JP2009016255A - Plug material and its manufacturing method - Google Patents

Plug material and its manufacturing method Download PDF

Info

Publication number
JP2009016255A
JP2009016255A JP2007178612A JP2007178612A JP2009016255A JP 2009016255 A JP2009016255 A JP 2009016255A JP 2007178612 A JP2007178612 A JP 2007178612A JP 2007178612 A JP2007178612 A JP 2007178612A JP 2009016255 A JP2009016255 A JP 2009016255A
Authority
JP
Japan
Prior art keywords
metal
plug material
plug
wire
bound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007178612A
Other languages
Japanese (ja)
Other versions
JP2009016255A5 (en
Inventor
Kenichi Kurihara
健一 栗原
Eiji Sakuma
栄治 佐久間
Kunihiro Tanaka
邦弘 田中
Koichi Sakairi
弘一 坂入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2007178612A priority Critical patent/JP2009016255A/en
Publication of JP2009016255A publication Critical patent/JP2009016255A/en
Publication of JP2009016255A5 publication Critical patent/JP2009016255A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plug material reducing discharge voltage and maintaining the voltage reduced state for a long time and to provide its manufacturing method. <P>SOLUTION: The almost cylindrical plug material constitutes a center electrode of an ignition plug and includes a boundary phase of a first metal and a cell phase of a second metal partitioned from the boundary phase in its sectional structure. The first and second metals have different anti-spark consuming properties. A metal of low anti-spark consuming property is preferentially consumed to form a recess defining an edge, thereby reducing the discharge voltage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、点火プラグの中心電極を構成する材料に関する。詳しくは、放電電圧が低く、その状態を長期維持することができるプラグ材料及びその製造方法に関する。   The present invention relates to a material constituting a center electrode of a spark plug. Specifically, the present invention relates to a plug material having a low discharge voltage and capable of maintaining the state for a long period of time, and a manufacturing method thereof.

内燃機関用の点火プラグの主要部材である中心電極の構成材料として、従来からPt、Ir、これらの合金が使用されている。これらの金属は、融点が高く耐火花消耗性、耐酸化性に優れることから、燃焼室内の高温・高酸化性雰囲気中でも長寿命であることによる。また、中心電極の構造として、これらの金属・合金を単独使用するものに加えて、最近では2種類の材料を組み合わせたクラッド材を用いる例も知られている(例えば、特許文献1)。Pt、Irのような貴金属はいずれも高融点材料であるが、厳密に比較すると、耐火花消耗性、耐酸化性が異なることから、これらのクラッド材を用いることで、それぞれの長所を活かすことができる。
特開2002−359052号公報
Conventionally, Pt, Ir, and alloys thereof have been used as a constituent material of a center electrode that is a main member of a spark plug for an internal combustion engine. Since these metals have a high melting point and excellent resistance to spark consumption and oxidation, they have a long life even in a high-temperature and high-oxidation atmosphere in the combustion chamber. In addition to the use of these metals / alloys alone as a structure of the center electrode, an example using a clad material combining two kinds of materials is also known recently (for example, Patent Document 1). Precious metals such as Pt and Ir are both high melting point materials, but when compared strictly, spark wear resistance and oxidation resistance are different, so using these clad materials makes the best use of their respective strengths. Can do.
JP 2002-359052 A

ところで、この種のプラグ材料に要求される特性としては、上記のような消耗性、耐酸化性が優先的に挙げられるが、放電電圧もこれらに劣らず重要な特性といえる。如何に耐火花消耗性に優れるとしても中心電極は使用に伴い消耗し、その形状変化により放電電圧が大きく変化し失火現象が生じることがある。従って、放電電圧が適切に低減されており、安定した放電特性を有するものが求められる。この点、従来のプラグ材料においては、このような観点から開発されたものは少ない。   By the way, the properties required for this type of plug material are preferentially the above-mentioned wearability and oxidation resistance, but the discharge voltage is as important as these. Even if it is excellent in spark erosion resistance, the center electrode is consumed with use, and the discharge voltage may change greatly due to its shape change, resulting in a misfire phenomenon. Accordingly, a discharge voltage that is appropriately reduced and has stable discharge characteristics is required. In this regard, few conventional plug materials have been developed from this point of view.

