モードのみが入力するように偏波面を調整する。
例えば石英平面回路(PLC)で構成されるAMZIは複屈折性を持つので、偏波制御子により、AMZIに対して単一の偏波モードのみが入力するように偏波面を調整している。
送信側制御装置16は、マスタクロック17を有し、マスタクロック17に従って、LASER11およびPMA14を制御している。
PMA14は、BB84プロトコルに従い、例えば、位相差0、π、π/2、−π/2のような4値変調を行う。4値のうちいずれを選択するかは、光子パルス毎に送信側制御装置16が生成する乱数データに従う。
送信側制御装置16は、古典通信路4を介して量子暗号受信装置2との間で、クロック信号などの伝送制御情報および量子暗号プロトコルで要求される古典情報の伝送を行う。
The polarization controller 12 adjusts the polarization plane so that only a single polarization mode is input to the AMZI 13.
For example, AMZI composed of a quartz planar circuit (PLC) has birefringence, and the polarization plane is adjusted by the polarization controller so that only a single polarization mode is input to AMZI.
The transmission side control device 16 has a master clock 17 and controls the LASER 11 and the PMA 14 according to the master clock 17.
The PMA 14 performs quaternary modulation such as phase differences 0, π, π / 2, and −π / 2 according to the BB84 protocol. Which of the four values is selected depends on random number data generated by the transmission-side control device 16 for each photon pulse.
The transmission side control device 16 transmits transmission control information such as a clock signal and classical information required by the quantum cryptography protocol to and from the quantum cryptography reception device 2 via the classical communication path 4.

図3は、この発明の実施の形態に係る量子暗号受信装置の構成図である。
この発明の実施の形態に係る量子暗号受信装置2は、図1のような量子暗号システムにおいて、量子暗号送信装置1と量子暗号通信を行うことを目的としている。
この発明の実施の形態に係る量子暗号受信装置2は、図3に示すように、量子通信路3を伝送された光子の偏波面を静的に回転する静的な偏波回転器としての半波長板(以下、「HWP」と称す)21、HWP21を通過した光子の偏波面を受信側制御装置22の制御により動的に回転する動的な偏波回転器23、動的な偏波回転器23を通過した光子を偏波面に従い2つに分岐する偏光ビームスプリッタ(以下、「PBS」と称す)24、PBS24の2つの出力ポートにそれぞれ接続された2つのAMZI25、26、AMZI25、26のそれぞれ2つの出力ポートに接続された4つの光子検出器27a、27b、27c、27d、4つの光子検出器27a、27b、27c、27dの検出信号を受信したり、動的な偏波回転器23を制御したり、古典通信路4を介して量子暗号送信装置1と古典通信を行う受信側制御装置22を備える。
FIG. 3 is a configuration diagram of the quantum cryptography reception device according to the embodiment of the present invention.
The quantum cryptography receiving device 2 according to the embodiment of the present invention is intended to perform quantum cryptography communication with the quantum cryptography transmission device 1 in the quantum cryptography system as shown in FIG.
As shown in FIG. 3, the quantum cryptography receiving device 2 according to the embodiment of the present invention is a half as a static polarization rotator that statically rotates the polarization plane of a photon transmitted through the quantum communication path 3. A wave plate (hereinafter referred to as “HWP”) 21, a dynamic polarization rotator 23 that dynamically rotates the polarization plane of a photon that has passed through the HWP 21 under the control of the reception-side controller 22, and dynamic polarization rotation Two AMZIs 25, 26, AMZIs 25, 26 respectively connected to two output ports of a polarizing beam splitter (hereinafter referred to as “PBS”) 24 and a PBS 24 that branches the photons that have passed through the device 23 into two according to the plane of polarization. The four photon detectors 27a, 27b, 27c, 27d connected to the two output ports, respectively, receive the detection signals of the four photon detectors 27a, 27b, 27c, 27d, or the dynamic polarization rotator 23. The Control or, a receiving-side controller 22 which performs quantum cryptography transmitting apparatus 1 and the classical communication via a classical channel 4.

