JP2009017241A - Highly functional buoy incorporating gps - Google Patents

Highly functional buoy incorporating gps Download PDF

Info

Publication number
JP2009017241A
JP2009017241A JP2007176834A JP2007176834A JP2009017241A JP 2009017241 A JP2009017241 A JP 2009017241A JP 2007176834 A JP2007176834 A JP 2007176834A JP 2007176834 A JP2007176834 A JP 2007176834A JP 2009017241 A JP2009017241 A JP 2009017241A
Authority
JP
Japan
Prior art keywords
buoy
sea
gps
information
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007176834A
Other languages
Japanese (ja)
Inventor
Shuji Hokura
修詞 保倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007176834A priority Critical patent/JP2009017241A/en
Publication of JP2009017241A publication Critical patent/JP2009017241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an information network on the sea by effectively using position information of buoys obtained from GPS. <P>SOLUTION: The buoy is an apparatus that provides information in the sea together with position information by being equipped with a radio relay device, a GPS, an acoustic communication device, and an underwater acoustic antenna, in each of multiple floats which are disposed in a plurality of prescribed places, and the buoy is a mark indicating places of sunken rocks and sea routes and is an observation meter for use in verification of a temperature of the sea surface and wind velocity on the sea. The buoy is a highly functional buoy incorporating GPS, that is capable of obtaining information of objects in the sea and of the sea bottom by receiving a reflected wave of a signal transmitted from the acoustic communication device by the underwater acoustic antenna and is capable of transmitting the information to a ground station by the radio relay device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ブイを用いて環境監視や潜水艇通行監視などを行う技術に関し、特に、音波通信装置とGPSを併用することにより海中の任意の測定点の位置情報を含んだ情報を取得する技術に関する。 The present invention relates to a technology for performing environmental monitoring and submarine traffic monitoring using a buoy, and more particularly, a technology for acquiring information including position information of an arbitrary measurement point in the sea by using a sonic communication device and GPS together. About.

地球の表面においては大部分が海であるが、表面的にはなだらかに見える海も、海底は暗礁やリーフなどで浅く危険な場所が多い。しかし、海においては陸上とは違い、道路を目で見ることができない。このため、船が安全に航海できるように、海上においても航路標識を設置し、安全な水路または危険な海域を示す必要がある。ブイもその標識の一つであり、近年ブイの有効活用、また、高度化への要望が強まっている。 Most of the earth's surface is the sea, but the sea that looks gentle on the surface is often shallow and dangerous, such as underwater reefs and reefs. However, unlike the land, the road cannot be seen with eyes. For this reason, it is necessary to install navigation signs even at sea to indicate safe waterways or dangerous sea areas so that ships can navigate safely. Buoys are one of the signs, and in recent years there has been a growing demand for effective use and advancement of buoys.

また、海上においては、目標となる建造物や位置把握をするための手段が乏しいが、遭難事故発生時など、正確な位置情報が必要な場合もあり、近年ではGPSをブイに組み込む手段も検討されている。即ち、静止軌道上を周回する3個以上の静止衛星からの電波を受信して、ブイの位置を計算により正確に求めることが可能になっている。   In addition, there are few means for grasping the target building and location at sea, but there are cases where accurate location information is required, such as when a distress occurs, and in recent years, means to incorporate GPS into the buoy are also being considered. Has been. In other words, it is possible to receive radio waves from three or more geostationary satellites orbiting in geostationary orbit and to accurately obtain the position of the buoy.

海上に浮遊して、基地局等との間で無線通信をして位置情報等の各種情報を受信するブイに関する従来技術が種々の技術文献に開示されている。例えば、海面をグランド面として使用するアンテナを備え、円柱状の本体に収納された各種のセンサにより海状態を調査する通信ブイの浮きバッグ装置が開示されている(例えば特許文献1)。 Conventional techniques relating to buoys that float on the sea and wirelessly communicate with a base station or the like to receive various information such as position information are disclosed in various technical documents. For example, a floating bag device for a communication buoy that includes an antenna that uses the sea surface as a ground surface and that investigates sea conditions using various sensors housed in a cylindrical main body is disclosed (for example, Patent Document 1).