そこで、本発明は、放電電圧を低減し、かつ、その状態を長期間維持することができるプラグ材料を提供する。また、このプラグ材料を効率的に製造することができる方法も提供する。   Therefore, the present invention provides a plug material that can reduce the discharge voltage and maintain the state for a long period of time. Also provided is a method by which the plug material can be produced efficiently.

点火プラグの放電電圧は、その環境面での状況によっても変化するが、中心電極の形状に関していえば、エッジ(角)が出現する形状とすることで放電電圧が低下する傾向がある。消耗により放電特性が変化するのは、消耗により中心電極の形状が丸みを帯びてくるためである。本発明者等は鋭意研究を行い、2種の金属・合金が複合されたプラグ材料を基本とし、放電電圧が低減するため、より多くのエッジを有する構造のものを見出した。   Although the discharge voltage of the spark plug varies depending on the environmental conditions, the discharge voltage tends to decrease when the shape of the center electrode is such that an edge (corner) appears. The reason why the discharge characteristics change due to wear is that the shape of the center electrode is rounded due to wear. The present inventors conducted extensive research and found a structure having more edges because the discharge voltage is reduced based on a plug material in which two kinds of metals and alloys are combined.

即ち、本発明は、点火プラグの中心電極を構成する略円柱形状のプラグ材料であって、その断面構造において、第1の金属からなる境界相と、前記境界相により仕切られた第2の金属からなる複数のセル相からなり、前記第1の金属と前記第2の金属とは、耐火花消耗性の異なる金属であるプラグ材料である。   That is, the present invention relates to a substantially cylindrical plug material constituting a center electrode of a spark plug, and in the cross-sectional structure thereof, a boundary phase made of a first metal and a second metal partitioned by the boundary phase The first metal and the second metal are plug materials made of a plurality of cell phases and having different resistance to spark consumption.

本発明に係るプラグ材料は、例えば、図1のような断面構造を有し、境界相を備え、境界相により区分されたセル相が形成される。それぞれの相は、耐火花消耗性の異なる金属からなる。このプラグ材料では、耐火花消耗性の低い金属が優先的に消耗するため、消耗により生じた凹みによりエッジが出現する。このようにして生じるエッジの長さは、従来の単純なクラッド材よりも長いものであるから、放電電圧の低減を図ることができる。また、耐火花消耗性の高い金属からなる相もやがて消耗するため中心電極端面は平坦となるが、その際には耐火花消耗性の低い金属からなる相が優先的に消耗し、再度エッジが出現する。このように、エッジの出現、摩耗による平坦化、エッジの再度の出現を繰返ししつつ、放電電圧の低減・安定化を図ることができる。   The plug material according to the present invention has, for example, a cross-sectional structure as shown in FIG. 1, includes a boundary phase, and forms a cell phase divided by the boundary phase. Each phase consists of metals with different resistance to spark consumption. In this plug material, since the metal with low spark wear resistance is preferentially consumed, an edge appears due to a dent caused by the consumption. Since the edge length thus generated is longer than that of a conventional simple clad material, the discharge voltage can be reduced. In addition, since the phase made of a metal with high spark wear resistance will eventually wear out, the end surface of the center electrode becomes flat. Appear. In this way, it is possible to reduce and stabilize the discharge voltage while repeating the appearance of the edge, the flattening due to wear, and the reappearance of the edge.

本発明においては、耐火花消耗性の異なる金属・合金を、境界相及びセル相の構成材料として選択し組み合わせるものであるが、境界相(第1の金属)を耐火花消耗性の低い金属で構成し、セル相(第2の金属)を耐火花消耗性の高い金属で構成しても良いし、逆の組み合わせとしても良い。図2のように、いずれにしても、耐火花消耗性の低い金属の消耗によりエッジが出現するからである。本発明において好ましいのは、セル相の方に耐火花消耗性の高い金属を配するのが好ましい。境界相が消耗した際、セル相が針状で残りやすく、放電電圧を安定化させるからである。   In the present invention, metals / alloys having different spark wear resistance are selected and combined as constituent materials of the boundary phase and cell phase. The boundary phase (first metal) is made of a metal having low spark wear resistance. The cell phase (second metal) may be composed of a metal having a high resistance to spark consumption, or a reverse combination. This is because, as shown in FIG. 2, in any case, the edge appears due to the consumption of the metal having low spark consumption. In the present invention, it is preferable to arrange a metal having a high resistance to spark consumption in the cell phase. This is because when the boundary phase is consumed, the cell phase is likely to remain in a needle shape and stabilize the discharge voltage.

