JP2009014225A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009014225A
JP2009014225A JP2007174282A JP2007174282A JP2009014225A JP 2009014225 A JP2009014225 A JP 2009014225A JP 2007174282 A JP2007174282 A JP 2007174282A JP 2007174282 A JP2007174282 A JP 2007174282A JP 2009014225 A JP2009014225 A JP 2009014225A
Authority
JP
Japan
Prior art keywords
unit
power supply
capacitor
outdoor unit
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007174282A
Other languages
Japanese (ja)
Other versions
JP5125262B2 (en
Inventor
Akira Kasamatsu
晃 笠松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007174282A priority Critical patent/JP5125262B2/en
Publication of JP2009014225A publication Critical patent/JP2009014225A/en
Application granted granted Critical
Publication of JP5125262B2 publication Critical patent/JP5125262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of reducing a circuit size and manufacturing costs besides reducing standby power. <P>SOLUTION: When a control portion for indoor unit 11 makes a relay MR10 conductive, electric current from a main power supply portion 26 flows to a capacitor C22 through the relay MR10, a transmission line COML, a resistor R1 and a diode D1. A power supply portion for controlling outdoor unit 22 supplies voltage of both ends of the charged capacitor C22 to a control portion for outdoor unit 21 as operating voltage. The control portion for outdoor unit 21 receiving the supply of the operating voltage makes a relay MRM20 conductive. The electric current from the main power supply portion 26 flows to the capacitor C22 through the relay MRM20, a resistor R2, and diodes D22a-D22d by conduction of the relay MRM20. Then the control portion for indoor unit 11 makes the relay MR10 non-conductive, and the control portion for indoor unit 11 and the control portion for outdoor unit 21 are transferred to normal operations. In the normal operation, the capacitor C22 is not charged through the relay MR10 and the transmission line COML. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は空気調和機に関し、特に室外機側に電源がある室外受電機であっても、待機電源を低減する技術に関する。   The present invention relates to an air conditioner, and more particularly to a technique for reducing standby power even in an outdoor receiving electric machine having a power supply on the outdoor unit side.

特許文献1には、室内機と、室外機と、室内機及び室外機に電源を供給する電源線と、室内機及び室外機の通信用の伝送線とを有する空気調和機が開示されている。この空気調和機において、動作を停止しているときに(待機状態のときに)室外機の待機電源を除き、動作を開始する起動時において室内機から室外機へと電源を供給して室外機を起動している。   Patent Document 1 discloses an air conditioner having an indoor unit, an outdoor unit, a power supply line that supplies power to the indoor unit and the outdoor unit, and a communication transmission line for the indoor unit and the outdoor unit. . In this air conditioner, when the operation is stopped (when in the standby state), the outdoor unit is powered off by supplying power from the indoor unit to the outdoor unit at the time of starting the operation except for the standby power source of the outdoor unit. Has started.

具体的には、室外機は、室外機制御部と、当該室外機制御部と伝送線とを接続する第1接続関係及び当該室外機制御部と電源線とを接続する第2接続関係の何れか一方を選択する第1スイッチとを有している。室内機は伝送線と電源線とを接続する第2スイッチを有している。   Specifically, the outdoor unit includes any one of an outdoor unit control unit, a first connection relationship that connects the outdoor unit control unit and a transmission line, and a second connection relationship that connects the outdoor unit control unit and a power line. And a first switch for selecting one of them. The indoor unit has a second switch that connects the transmission line and the power supply line.

待機状態において室外機では、第1スイッチは第1接続関係を選択している。よって、待機状態では電源線と室外機制御部の接続は遮断されている。   In the outdoor unit in the standby state, the first switch selects the first connection relationship. Therefore, in the standby state, the connection between the power line and the outdoor unit controller is cut off.

そして、起動時において室内機が自身の第2スイッチを制御して電源線と伝送線とを接続する。よって、電源線を介して室内機へと供給された電源が第2スイッチ、伝送線を介して室外機へと伝達する。室外機では伝送線を介して室外機制御部へと当該電源が供給されて室外機制御部を起動することができる。   At the time of activation, the indoor unit controls its second switch to connect the power line and the transmission line. Therefore, the power supplied to the indoor unit via the power line is transmitted to the outdoor unit via the second switch and the transmission line. In the outdoor unit, the power is supplied to the outdoor unit control unit via the transmission line, and the outdoor unit control unit can be activated.

なお、関連する技術として特許文献2〜4が開示されている。   Patent documents 2 to 4 are disclosed as related techniques.

特開2005−257238号公報JP 2005-257238 A 特開2005−257239号公報JP 2005-257239 A 特開2006−153346号公報JP 2006-153346 A 特許第3019844号Patent 3019844

しかしながら、特許文献1に記載の空気調和機においては、第1スイッチを用いているので、スイッチ損失が生じるとともに、回路規模や製造コストが増大していた。   However, in the air conditioner described in Patent Document 1, since the first switch is used, switch loss occurs, and the circuit scale and manufacturing cost increase.

そこで、本発明は、回路規模や製造コストを低減する空気調和機を提供することを目的とする。   Then, an object of this invention is to provide the air conditioner which reduces a circuit scale and manufacturing cost.

本発明にかかる空気調和機の第1の態様は、交流が供給される第1及び第2電源供給線(ACL1,ACL2)と、伝送線(COML)と、前記伝送線と前記第1電源供給線との導通/非導通を制御する第1選択部(MR10)を有する室内機(10)と、動作電圧を受けて動作する室外機制御部(21)と、前記室外機制御部の制御によって導通し、当該制御がなければ非導通となる第2選択部(MRM10;MRM20)と、第2電源供給線と接続され、前記第2選択部を介して前記第1電源供給線にも接続される内部負荷(23;24,25)と、前記第2選択部を介して前記第1電源供給線に接続される第1充電経路(D22a,D22c)と、前記伝送線に接続される第2充電経路(R1,D1;D2)と、前記第1充電経路及び前記第2充電経路と接続されて、前記第2電源供給線を流れる電流によって充電されるコンデンサ(C22;C22a,C22b)とを含み、当該コンデンサの両端電圧を前記動作電圧として出力する室外制御電力供給部(22)とを有する室外機(20)とを備える。   The first aspect of the air conditioner according to the present invention includes first and second power supply lines (ACL1, ACL2) to which alternating current is supplied, a transmission line (COML), the transmission line, and the first power supply. An indoor unit (10) having a first selection unit (MR10) for controlling conduction / non-conduction with a line, an outdoor unit control unit (21) that operates by receiving an operating voltage, and control of the outdoor unit control unit The second selection unit (MRM10; MRM20) that is conductive and is non-conductive if there is no such control is connected to the second power supply line, and is also connected to the first power supply line via the second selection unit. Internal load (23; 24, 25), a first charging path (D22a, D22c) connected to the first power supply line via the second selector, and a second connected to the transmission line. Capacitors (C22; C22a, C22) connected to the charging path (R1, D1; D2), the first charging path and the second charging path, and charged by the current flowing through the second power supply line. and an outdoor unit (20) having an outdoor control power supply unit (22) that outputs the voltage across the capacitor as the operating voltage.

本発明にかかる空気調和機の第2の態様は、第1の態様にかかる空気調和機であって、空気調和機前記室外機(20)は、空気調和に関する室外機駆動機構(27)と、前記コンデンサ(C22;C22a,C22b)の両端電圧が入力されて、前記室外機駆動機構へと駆動電流を供給する室外機駆動電力供給部(23)を更に備える。   A second aspect of the air conditioner according to the present invention is the air conditioner according to the first aspect, wherein the air conditioner outdoor unit (20) includes an outdoor unit drive mechanism (27) related to air conditioning, An outdoor unit drive power supply unit (23) that receives a voltage across the capacitor (C22; C22a, C22b) and supplies a drive current to the outdoor unit drive mechanism is further provided.

本発明にかかる空気調和機の第3の態様は、第1または第2の態様にかかる空気調和機であって、前記第2充電経路(D22a,D22c)及び前記第2電源供給線(ACL2)は、前記コンデンサ(C22;C22a,C22b)を充電する倍電圧整流回路を構成する。   A third aspect of the air conditioner according to the present invention is the air conditioner according to the first or second aspect, wherein the second charging path (D22a, D22c) and the second power supply line (ACL2) are provided. Constitutes a voltage doubler rectifier circuit for charging the capacitors (C22; C22a, C22b).

本発明にかかる空気調和機の第4の態様は、第1乃至第3の何れか一つにかかる空気調和機であって、前記内部負荷(24,25)は、前記伝送線(COML)を介して前記コンデンサ(C22;C22a,C22b)の低電位側端の電位以上の電位を信号として前記室内機(10)へ伝達する通信部(25)を有しており、前記第2充電経路(R1,D1;D2)は、アノードが前記コンデンサの前記低電位側端と、カソードが前記伝送線と接続された整流素子(D1)を有する。   A fourth aspect of the air conditioner according to the present invention is the air conditioner according to any one of the first to third, wherein the internal load (24, 25) includes the transmission line (COML). Via a communication unit (25) that transmits a potential equal to or higher than the potential of the low potential side end of the capacitor (C22; C22a, C22b) to the indoor unit (10) as a signal, and the second charging path ( R1, D1; D2) includes a rectifier element (D1) having an anode connected to the low potential side end of the capacitor and a cathode connected to the transmission line.