また、海中探査をするためにブイにGPSをとりつける構造上の技術が開示されている(例えば特許文献2)。 In addition, a structural technique for attaching a GPS to a buoy for underwater exploration is disclosed (for example, Patent Document 2).

特公平6−45355号公報Japanese Examined Patent Publication No. 6-45355 特開2005−328139号公報JP 2005-328139 A

従来のブイは、基地局等との無線通信のために通信アンテナを備え、無人化して必要な情報を取得可能にしている。また近年、GPSの利用により、位置情報を極めて正確に測定し、海上におけるブイの浮遊位置を取得することが可能となってきた。しかし、GPSから得られるブイの位置情報を有効活用するという意味では未だ検討が進んでおらず、また、地上から電波が届かないような遠洋に浮遊するブイに関しては基地局との通信も出来ないため、単なる海上における標識としての存在に留まっている。 A conventional buoy is equipped with a communication antenna for wireless communication with a base station or the like, and is unmanned to obtain necessary information. In recent years, it has become possible to measure position information very accurately and acquire the floating position of buoys at sea by using GPS. However, in the sense of effectively using the position information of buoys obtained from GPS, studies have not yet progressed, and buoys floating in the ocean where radio waves do not reach from the ground cannot communicate with the base station. Therefore, it remains only as a sign at sea.

本発明は、従来技術の上述した課題に鑑みてなされたものであり、ブイに取り付けられたGPSと音波通信装置と無線通信装置を活用し、例えば海底の地殻変動の測定や、潜水艇の監視を行い、また、遠洋に浮遊するブイからの信号も基地局において受信する方法を示し、前述した課題を克服又は軽減するブイおよびそのネットワーク通信方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and utilizes GPS, a sound wave communication device, and a wireless communication device attached to a buoy, for example, measurement of crustal movement of the seabed and monitoring of a submersible And a method for receiving a signal from a buoy floating in the ocean at a base station, and an object of the present invention is to provide a buoy and a network communication method thereof that overcome or reduce the above-described problems.

前記課題を解決するため、本発明のGPS内蔵高機能ブイは次のような特徴的な構成を採用している。 In order to solve the above problems, the GPS built-in high-function buoy of the present invention employs the following characteristic configuration.

すなわち、暗礁の場所や航路などを知らせる標識であり、また、海面水温や海上風速の検証に用いられる観測計であるブイにおいて、
複数の所定の場所に配置されたフロート内に、無線中継装置とGPSと音波通信機と水中音波アンテナを備えることにより海中の情報を位置情報付きで提供する装置であって、
該音波通信機の送信許可信号により該水中音波アンテナが発する信号の測定点からの反射波か、あるいは測定点が自ら送信する送信波を該水中音波アンテナで受信することにより、水中における物体や海底の情報を得ると共に、該無線中継装置により前記情報を地上局に伝送できることを特徴とするGPS内蔵高機能ブイとする。
In other words, it is a sign that informs the location and route of the reef, and in the buoy which is an observation instrument used to verify sea surface temperature and sea surface wind speed,
A device that provides underwater information with position information by providing a wireless relay device, a GPS, a sound wave communication device, and an underwater sound wave antenna in floats arranged at a plurality of predetermined locations,
By receiving the reflected wave from the measurement point of the signal generated by the underwater acoustic antenna in response to the transmission permission signal of the acoustic communication device or the transmission wave transmitted by the measurement point by the underwater acoustic antenna, an object in the water or the seabed And a high-function buoy with a built-in GPS, characterized in that the information can be transmitted to the ground station by the wireless relay device.