第1の金属及び第2の金属の具体的な材質は、いずれもプラグ材料として使用可能な金属・合金であることが好ましく、貴金属を含む合金が好ましい。貴金属合金としては、白金、イリジウム、ロジウムの少なくともいずれかを含むものが好ましく、各貴金属の組成として、白金:5〜100重量%、イリジウム:10〜100重量%、ロジウム:0.1〜50重量%の合金が好ましい。また、これら貴金属以外に、鉄、ニッケル、クロムの少なくともいずれかを0.1〜15重量%添加したものも適用できる。   The specific material of the first metal and the second metal is preferably a metal / alloy that can be used as a plug material, and an alloy including a noble metal is preferable. The noble metal alloy preferably contains at least one of platinum, iridium, and rhodium. The composition of each noble metal is platinum: 5 to 100% by weight, iridium: 10 to 100% by weight, rhodium: 0.1 to 50% by weight. % Alloy is preferred. In addition to these noble metals, those added with 0.1 to 15% by weight of at least one of iron, nickel, and chromium are also applicable.

耐火花消耗性に基づく第1の金属及び第2の金属の選定においては、イリジウムの含有量と耐火花消耗性には相関があることから、上記の組成において、イリジウムの濃度を基準とすることが好ましい。具体的には、第1の金属のIr濃度は第2の金属のIr濃度に比べて5重量%以上少なくなるように各金属の組成を決定することが好ましい。尚、第1の金属及び第2の金属の組み合わせとしては、例えば、下記表1のようなものが挙げられる。   In the selection of the first metal and the second metal based on the spark wear resistance, since the iridium content and the spark wear resistance are correlated, the above composition should be based on the iridium concentration. Is preferred. Specifically, it is preferable to determine the composition of each metal so that the Ir concentration of the first metal is 5% by weight or less as compared with the Ir concentration of the second metal. Examples of the combination of the first metal and the second metal include those shown in Table 1 below.

Figure 2009016255
Figure 2009016255

上記のような断面形状において、放電電圧をより低くするためには、セル相の面積を全断面積に対して2〜80%とするのが好ましい。断面積が大きすぎると放電電圧が低下しなくなるからである。また、耐消耗性を重視する場合はセル相の面積は全断面積に対して50%以上にするのが好ましい。   In the cross-sectional shape as described above, in order to lower the discharge voltage, the cell phase area is preferably 2 to 80% of the total cross-sectional area. This is because if the cross-sectional area is too large, the discharge voltage does not decrease. Further, when importance is attached to wear resistance, the area of the cell phase is preferably 50% or more with respect to the total cross-sectional area.

本発明に係るプラグ材料は、図4のように、その外周側面に第1の金属からなる被覆層を有しても良い。この被覆層は、第1の金属からなり境界相と連通するものである。   As shown in FIG. 4, the plug material according to the present invention may have a coating layer made of the first metal on the outer peripheral side surface thereof. This coating layer is made of the first metal and communicates with the boundary phase.

本発明に係るプラグ材料の断面形状において、境界相及びセル相の形状の例としては、図1のように、セル相を四方に平坦な延長部を有する略菱形形状を有するものの他、三叉形状のセル相が形成されたもの(図3(A))、別形状のセル相が形成されたもの(図3(B)、(C))等が挙げられる。これらのうちセル相の形状が細く複雑になる程、消耗時のエッジの長さが増大するが、セル相を複雑化すると製造が困難となる傾向があることから、どのような形状にするかは製造効率とのバランスにより決定される。   In the cross-sectional shape of the plug material according to the present invention, as examples of the shape of the boundary phase and the cell phase, as shown in FIG. 1, the cell phase has a substantially rhombus shape having flat extension portions on all sides, and a tridental shape. In which a cell phase is formed (FIG. 3A), a cell phase having a different shape is formed (FIGS. 3B and 3C), and the like. Among these, as the shape of the cell phase becomes thinner and more complicated, the length of the edge at the time of wear increases, but since the manufacturing tends to become difficult if the cell phase is complicated, what kind of shape should be made? Is determined by a balance with manufacturing efficiency.