本発明にかかる空気調和機の第5の態様は、第1乃至第3の何れか一つにかかる空気調和機であって、前記内部負荷(24,25)は、前記伝送線(COML)を介して前記コンデンサ(C22;C22a,C22b)の高電位側端の電位以下の電位を信号として前記室内機(10)へ伝達する通信部(25)を有し、前記第2充電経路(R1,D1;D2)は、カソードが前記コンデンサの高電位側端と、アノードが前記伝送線と接続された整流素子(D2)を有する。   A fifth aspect of the air conditioner according to the present invention is the air conditioner according to any one of the first to third, wherein the internal load (24, 25) includes the transmission line (COML). A communication unit (25) for transmitting a potential equal to or lower than the potential at the high potential side end of the capacitor (C22; C22a, C22b) to the indoor unit (10) as a signal, and the second charging path (R1, D1; D2) has a rectifier element (D2) having a cathode connected to the high potential side end of the capacitor and an anode connected to the transmission line.

本発明にかかる空気調和機の第6の態様は、第5の態様にかかる空気調和機であって、前記通信部(25)は、前記伝送線(COML)を介して、前記コンデンサ(C22;C22a,C22b)の低電位側の電位以上且つ前記コンデンサの高電位側の電位以下の電位を信号として前記室内機(10)へ伝達し、前記第2充電経路(R1,D1;D2)は、アノードが前記コンデンサの低電位側と、カソードが前記伝送線と接続された整流素子(D1)を更に有する。   The 6th aspect of the air conditioner concerning this invention is an air conditioner concerning a 5th aspect, Comprising: The said communication part (25) is the said capacitor | condenser (C22;) via the said transmission line (COML). C22a, C22b) is transmitted to the indoor unit (10) as a signal a potential not lower than the low potential side potential and not higher than the high potential side potential of the capacitor, the second charging path (R1, D1; D2), It further has a rectifying element (D1) having an anode connected to the low potential side of the capacitor and a cathode connected to the transmission line.

本発明にかかる空気調和機の第1の態様によれば、第1選択部が導通することにより、コンデンサは第1電源供給線と伝送線と、第2充電経路と、第2電源供給線とを流れる電流によって充電される。かかる充電により、室外機制御部が給電され、その動作が可能となる。そして室外機制御部が動作可能となることにより、第2選択部を導通させることができる。これにより内部負荷に電源が供給される。しかも、コンデンサは第1充電経路によって充電されるので、第2充電経路をカットすることができる。具体的には、第1選択部を非導通にできるので、一旦、第1充電経路による充電が生じた後は、伝送線に充電電流を流す必要が無く、信号伝達のために伝送線を用いることができる。   According to the 1st aspect of the air conditioner concerning this invention, when a 1st selection part conduct | electrically_connects, a capacitor | condenser is a 1st power supply line, a transmission line, a 2nd charging path, and a 2nd power supply line. It is charged by the current flowing through it. By such charging, the outdoor unit control unit is supplied with power and can operate. When the outdoor unit control unit becomes operable, the second selection unit can be conducted. As a result, power is supplied to the internal load. Moreover, since the capacitor is charged by the first charging path, the second charging path can be cut. Specifically, since the first selection unit can be made non-conductive, it is not necessary to flow a charging current through the transmission line once charging is performed through the first charging path, and the transmission line is used for signal transmission. be able to.

また、第1電源供給線と接続する第1充電経路と、伝送線と接続する第2充電経路との切替えが可能なスイッチを設ける態様に比べて、このスイッチを不要とすることができ、ひいては回路規模や製造コストを低減することができる。   Moreover, this switch can be made unnecessary compared with the aspect which provides the switch which can switch between the 1st charge path | route connected with a 1st power supply line, and the 2nd charge path | route connected with a transmission line, and by extension. The circuit scale and manufacturing cost can be reduced.

本発明にかかる空気調和機の第2の態様によれば、同じコンデンサを用いて室外機制御部及び室外機駆動電力供給部へと電力を供給できる。よって、回路規模や製造コストを低減できる。   According to the 2nd aspect of the air conditioner concerning this invention, electric power can be supplied to an outdoor unit control part and an outdoor unit drive electric power supply part using the same capacitor | condenser. Therefore, the circuit scale and manufacturing cost can be reduced.

本発明にかかる空気調和機の第3の態様によれば、室外機制御電力供給部及び室外機駆動電力供給部への電圧を高くできる。   According to the 3rd aspect of the air conditioner concerning this invention, the voltage to an outdoor unit control electric power supply part and an outdoor unit drive electric power supply part can be made high.

本発明にかかる空気調和機の第4の態様によれば、第1選択部が非導通であり、室外機制御部の制御により通第2選択部が導通しているときに、第1充電経路を介してコンデンサから伝送線へと電流が流れることを防ぐ。   According to the 4th aspect of the air conditioner concerning this invention, when the 1st selection part is non-conduction and the 2nd selection part has conduct | electrically_connected by control of an outdoor unit control part, it is 1st charge path | route. Prevents current from flowing from the capacitor to the transmission line.

本発明にかかる空気調和機の第5の態様によれば、第1選択部が非導通且つ第2選択部が導通しているときに、第1充電経路を介してコンデンサから伝送線へと電流が流れることを防ぐ。   According to the fifth aspect of the air conditioner of the present invention, when the first selection unit is non-conductive and the second selection unit is conductive, the current is transferred from the capacitor to the transmission line through the first charging path. To prevent the flow.

本発明にかかる空気調和機の第6の態様によれば、第2充電経路及び第2電源供給線を介して全波整流してコンデンサを充電でき、ひいてはコンデンサの充電に要する時間を短縮できる。更に第2および第3の態様にかかる場合は、室外機制御部及び室外機駆動電力供給部への突電流を低減することができる。   According to the sixth aspect of the air conditioner of the present invention, the capacitor can be charged by full-wave rectification via the second charging path and the second power supply line, and thus the time required for charging the capacitor can be shortened. Furthermore, in the case of the second and third aspects, it is possible to reduce the rush current to the outdoor unit control unit and the outdoor unit driving power supply unit.

第1の実施の形態.
本発明に係る第1の実施の形態の空気調和機の一例の概念的な構成図を図1に示す。
First embodiment.
The conceptual block diagram of an example of the air conditioner of 1st Embodiment which concerns on this invention is shown in FIG.

本空気調和機1は、交流が供給される電源供給線ACL1,ACL2と、伝送線COMLと、室内機10と、室外機20とを備えている。室内機10と室外機20はそれぞれ電源供給線ACL1,ACL2、伝送線COMLによって相互に接続されている。   The air conditioner 1 includes power supply lines ACL1 and ACL2 to which alternating current is supplied, a transmission line COML, an indoor unit 10, and an outdoor unit 20. The indoor unit 10 and the outdoor unit 20 are connected to each other by power supply lines ACL1, ACL2 and a transmission line COML, respectively.

室内機10は、室内機制御部11と、室内機制御電力供給部12と、室内機通信部15と、室内機選択部MR10(例えばリレー、以下リレーMR10と呼ぶ)とを備えている。   The indoor unit 10 includes an indoor unit control unit 11, an indoor unit control power supply unit 12, an indoor unit communication unit 15, and an indoor unit selection unit MR10 (for example, a relay, hereinafter referred to as a relay MR10).

室内機制御電力供給部12は電源供給線ACL1,ACL2の間に接続されており、当該電源供給線ACL1,ACL2を介して入力された交流電圧を直流電圧に変換して室内機制御部11へと供給する。   The indoor unit control power supply unit 12 is connected between the power supply lines ACL1 and ACL2. The AC voltage input via the power supply lines ACL1 and ACL2 is converted into a DC voltage to the indoor unit control unit 11. And supply.

リレーMR10は電源供給線ACL1と伝送線COMLとの間に接続されて、伝送線COMLと電源供給線ACL1との導通/非導通を選択する。   Relay MR10 is connected between power supply line ACL1 and transmission line COML, and selects conduction / non-conduction between transmission line COML and power supply line ACL1.

室内機制御部11はリレーMR10を制御する。また、図示せぬリモコン等によりユーザから入力された運転指令を認識することができる。運転指令とは待機中の空気調和機1を起動して、運転を開始させるための指令である。   The indoor unit control unit 11 controls the relay MR10. In addition, an operation command input from the user can be recognized by a remote controller (not shown). The operation command is a command for starting the air conditioner 1 in standby and starting the operation.

室内機通信部15は電源供給線ACL2と伝送線COMLとの間に接続されて、伝送線COMLを介して室外機20と相互に信号を送受信する。室内機通信部15の内部構成については後に詳述する。   The indoor unit communication unit 15 is connected between the power supply line ACL2 and the transmission line COML, and transmits / receives signals to / from the outdoor unit 20 via the transmission line COML. The internal configuration of the indoor unit communication unit 15 will be described in detail later.

室外機20は、室外機制御部21と、室外機制御電力供給部22と、室外機駆動電力供給部23と、伝送電力供給部24と、室外機通信部25と、主電力供給部26と、室外機駆動部27と、室外機遮断部28と、雑音低減部LC1と、リレーMRM11とを備えている。   The outdoor unit 20 includes an outdoor unit control unit 21, an outdoor unit control power supply unit 22, an outdoor unit drive power supply unit 23, a transmission power supply unit 24, an outdoor unit communication unit 25, and a main power supply unit 26. The outdoor unit drive unit 27, the outdoor unit blocking unit 28, the noise reduction unit LC1, and the relay MRM 11 are provided.