また、音波通信機の送信許可信号に基づき、水中音波アンテナによって音波信号を海中に送信し、海中の物体や海底の装置などの測定点からの反射波を該水中音波アンテナによって受信し、前記音波信号の送信から該受信までに要する総時間と音速値によって、測定点からの経路距離を算出し、ブイAを含む複数のブイによって求まった経路距離により、ブイAからの相対位置を特定出来、該相対位置とブイAに搭載したGPSによって海中の測定点の絶対位置を特定することを特徴とするGPS内蔵高機能ブイとする。 Further, based on the transmission permission signal of the sonic communication device, a sound wave signal is transmitted into the sea by an underwater sound wave antenna, and a reflected wave from a measurement point such as an object in the sea or a device at the sea floor is received by the underwater sound wave antenna. By calculating the path distance from the measurement point based on the total time required from the transmission of the signal to the reception and the sound velocity value, the relative position from the buoy A can be specified by the path distance obtained by a plurality of buoys including the buoy A, The GPS built-in high-function buoy is characterized in that the absolute position of a measurement point in the sea is specified by the relative position and the GPS mounted on the buoy A.

本発明のブイおよび海上におけるネットワーク通信方法によると、次の如き実用上の顕著な効果が得られる。先ず、海上に多数存在しているブイをGPSと共に活用するので、ブイの現在位置を正確且つ迅速に得た上で、陸上における監視装置ネットワークと同様な効果を得ることが可能となる。本発明のように監視手段として音波通信機を用いることにより、海中における海底地殻変動の測定や、潜水艇の監視が可能となり、異変が起きた際には、ブイに内蔵している無線中継装置によるブイ間通信を経て、異変が起きた正確な位置などの情報を地上の基地局へ伝達することが可能となる。 According to the buoy and the marine network communication method of the present invention, the following remarkable practical effects can be obtained. First, since a large number of buoys existing at sea are utilized together with GPS, it is possible to obtain the same position as the monitoring device network on land after obtaining the current position of the buoy accurately and quickly. By using a sonic communication device as a monitoring means as in the present invention, it becomes possible to measure seafloor crustal deformation in the sea and monitor submersibles, and when a change occurs, a radio relay device built in the buoy Through the inter-buoy communication, it is possible to transmit information such as the exact location where an anomaly has occurred to the base station on the ground.

以下、本発明によるGPS内蔵高機能ブイの好適な実施例の構成および動作を、添付図面を参照して詳細に説明する。   Hereinafter, the configuration and operation of a preferred embodiment of a GPS built-in high-function buoy according to the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明にかかるGPS内蔵高機能ブイの構成図であり、101はブイ全体であり、受信アンテナ103、送信アンテナ105、遅延波除去装置107、マイクロコンピュータ109、GPS装置111、外部入力端子113、発電装置115、水中音波アンテナ117、音波通信機119からなることを特徴とする。   FIG. 1 is a configuration diagram of a high-function buoy with a built-in GPS according to the present invention. Reference numeral 101 denotes the whole buoy. 113, a power generation device 115, an underwater acoustic wave antenna 117, and a acoustic wave communication device 119.

マイクロコンピュータ109は、GPS装置111からの入力信号により、常に自ブイの絶対位置を認識している。ここで、GPSとマイクロコンピュータとの通信手段は任意の通信方式によるが、個々のブイを一つのネットワーク機器と見なすことができるため、一般にネットワーク機器の監視を目的として広く用いられている、SNMP(Simple Network Management Protocol)のMIB(Management Information Base)形式を用いるのが効率的である。   The microcomputer 109 always recognizes the absolute position of its own buoy from the input signal from the GPS device 111. Here, the communication means between the GPS and the microcomputer is based on an arbitrary communication method, but since each buoy can be regarded as one network device, it is generally used for the purpose of monitoring the network device, SNMP ( It is efficient to use the MIB (Management Information Base) format of the Simple Network Management Protocol (Simple Network Management Protocol).

ブイ1が得る種々の情報は、送信アンテナ105から基地局に向けて送信されるが、遠洋など、基地局とブイが大きく離れている場合には、中継となるブイ2を介して基地局に伝送される。   Various information obtained by the buoy 1 is transmitted from the transmitting antenna 105 to the base station. However, when the buoy is far away from the base station, such as in the ocean, the information is transmitted to the base station via the relay buoy 2. Is transmitted.