次に、本発明に係るプラグ材料の製造方法について説明する。本発明に係るプラグ材料の製造方法は、複数の第1の金属からなる棒材又は線材と、第2の金属からなる棒材又は線材と並列に結束し、結束した前記棒材又は線材を線引き加工するか、又は、第1の金属で被覆された第2の金属からなる棒材又は線材を複数並列に結束し、結束した前記棒材又は線材を線引き加工するものである。   Next, the manufacturing method of the plug material according to the present invention will be described. The plug material manufacturing method according to the present invention includes a plurality of first metal bars or wire rods and a second metal bar or wire rod bundled in parallel, and the bundled rod rods or wire rods are drawn. Or a plurality of bars or wires made of the second metal coated with the first metal are bound in parallel, and the bound bars or wires are drawn.

これらの製造方法は、いずれも、棒材又は線材を原料とするものであり、結束した棒材又は線材を線引き加工により各材料が一体化するまで加工することで、第1及び第2の金属を変形させつつ、境界相及びセル相を形成するものである。これらの方法によれば、境界相を容易に形成することができ、また、ハニカム形状のような複雑形状のセル相も形成することができる。   Each of these manufacturing methods uses a bar or wire as a raw material, and the first and second metals are processed by processing the bound bar or wire until the respective materials are integrated by drawing. The boundary phase and the cell phase are formed while deforming. According to these methods, the boundary phase can be easily formed, and a cell phase having a complicated shape such as a honeycomb shape can also be formed.

ここで、前者の第1、第2の金属からなる2種の棒材又は線材を使用する方法(図5(A))は、図1のような、境界相の中心部に塊状のセル相を有する形状を形成するのに有用である。一方、後者の第1の金属で被覆された第2の金属からなる棒材又は線材を用いる方法(図5(B))は、幅狭の細い境界相を形成するのに有用である。   Here, the former method using the two kinds of rods or wires made of the first and second metals (FIG. 5 (A)) is a massive cell phase at the center of the boundary phase as shown in FIG. It is useful for forming a shape having On the other hand, the latter method (FIG. 5B) using a bar or wire made of the second metal covered with the first metal is useful for forming a narrow and narrow boundary phase.

これらの製造方法においては、いずれの場合においても結束した棒材又は線材の側面、又は、少なくともいずれかの端部を溶接接合した後、線引き加工するのが好ましい。加工時の取り扱いを容易にするためである。   In these production methods, in any case, it is preferable that the side surfaces of the bound bars or wires, or at least one of the end portions are welded and then drawn. This is to facilitate handling during processing.

また、これらの方法においては、線引き加工の前に、結束した棒材又は線材を第1の金属からなる筒状材に挿入し、前記筒状材を線引き加工するができる(図6A)。この方法によれば、外周側面に被覆層を備えるプラグ材料を容易に製造することができる。また、第1と第2の金属を逆の組み合わせとしても良い。(図6B)   Further, in these methods, before the drawing process, the bound bar or wire can be inserted into the cylindrical material made of the first metal, and the cylindrical material can be drawn (FIG. 6A). According to this method, a plug material having a coating layer on the outer peripheral side surface can be easily manufactured. The first and second metals may be reversed. (Fig. 6B)

尚、本発明において、第1の金属及び第2の金属は、両者の硬度差が100Hv以下となるような組み合わせが好ましい。硬度差が大きすぎると、加工の際に軟らかい材料が優先的に変形して線材長手方向に伸びてしまうため、設計通りの寸法形状が得にくいからである。   In the present invention, the first metal and the second metal are preferably combined such that the hardness difference between them is 100 Hv or less. This is because if the hardness difference is too large, the soft material is preferentially deformed during processing and extends in the longitudinal direction of the wire, making it difficult to obtain a dimension and shape as designed.

以上説明したように、本発明に係るプラグ材料は、放電電圧が低減されており、更に、これを長期間維持することができるものである。また、本発明に係るプラグ材料の製造方法は、断面形状が比較的複雑なプラグ材料を効率的に製造することができる。   As described above, the plug material according to the present invention has a reduced discharge voltage and can maintain it for a long period of time. Moreover, the plug material manufacturing method according to the present invention can efficiently manufacture a plug material having a relatively complicated cross-sectional shape.