主電力供給部26は、電源供給線ACL1,ACL2と接続されており、当該電源供給線ACL1,ACL2の間に交流を供給する。なお、主電力供給部26は室外機20の代わりに室内機10が備えていてもよい。   The main power supply unit 26 is connected to the power supply lines ACL1 and ACL2, and supplies alternating current between the power supply lines ACL1 and ACL2. The main power supply unit 26 may be included in the indoor unit 10 instead of the outdoor unit 20.

雑音低減部LC1は電源供給線ACL1及びACL2の両方に介在して、電源供給線ACL1,ACL2間の交流のノイズを除去する。   The noise reduction unit LC1 is interposed in both the power supply lines ACL1 and ACL2, and removes AC noise between the power supply lines ACL1 and ACL2.

室外機制御部21は室外機制御電力供給部22から動作電圧を受けて動作する。   The outdoor unit control unit 21 operates by receiving an operating voltage from the outdoor unit control power supply unit 22.

室外機遮断部28は、選択部MRM10(例えばリレー;以下リレーMRM10と呼ぶ)と、選択部MRM20(例えばリレー;以下リレーMRM20と呼ぶ)と、抵抗R2とを備えている。リレーMRM10は一端が電源供給線ACL1と接続されている。リレーMRM20と抵抗R2は相互に直列に接続されており、当該リレーMRM20と抵抗R2の一組はリレーMRM10と並列に接続されている。リレーMRM10,MRM20は室外機制御部21の制御によって導通し、当該制御がなければ非導通となる。   The outdoor unit cutoff unit 28 includes a selection unit MRM10 (for example, a relay; hereinafter referred to as relay MRM10), a selection unit MRM20 (for example, a relay; hereinafter referred to as relay MRM20), and a resistor R2. Relay MRM10 has one end connected to power supply line ACL1. Relay MRM20 and resistor R2 are connected in series with each other, and one set of relay MRM20 and resistor R2 is connected in parallel with relay MRM10. Relays MRM10 and MRM20 are turned on under the control of the outdoor unit control unit 21, and are turned off when there is no such control.

室外機制御電力供給部22は、DC−DCコンバータ220と、ダイオードD1,D22a〜D22dと、コンデンサC22と、抵抗R1とを備えている。   The outdoor unit control power supply unit 22 includes a DC-DC converter 220, diodes D1, D22a to D22d, a capacitor C22, and a resistor R1.

ダイオードD22a〜D22dは全波整流回路を構成している。より具体的には、ダイオードD22a,D22bのカソードがコンデンサC22の一端(以下、高電位側端と呼ぶ)に接続され、ダイオードD22c,D22dのアノードがコンデンサC22の他端(以下、低電位側端と呼ぶ)に接続されている。ダイオードD22bのアノード及びダイオードD22dのカソードは共通して電源供給線ACL2に接続されている。ダイオードD22aのアノード及びダイオードD22cのカソードは共通して、室外機遮断部28を介して電源供給線ACL1と接続されている。なお、ダイオードD22a,D22cからなる経路は、室外機遮断部28を介して電源供給線ACL1と接続され、コンデンサC22を充電する電流が流れる第1充電経路と把握できる。   Diodes D22a to D22d constitute a full-wave rectifier circuit. More specifically, the cathodes of the diodes D22a and D22b are connected to one end (hereinafter referred to as a high potential side end) of the capacitor C22, and the anodes of the diodes D22c and D22d are the other end of the capacitor C22 (hereinafter referred to as a low potential side end). Connected). The anode of the diode D22b and the cathode of the diode D22d are commonly connected to the power supply line ACL2. The anode of the diode D22a and the cathode of the diode D22c are commonly connected to the power supply line ACL1 via the outdoor unit cutoff unit 28. The path formed by the diodes D22a and D22c is connected to the power supply line ACL1 via the outdoor unit cutoff unit 28, and can be understood as a first charging path through which a current for charging the capacitor C22 flows.

ダイオードD1はアノードがコンデンサC1の低電位側端と、カソードが抵抗R1を介して伝送線COMLと接続されている。なお、ダイオードD1、抵抗R1からなる経路は、伝送線COMLに接続され、コンデンサC22を充電する電流が流れる第2充電経路と把握することができる。   The diode D1 has an anode connected to the low potential side end of the capacitor C1, and a cathode connected to the transmission line COML via the resistor R1. The path formed by the diode D1 and the resistor R1 is connected to the transmission line COML and can be understood as a second charging path through which a current for charging the capacitor C22 flows.

DC−DCコンバータ220はコンデンサC22の両端と接続され、コンデンサC22の両端電圧を所望の電圧に変換して当該電圧を動作電圧として室外機制御部21へと出力する。   The DC-DC converter 220 is connected to both ends of the capacitor C22, converts the voltage across the capacitor C22 into a desired voltage, and outputs the voltage as an operating voltage to the outdoor unit control unit 21.

リレーMRM11は一端が電源供給線ACL2に接続されている。リレーMRM11は室外機制御部21によって制御される。なお、リレーMRM11は、配線の接続ミスによる感電防止用として設けられているが、配線の接続ミスが生じ得ない場合はなくても構わない。   One end of relay MRM11 is connected to power supply line ACL2. The relay MRM 11 is controlled by the outdoor unit control unit 21. The relay MRM 11 is provided for preventing an electric shock due to a wiring connection mistake. However, the relay MRM 11 may be omitted if a wiring connection mistake cannot occur.

室外機駆動電力供給部23は、室外機遮断部28を介して電源供給線ACL1と、リレーMRM11を介して電源供給線ACL2とそれぞれ接続されており、当該電源供給線ACL1,ACL2の間の交流が入力されて室外機駆動部27へと駆動電圧(例えば直流電圧)を供給する。なお、室外機駆動電力供給部23(あるいは更に室外機駆動部27)は、電源供給線ACL2と接続され、室外機遮断部28を介して電源供給線ACL1にも接続される内部負荷と把握することができる。   The outdoor unit driving power supply unit 23 is connected to the power supply line ACL1 via the outdoor unit cutoff unit 28 and the power supply line ACL2 via the relay MRM11, and the AC between the power supply lines ACL1 and ACL2 is connected. Is supplied to the outdoor unit drive unit 27 to supply a drive voltage (for example, DC voltage). Note that the outdoor unit drive power supply unit 23 (or further, the outdoor unit drive unit 27) is connected to the power supply line ACL2, and is grasped as an internal load connected to the power supply line ACL1 via the outdoor unit cutoff unit 28. be able to.

室外機駆動部27は、例えば圧縮機やファン等の空気調和に関する駆動機構であり、室外機駆動電力供給部23からの駆動電流を受けて動作する。   The outdoor unit driving unit 27 is a driving mechanism related to air conditioning such as a compressor and a fan, and operates by receiving a driving current from the outdoor unit driving power supply unit 23.

伝送電力供給部24は、抵抗R24a,R24bと、ダイオードD24と、ツェナダイオードZD24と、コンデンサC24とを備えている。   The transmission power supply unit 24 includes resistors R24a and R24b, a diode D24, a Zener diode ZD24, and a capacitor C24.

抵抗R24aは一端が室外機遮断部28を介して電源供給線ACL1と接続されている。ダイオードD24はアノードが抵抗R24aの他端と接続されている。ツェナダイオードZD24は、カソードがダイオードD24のカソードと、アノードが雑音低減部LC1を介さずに電源供給線ACL2と接続されている。抵抗R24b及びコンデンサC24はそれぞれツェナダイオードZD24と並列に接続されている。   One end of the resistor R24a is connected to the power supply line ACL1 via the outdoor unit cutoff unit 28. The anode of the diode D24 is connected to the other end of the resistor R24a. The Zener diode ZD24 has a cathode connected to the cathode of the diode D24 and an anode connected to the power supply line ACL2 without going through the noise reduction unit LC1. The resistor R24b and the capacitor C24 are each connected in parallel with the Zener diode ZD24.

室外機遮断部28を介して電源供給線ACL1から伝送電力供給部24に入力された交流がダイオードD24によって整流され、この整流された電流がコンデンサC24を充電する。この電流に起因するコンデンサC22の両端電圧はツェナダイオードZD24の機能により一定に維持される。当該両端電圧が室外機通信部25へと伝達される。   The alternating current input from the power supply line ACL1 to the transmission power supply unit 24 via the outdoor unit cutoff unit 28 is rectified by the diode D24, and this rectified current charges the capacitor C24. The voltage across the capacitor C22 caused by this current is kept constant by the function of the Zener diode ZD24. The both-end voltage is transmitted to the outdoor unit communication unit 25.

室外機通信部25は、ツェナダイオードZD24及びダイオードD24の間の点Pと、伝送線COMLとの間に接続されており、室内機10(より具体的には室内機通信部15)と相互に信号を送受信する。なお、伝送電力供給部24(あるいは更に室外機通信部25)は、電源供給線ACL2と接続され、室外機遮断部28を介して電源供給線ACL1にも接続される内部負荷と把握することができる。   The outdoor unit communication unit 25 is connected between the point P between the Zener diode ZD24 and the diode D24 and the transmission line COML, and is mutually connected to the indoor unit 10 (more specifically, the indoor unit communication unit 15). Send and receive signals. The transmission power supply unit 24 (or the outdoor unit communication unit 25) can be understood as an internal load connected to the power supply line ACL2 and also connected to the power supply line ACL1 via the outdoor unit cutoff unit 28. it can.