その際には、ブイ2の受信アンテナ103にてブイ1の105からの送信信号を受信し、再びブイ2の送信アンテナ105から基地局へ向けて信号を伝送するのであるが、海上通信においては、海面での信号の反射が、アンテナ間の信号に対して遅延波となって受信されてしまうため、この遅延波を除去することを目的とする遅延波除去装置107にて遅延波除去を行った後、送信アンテナ105から信号伝送がなされる。 In that case, the transmission signal from the buoy 2 receiving antenna 103 is received by the buoy 2 receiving antenna 103 and transmitted again from the buoy 2 transmitting antenna 105 to the base station. Since the reflection of the signal at the sea surface is received as a delayed wave with respect to the signal between the antennas, the delayed wave is removed by the delayed wave removing device 107 for the purpose of removing this delayed wave. After that, signal transmission is performed from the transmission antenna 105.

このように、本発明にかかるGPS内蔵高機能ブイは、海中における様々な情報収集を行うのみではなく、海上通信における中継器の機能も持つことを特徴とする。   Thus, the GPS built-in high-function buoy according to the present invention is characterized by not only collecting various information in the sea but also having a repeater function in maritime communication.

また、本発明にかかるGPS内蔵高機能ブイは、種々の情報収集を行うための各種センサを接続することを目的とする外部入力端子113を備え、得られた情報は、送信アンテナ105を介して基地局に伝送する機能を有する。   The GPS built-in high-function buoy according to the present invention includes an external input terminal 113 for connecting various sensors for collecting various information, and the obtained information is transmitted via the transmitting antenna 105. It has a function to transmit to the base station.

本発明におけるブイは、自走運転を可能とするために、発電装置を備える。発電の形態は、波浪発電や太陽電池や海水を利用した燃料電池など、様々な手段が考えられる。   The buoy in the present invention includes a power generation device to enable self-running operation. As a form of power generation, various means such as wave power generation, a solar cell, and a fuel cell using seawater can be considered.

外部入力端子113に接続されるセンサの一例を記す。   An example of a sensor connected to the external input terminal 113 will be described.

図2は外部入力端子113に魚群探査ソナー装置を接続した場合の図である。ブイ201にとりつけられた魚群探査ソナーが魚群207を発見した場合、ブイ201は基地局205に位置情報と魚群情報を送信する。この際、ブイ201と基地局205が遠く離れている場合、ブイ203は受信アンテナ103で魚群情報を受信し、遅延波除去装置107にて遅延波を除去した後、送信アンテナ105から魚群情報を基地局205に向けて再送信する。   FIG. 2 is a diagram when a fish school sonar device is connected to the external input terminal 113. When the fish finder sonar attached to the buoy 201 finds the fish 207, the buoy 201 transmits position information and fish information to the base station 205. At this time, if the buoy 201 and the base station 205 are far apart, the buoy 203 receives the fish school information with the receiving antenna 103, removes the delayed wave with the delay wave removing device 107, and then receives the fish school information from the transmitting antenna 105. Re-transmit to the base station 205.

図3は外部入力端子113に簡易操作卓を接続した場合の図である。遭難船または漂流船など303の乗組員がブイ301の簡易操作卓を操作した場合、ブイ301は基地局に位置情報と救難信号を送信する。前述と同様に、ブイ301と基地局とが遠く離れている場合、途中にあるブイはブイ301の送信信号を再送信する。   FIG. 3 is a diagram when a simple console is connected to the external input terminal 113. When a crew member of 303 such as a distressed ship or a drifting ship operates the simplified console of the buoy 301, the buoy 301 transmits position information and a rescue signal to the base station. Similarly to the above, when the buoy 301 and the base station are far apart, the buoy in the middle retransmits the transmission signal of the buoy 301.