以下、本発明の好適な実施例を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

第1実施形態:直径8mmのPt−20重量%Ir合金の線材を4本用意し、これらを直径11mmのIr−10重量%Rh合金の線材の外周に配した。そして、各線材の側面をレーザー溶接した。溶接の条件は、出力250kw、パルス幅3.5msec、OFF時間2.0msecとした。 First Embodiment : Four Pt-20 wt% Ir alloy wires having a diameter of 8 mm were prepared and arranged on the outer periphery of an Ir-10 wt% Rh alloy wire having a diameter of 11 mm. And the side surface of each wire was laser-welded. The welding conditions were an output of 250 kW, a pulse width of 3.5 msec, and an OFF time of 2.0 msec.

次に、結束した線材を1200℃に加熱して、熱間スエージングで直径8mmまで加工した。更に、熱処理を行いながら線引き加工を行い直径1.2mmの線材(プラグ材料)を製造した。尚、この線引き加工では、断面減少率で30%加工する度に1200℃の熱処理を行った。製造したプラグ材料は、図1に示すような断面形状であり、セル相であるIr−10重量%Rh合金の中心部が、約0.6mm角の正方形状であった。このとき、プラグ材料断面積に対するセル相の面積比は35%であった。   Next, the bound wire was heated to 1200 ° C. and processed to a diameter of 8 mm by hot swaging. Furthermore, wire drawing (plug material) having a diameter of 1.2 mm was manufactured by performing a drawing process while performing heat treatment. In this drawing process, a heat treatment at 1200 ° C. was performed every time 30% processing was performed with a cross-section reduction rate. The manufactured plug material had a cross-sectional shape as shown in FIG. 1, and the center part of an Ir-10 wt% Rh alloy as a cell phase had a square shape of about 0.6 mm square. At this time, the area ratio of the cell phase to the plug material cross-sectional area was 35%.

第2実施形態:直径5.9mmのIr−10重量%Rh合金の線材に、外径9mm、内径6mmのPt−20重量%Ir合金のパイプを被せ、1200℃に加熱して、熱間スエージングで直径4mmまで加工した後に、加工ひずみ除去と拡散接合のために温度1200℃で1時間の熱処理を行い、更に、2.3mmまで線引き加工し、Pt−20重量%Ir合金で被覆されたIr−10重量%Rh合金の線材を製造した。 Second Embodiment : Ir-10 wt% Rh alloy wire with a diameter of 5.9 mm is covered with a Pt-20 wt% Ir alloy pipe with an outer diameter of 9 mm and an inner diameter of 6 mm and heated to 1200 ° C. After processing to a diameter of 4 mm by aging, heat treatment was performed at a temperature of 1200 ° C. for 1 hour for removal of processing strain and diffusion bonding, and further drawing was performed to 2.3 mm and coated with a Pt-20 wt% Ir alloy. An Ir-10 wt% Rh alloy wire was produced.

次に、この被覆された線材を7本結束し、これに外径9mm、内径7mmのPt−20重量%Ir合金のパイプを被せ、熱間スエージング加工した。そして、熱処理を行いながら線引き加工を行い直径1.2mmの線材(プラグ材料)を製造した。線引き加工の際には、断面減少率で30%加工する度に1200℃の熱処理を行った。製造したプラグ材料は、図6(A)に示すような断面形状であり、Pt−20重量%Ir合金からなるハニカム形状の境界相と、7つのIr−10重量%Rh合金からなる多角形のセル相が形成された。セル相の幅は約0.2mmであった。このとき、プラグ材料断面積に対するセル相の面積比は25%であった。   Next, seven of these coated wires were bundled and covered with a Pt-20 wt% Ir alloy pipe having an outer diameter of 9 mm and an inner diameter of 7 mm, followed by hot swaging. Then, a wire rod (plug material) having a diameter of 1.2 mm was manufactured by performing a drawing process while performing heat treatment. At the time of drawing, a heat treatment at 1200 ° C. was performed every time 30% was processed with a cross-section reduction rate. The manufactured plug material has a cross-sectional shape as shown in FIG. 6A, and has a honeycomb-shaped boundary phase made of Pt-20 wt% Ir alloy and a polygonal shape made of seven Ir-10 wt% Rh alloys. A cell phase was formed. The width of the cell phase was about 0.2 mm. At this time, the area ratio of the cell phase to the plug material cross-sectional area was 25%.