HWP21は、量子暗号通信を開始するときや途中など量子暗号受信装置2の外部から、例えば人などにより回転され、その間は静止している。そして、静的とはこのようなことを意味する。
偏波回転器23は、半波長板や1/4波長板から構成され、これらの波長板をメカニカルに回すものでも、電気光学効果により電気的に媒質の複屈折性を変化させるような偏波変調器を用いてもよい。なお、動的とは受信側制御装置22によりランダムにまたは規則的に回転されることを意味する。
The HWP 21 is rotated by, for example, a person from the outside of the quantum cryptography reception device 2 such as when quantum cryptography communication is started or in the middle, and is stationary during that time. And static means this.
The polarization rotator 23 is composed of a half-wave plate or a quarter-wave plate. Even if these wave plates are mechanically rotated, polarization that electrically changes the birefringence of the medium by the electro-optic effect. A modulator may be used. Note that dynamic means that the receiving side control device 22 rotates randomly or regularly.

PBS24は、偏波面がP偏光の光子を第1のAMZI25に導く。
第1のAMZI25が複屈折性を有するとき、その2つある偏波モードのうちの1つがPBS24のP偏光に対応するように偏波軸の調整がなされて、PBS24と第1のAMZI25が接続されている。
また、PBS24は、偏波面がS偏光の光子を第2のAMZI26に導く。
第2のAMZI26が複屈折性を有するとき、その2つある偏波モードのうちの1つがPBS24のS偏光に対応するように偏波軸の調整がなされて、PBS24と第2のAMZI26が接続されている。
The PBS 24 guides a photon whose polarization plane is P-polarized light to the first AMZI 25.
When the first AMZI 25 has birefringence, the polarization axis is adjusted so that one of the two polarization modes corresponds to the P polarization of the PBS 24, and the PBS 24 and the first AMZI 25 are connected. Has been.
The PBS 24 guides photons having a polarization plane of S polarization to the second AMZI 26.
When the second AMZI 26 has birefringence, the polarization axis is adjusted so that one of the two polarization modes corresponds to the S polarization of the PBS 24, and the PBS 24 and the second AMZI 26 are connected. Has been.

AMZI25、26は、干渉が生じるように、量子暗号送信装置1に備わるAMZI13と光路長差が等しくなるように調整されている。2つのAMZI25、26のうちの第1のAMZI25は、伝送された時間差を有する2連光子パルスが入力したとき干渉し、位相差が0のとき第1の光子検出器27aに、位相差がπのとき第2の光子検出器27bに導かれるように波長オーダーで光路長差が微調整されている。位相差が±π/2のときは、第1の光子検出器27aまたは第2の光子検出器27bのいずれに導かれるかは不定である。   The AMZIs 25 and 26 are adjusted so that the optical path length difference is equal to the AMZI 13 provided in the quantum cryptography transmission device 1 so that interference occurs. The first AMZI 25 of the two AMZIs 25 and 26 interferes when a transmitted double photon pulse having a time difference is input, and when the phase difference is 0, the first photon detector 27a has a phase difference of π. At this time, the optical path length difference is finely adjusted in the wavelength order so as to be guided to the second photon detector 27b. When the phase difference is ± π / 2, it is undefined whether the light is guided to the first photon detector 27a or the second photon detector 27b.

他方の第2のAMZI26は、伝送された時間差を有する2連光子パルスが入力したとき干渉し、位相差がπ/2のとき第3の光子検出器27cに、位相差が−π/2のとき第4の光子検出器27dに導かれるように波長オーダーで光路長差が微調整されている。位相差が0、πときは、第3の光子検出器27cまたは第4の光子検出器27dのいずれに導かれるかは不定である。   The other second AMZI 26 interferes when a transmitted double photon pulse having a time difference is input, and when the phase difference is π / 2, the third photon detector 27c has a phase difference of −π / 2. Sometimes, the optical path length difference is finely adjusted in the wavelength order so as to be guided to the fourth photon detector 27d. When the phase difference is 0, π, it is undefined whether the light is guided to the third photon detector 27c or the fourth photon detector 27d.