室内機通信部15及び室外機通信部25の具体的な内部構成の一例をそれぞれ図2及び図3に示す。室内機通信部15は、ダイオードD15と、抵抗R15a〜R15cと、フォトダイオードPD15と、フォトトランジスタPT15と、ツェナダイオードZD15とを備えている。   Examples of specific internal configurations of the indoor unit communication unit 15 and the outdoor unit communication unit 25 are shown in FIGS. 2 and 3, respectively. The indoor unit communication unit 15 includes a diode D15, resistors R15a to R15c, a photodiode PD15, a phototransistor PT15, and a Zener diode ZD15.

ダイオードD15、抵抗R15a,R15b、ツェナダイオードZD15は、伝送線COMLと電源供給線ACL2の間で直列に接続されている。ダイオードD15はアノードが伝送線COML側に、カソードが電源供給線ACL2側にそれぞれ接続されている。ツェナダイオードZD15はアノードが電源供給線ACL2側に、カソードが伝送線COML側にそれぞれ接続されている。   The diode D15, the resistors R15a and R15b, and the Zener diode ZD15 are connected in series between the transmission line COML and the power supply line ACL2. The diode D15 has an anode connected to the transmission line COML side and a cathode connected to the power supply line ACL2 side. The Zener diode ZD15 has an anode connected to the power supply line ACL2 side and a cathode connected to the transmission line COML side.

フォトダイオードPD15は抵抗R15bと並列に接続されており、アノードが伝送線COML側に、カソードが電源供給線ACL2側にそれぞれ接続されている。フォトトランジスタPT15及びツェナダイオードZD15は抵抗15cとそれぞれ並列に接続されている。ツェナダイオードZD15は、フォトトランジスタPT15に所定の電圧以上の電圧が印加されることを防ぐ。   The photodiode PD15 is connected in parallel with the resistor R15b, and has an anode connected to the transmission line COML side and a cathode connected to the power supply line ACL2 side. The phototransistor PT15 and the Zener diode ZD15 are respectively connected in parallel with the resistor 15c. The Zener diode ZD15 prevents a voltage higher than a predetermined voltage from being applied to the phototransistor PT15.

フォトトランジスタPT15は、例えば室内機制御部11が有する発光素子(図示せず)からの光信号を受けて導通し、フォトダイオードPD15は自身に電流が流れるときに、例えば室内機制御部11が有する受光素子(図示せず)に光信号を与える。   For example, the phototransistor PT15 is turned on by receiving an optical signal from a light emitting element (not shown) included in the indoor unit control unit 11, and the photodiode PD15 has, for example, the indoor unit control unit 11 when a current flows through the photodiode PD15. An optical signal is given to a light receiving element (not shown).

室外機通信部25は、ダイオードD25と、抵抗R25a〜R25cと、フォトダイオードPD25と、フォトトランジスタPT25と、ツェナダイオードZD25とを備えている。ツェナダイオードZD25は、フォトトランジスタPT25に所定の電圧以上の電圧が印加されることを防ぐ。   The outdoor unit communication unit 25 includes a diode D25, resistors R25a to R25c, a photodiode PD25, a phototransistor PT25, and a Zener diode ZD25. The Zener diode ZD25 prevents a voltage higher than a predetermined voltage from being applied to the phototransistor PT25.

ダイオードD25、抵抗R25a,R25b、ツェナダイオードZD25は、点Pと伝送線COMLとの間で直列に接続されている。ダイオードD25はアノードが点P側に、カソードが伝送線COML側にそれぞれ接続されている。   The diode D25, resistors R25a and R25b, and Zener diode ZD25 are connected in series between the point P and the transmission line COML. The diode D25 has an anode connected to the point P side and a cathode connected to the transmission line COML side.

フォトダイオードPD25は抵抗R25bと並列に接続されており、アノードが点P側に、カソードが伝送線COML側にそれぞれ接続されている。フォトトランジスタPT25及びツェナダイオードZD25は抵抗R25cとそれぞれ並列に接続されている。   The photodiode PD25 is connected in parallel with the resistor R25b, and the anode is connected to the point P side and the cathode is connected to the transmission line COML side. The phototransistor PT25 and the Zener diode ZD25 are connected in parallel with the resistor R25c.

フォトトランジスタPT25は、例えば室外機制御部21が有する発光素子(図示せず)からの光信号を受けて導通し、フォトダイオードPD25は自身に電流が流れるときに例えば室外機制御部21が有する受光素子(図示せず)に光信号を与える。   The phototransistor PT25 is turned on by receiving an optical signal from a light emitting element (not shown) included in the outdoor unit control unit 21, for example, and the photodiode PD25 receives light received in the outdoor unit control unit 21, for example, when a current flows through itself. An optical signal is applied to an element (not shown).

通常運転において例えば室内機制御部11及び室外機制御部21は、フォトトランジスタPT15,PT25へ光信号を送っていない。よって、フォトトランジスタPT15,PT25はそれぞれ非導通しており、点Pから室外機通信部25、伝送線COML、室内機通信部15(図1も参照)へとオフ電流が流れている。   In normal operation, for example, the indoor unit control unit 11 and the outdoor unit control unit 21 do not send optical signals to the phototransistors PT15 and PT25. Accordingly, the phototransistors PT15 and PT25 are non-conductive, and an off-current flows from the point P to the outdoor unit communication unit 25, the transmission line COML, and the indoor unit communication unit 15 (see also FIG. 1).

そして、例えば室内機10から室外機20へと伝送線COMLを介して信号を伝達する際には、例えば室内機制御部11は光信号を与えてフォトトランジスタPT15を導通とする。また室外機制御部21は室内機10からの信号を確認するために光信号を与えてフォトトランジスタPT25を導通する。フォトトランジスタPT15,PT25が導通することにより伝送線COMLにオン電流が流れ、フォトダイオードPD25からの光信号により、室内機10からの信号の伝達を認識する。室外機20から室内機10への信号の伝達も同様にして行われる。   For example, when transmitting a signal from the indoor unit 10 to the outdoor unit 20 via the transmission line COML, for example, the indoor unit control unit 11 provides an optical signal to turn on the phototransistor PT15. In addition, the outdoor unit control unit 21 provides an optical signal to confirm the signal from the indoor unit 10 and conducts the phototransistor PT25. When the phototransistors PT15 and PT25 are turned on, an on-current flows through the transmission line COML, and transmission of a signal from the indoor unit 10 is recognized by an optical signal from the photodiode PD25. Signal transmission from the outdoor unit 20 to the indoor unit 10 is performed in the same manner.

このような構成の空気調和機1において、室外機20を起動する際の空気調和機1の動作について図4を参照して説明する。図4は運転指令、リレーMR10,MRM10,MRM20,MRM11、コンデンサC22の両端電圧、コンデンサC24の両端電圧、室外機駆動電力供給部23が出力する直流電圧、を示している。   In the air conditioner 1 having such a configuration, the operation of the air conditioner 1 when starting the outdoor unit 20 will be described with reference to FIG. FIG. 4 shows the operation command, the relay MR10, MRM10, MRM20, MRM11, the voltage across the capacitor C22, the voltage across the capacitor C24, and the DC voltage output by the outdoor unit driving power supply unit 23.

まず、待機状態においては、リレーMR10,MRM10,MRM11,MRM20は非導通となっている。   First, in the standby state, relays MR10, MRM10, MRM11, and MRM20 are non-conductive.

そして、ユーザにより運転指令が図示せぬリモコン等により入力されると、室内機制御部11が当該入力を認識して、リレーMR10を導通させる(図4中の状態1を参照)。   When the operation command is input by the user using a remote controller (not shown) or the like, the indoor unit control unit 11 recognizes the input and turns on the relay MR10 (see state 1 in FIG. 4).

当該リレーMR10の導通により、図5に示すように、主電力供給部26、電源供給線ACL1、リレーMR10、伝送線COML、抵抗R1、ダイオードD1、コンデンサC22、ダイオードD22b、電源供給線ACL2、雑音低減部LC1からなる第1回路に電流が流れる。この場合、当該第1回路を流れる電流はダイオードD1,D22bによって整流される。より具体的には、主電力供給部26が供給する交流のうち図5中の矢印で示す方向の半周期が当該第1回路を流れる。   Due to the conduction of the relay MR10, as shown in FIG. 5, the main power supply unit 26, the power supply line ACL1, the relay MR10, the transmission line COML, the resistor R1, the diode D1, the capacitor C22, the diode D22b, the power supply line ACL2, the noise A current flows through the first circuit including the reduction unit LC1. In this case, the current flowing through the first circuit is rectified by the diodes D1 and D22b. More specifically, out of the alternating current supplied by the main power supply unit 26, a half cycle in the direction indicated by the arrow in FIG. 5 flows through the first circuit.

従って、コンデンサC22には直流電圧が充電される。なお、抵抗R1は当該電流が流れる際の突電流を防止する。なお、コンデンサC22は、伝送線COMLに接続される抵抗R1、ダイオードD1を有する第2充電経路と接続されて、電源供給線ACL2を流れる電流によって充電される、と把握できる。   Accordingly, the capacitor C22 is charged with a DC voltage. The resistor R1 prevents an inrush current when the current flows. It can be understood that the capacitor C22 is connected to the second charging path having the resistor R1 and the diode D1 connected to the transmission line COML, and is charged by the current flowing through the power supply line ACL2.