第3実施形態:ここでは、第1実施形態に対し、境界相、セル相を構成する金属を逆にしてプラグ材料を製造した。直径8mmのIr−10重量%Rh合金の線材を4本用意し、これらを直径11mmのPt−20重量%Ir合金の線材の外周に配し、溶接して結束した線材を線引き加工してプラグ材料を製造した。線材溶接の条件、線引き加工の条件は第1実施形態と同様とした。製造したプラグ材料は、図1に示すような断面形状であり、セル相であるPt−20重量%Ir合金の中心部が、0.6mm角の正方形状であった。このとき、プラグ材料断面積に対するセル相の面積比は35%であった。 Third Embodiment : Here, the plug material was manufactured by reversing the metals constituting the boundary phase and the cell phase with respect to the first embodiment. Four wires of Ir-10 wt% Rh alloy with a diameter of 8 mm are prepared, these are arranged on the outer periphery of a Pt-20 wt% Ir alloy wire with a diameter of 11 mm, and the wire rods which are welded and bound are drawn and plugged The material was manufactured. The wire welding conditions and the drawing process conditions were the same as in the first embodiment. The manufactured plug material had a cross-sectional shape as shown in FIG. 1, and the central portion of the Pt-20 wt% Ir alloy as the cell phase was a square shape of 0.6 mm square. At this time, the area ratio of the cell phase to the plug material cross-sectional area was 35%.

比較例1、2:上記実施形態に対する比較として、従来のプラグ材料であるIr−10重量%Rh合金線材、Pt−20重量%Ir合金線材を用意した。線径はいずれも1.2mmである。 Comparative Examples 1 and 2 : As a comparison with the above embodiment, Ir-10 wt% Rh alloy wire and Pt-20 wt% Ir alloy wire, which are conventional plug materials, were prepared. The wire diameter is 1.2 mm.

放電試験:各実施形態、比較例に係るプラグ材料について放電試験を行った。この試験では、各線材を30mmに切断、ギャップ1mmの間隔で対向させて、300時間放電させ、その間の放電電圧の平均値、最大値を測定した。表2はその結果を示す。 Discharge test : A discharge test was performed on the plug materials according to the embodiments and comparative examples. In this test, each wire was cut into 30 mm, opposed to each other with a gap of 1 mm, discharged for 300 hours, and the average value and the maximum value of the discharge voltage were measured. Table 2 shows the results.

Figure 2009016255
Figure 2009016255

表2から、第1〜第3実施形態に係るプラグ材料は、比較例と比較して平均の放電電圧が低減されていることがわかる。また、第1〜第3実施形態に係る平均値と最大値との差も低くなっており、安定した放電特性を維持していることがわかる。   From Table 2, it can be seen that the plug material according to the first to third embodiments has an average discharge voltage reduced as compared with the comparative example. Moreover, the difference between the average value and the maximum value according to the first to third embodiments is also low, and it can be seen that stable discharge characteristics are maintained.

本発明に係るプラグ材料の断面構造の一例を示す図。The figure which shows an example of the cross-section of the plug material which concerns on this invention. 本発明に係るプラグ材料の消耗した状態を説明する図。The figure explaining the state where the plug material which concerns on this invention was consumed. 本発明に係るプラグ材料の断面構造の他の一例を示す図。The figure which shows another example of the cross-section of the plug material which concerns on this invention. 本発明に係るプラグ材料の被覆層を有する場合の断面構造の一例を示す図。The figure which shows an example of the cross-section in the case of having the coating layer of the plug material which concerns on this invention. 本発明に係るプラグ材料の製造方法を説明する図。The figure explaining the manufacturing method of the plug material which concerns on this invention. 本発明に係るプラグ材料の製造方法を説明する図。The figure explaining the manufacturing method of the plug material which concerns on this invention.