次に、この発明の実施の形態に係る量子暗号受信装置2の動作について説明する。
一般に図1のような量子暗号システムでは、まず量子暗号送信装置1から量子受信装置2へ位相変調された光子が量子通信路3を介して伝送される。これに伴い古典通信路4を介してクロック信号などの制御情報も伝送される。そして、複数の光子伝送が終わると、古典通信路4を介して、量子暗号プロトコル、例えば、BB84プロトコルを実行するのに必要な補助情報が伝送され、データ処理が行われた後、最終的に共有される秘密鍵が量子暗号送信装置1および量子暗号受信装置2それぞれで出力される。
Next, the operation of the quantum cryptography reception device 2 according to the embodiment of the present invention will be described.
In general, in a quantum cryptography system as shown in FIG. 1, first, a photon phase-modulated from the quantum cryptography transmission device 1 to the quantum reception device 2 is transmitted via the quantum communication path 3. Along with this, control information such as a clock signal is also transmitted through the classical communication path 4. When a plurality of photon transmissions are completed, auxiliary information necessary to execute the quantum cryptography protocol, for example, the BB84 protocol, is transmitted through the classical communication path 4, and finally, after data processing is performed, The shared secret key is output by each of the quantum cryptography transmission device 1 and the quantum cryptography reception device 2.

この発明は上述のプロセスのうち前段の光子伝送に関するものであり、以下光子伝送に関する動作を説明する。
一般に光ファイバなどの量子通信路3を通ると、複屈折性のために光子の偏波面はランダムに回転してしまうのだが、光子伝送を始めるにあたり、量子暗号受信装置2ではHWP21をランダムに回転して固定する。このようにすることにより量子暗号受信装置2に入力する光子のどのような偏波面が、PBS24のP偏光またはS偏光に対応するかが盗聴者には同定できなくなる。このため、盗聴者が偏波面を回転することで伝送光子のすべてを2つあるAMZI25、26のうちの一方に偏らせることができなくなる。
The present invention relates to photon transmission in the preceding stage of the above-described process, and the operation related to photon transmission will be described below.
Generally, when passing through a quantum communication path 3 such as an optical fiber, the polarization plane of the photon rotates randomly due to birefringence, but the quantum cryptography receiver 2 rotates the HWP 21 randomly when starting photon transmission. And fix. By doing so, an eavesdropper cannot identify what polarization plane of the photon input to the quantum cryptography receiving device 2 corresponds to the P-polarized light or the S-polarized light of the PBS 24. For this reason, an eavesdropper cannot rotate all of the transmitted photons to one of the two AMZIs 25 and 26 by rotating the plane of polarization.

次に、HWP21を通過した光子の偏波面を更に動的な偏波回転器23で回転する。この偏波面の回転は受信側制御装置22で制御し、通過する光子に対して偏波面を固定的ではなく動的に回転する。このとき、偏波回転器23は伝送光子の通過タイミングと非同期に独自のタイミングで光子の偏波面を回転する。そして、偏波面を回転する偏波の大きさおよび回転するタイミングをランダムに変更する。
なお、受信側制御装置22は古典通信路4を介してクロック信号を受信しているので、光子の通過タイミングと同期して光子の偏波面を回転してもよい。
また、偏波回転器23を半波長板で構成し、偏波面を回転する偏波の大きさおよび回転するタイミングを規則的にするために、半波長板を回転速度一定で回転しても良い。
Next, the polarization plane of the photon that has passed through the HWP 21 is further rotated by the dynamic polarization rotator 23. The rotation of the polarization plane is controlled by the receiving side control device 22 and the polarization plane is dynamically rotated rather than fixed with respect to the passing photon. At this time, the polarization rotator 23 rotates the polarization plane of the photon at a unique timing asynchronously with the transmission timing of the transmission photon. Then, the magnitude of the polarization that rotates the polarization plane and the rotation timing are randomly changed.
In addition, since the receiving side control apparatus 22 is receiving the clock signal via the classical communication path 4, you may rotate the polarization plane of a photon synchronizing with the passage timing of a photon.
Further, the polarization rotator 23 may be constituted by a half-wave plate, and the half-wave plate may be rotated at a constant rotation speed in order to make the magnitude of the polarization rotating and the rotation timing regular. .