前述した例以外にも、例えば波高計を外部入力端子に接続することにより、津波監視装置を形成することができる。また、船舶画像の認識装置を外部入力端子に接続することにより、不審船監視装置を形成することができる。   In addition to the example described above, for example, a tsunami monitoring device can be formed by connecting a wave height meter to an external input terminal. Moreover, a suspicious ship monitoring apparatus can be formed by connecting a ship image recognition apparatus to an external input terminal.

なお、これらはあくまでも外部入力端子を利用した一例に過ぎず、端子には様々なセンサを取り付けることができ、それに応じた監視装置を形成することが可能である。   Note that these are merely examples using an external input terminal, and various sensors can be attached to the terminal, and a monitoring device corresponding to the sensor can be formed.

次に、本発明の特徴であるところの音波通信機を用いた最適な実施例を詳細に説明する。 Next, an optimum embodiment using a sonic communication device which is a feature of the present invention will be described in detail.

まず、潜水艇と地上基地局とのデータ送受について説明する。図4は複数のブイの下方海中を進行する潜水艇を示している。前述したブイの中継器としての性質を利用し、地上基地局からブイ間通信を経て潜水艇にもっとも近いブイにデータが伝送されると、次にブイの音声通信機により、該データを音声周波数帯にて潜水艇に伝達する。潜水艇からの応答も音声周波数帯で放射され、ブイの水中音波アンテナで受信され、ブイの中継器としての性質を利用してブイ間通信を経て地上基地局に伝送される。 First, data transmission / reception between the submersible and the ground base station will be described. FIG. 4 shows a submarine that travels under the buoys. When data is transmitted from the ground base station to the buoy closest to the submersible via the inter-buoy communication using the above-described characteristics of the buoy as a repeater, the data is then transmitted to the audio frequency by the buoy voice communication device. Communicate to the submersible craft with a belt. The response from the submersible is also radiated in the audio frequency band, received by the buoy's underwater acoustic antenna, and transmitted to the ground base station via inter-buoy communication using the characteristics of the buoy as a repeater.

次に不法に通行する潜水艇を監視する場合について説明する。図4は複数のブイの下方海中を違法に進行する潜水艇を示している。前述したブイの中継器としての性質を利用し、地上基地局からブイ間通信を経て潜水艇にもっとも近いブイに監視許可信号が伝送されると、次にブイの音声通信機により、水中監視用信号を音声周波数帯にて海中に伝達する。潜水艇は該水中監視用信号を反射し、この反射波がブイの水中音波アンテナで受信され、ブイの中継器としての性質を利用してブイ間通信を経て地上基地局に該反射波が伝送される。 Next, the case of monitoring a submarine that passes illegally will be described. FIG. 4 shows a submarine that illegally travels under the buoys. Utilizing the above-described characteristics of a buoy as a repeater, when a monitoring permission signal is transmitted from the ground base station to the buoy closest to the submarine via inter-buoy communication, the buoy's voice communicator then uses it for underwater monitoring. Transmits signals to the sea in the audio frequency band. The submarine reflects the underwater monitoring signal, and this reflected wave is received by the buoy's underwater acoustic antenna. The reflected wave is transmitted to the ground base station via inter-buoy communication using the characteristics of the buoy as a repeater. Is done.

なお、各ブイは積載しているGPSによって緯度経度といった絶対位置を取得できるため、前記のように海中からの反射波があると、複数のブイによる三角法によって、反射元の絶対位置を得ることができ、地上基地局において海中の移動物体の存在のみならず、その絶対位置をも知ることができる。 Since each buoy can acquire the absolute position such as latitude and longitude by the GPS onboard, if there is a reflected wave from the sea as described above, the absolute position of the reflection source is obtained by triangulation using a plurality of buoys. It is possible to know not only the presence of moving objects in the sea but also their absolute position at the ground base station.

次に、本発明によるブイの他の特殊な応用例について説明する。図5および図6は本発明にかかる高機能ブイを用いたニュートリノ観測装置である。 Next, another special application example of the buoy according to the present invention will be described. 5 and 6 show a neutrino observation apparatus using a high-performance buoy according to the present invention.