そして、室外機制御電力供給部22は、充電されたコンデンサC22の両端電圧をDC−DCコンバータ220によって適切な電圧値に変換し、当該電圧を動作電圧として室外機制御部21へと供給する。   The outdoor unit control power supply unit 22 converts the charged voltage across the capacitor C22 into an appropriate voltage value by the DC-DC converter 220, and supplies the voltage to the outdoor unit control unit 21 as an operating voltage.

当該動作電圧の供給を受けた室外機制御部21は、リレーMRM11,MRM20を導通させる(図4中の状態2を参照)。当該リレーMRM11,MRM20の導通により、室外機駆動電力供給部23にも電力が供給される。より具体的には、主電力供給部26、電源供給線ACL1、雑音低減部LC1、リレーMRM20、抵抗R2、室外機駆動電力供給部23、リレーMRM11、電源供給線ACL2からなる回路に交流が流れる。なお、リレーMRM10に先立ってリレーMRM20を導通させることにより、抵抗R2を介して室外機駆動電力供給部23へ交流を供給でき、以って突電流が流れることを防止している。   The outdoor unit control unit 21 that has received the supply of the operating voltage turns on the relays MRM11 and MRM20 (see state 2 in FIG. 4). Electric power is also supplied to the outdoor unit driving power supply unit 23 by the conduction of the relays MRM11 and MRM20. More specifically, an alternating current flows through a circuit including the main power supply unit 26, the power supply line ACL1, the noise reduction unit LC1, the relay MRM20, the resistor R2, the outdoor unit driving power supply unit 23, the relay MRM11, and the power supply line ACL2. . Note that by making the relay MRM20 conductive prior to the relay MRM10, alternating current can be supplied to the outdoor unit drive power supply unit 23 via the resistor R2, thereby preventing a rush current from flowing.

また、リレーMRM20の導通によって、図6に示すように、電源供給線ACL1、雑音低減部LC1、リレーMRM20、抵抗R2、ダイオードD22a〜D22d、コンデンサC22、電源供給線ACL2からなる第2回路にも電流が流れる。当該第2回路の導通によっても、コンデンサC22は充電される。なお、コンデンサC22は、室外機遮断部28を介して電源供給線ACL1に接続されるダイオードD22a,D22cを有する第1充電経路と接続されて、電源供給線ACL2を流れる電流によって充電される、と把握できる。   Further, due to the conduction of relay MRM20, as shown in FIG. 6, the second circuit including power supply line ACL1, noise reduction unit LC1, relay MRM20, resistor R2, diodes D22a to D22d, capacitor C22, and power supply line ACL2 is also provided. Current flows. The capacitor C22 is also charged by the conduction of the second circuit. The capacitor C22 is connected to the first charging path having the diodes D22a and D22c connected to the power supply line ACL1 via the outdoor unit cutoff unit 28, and is charged by the current flowing through the power supply line ACL2. I can grasp.

また、リレーMRM20の導通によって伝送電力供給部24にも電流が流れる。より具体的には、所定の半周期において主電力供給部26からの交流が図7中の太線で示す回路を実線矢印で示す方向に流れ、コンデンサC24に直流電圧が充電される。他の半周期においては2点波線矢印で示す方向に電流が流れる。   Further, a current also flows through the transmission power supply unit 24 due to the conduction of the relay MRM 20. More specifically, the alternating current from the main power supply unit 26 flows in the direction indicated by the solid line arrow in FIG. 7 in the direction indicated by the solid line arrow in a predetermined half cycle, and the DC voltage is charged in the capacitor C24. In the other half cycle, current flows in the direction indicated by the two-dot dashed line arrow.

このときのコンデンサC24の両端電圧の変動は回路抵抗に依存するが、本第1の実施の形態においては次の理由によりわずかに上昇している(図4参照)。具体的には、他の半周期において室外機通信部25を介して電流が流れている。室外機制御部21は光信号を室外機通信部25に与えないので、フォトトランジスタPT25は非導通である(図3も参照)。よって、当該他の半周期においては、コンデンサC24から放電される電流が、抵抗R25b,R25c(図3も参照)を通る。   The fluctuation of the voltage across the capacitor C24 at this time depends on the circuit resistance, but in the first embodiment, it slightly increases for the following reason (see FIG. 4). Specifically, current flows through the outdoor unit communication unit 25 in another half cycle. Since the outdoor unit control unit 21 does not give an optical signal to the outdoor unit communication unit 25, the phototransistor PT25 is non-conductive (see also FIG. 3). Therefore, in the other half cycle, the current discharged from the capacitor C24 passes through the resistors R25b and R25c (see also FIG. 3).

R15c、R25cは室外機20への電源が遮断された時に、コンデンサC22の電荷を放電する為の抵抗であるが、フォトトランジスタPT15、PT25が非導通であるときに伝送線COMLに流れる電流も小さく設定する必要があるので、一般に抵抗値が高い。よって、当該他の半周期において流れる放電電流は、所定の半周期においてコンデンサC22に供給される充電電流に比べて小さく、全体としてコンデンサC24の両端電圧はわずかに上昇する。   R15c and R25c are resistors for discharging the charge of the capacitor C22 when the power supply to the outdoor unit 20 is cut off, but the current flowing through the transmission line COML is small when the phototransistors PT15 and PT25 are non-conductive. Since it is necessary to set, the resistance value is generally high. Therefore, the discharge current flowing in the other half cycle is smaller than the charging current supplied to the capacitor C22 in a predetermined half cycle, and the voltage across the capacitor C24 slightly increases as a whole.

次に、室外機制御部21はリレーMRM10を導通させる。当該リレーMRM10の導通により、室外機制御電力供給部22、室外機駆動電力供給部23へ供給される交流は抵抗R2を迂回するので、抵抗R2による不要な電圧降下を避けることができ、コンデンサC22及び室外機駆動電力供給部23に所望の直流電圧を充電できる。   Next, the outdoor unit control unit 21 turns on the relay MRM10. Due to the conduction of the relay MRM10, the alternating current supplied to the outdoor unit control power supply unit 22 and the outdoor unit drive power supply unit 23 bypasses the resistor R2. Therefore, an unnecessary voltage drop due to the resistor R2 can be avoided, and the capacitor C22. In addition, the outdoor unit driving power supply unit 23 can be charged with a desired DC voltage.

その後、室外機制御部21はリレーMRM20を遮断する。そして、室内機制御部11はリレーMR10を遮断する(図4中の状態3を参照)。   Thereafter, the outdoor unit control unit 21 shuts off the relay MRM20. And the indoor unit control part 11 interrupts | blocks relay MR10 (refer the state 3 in FIG. 4).

当該リレーMR10の遮断により、他の半周期においてコンデンサC24は放電する経路を失うので、コンデンサC24の両端電圧は所定の値(ツェナダイオードZD24のツェナー電圧)まで上昇する(図4中の状態3を参照)。   As the relay MR10 is cut off, the capacitor C24 loses the discharge path in the other half cycle, so that the voltage across the capacitor C24 rises to a predetermined value (the Zener voltage of the Zener diode ZD24) (state 3 in FIG. 4). reference).

また当該リレーMR10の遮断により、伝送線COMLには主電力供給部26からの交流が伝達されないので、抵抗R1、ダイオードD1を介した第2充電経路によるコンデンサC22の充電は停止する。   Further, since the AC from the main power supply unit 26 is not transmitted to the transmission line COML due to the interruption of the relay MR10, the charging of the capacitor C22 through the second charging path via the resistor R1 and the diode D1 is stopped.

そして、室内機制御部11、室外機制御部21は通常運転へと移行する。   And the indoor unit control part 11 and the outdoor unit control part 21 transfer to a normal driving | operation.

なお、ツェナダイオードZD24によって点Pの電位は電源供給線ACL2の電位よりも高いので、コンデンサC22の低電位側端の電位は伝送線COMLの電位に比べて低い。これにより、ダイオードD1、抵抗R1を介してコンデンサC22から伝送線COMLへと電流が流れることを防ぐことができ、通常運転における伝送線COMLを介した室内機10、室外機20間の通信を阻害しない。なお、室外機通信部25は伝送線COMLを介して、コンデンサC22の低電位側端の電位以上の電位を信号として室内機10へ伝達する、と把握することができる。   Since the Zener diode ZD24 causes the potential at the point P to be higher than the potential of the power supply line ACL2, the potential at the low potential side end of the capacitor C22 is lower than the potential of the transmission line COML. As a result, current can be prevented from flowing from the capacitor C22 to the transmission line COML via the diode D1 and the resistor R1, and communication between the indoor unit 10 and the outdoor unit 20 via the transmission line COML during normal operation is obstructed. do not do. Note that the outdoor unit communication unit 25 can grasp that a potential equal to or higher than the potential at the low potential side end of the capacitor C22 is transmitted as a signal to the indoor unit 10 via the transmission line COML.