このような処理を行うことで、伝送された光子の偏波面はPBS24に入射するとき、量子暗号受信装置2に入射したときの偏波面と全く異なるものになっている。これにより、PBS24は、伝送光子を2つのAMZI25、26のいずれに導かれるかをまったくランダムに振り分けられる。   By performing such processing, the polarization plane of the transmitted photon is completely different from the polarization plane when entering the quantum cryptography receiving device 2 when entering the PBS 24. As a result, the PBS 24 can sort at random whether the transmission photon is guided to the two AMZIs 25 and 26.

2つのAMZI25、26のいずれかに導かれた光子は干渉を起こし、4つある光子検出器27a、27b、27c、27dのいずれかを発火させることになる。
受信側制御装置22は、第1の光子検出器27aが発火すると、+基底(0、π)で「0」を受信したと判断する。第2の光子検出器27bが発火すると、+基底(0、π)で「1」を受信したと判断する。第3の光子検出器27cが発火すると、×基底(π/2、−π/2)で「0」を受信したと判断する。第4の光子検出器27dが発火すると、×基底(π/2、−π/2)で「1」を受信したと判断する。
このような受信情報により、量子暗号受信装置2は一般の量子暗号プロトコルにおける光子伝送が完了した後の後段を処理を実行できる。なお、受信情報には、偏波回転器23をどのように制御したかの情報は全く不要である。
また、受信情報より受信側制御装置22は、+基底と×基底の頻度偏りを検定し、盗聴者が偏波面を制御するような攻撃の有無を検証する。
A photon guided to one of the two AMZIs 25 and 26 causes interference, and fires one of the four photon detectors 27a, 27b, 27c, and 27d.
When the first photon detector 27a is ignited, the reception-side control device 22 determines that “0” is received at the + base (0, π). When the second photon detector 27b is ignited, it is determined that “1” is received at the + base (0, π). When the third photon detector 27c is ignited, it is determined that “0” is received at the × base (π / 2, −π / 2). When the fourth photon detector 27d is ignited, it is determined that “1” is received by the × basis (π / 2, −π / 2).
With such reception information, the quantum cryptography receiving device 2 can execute processing subsequent to completion of photon transmission in a general quantum cryptography protocol. The received information does not require any information on how the polarization rotator 23 is controlled.
In addition, the reception-side control device 22 verifies the frequency deviation between the + basis and the × basis based on the reception information, and verifies the presence or absence of an attack in which an eavesdropper controls the polarization plane.

この発明の実施の形態に係る量子暗号受信装置2は、PBS24を用いて伝送光子を2つのAMZI25、26のいずれかに導いているので、どのような偏波面を持った光子でも光子伝送に使うことができ、通信速度(ビットレート)の低下を防ぐことができる。
また、AMZI25、26には1つの偏波モードの光子しか導かれないため、複屈折性による干渉明瞭度の低下、即ち、ビットエラーレートの増加を防ぐことができる。
In the quantum cryptography receiving device 2 according to the embodiment of the present invention, the transmission photon is guided to one of the two AMZIs 25 and 26 using the PBS 24, so that any photon having any polarization plane is used for the photon transmission. And a decrease in communication speed (bit rate) can be prevented.
Further, since only photons of one polarization mode are guided to the AMZIs 25 and 26, it is possible to prevent a decrease in interference clarity due to birefringence, that is, an increase in bit error rate.