ニュートリノ観測装置は、例えば鉱山の跡地のような広大な窪みに巨大な水槽を作り、その水槽内に実現する場合が多い。これは水深が深くなると光の進入が無くなり、水槽底に到来するのがニュートリノのみとなる物理的特性を利用したものである。ニュートリノ観測装置はニュートリノ望遠鏡などへの応用が可能である。本応用例は、深海をあたかも巨大な水槽に見立てることにより、ニュートリノ観測装置を簡易に作るものである。 In many cases, the neutrino observation device is realized in a huge tank formed in a vast hollow such as a mine site. This is due to the use of the physical property that light does not enter as the water depth increases and only the neutrinos arrive at the bottom of the tank. The neutrino observation device can be applied to neutrino telescopes. In this application example, a neutrino observation device is simply created by regarding the deep sea as if it were a huge tank.

図5に示すようにマトリクス状に本発明にかかる高機能ブイを配置する。海中には図6に示すようにニュートリノを増倍するための光電子増倍管と、ブイとの間で音声通信をするための周波数変換装置を設置する。深海の海底に到来するニュートリノは光電子増倍管で増幅され、その振幅情報を周波数変換装置で音声信号帯における情報に変換され、ブイの水中音波アンテナで受信する。 As shown in FIG. 5, high-function buoys according to the present invention are arranged in a matrix. As shown in FIG. 6, a photomultiplier tube for multiplying neutrinos and a frequency converter for voice communication between buoys are installed in the sea. Neutrinos arriving at the deep sea floor are amplified by a photomultiplier tube, and amplitude information thereof is converted into information in a voice signal band by a frequency converter and received by a buoy underwater acoustic antenna.

マトリクス状に並んだブイはGPSによってその絶対位置が把握できるから、侵入したニュートリノの位置と個数はブイ間の無線通信で伝送され、最終的に地上基地局に到達する。このためニュートリノの到来情報は地上基地局にて観測できる。 Since the absolute position of buoys arranged in a matrix can be grasped by GPS, the position and number of invading neutrinos are transmitted by wireless communication between the buoys, and finally reach the ground base station. Therefore, arrival information of neutrinos can be observed at the ground base station.

本発明は、前記のように説明した実施例のみならず、海中における音声通信、水上におけるGPSと無線通信を用いる全ての状況で活用が可能である。 The present invention can be used not only in the embodiment described above but also in all situations using voice communication in the sea and GPS and radio communication in the water.

本発明にかかるGPS内蔵高機能ブイの構成図Configuration diagram of GPS high-function buoy according to the present invention 外部入力端子に魚群探査ソナーを接続した場合の一例An example of connecting a fish survey sonar to an external input terminal 外部入力端子に簡易操作卓を接続した場合の一例An example of connecting a simple console to the external input terminal ブイと潜水艇との通信Communication between buoy and submersible マトリクス状に配置したブイBuoy arranged in matrix ニュートリノ観測装置Neutrino observation device

符号の説明Explanation of symbols

101…GPS内蔵高機能ブイ、
103…受信アンテナ、 105…送信アンテナ、
107…遅延波除去装置、 109…マイクロコンピュータ、
111…GPS装置、 113…外部入力端子、
115…発電装置及び充電池、
117…水中音波アンテナ、 119…音波通信機、
201…ブイ1、 203…ブイ2、 205…基地局、
207…魚群、
301…ブイ1、 303…漂流船。

101 ... GPS high-function buoy,
103: Receive antenna 105: Transmit antenna
107 ... delayed wave removal device, 109 ... microcomputer,
111 ... GPS device, 113 ... External input terminal,
115 ... power generation device and rechargeable battery,
117 ... Underwater acoustic wave antenna, 119 ... Sonic wave communication device,
201 ... buoy 1, 203 ... buoy 2, 205 ... base station,
207 ... School of fish,
301 ... Buoy 1, 303 ... Drifting ship.