Claims (11)

点火プラグの中心電極を構成する略円柱形状のプラグ材料であって、その断面構造において、第1の金属からなる境界相と、前記境界相により区分された第2の金属からなるセル相からなり、前記第1の金属と前記第2の金属とは、耐火花消耗性の異なる金属であるプラグ材料。 A substantially cylindrical plug material constituting a center electrode of a spark plug, comprising a boundary phase made of a first metal and a cell phase made of a second metal separated by the boundary phase in the cross-sectional structure thereof. The first metal and the second metal are plug materials that are different in resistance to spark consumption. 第1の金属及び第2の金属は、白金:5〜100重量%、イリジウム:10〜100重量%、ロジウム:0.1〜50重量%の少なくともいずれかよりなる貴金属合金、又は、前記貴金属合金に鉄、ニッケル、クロムの少なくともいずれかを0.1〜15重量%添加した貴金属合金であり、
第1の金属のIr濃度は第2の金属のIr濃度に比べて5重量%以上少ないものである請求項1記載のプラグ材料。
The first metal and the second metal are platinum: 5 to 100% by weight, iridium: 10 to 100% by weight, rhodium: 0.1 to 50% by weight, or the noble metal alloy Is a noble metal alloy in which at least one of iron, nickel, and chromium is added in an amount of 0.1 to 15% by weight,
The plug material according to claim 1, wherein the Ir concentration of the first metal is 5% by weight or less as compared with the Ir concentration of the second metal.
プラグ材料の断面積に対する第2の金属の面積比が、2〜80%である請求項1又は請求項2のいずれかに記載のプラグ材料。 The plug material according to claim 1 or 2, wherein an area ratio of the second metal to a cross-sectional area of the plug material is 2 to 80%. セル相は、外周に向かう平坦な延長部を有する略菱形又は略三叉形の多角形状を有し、前記セル相によって区分された複数の相が形成されてなる請求項1〜請求項3のいずれかに記載のプラグ材料。 The cell phase has a substantially rhombic or substantially trigonal polygonal shape having a flat extension toward the outer periphery, and a plurality of phases divided by the cell phase are formed. The plug material according to crab. 境界相が複数のセル層を分断することにより、ハニカム形状を有してなる請求項1〜請求項3のいずれかに記載のプラグ材料。 The plug material according to any one of claims 1 to 3, wherein the boundary phase has a honeycomb shape by dividing a plurality of cell layers. 外周側面に第1の金属からなる被覆層を有する請求項1〜請求項5のいずれかに記載のプラグ材料。 The plug material according to any one of claims 1 to 5, further comprising a coating layer made of a first metal on an outer peripheral side surface. 請求項1〜請求項5のいずれかに記載のプラグ材料の製造方法であって、複数の第1の金属からなる棒材又は線材と、第2の金属からなる棒材又は線材とを並列に結束し、結束した前記棒材又は線材を線引き加工するプラグ材料の製造方法。 It is a manufacturing method of the plug material in any one of Claims 1-5, Comprising: The bar or wire which consists of a some 1st metal, and the bar or wire which consists of a 2nd metal in parallel A method for producing a plug material, in which the rods or wires that are bound and bound are drawn. 請求項1〜請求項6のいずれかに記載のプラグ材料の製造方法であって、第1の金属で被覆された第2の金属からなる棒材又は線材を複数並列に結束し、結束した前記棒材又は線材を線引き加工するプラグ材料の製造方法。 It is the manufacturing method of the plug material in any one of Claims 1-6, Comprising: The bar or wire which consists of a 2nd metal coat | covered with the 1st metal was bound in parallel, and the said bound A plug material manufacturing method for drawing a rod or wire. 結束した棒材又は線材の、側面又は少なくともいずれかの端部を溶接接合した後、線引き加工する請求項7又は請求項8記載のプラグ材料の製造方法。 The method for producing a plug material according to claim 7 or 8, wherein the side surface or at least one end of the bound bar or wire is welded and then drawn. 線引き加工の前に、結束した棒材又は線材を第1の金属からなる筒状材に挿入し、前記筒状材を線引き加工する請求項8又は請求項9記載のプラグ材料の製造方法。 The method for producing a plug material according to claim 8 or 9, wherein, prior to the drawing process, the bound bar or wire is inserted into a cylindrical material made of a first metal, and the cylindrical material is drawn. 第1の金属と第2の金属との硬度差が100Hv以下である材料を用いて加工する請求項7〜請求項10記載のプラグ材料の製造方法。 The manufacturing method of the plug material of Claim 7-10 processed using the material whose hardness difference of a 1st metal and a 2nd metal is 100 Hv or less.
JP2007178612A 2007-07-06 2007-07-06 Plug material and its manufacturing method Pending JP2009016255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178612A JP2009016255A (en) 2007-07-06 2007-07-06 Plug material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178612A JP2009016255A (en) 2007-07-06 2007-07-06 Plug material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2009016255A true JP2009016255A (en) 2009-01-22
JP2009016255A5 JP2009016255A5 (en) 2010-02-12