このようにPBS24の前段にHWP21と偏波回転器23とを配置することで、いずれの偏波状態の伝送光子がいずれのAMZI25、26に導かれるか、即ち、どの基底を用いて観測されるか特定されることを防ぐことができるので、安全性も保持することができる。   By arranging the HWP 21 and the polarization rotator 23 in front of the PBS 24 in this way, the transmission photons in which polarization state are guided to which AMZI 25, 26, that is, which base is used for observation. Therefore, safety can be maintained.

以上のような偏波回転の制御方式を用いているので、偏波回転制御は量子暗号受信装置2が独立に可能で、量子通信路3に強い制御信号光を混在させフィードバック制御を行うような偏波回転制御を不要であるため、簡単な偏波回転制御で済む。   Since the polarization rotation control method as described above is used, the polarization rotation control can be performed independently by the quantum cryptography receiving device 2, and a strong control signal light is mixed in the quantum communication path 3 to perform feedback control. Since polarization rotation control is not required, simple polarization rotation control is sufficient.

この発明の実施の形態に係る量子暗号受信装置を含む量子暗号システムの構成を示すブロック構成図である。It is a block block diagram which shows the structure of the quantum cryptography system containing the quantum cryptography receiver based on embodiment of this invention. この発明の実施の形態に係る量子暗号送信装置の構成を示す構成図である。It is a block diagram which shows the structure of the quantum cryptography transmitter based on Embodiment of this invention. この発明の実施の形態に係る量子暗号受信装置の構成図である。It is a block diagram of the quantum cryptography receiver based on embodiment of this invention.

符号の説明Explanation of symbols

1 量子暗号送信装置、2 量子暗号受信装置、3 量子通信路、4 古典通信路、11 LASER、12 偏波制御子、13、25、26 非対称マッハツェンダ干渉計(AMZI)、14 位相変調器、15 アッテネータ(ATT)、16 送信側制御装置、17 マスタクロック、21 半波長板(HWP)、22 受信側制御装置、23 偏波回転器、27a、27b、27c、27d 光子検出器。   DESCRIPTION OF SYMBOLS 1 Quantum cryptography transmitter, 2 Quantum cryptography receiver, 3 Quantum communication channel, 4 Classical communication channel, 11 LASER, 12 Polarization controller, 13, 25, 26 Asymmetric Mach-Zehnder interferometer (AMZI), 14 Phase modulator, 15 Attenuator (ATT), 16 Transmission side control device, 17 Master clock, 21 Half-wave plate (HWP), 22 Reception side control device, 23 Polarization rotator, 27a, 27b, 27c, 27d Photon detector.

Claims (10)