以上のように、リレーMR10が導通することにより、コンデンサC22は電源供給線ACL1と、伝送線COMLと、抵抗R1、ダイオードD1を有する第2充電経路と、電源供給線ACL2とを流れる電流によって充電される。かかる充電により、室外機制御部21が給電され、その動作が可能となる。そして室外機制御部21が動作可能となることにより、リレーMRM20(若しくはリレーMRM10)を導通させることができる。これにより室外機駆動電力供給部23や伝送電力供給部24に電源が供給される。しかも、コンデンサC22は、ダイオードD22a,D22cを有する第1充電経路によっても充電されるので、抵抗R1、ダイオードD1を有する第2充電経路をカットすることができる。具体的には、リレーMR10を非導通にできるので、一旦、ダイオードD22a,D22cを有する第1充電経路による充電が生じた後は、伝送線COMLに充電電流を流す必要が無く、信号伝達のために伝送線COMLを用いることができる。   As described above, when the relay MR10 is turned on, the capacitor C22 is charged by the current flowing through the power supply line ACL1, the transmission line COML, the second charging path including the resistor R1 and the diode D1, and the power supply line ACL2. Is done. By such charging, the outdoor unit control unit 21 is supplied with power and can operate. When the outdoor unit control unit 21 becomes operable, the relay MRM 20 (or the relay MRM 10) can be turned on. As a result, power is supplied to the outdoor unit drive power supply unit 23 and the transmission power supply unit 24. In addition, since the capacitor C22 is also charged by the first charging path having the diodes D22a and D22c, the second charging path having the resistor R1 and the diode D1 can be cut. Specifically, since the relay MR10 can be made non-conductive, once charging has occurred through the first charging path having the diodes D22a and D22c, there is no need to flow a charging current through the transmission line COML, and signal transmission is possible. A transmission line COML can be used.

また、特許文献1(特開2005−257238号公報)に記載の態様(背景技術の欄で述べた態様を参照)に比べて、第1スイッチを不要とすることができる。よって第1スイッチに起因する不要なスイッチ損失の発生を防止でき、また回路規模や製造コストを低減することができる。   In addition, the first switch can be omitted as compared with the aspect described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-257238) (see the aspect described in the background art section). Therefore, unnecessary switch loss due to the first switch can be prevented, and the circuit scale and manufacturing cost can be reduced.

なお、本第1の実施の形態においては、室外機制御電力供給部22はダイオードD22a〜D22d、コンデンサC22からなる全波整流回路を備えているがこれに限らず、倍電圧整流回路を備えていてもよい。   In the first embodiment, the outdoor unit control power supply unit 22 includes a full-wave rectifier circuit including diodes D22a to D22d and a capacitor C22, but is not limited thereto, and includes a voltage doubler rectifier circuit. May be.

なお、本第1の実施の形態においては、ダイオードD1がコンデンサC22の低電位側端に接続されているがこれに限らず、ダイオードD1のカソードがコンデンサC22の高電位側端に、アノードが抵抗R1を介して伝送線COMLに接続されていてもよい。この場合、通常運転において室外機通信部25は伝送線COMLを介して、コンデンサC22の高電位側端の電位以下の電位を信号として室内機10へ伝達すればよい。   In the first embodiment, the diode D1 is connected to the low potential end of the capacitor C22. However, the present invention is not limited to this, and the cathode of the diode D1 is connected to the high potential end of the capacitor C22 and the anode is a resistor. It may be connected to the transmission line COML via R1. In this case, during normal operation, the outdoor unit communication unit 25 may transmit a potential equal to or lower than the potential at the high potential side end of the capacitor C22 to the indoor unit 10 through the transmission line COML.

第2の実施の形態.
第2の実施の形態に係る空気調和機の一例の概念的な構成図を図8に示す。第1の実施の形態と比較して、室外機制御電力供給部22はダイオードD2を更に備えている。その他の構成は第1の実施の形態と同一である。また、起動時における室内機制御部11、室外機制御部21の動作は第1の実施の形態と同一であるため詳細な説明は省略し、第1の実施の形態と異なる点のみについて詳述する。
Second embodiment.
FIG. 8 shows a conceptual configuration diagram of an example of an air conditioner according to the second embodiment. Compared to the first embodiment, the outdoor unit control power supply unit 22 further includes a diode D2. Other configurations are the same as those of the first embodiment. Further, since the operations of the indoor unit control unit 11 and the outdoor unit control unit 21 at the time of activation are the same as those in the first embodiment, detailed description thereof will be omitted, and only differences from the first embodiment will be described in detail. To do.

ダイオードD2はアノードが抵抗R1とダイオードD1との間に、カソードがコンデンサC22の高電位側端にそれぞれ接続されている。ダイオードD2は、ダイオードD1,D22b,D22dと共に全波整流回路を構成している。   The diode D2 has an anode connected between the resistor R1 and the diode D1, and a cathode connected to the high potential side end of the capacitor C22. The diode D2 constitutes a full-wave rectifier circuit together with the diodes D1, D22b, and D22d.

本第2の実施の形態に係る空気調和機1においては、室内機制御部11がリレーMR10を導通させると、主電力供給部26からの交流が、電源供給線ACL1、リレーMR10、伝送線COML、抵抗R1、ダイオードD1,D2、コンデンサC22、ダイオードD22b,22d、電源供給線ACL2、雑音低減部LC1からなる回路に電流が流れる。   In the air conditioner 1 according to the second embodiment, when the indoor unit control unit 11 causes the relay MR10 to conduct, the alternating current from the main power supply unit 26 is converted to the power supply line ACL1, the relay MR10, and the transmission line COML. , A current flows through a circuit including the resistor R1, the diodes D1 and D2, the capacitor C22, the diodes D22b and 22d, the power supply line ACL2, and the noise reduction unit LC1.

よって、ダイオードD1,D2,D22b,D22dを介して全波整流してコンデンサC22を充電できる。ひいては、起動時におけるコンデンサC22の充電時間を短縮することができる。   Therefore, full-wave rectification can be performed via the diodes D1, D2, D22b, and D22d to charge the capacitor C22. As a result, the charge time of the capacitor | condenser C22 at the time of starting can be shortened.

第3の実施の形態.
本発明に係る第3の実施の形態の空気調和機の一例の概念的な構成図を図9に示す。第1の実施の形態と比較して構成上の相違点を説明する。
Third embodiment.
The conceptual block diagram of an example of the air conditioner of 3rd Embodiment which concerns on this invention is shown in FIG. Differences in configuration compared to the first embodiment will be described.

室外機20はコイルL1を更に備えている。コイルL1は力率を改善するためであり、第1の実施の形態および第2の実施の形態では室外機駆動電力供給部23に含まれる。室外機遮断部28はリレーMRM10を備えている。室外機制御電力供給部22は、抵抗R1と、ダイオードD1,D22a〜D22dと、コンデンサC22a,C22bと、DC−DCコンバータ220とを備えている。   The outdoor unit 20 further includes a coil L1. The coil L1 is for improving the power factor, and is included in the outdoor unit driving power supply unit 23 in the first embodiment and the second embodiment. The outdoor unit cutoff unit 28 includes a relay MRM10. The outdoor unit control power supply unit 22 includes a resistor R1, diodes D1, D22a to D22d, capacitors C22a and C22b, and a DC-DC converter 220.

コイルL1は、電源供給線ACL1上であって雑音低減部LC1とダイオードD22aのアノード(ダイオードD22cのカソード)との間に接続されている。   The coil L1 is on the power supply line ACL1 and is connected between the noise reduction unit LC1 and the anode of the diode D22a (the cathode of the diode D22c).

リレーMRM10は電源供給線ACL1上であって主電力供給部26と雑音低減部LC1との間に接続されている。   Relay MRM10 is on power supply line ACL1 and is connected between main power supply unit 26 and noise reduction unit LC1.

コンデンサC22a,C22bは直列に接続されており、ダイオードD22a,D22cおよびD22b,D22dの二組はコンデンサC22a,C22bの一組と並列に接続されている。コンデンサC22a,C22bの間は電源供給線ACL2が接続されている。ダイオードD22a,D22c、コンデンサC22a,C22bは倍電圧整流回路を構成している。ダイオードD22bのアノードおよびD22dのカソードはコンデンサC22a,C22b間に接続され、各コンデンサC22a,C22bに逆電圧がかかるのを防止する。なお、ダイオードD22a,D22cからなる経路は、リレーMRM10を介して電源供給線ACL1と接続され、コンデンサC22a,C22bを充電する電流が流れる第1充電経路と把握することができる。   Capacitors C22a and C22b are connected in series, and two sets of diodes D22a and D22c and D22b and D22d are connected in parallel with one set of capacitors C22a and C22b. A power supply line ACL2 is connected between the capacitors C22a and C22b. The diodes D22a and D22c and the capacitors C22a and C22b constitute a voltage doubler rectifier circuit. The anode of the diode D22b and the cathode of the D22d are connected between the capacitors C22a and C22b to prevent reverse voltages from being applied to the capacitors C22a and C22b. The path formed by the diodes D22a and D22c is connected to the power supply line ACL1 via the relay MRM10 and can be understood as a first charging path through which a current for charging the capacitors C22a and C22b flows.

ダイオードD1のアノードは、コンデンサC22aと反対側に位置するコンデンサC22bの一端(低電位側端)と接続されている。なお、ダイオードD1、抵抗R1からなる経路は、伝送線COMLと接続され、コンデンサC22bを充電する電流が流れる第2充電経路と把握できる。   The anode of the diode D1 is connected to one end (low potential side end) of a capacitor C22b located on the opposite side of the capacitor C22a. The path formed by the diode D1 and the resistor R1 can be grasped as the second charging path that is connected to the transmission line COML and through which the current for charging the capacitor C22b flows.