Claims (2)

暗礁の場所や航路などを知らせる標識であり、また、海面水温や海上風速の検証に用いられる観測計であるブイにおいて、
複数の所定の場所に配置されたフロート内に、無線中継装置とGPSと音波通信機と水中音波アンテナを備えることにより海中の情報を位置情報付きで提供する装置であって、
該音波通信機の送信許可信号により該水中音波アンテナが発する信号の測定点からの反射波か、あるいは測定点が自ら送信する送信波を該水中音波アンテナで受信することにより、水中における物体や海底の情報を得ると共に、該無線中継装置により前記情報を地上局に伝送できることを特徴とするGPS内蔵高機能ブイ。
In the buoy, which is a sign that informs the location and route of the reef, and is used to verify sea surface temperature and wind speed over the sea,
A device that provides underwater information with position information by providing a wireless relay device, a GPS, a sound wave communication device, and an underwater sound wave antenna in floats arranged at a plurality of predetermined locations,
By receiving the reflected wave from the measurement point of the signal generated by the underwater acoustic antenna in response to the transmission permission signal of the acoustic communication device or the transmission wave transmitted by the measurement point by the underwater acoustic antenna, an object in the water or the seabed A high-function buoy with a built-in GPS, wherein the information can be transmitted to the ground station by the wireless relay device.
音波通信機の送信許可信号に基づき、水中音波アンテナによって音波信号を海中に送信し、海中の物体や海底の装置などの測定点からの反射波を該水中音波アンテナによって受信し、前記音波信号の送信から該受信までに要する総時間と音速値によって、測定点からの経路距離を算出し、ブイAを含む複数のブイによって求まった経路距離により、ブイAからの相対位置を特定出来、該相対位置とブイAに搭載したGPSによって海中の測定点の絶対位置を特定することを特徴とする請求項1に記載のGPS内蔵高機能ブイ。

Based on the transmission permission signal of the sonic communication device, the sound wave signal is transmitted into the sea by the underwater sound wave antenna, the reflected wave from the measurement point of the object in the sea or the device at the sea floor is received by the underwater sound wave antenna, The path distance from the measurement point is calculated based on the total time required from transmission to reception and the sound velocity value, and the relative position from the buoy A can be identified by the path distance obtained by a plurality of buoys including the buoy A. The GPS built-in high-function buoy according to claim 1, wherein the absolute position of the measurement point in the sea is specified by the position and the GPS mounted on the buoy A.

JP2007176834A 2007-07-05 2007-07-05 Highly functional buoy incorporating gps Pending JP2009017241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007176834A JP2009017241A (en) 2007-07-05 2007-07-05 Highly functional buoy incorporating gps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007176834A JP2009017241A (en) 2007-07-05 2007-07-05 Highly functional buoy incorporating gps

Publications (1)

Publication Number Publication Date
JP2009017241A true JP2009017241A (en) 2009-01-22

Family

ID=40357576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007176834A Pending JP2009017241A (en) 2007-07-05 2007-07-05 Highly functional buoy incorporating gps

Country Status (1)

Country Link
JP (1) JP2009017241A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082628A (en) * 2012-10-16 2014-05-08 Ryokuseisha Corp Call response system of radio buoy and method thereof
KR101413446B1 (en) 2012-11-27 2014-07-01 한국해양과학기술원 Underwater positioning system and method for an underwater tracked vehicle on the quay wall
KR20170003315U (en) * 2017-08-16 2017-09-25 부산대학교 산학협력단 Floating emergency bell using wireless comunication and salvage system thereby
WO2018179705A1 (en) * 2017-03-31 2018-10-04 株式会社荏原製作所 Industrial endoscope, observation method, observation device, underwater machine, pump inspection system, underwater robot control system, and underwater robot control method
JP2018203192A (en) * 2017-06-09 2018-12-27 株式会社荏原製作所 Underwater robot control system and underwater robot control method
CN109302201A (en) * 2018-07-30 2019-02-01 上海大学 A kind of small ocean communication switching unit and its application
JP2019035677A (en) * 2017-08-17 2019-03-07 株式会社 拓和 Underwater distance observation device
CN113406647A (en) * 2021-05-24 2021-09-17 哈尔滨工程大学 Suspended underwater acoustic standard body capable of adjusting posture in real time