非対称マッハツェンダ干渉計を用いて量子暗号送信装置から伝送された4種類の相対位相差があり且つ時間差を有する2連光子パルスの相対位相差の種類を識別するための2つの非対称マッハツェンダ干渉計および伝送されて入力する光子の偏波状態に従って上記2つの非対称マッハツェンダ干渉計のいずれかに導く偏光ビームスプリッタを備える量子暗号受信装置において、
上記2つの非対称マッハツェンダ干渉計の双方に同数の検出イベントが生じるよう入力する光子の偏波状態を回転し、且つ上記偏光ビームスプリッタの入力ポートの前段に設けられた動的な偏波回転器を備えることを特徴とする量子暗号受信装置。
Two asymmetric Mach-Zehnder interferometers and transmissions for identifying the type of relative phase difference of a double photon pulse having four types of relative phase differences and having a time difference transmitted from a quantum cryptography transmitter using an asymmetric Mach-Zehnder interferometer In a quantum cryptography receiving device including a polarization beam splitter that guides to one of the two asymmetric Mach-Zehnder interferometers according to the polarization state of the input photons.
A dynamic polarization rotator that rotates the polarization state of a photon that is input so that the same number of detection events occur in both of the two asymmetric Mach-Zehnder interferometers and that is provided in front of the input port of the polarization beam splitter. A quantum cryptography receiving device comprising:
上記動的な偏波回転器の前段に設けられた静的な偏波回転器を備えることを特徴とする請求項1に記載の量子暗号受信装置。   The quantum cryptography receiver according to claim 1, further comprising a static polarization rotator provided in front of the dynamic polarization rotator. 量子暗号送信装置から非対称マッハツェンダ干渉計を用いて量子暗号送信装置から伝送された4種類の相対位相差があり且つ時間差を有する2連光子パルスの相対位相差の種類を2つの非対称マッハツェンダ干渉計により識別する量子暗号受信方式において、
伝送された2つの偏波モードを有する光子を偏光ビームスプリッタにより偏波モード別に2つに分岐し、且つ単一偏波モードのみを後段の上記非対称マッハツェンダ干渉計に導いて光子干渉を測定することを特徴とする量子暗号受信方法。
Using two asymmetric Mach-Zehnder interferometers, there are four types of relative phase differences transmitted from the quantum cryptography transmission device using the asymmetric Mach-Zehnder interferometer. In the quantum cryptography reception method to identify,
The transmitted photon having two polarization modes is branched into two by the polarization mode by the polarization beam splitter, and only the single polarization mode is guided to the asymmetric Mach-Zehnder interferometer in the subsequent stage to measure the photon interference. A quantum cryptography receiving method characterized by the above.
動的な偏波回転器の後段に位置する上記2つの非対称マッハツェンダ干渉計のいずれかに導かれるかを伝送された光子の量子暗号受信装置に入力したときの偏波面からは特定できないよう上記伝送された光子の偏波面を上記動的な偏波回転器により回転することを特徴とする請求項3に記載の量子暗号受信方法。   The above transmission cannot be specified from the plane of polarization when it is input to the quantum cryptography receiver of the transmitted photon which is guided to one of the two asymmetric Mach-Zehnder interferometers located at the subsequent stage of the dynamic polarization rotator 4. The quantum cryptography reception method according to claim 3, wherein the polarization plane of the generated photon is rotated by the dynamic polarization rotator. 上記伝送された光子が量子暗号受信装置に入力したときの偏波面が偏光ビームスプリッタでどのように分離されるかを不定にするよう量子暗号通信の最初に上記入力した光子の偏波面をランダムに静的に回転することを特徴とする請求項4に記載の量子暗号受信方法。   The polarization plane of the input photon is randomly selected at the beginning of quantum cryptography communication so that the polarization plane when the transmitted photon is input to the quantum cryptography receiver is separated by the polarization beam splitter. The quantum cryptography reception method according to claim 4, wherein the quantum cryptography reception method rotates statically. 上記伝送された光子の偏波面を静的な偏波回転器により上記伝送された光子の伝送タイミングと非同期に回転することを特徴とする請求項4に記載の量子暗号受信方法。   5. The quantum cryptography reception method according to claim 4, wherein a polarization plane of the transmitted photon is rotated asynchronously with a transmission timing of the transmitted photon by a static polarization rotator. 上記伝送された光子の偏波面を上記動的な偏波回転器により上記伝送された光子の伝送タイミングと同期して回転することを特徴とする請求項4に記載の量子暗号受信方法。   5. The quantum cryptography reception method according to claim 4, wherein a polarization plane of the transmitted photon is rotated in synchronization with a transmission timing of the transmitted photon by the dynamic polarization rotator. 上記動的な偏波回転器によりランダムな偏波の大きさまたはランダムなタイミングで偏波面を回転することを特徴とする請求項4に記載の量子暗号受信方法。   5. The quantum cryptography reception method according to claim 4, wherein the plane of polarization is rotated by the dynamic polarization rotator at random polarization magnitude or at random timing. 上記動的な偏波回転器により規則的な偏波の大きさまたは規則的なタイミングで偏波面を回転することを特徴とする請求項4に記載の量子暗号受信方法。   5. The quantum cryptography reception method according to claim 4, wherein the plane of polarization is rotated by the dynamic polarization rotator at a regular polarization magnitude or regular timing. 上記2つの非対称マッハツェンダ干渉計で発生した光子検出イベントの頻度偏りを検定し、且つ有意な偏りがあれば盗聴者が検知したと判断することを特徴とする請求項3に記載の量子暗号受信方法。   The quantum cryptography reception method according to claim 3, wherein the frequency bias of the photon detection event generated by the two asymmetric Mach-Zehnder interferometers is tested, and if there is a significant bias, it is determined that an eavesdropper has detected. .
JP2007177278A 2007-07-05 2007-07-05 Quantum cryptography receiver and quantum cryptography reception method using the same Expired - Fee Related JP5019979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177278A JP5019979B2 (en) 2007-07-05 2007-07-05 Quantum cryptography receiver and quantum cryptography reception method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177278A JP5019979B2 (en) 2007-07-05 2007-07-05 Quantum cryptography receiver and quantum cryptography reception method using the same