Family

ID=40356898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178612A Pending JP2009016255A (en) 2007-07-06 2007-07-06 Plug material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009016255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153297A (en) * 2008-12-26 2010-07-08 Ishifuku Metal Ind Co Ltd Electrode chip of spark plug and its manufacturing method
WO2020050392A1 (en) 2018-09-07 2020-03-12 田中貴金属工業株式会社 Material for spark plug electrodes and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947810A (en) * 1995-08-02 1997-02-18 Fujikura Ltd Manufacture of aluminum coated composite steel wire
JPH09141324A (en) * 1995-11-15 1997-06-03 Fujikura Ltd Manufacture of aluminum steel composite wire
JP2002231411A (en) * 2001-01-30 2002-08-16 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947810A (en) * 1995-08-02 1997-02-18 Fujikura Ltd Manufacture of aluminum coated composite steel wire
JPH09141324A (en) * 1995-11-15 1997-06-03 Fujikura Ltd Manufacture of aluminum steel composite wire
JP2002231411A (en) * 2001-01-30 2002-08-16 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153297A (en) * 2008-12-26 2010-07-08 Ishifuku Metal Ind Co Ltd Electrode chip of spark plug and its manufacturing method
WO2020050392A1 (en) 2018-09-07 2020-03-12 田中貴金属工業株式会社 Material for spark plug electrodes and method for producing same
KR20210030398A (en) 2018-09-07 2021-03-17 다나카 기킨조쿠 고교 가부시키가이샤 Material for spark plug electrode and method for manufacturing same
US11303099B2 (en) 2018-09-07 2022-04-12 Tanaka Kikinzoku Kogyo K.K. Material for spark plug electrode and method for producing same

Similar Documents

Publication Publication Date Title
US8766519B2 (en) Electrode material for a spark plug
JP3796342B2 (en) Spark plug and manufacturing method thereof
CN1665087B (en) Spark plug and method for manufacturing the same
JP4430119B2 (en) Noble metal alloy for spark plug and manufacturing method thereof
JP2010209468A (en) Alloy
CN108429130B (en) Spark plug
JP2014075296A (en) Spark plug
JP4255519B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
JP4847814B2 (en) Noble metal alloy tip for spark plug and manufacturing method thereof
JP2009016255A (en) Plug material and its manufacturing method
US9130358B2 (en) Method of manufacturing spark plug electrode material
WO2012090714A1 (en) Metal wire rod made of iridium-containing alloy
JP5249393B2 (en) Noble metal alloy tip for spark plug and manufacturing method thereof
JP6155575B2 (en) Electrode material, spark plug electrode, and spark plug
US20130285533A1 (en) Electrode material for a spark plug
JP2010275575A (en) HIGH-DURABLE Pt WIRE
JP2017531091A (en) Rhodium alloy
JP2000331770A (en) Manufacture of spark plug and discharge tip
JP5815649B2 (en) Spark plug
JP2009245640A (en) Spark plug
JP2002299005A (en) Spark plug and method of manufacturing the same
CN110651055A (en) Electrode material, electrode for spark plug, and spark plug
JP2009037750A (en) Spark plug for internal combustion engines
JP4485084B2 (en) Spark plug
JP4169274B2 (en) Method for manufacturing noble metal discharge chip and method for manufacturing spark plug using the noble metal discharge chip

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20091217

Free format text: JAPANESE INTERMEDIATE CODE: A871

A621 Written request for application examination

Effective date: 20091218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100203

A131 Notification of reasons for refusal

Effective date: 20100205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Effective date: 20100318

Free format text: JAPANESE INTERMEDIATE CODE: A712

A02 Decision of refusal

Effective date: 20100614

Free format text: JAPANESE INTERMEDIATE CODE: A02