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082628A (en) * 2012-10-16 2014-05-08 Ryokuseisha Corp Call response system of radio buoy and method thereof
KR101413446B1 (en) 2012-11-27 2014-07-01 한국해양과학기술원 Underwater positioning system and method for an underwater tracked vehicle on the quay wall
WO2018179705A1 (en) * 2017-03-31 2018-10-04 株式会社荏原製作所 Industrial endoscope, observation method, observation device, underwater machine, pump inspection system, underwater robot control system, and underwater robot control method
US11391940B2 (en) 2017-03-31 2022-07-19 Ebara Corporation Industrial endoscope, observation method, observation device, underwater machine, pump inspection system, underwater robot control system, and underwater robot control method
JP2018203192A (en) * 2017-06-09 2018-12-27 株式会社荏原製作所 Underwater robot control system and underwater robot control method
KR20170003315U (en) * 2017-08-16 2017-09-25 부산대학교 산학협력단 Floating emergency bell using wireless comunication and salvage system thereby
KR200484818Y1 (en) 2017-08-16 2017-10-30 부산대학교 산학협력단 Floating emergency bell using wireless comunication and salvage system thereby
JP2019035677A (en) * 2017-08-17 2019-03-07 株式会社 拓和 Underwater distance observation device
CN109302201A (en) * 2018-07-30 2019-02-01 上海大学 A kind of small ocean communication switching unit and its application
CN113406647A (en) * 2021-05-24 2021-09-17 哈尔滨工程大学 Suspended underwater acoustic standard body capable of adjusting posture in real time
CN113406647B (en) * 2021-05-24 2023-03-17 哈尔滨工程大学 Suspended underwater acoustic standard body capable of adjusting posture in real time

Similar Documents

Publication Publication Date Title
US9223002B2 (en) System and method for determining the position of an underwater vehicle
Freitag et al. Long range acoustic communications and navigation in the Arctic
Jakuba et al. Long‐baseline acoustic navigation for under‐ice autonomous underwater vehicle operations
US10597128B2 (en) Diver navigation, information and safety buoy
JP2009017241A (en) Highly functional buoy incorporating gps
EP3058388B1 (en) Underwater tracking system
KR101946542B1 (en) Unmanned vehicle for underwater survey
RU2456634C1 (en) Method of navigating submarine object using hydroacoustic navigation system
Webster et al. Towards real-time under-ice acoustic navigation at mesoscale ranges
JP2008531984A (en) Signal transmission / position detection device for individuals in the sea and method of use thereof
JP2008213687A (en) Highly functional buoy with a built-in gps
US20200284903A1 (en) Method for tracking underwater objects
CN110703202A (en) Underwater pulsed sound positioning system based on multi-acoustic wave glider and unmanned surface vehicle
Mahalle et al. Introduction to underwater wireless sensor networks
JP2019177833A (en) Underwater equipment recovery method, and underwater equipment recovery system
Cruz et al. A versatile acoustic beacon for navigation and remote tracking of multiple underwater vehicles
JP2003215230A (en) Position detection system for underwater moving body and its method
JP2004245779A (en) System for determining position of submerging vessel and sonobuoy
Jones et al. Under ice positioning and communications for unmanned vehicles
Crowell Small AUV for hydrographic applications
Kawada et al. Acoustic positioning system of combined aerial and underwater drones
Watanabe et al. Development of a floating LBL system and a lightweight ROV for sky to water system
Howe et al. Sensor network infrastructure: moorings, mobile platforms, and integrated acoustics
JP2005269378A (en) Marine information providing buoy for underwater, marine information communication system using the same and data management center for marine information communication
D'Este et al. Avoiding marine vehicles with passive acoustics