Publications (2)

Publication Number Publication Date
JP2009017277A true JP2009017277A (en) 2009-01-22
JP5019979B2 JP5019979B2 (en) 2012-09-05

Family

ID=40357604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177278A Expired - Fee Related JP5019979B2 (en) 2007-07-05 2007-07-05 Quantum cryptography receiver and quantum cryptography reception method using the same

Country Status (1)

Country Link
JP (1) JP5019979B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057377A (en) * 2013-07-23 2014-03-27 Masanori Hiroishi Quantum communication method, quantum communication system, and receiver
JP2016187119A (en) * 2015-03-27 2016-10-27 沖電気工業株式会社 Composite mach-zehnder interferometer and receiver for quantum key delivery
GB2564446A (en) * 2017-07-10 2019-01-16 Toshiba Kk A Quantum communication component, receiver and system
CN110675716A (en) * 2019-09-24 2020-01-10 华东师范大学 All-fiber quantum state simulation device and method
CN113031919A (en) * 2019-12-25 2021-06-25 山东国迅量子芯科技有限公司 Quantum random number generating device, method and equipment based on coherent optical receiver

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101570A (en) * 1998-09-24 2000-04-07 Japan Science & Technology Corp Quantum cipher communication system
JP2002064480A (en) * 2000-08-23 2002-02-28 Nec Corp Method and device for distributing encryption key
JP2004356996A (en) * 2003-05-29 2004-12-16 National Institute Of Advanced Industrial & Technology Quantum encryption communication system composed of combined receiver- re-transmitter, and combined transmitter-re-receiver, and its method for generating timing signal
JP2006166162A (en) * 2004-12-09 2006-06-22 Nec Corp Communication system provided with pulse waveform shaping function and communication method
JP2006528851A (en) * 2003-07-25 2006-12-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Quantum cryptography with quantum channel check
JP2006345354A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Encryption key generating communication device
JP2007187698A (en) * 2006-01-11 2007-07-26 Nec Corp Random number quality control device and control method
WO2008015758A1 (en) * 2006-08-04 2008-02-07 Mitsubishi Electric Corporation Quantum communication apparatus, quantum communication system and quantum communication method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101570A (en) * 1998-09-24 2000-04-07 Japan Science & Technology Corp Quantum cipher communication system
JP2002064480A (en) * 2000-08-23 2002-02-28 Nec Corp Method and device for distributing encryption key
JP2004356996A (en) * 2003-05-29 2004-12-16 National Institute Of Advanced Industrial & Technology Quantum encryption communication system composed of combined receiver- re-transmitter, and combined transmitter-re-receiver, and its method for generating timing signal
JP2006528851A (en) * 2003-07-25 2006-12-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Quantum cryptography with quantum channel check
JP2006166162A (en) * 2004-12-09 2006-06-22 Nec Corp Communication system provided with pulse waveform shaping function and communication method
JP2006345354A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Encryption key generating communication device
JP2007187698A (en) * 2006-01-11 2007-07-26 Nec Corp Random number quality control device and control method