室外機駆動電力供給部23はコンデンサC22a,C22bの一組の両端と接続されている。   The outdoor unit driving power supply unit 23 is connected to both ends of a set of capacitors C22a and C22b.

このような構成の空気調和機1において、室外機20を起動する際の空気調和機の動作について、第1の実施の形態との相違点を説明する。   In the air conditioner 1 having such a configuration, the operation of the air conditioner when starting the outdoor unit 20 will be described with respect to differences from the first embodiment.

まず、室内機制御部11がリレーMR10を導通させると、主電力供給部26、電源供給線ACL1、リレーMR10、伝送線COML、抵抗R1、ダイオードD1、コンデンサC22b、電源供給線ACL2、雑音低減部LC1からなる回路に電流が流れる。この回路に流れる電流はダイオードD1によって整流されるので、コンデンサC22bには直流電圧が充電される。   First, when the indoor unit control unit 11 turns on the relay MR10, the main power supply unit 26, the power supply line ACL1, the relay MR10, the transmission line COML, the resistor R1, the diode D1, the capacitor C22b, the power supply line ACL2, and the noise reduction unit. A current flows through the circuit composed of LC1. Since the current flowing through this circuit is rectified by the diode D1, the capacitor C22b is charged with a DC voltage.

充電されたコンデンサC22bの両端電圧はコンデンサC22aを介してDC−DCコンバータ220に入力される。DC−DCコンバータ220は入力された電圧を適切な電圧値に変換し、動作電圧として室外機制御部21へと出力する。また、充電されたコンデンサC22bの両端電圧はコンデンサC22aを介して室外機駆動電力供給部23へも供給される。   The charged voltage across the capacitor C22b is input to the DC-DC converter 220 via the capacitor C22a. The DC-DC converter 220 converts the input voltage into an appropriate voltage value, and outputs it to the outdoor unit control unit 21 as an operating voltage. The charged voltage across the capacitor C22b is also supplied to the outdoor unit driving power supply unit 23 via the capacitor C22a.

そして、動作電圧の供給を受けた室外機制御部21はリレーMRM10を導通させる。当該リレーMRM10の導通によって、主電力供給部26、電源供給線ACLl、リレーMRM10、雑音低減部LC1、コイルL1、ダイオードD22a,D22c、コンデンサC22a,C22b、電源供給線ACL2からなる回路にも電流が流れる。よって、コンデンサC22a,C22bが充電される。   And the outdoor unit control part 21 which received supply of the operating voltage makes the relay MRM10 conduct | electrically_connecting. Due to the conduction of the relay MRM10, a current is also supplied to the circuit including the main power supply unit 26, the power supply line ACL1, the relay MRM10, the noise reduction unit LC1, the coil L1, the diodes D22a and D22c, the capacitors C22a and C22b, and the power supply line ACL2. Flowing. Therefore, the capacitors C22a and C22b are charged.

また、当該リレーMRM10の導通によって、第1の実施の形態と同様に伝送電力供給部24へも電流が供給される。   Further, as the relay MRM 10 is turned on, a current is also supplied to the transmission power supply unit 24 as in the first embodiment.

その後、室内機制御部11はリレーMR10を非導通とし、室内機制御部11、室外機制御部21は通常運転へと移行する。   Thereafter, the indoor unit control unit 11 turns off the relay MR10, and the indoor unit control unit 11 and the outdoor unit control unit 21 shift to normal operation.

本第3の実施の形態に係る空気調和機1においては、室外機駆動電力供給部23がコンデンサC22a,C22bの一組の両端に接続されている。よって、同じコンデンサC22a,C22bを用いて室外機制御部21及び室外機駆動電力供給部23へと電力を供給でき、回路規模や製造コストを低減できる。   In the air conditioner 1 according to the third embodiment, the outdoor unit driving power supply unit 23 is connected to both ends of a set of capacitors C22a and C22b. Therefore, electric power can be supplied to the outdoor unit control unit 21 and the outdoor unit driving power supply unit 23 using the same capacitors C22a and C22b, and the circuit scale and manufacturing cost can be reduced.

なお、第3の実施の形態において、リレーMR10のみが導通しているときは、コンデンサC22bにのみ充電され、コンデンサC22aには充電されない。この状態で室外機制御部21がリレーMRM10を導通させるので、コンデンサC22aを充電する為の大きな突入電流が流れる可能性がある。   In the third embodiment, when only the relay MR10 is conducting, only the capacitor C22b is charged, and the capacitor C22a is not charged. In this state, the outdoor unit control unit 21 causes the relay MRM10 to conduct, so that a large inrush current for charging the capacitor C22a may flow.

そこで、本第3の実施の形態においても、図10に示すように第2の実施の形態と同様にダイオードD2を設けてもよい。この場合、リレーMR10のみが導通しているときでも、ダイオードD1,D2を介した全波倍電圧整流によりコンデンサC22a,C22bを充電できるので、室外機制御部21がリレーMRM10を導通させた際の突入電流の発生を防止できる。   Therefore, also in the third embodiment, a diode D2 may be provided as in the second embodiment, as shown in FIG. In this case, even when only the relay MR10 is conducting, the capacitors C22a and C22b can be charged by full-wave voltage doubler rectification via the diodes D1 and D2, and therefore when the outdoor unit control unit 21 conducts the relay MRM10. Generation of inrush current can be prevented.

なお、本第3の実施の形態においては、室外機制御電力供給部22はダイオードD22b,D22dを備えているが,逆電圧がないあるいは問題がない場合は備えなくてもよい。このとき、ダイオードD1、D2の何れか一方を備えていてもよく、両方を備えていてもよい。   In the third embodiment, the outdoor unit control power supply unit 22 includes the diodes D22b and D22d. However, the outdoor unit control power supply unit 22 may be omitted if there is no reverse voltage or no problem. At this time, either one of the diodes D1 and D2 may be provided, or both may be provided.

第1の実施の形態にかかる空気調和機の一例の概念的な構成図である。It is a notional block diagram of an example of the air conditioner concerning 1st Embodiment. 室内機通信部の概念的な内部構成図である。It is a notional internal block diagram of an indoor unit communication unit. 室外機通信部の概念的な内部構成図である。It is a notional internal block diagram of an outdoor unit communication part. 第1の実施の形態にかかる空気調和機を起動する際の動作を説明するための図である。It is a figure for demonstrating the operation | movement at the time of starting the air conditioner concerning 1st Embodiment. 第1の実施の形態にかかる空気調和機の一例の概念的な構成図である。It is a notional block diagram of an example of the air conditioner concerning 1st Embodiment. 第1の実施の形態にかかる空気調和機の一例の概念的な構成図である。It is a notional block diagram of an example of the air conditioner concerning 1st Embodiment. 第1の実施の形態にかかる空気調和機の一例の概念的な構成図である。It is a notional block diagram of an example of the air conditioner concerning 1st Embodiment. 第2の実施の形態にかかる空気調和機の一例の概念的な構成図である。It is a notional block diagram of an example of the air conditioner concerning 2nd Embodiment. 第3の実施の形態にかかる空気調和機の一例の概念的な構成図である。It is a notional block diagram of an example of the air conditioner concerning 3rd Embodiment. 第3の実施の形態にかかる空気調和機の一例の概念的な構成図である。It is a notional block diagram of an example of the air conditioner concerning 3rd Embodiment.

符号の説明Explanation of symbols

1 空気調和機
10 室内機
20 室外機
21 室外機制御部
22 室外機制御電力供給部
ACL1,ACL2 電源供給線
COML 伝送線
C22,C22a,C22b コンデンサ
D1,D2 ダイオード
MR10,MRM10,MRM20 リレー
DESCRIPTION OF SYMBOLS 1 Air conditioner 10 Indoor unit 20 Outdoor unit 21 Outdoor unit control part 22 Outdoor unit control electric power supply part ACL1, ACL2 Power supply line COML Transmission line C22, C22a, C22b Capacitor D1, D2 Diode MR10, MRM10, MRM20 Relay

Claims (6)

交流が供給される第1及び第2電源供給線(ACL1,ACL2)と、
伝送線(COML)と、
前記伝送線と前記第1電源供給線との導通/非導通を制御する第1選択部(MR10)を有する室内機(10)と、
動作電圧を受けて動作する室外機制御部(21)と、
前記室外機制御部の制御によって導通し、当該制御がなければ非導通となる第2選択部(MRM10;MRM20)と、
第2電源供給線と接続され、前記第2選択部を介して前記第1電源供給線にも接続される内部負荷(23;24,25)と、
前記第2選択部を介して前記第1電源供給線に接続される第1充電経路(D22a,D22c)と、前記伝送線に接続される第2充電経路(R1,D1;D2)と、前記第1充電経路及び前記第2充電経路と接続されて、前記第2電源供給線を流れる電流によって充電されるコンデンサ(C22;C22a,C22b)とを含み、当該コンデンサの両端電圧を前記動作電圧として出力する室外制御電力供給部(22)と
を有する室外機(20)と
を備える、空気調和機(1)。
First and second power supply lines (ACL1, ACL2) supplied with alternating current;
Transmission line (COML),
An indoor unit (10) having a first selection unit (MR10) for controlling conduction / non-conduction between the transmission line and the first power supply line;
An outdoor unit controller (21) that operates in response to an operating voltage;
A second selection unit (MRM10; MRM20) that is turned on by the control of the outdoor unit control unit and is turned off if there is no such control;
An internal load (23; 24, 25) connected to the second power supply line and also connected to the first power supply line via the second selector;
A first charging path (D22a, D22c) connected to the first power supply line via the second selection unit; a second charging path (R1, D1; D2) connected to the transmission line; A capacitor (C22; C22a, C22b) connected to the first charging path and the second charging path and charged by a current flowing through the second power supply line, and the voltage across the capacitor as the operating voltage An air conditioner (1) comprising an outdoor unit (20) having an outdoor control power supply unit (22) for outputting.
前記室外機(20)は、
空気調和に関する室外機駆動機構(27)と、
前記コンデンサ(C22;C22a,C22b)の両端電圧が入力されて、前記室外機駆動機構へと駆動電流を供給する室外機駆動電力供給部(23)
を更に備える、請求項1に記載の空気調和機。
The outdoor unit (20)
Outdoor unit drive mechanism (27) for air conditioning,
An outdoor unit drive power supply unit (23) that receives a voltage across the capacitor (C22; C22a, C22b) and supplies a drive current to the outdoor unit drive mechanism
The air conditioner according to claim 1, further comprising:
前記第1充電経路(D22a,D22c)及び前記第2電源供給線(ACL2)は、前記コンデンサ(C22;C22a,C22b)を充電する倍電圧整流回路を構成する、請求項1又は2に記載の空気調和機。   The first charging path (D22a, D22c) and the second power supply line (ACL2) constitute a voltage doubler rectifier circuit that charges the capacitor (C22; C22a, C22b). Air conditioner. 前記内部負荷(24,25)は、前記伝送線(COML)を介して前記コンデンサ(C22;C22a,C22b)の低電位側端の電位以上の電位を信号として前記室内機(10)へ伝達する通信部(25)を有しており、
前記第2充電経路(R1,D1;D2)は、アノードが前記コンデンサの前記低電位側端と、カソードが前記伝送線と接続された整流素子(D1)を有する、請求項1乃至3のいずれか一つに記載の空気調和機。
The internal load (24, 25) transmits, as a signal, a potential equal to or higher than the potential at the low potential side end of the capacitor (C22; C22a, C22b) to the indoor unit (10) via the transmission line (COML). Has a communication department (25),
The second charging path (R1, D1, D2) has a rectifying element (D1) having an anode connected to the low potential side end of the capacitor and a cathode connected to the transmission line. The air conditioner as described in one.
前記内部負荷(24,25)は、前記伝送線(COML)を介して前記コンデンサ(C22;C22a,C22b)の高電位側端の電位以下の電位を信号として前記室内機(10)へ伝達する通信部(25)を有し、
前記第2充電経路(R1,D1;D2)は、カソードが前記コンデンサの高電位側端と、アノードが前記伝送線と接続された整流素子(D2)を有する、請求項1乃至3のいずれか一つに記載の空気調和機。
The internal load (24, 25) transmits, as a signal, a potential equal to or lower than the potential at the high potential side end of the capacitor (C22; C22a, C22b) to the indoor unit (10) via the transmission line (COML). Has a communication part (25),
The second charging path (R1, D1, D2) has a rectifying element (D2) having a cathode connected to a high potential side end of the capacitor and an anode connected to the transmission line. The air conditioner described in one.
前記通信部(25)は、前記伝送線(COML)を介して、前記コンデンサ(C22;C22a,C22b)の低電位側の電位以上且つ前記コンデンサの高電位側の電位以下の電位を信号として前記室内機(10)へ伝達し、
前記第2充電経路(R1,D1;D2)は、アノードが前記コンデンサの低電位側と、カソードが前記伝送線と接続された整流素子(D1)を更に有する、請求項5に記載の空気調和機。
The communication unit (25), through the transmission line (COML), the signal having a potential not lower than the potential on the low potential side of the capacitor (C22; C22a, C22b) and not higher than the potential on the high potential side of the capacitor as a signal. To the indoor unit (10)
The air conditioning according to claim 5, wherein the second charging path (R1, D1, D2) further includes a rectifying element (D1) having an anode connected to the low potential side of the capacitor and a cathode connected to the transmission line. Machine.
JP2007174282A 2007-07-02 2007-07-02 Air conditioner Active JP5125262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174282A JP5125262B2 (en) 2007-07-02 2007-07-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174282A JP5125262B2 (en) 2007-07-02 2007-07-02 Air conditioner

Publications (2)

Publication Number Publication Date
JP2009014225A true JP2009014225A (en) 2009-01-22
JP5125262B2 JP5125262B2 (en) 2013-01-23

Family

ID=40355340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174282A Active JP5125262B2 (en) 2007-07-02 2007-07-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP5125262B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392869A2 (en) 2010-06-01 2011-12-07 Mitsubishi Electric Corporation Air conditioner
CN104067063A (en) * 2012-01-26 2014-09-24 大金工业株式会社 Air conditioner
JP2015148372A (en) * 2014-02-05 2015-08-20 三菱電機株式会社 Air conditioner
CN109442595A (en) * 2018-11-05 2019-03-08 广东美的制冷设备有限公司 Air conditioner and its outdoor unit control circuit
US11168905B2 (en) 2017-11-29 2021-11-09 Tom ASCOUGH Use of cooling system to heat air supply

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019844B1 (en) * 1998-10-05 2000-03-13 ダイキン工業株式会社 Separate type air conditioner
JP2000333365A (en) * 1999-05-19 2000-11-30 Hitachi Ltd Power supply system on standby and air-conditioner and refrigerator using them
JP2000346425A (en) * 1999-06-03 2000-12-15 Hitachi Ltd Air-conditioner
JP2003287265A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Operation control device for air conditioner and operation control device for multiple air conditioner
JP2004101151A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Air-conditioner
JP2004343823A (en) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Air conditioner
JP2005257238A (en) * 2004-03-15 2005-09-22 Daikin Ind Ltd Air conditioner and control method
JP2005257239A (en) * 2004-03-15 2005-09-22 Daikin Ind Ltd Air conditioner and control method
JP2006153346A (en) * 2004-11-29 2006-06-15 Daikin Ind Ltd Air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019844B1 (en) * 1998-10-05 2000-03-13 ダイキン工業株式会社 Separate type air conditioner
JP2000111123A (en) * 1998-10-05 2000-04-18 Daikin Ind Ltd Separate type air-conditioner
JP2000333365A (en) * 1999-05-19 2000-11-30 Hitachi Ltd Power supply system on standby and air-conditioner and refrigerator using them
JP2000346425A (en) * 1999-06-03 2000-12-15 Hitachi Ltd Air-conditioner
JP2003287265A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Operation control device for air conditioner and operation control device for multiple air conditioner
JP2004101151A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Air-conditioner
JP2004343823A (en) * 2003-05-13 2004-12-02 Matsushita Electric Ind Co Ltd Air conditioner
JP2005257238A (en) * 2004-03-15 2005-09-22 Daikin Ind Ltd Air conditioner and control method
JP2005257239A (en) * 2004-03-15 2005-09-22 Daikin Ind Ltd Air conditioner and control method
JP2006153346A (en) * 2004-11-29 2006-06-15 Daikin Ind Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392869A2 (en) 2010-06-01 2011-12-07 Mitsubishi Electric Corporation Air conditioner
JP2011252646A (en) * 2010-06-01 2011-12-15 Mitsubishi Electric Corp Air conditioner
CN104067063A (en) * 2012-01-26 2014-09-24 大金工业株式会社 Air conditioner
CN104067063B (en) * 2012-01-26 2017-06-13 大金工业株式会社 Air conditioner
JP2015148372A (en) * 2014-02-05 2015-08-20 三菱電機株式会社 Air conditioner
US11168905B2 (en) 2017-11-29 2021-11-09 Tom ASCOUGH Use of cooling system to heat air supply
CN109442595A (en) * 2018-11-05 2019-03-08 广东美的制冷设备有限公司 Air conditioner and its outdoor unit control circuit

Also Published As

Publication number Publication date
JP5125262B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP6534437B2 (en) Charging system and method thereof
JP4833168B2 (en) Air conditioner
JP6157374B2 (en) Air conditioner
JP5125262B2 (en) Air conditioner
JP5154588B2 (en) Switching power supply
JP2010519885A (en) Application of the method to SMPS circuits with multiple AC / DC inputs, as well as computer power supplies and laptop adapters
JP5031444B2 (en) Electrical equipment with a noise filter circuit
JP5807649B2 (en) Power conversion device and power conversion method
JP6366820B2 (en) Power supply device and air conditioner
US7622828B2 (en) Loaded triac output system
JP6038069B2 (en) Electric vehicle charging / discharging device
JP2008141895A (en) Switching power circuit and air conditioning machine
JP3191097B2 (en) Uninterruptible power supply and charge control method thereof
JP6169329B2 (en) Power supply device and lighting device
WO2017068628A1 (en) Air conditioner
JP2006280179A (en) Dc-stabilizing power supply
JP5007764B2 (en) Motor drive system and motor system
JP2008245444A (en) Switching power supply device
JP6336209B2 (en) Air conditioner
JP4687372B2 (en) Power supply stabilization circuit for heating element storage box cooling device
JP3807917B2 (en) Power supply circuit for electronic equipment
JP4728360B2 (en) Power circuit
JP4848690B2 (en) Power supply device having voltage doubler rectification smoothing circuit
JP6054236B2 (en) Power supply circuit, semiconductor integrated circuit, isolated switching power supply
JP6693591B2 (en) Power supply and emergency lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5125262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3