WO2008015758A1 (en) * 2006-08-04 2008-02-07 Mitsubishi Electric Corporation Quantum communication apparatus, quantum communication system and quantum communication method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057377A (en) * 2013-07-23 2014-03-27 Masanori Hiroishi Quantum communication method, quantum communication system, and receiver
JP2016187119A (en) * 2015-03-27 2016-10-27 沖電気工業株式会社 Composite mach-zehnder interferometer and receiver for quantum key delivery
GB2564446A (en) * 2017-07-10 2019-01-16 Toshiba Kk A Quantum communication component, receiver and system
US10313023B2 (en) 2017-07-10 2019-06-04 Kabushiki Kaisha Toshiba Quantum communication component, receiver and system
GB2564446B (en) * 2017-07-10 2020-01-22 Toshiba Kk A Quantum communication component, receiver and system
CN110675716A (en) * 2019-09-24 2020-01-10 华东师范大学 All-fiber quantum state simulation device and method
CN110675716B (en) * 2019-09-24 2021-06-25 华东师范大学 All-fiber quantum state simulation device and method
CN113031919A (en) * 2019-12-25 2021-06-25 山东国迅量子芯科技有限公司 Quantum random number generating device, method and equipment based on coherent optical receiver

Also Published As

Publication number Publication date
JP5019979B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CA2254767C (en) Method and apparatus for polarisation-insensitive quantum cryptography
US8433070B2 (en) Systems and methods for stabilization of interferometers for quantum key distribution
KR102151014B1 (en) Encoding device, and quantum key distribution device and system based thereon
Grünenfelder et al. Performance and security of 5 GHz repetition rate polarization-based quantum key distribution
JP3756948B2 (en) Key distribution system and method using quantum cryptography
JP5558579B2 (en) Quantum communication system and method
EP1748595B1 (en) Quantum cryptography communication apparatus
WO2019080530A1 (en) Method and device for phase decoding, and quantum key distribution system
Wang et al. Long-distance continuous-variable quantum key distribution with entangled states
RU2454810C1 (en) Device of quantum distribution of cryptographic key on modulated radiation frequency subcarrier
US8433200B2 (en) Method and system for quantum key delivery utilizing a conversion efficiency of DFG
WO2017084380A1 (en) Quantum communication method and apparatus
JP2014147068A (en) Modulation unit
WO2013048672A1 (en) Great circle solution to polarization-based quantum communication (qc) in optical fiber
JP5019979B2 (en) Quantum cryptography receiver and quantum cryptography reception method using the same
CN108540281B (en) Quantum security direct communication system irrelevant to measuring equipment
JP2006013573A (en) Quantum optical transmission apparatus
JP5003142B2 (en) Polarization coding-phase coding converter and quantum communication system using the same
JP2010206459A (en) Quantum key distribution system and method
CN110572260B (en) Pulse delayer and delay method applied to quantum key distribution
Argillander et al. A tunable quantum random number generator based on a fiber-optical Sagnac interferometer
JP4388316B2 (en) Quantum cryptographic communication apparatus and method
WO2018161733A1 (en) Quantum key distribution system and method
JP4882491B2 (en) Quantum cryptographic communication device, communication terminal, and additional information transmission method
Mantey et al. Demonstration of an algorithm for quantum state generation in polarization-encoding QKD systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees