JP2009013635A - Hydraulic construction machine - Google Patents

Hydraulic construction machine Download PDF

Info

Publication number
JP2009013635A
JP2009013635A JP2007175473A JP2007175473A JP2009013635A JP 2009013635 A JP2009013635 A JP 2009013635A JP 2007175473 A JP2007175473 A JP 2007175473A JP 2007175473 A JP2007175473 A JP 2007175473A JP 2009013635 A JP2009013635 A JP 2009013635A
Authority
JP
Japan
Prior art keywords
prime mover
actuator
rotational speed
operation amount
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007175473A
Other languages
Japanese (ja)
Other versions
JP5371210B2 (en
Inventor
Takatoshi Oki
孝利 大木
Tokuji Tanaka
篤司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2007175473A priority Critical patent/JP5371210B2/en
Publication of JP2009013635A publication Critical patent/JP2009013635A/en
Application granted granted Critical
Publication of JP5371210B2 publication Critical patent/JP5371210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform both an operation performed by the combined control of a specific actuator and the other actuator, and an operation performed by the single control of the specific actuator at a high operating speed by providing a relatively-low-output prime mover. <P>SOLUTION: This hydraulic construction machine is equipped with a number-of-revolutions-of-prime-mover control means which controls the number of revolutions of the prime mover 22 for a hydraulic pump to the first constant number N1 of revolutions for enabling the combined control of drive motors 13 and 14 and a boom cylinder 32 etc., when control inputs of drive motors 13 and 14 are equal to or lower than a first control input which controls the number of the revolutions of the prime mover 22 to the second large constant number N2 of revolutions, when the control inputs of drive motors 13 and 14 are equal to or higher than a second control input higher than the first control input, and controls the number of the revolutions of the prime mover 22 so that the number of the revolutions of the prime mover 22 can become gradually larger depending on an increase in the control inputs of the drive motors 13 and 14, when the control inputs of the drive motors 13 and 14 are larger than the first control input and smaller than the second control input. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原動機と、この原動機によって駆動する油圧ポンプを備えるとともに、操作装置の操作量に応じて原動機の回転数を制御可能な油圧ショベル等の油圧式建設機械に関する。   The present invention relates to a hydraulic construction machine such as a hydraulic excavator that includes a prime mover and a hydraulic pump that is driven by the prime mover, and that can control the number of revolutions of the prime mover according to the amount of operation of an operating device.

この種の従来技術として特許文献1に示されるものがある。この特許文献1には、各アクチュエータ用操作装置の操作量、すなわち操作状態、及び操作内容に応じて原動機の回転数を制御する構成が開示されている。
特開2002−266379公報
There exists a thing shown by patent document 1 as this kind of prior art. This patent document 1 discloses a configuration for controlling the rotational speed of a prime mover according to the operation amount of each actuator operating device, that is, the operation state and the operation content.
JP 2002-266379 A

上述した特許文献1に示される従来技術では、操作装置の操作量の増減に応じて単純に原動機の回転数を増減させる制御を行うものであるので、油圧ポンプの最大トルクと原動機の回転数の積で表わされる原動機に作用する最大負荷は原動機の回転数が高くなるほど大きくなってしまう。この場合、原動機は最大負荷に対応した出力特性を持つ必要があり、油圧ショベルにおける走行単独操作など使用頻度の低い動作時のみに原動機の回転数を上げる場合においても、最大負荷に応じた大出力の原動機を設けることになる。   In the prior art disclosed in Patent Document 1 described above, since control for simply increasing / decreasing the rotational speed of the prime mover according to increase / decrease in the operation amount of the operating device is performed, the maximum torque of the hydraulic pump and the rotational speed of the prime mover are controlled. The maximum load acting on the prime mover represented by the product increases as the rotational speed of the prime mover increases. In this case, the prime mover must have an output characteristic corresponding to the maximum load, and even when the prime mover speed is increased only during low-use operations such as traveling alone operation on a hydraulic excavator, a large output corresponding to the maximum load A prime mover will be provided.

例えばバッテリ駆動式油圧ショベルでは、バッテリの電力によって特定アクチュエータ例えば左右走行モータと、この左右走行モータとは異なる他のアクチュエータ例えばフロント作業機を駆動するアクチュエータとの複合操作を実施する連続作業時間を長く確保したいという要望があり、この要望に応えるために、同サイズのエンジン式油圧ショベルにおけるよりも低い回転数を定格回転数に設定する場合がある。このようなバッテリ駆動式油圧ショベルにあって上述した特定アクチュエータと他のアクチュエータとの複合操作を行なうとき、特定アクチュエータである左右走行用モータの作動速度、すなわち走行速度は比較的低速度となる。しかし、公道を横切る場合などの走行単独操作時にあっては、交通への悪影響を少なくするために走行速度を速くすることが望ましい。このように少し低い回転数を定格回転数に設定して長時間にわたる省エネ作業を可能とし、走行単独操作時のみに原動機の回転数を上げる場合であっても、従来技術にあっては、その走行単独操作時の最大出力に合わせて原動機を設けることになる。   For example, in a battery-driven hydraulic excavator, a continuous operation time for performing a combined operation of a specific actuator such as a left and right traveling motor and another actuator different from the left and right traveling motor, such as an actuator that drives a front work machine, is increased by battery power. In order to meet this demand, there is a case where a lower rotational speed than that of an engine type hydraulic excavator of the same size is set as the rated rotational speed. In such a battery-driven hydraulic excavator, when performing the combined operation of the specific actuator and the other actuator described above, the operating speed of the left and right traveling motor, which is the specific actuator, that is, the traveling speed is relatively low. However, when traveling alone such as when crossing public roads, it is desirable to increase the traveling speed in order to reduce adverse effects on traffic. In this way, even if the rotational speed of the prime mover is increased only during the single operation of the motor, it is possible to save energy for a long time by setting a slightly low rotational speed to the rated rotational speed. A prime mover will be provided in accordance with the maximum output during traveling alone operation.

すなわち従来技術にあっては、特定アクチュエータと、この特定アクチュエータとは異なる他のアクチュエータを含む複数のアクチュエータを備えた油圧式建設機械を考えた場合、特定アクチュエータと他のアクチュエータの複合操作による長時間にわたる省エネ作業時の定格回転数を少し低目に設定し、速い作動速度による特定アクチュエータの単独操作を可能にすることがあるが、特定アクチュエータと他のアクチュエータとの複合操作に比べて特定アクチュエータの単独操作の頻度が少ないにも拘わらず、特定アクチュエータの単独操作時の最大出力に見合う大出力の原動機を設けることになり、このために設備コストが高くなる問題があった。   That is, in the prior art, when considering a hydraulic construction machine including a specific actuator and a plurality of actuators including other actuators different from the specific actuator, a long time is required due to the combined operation of the specific actuator and other actuators. The rated rotation speed during energy-saving work over a wide range may be set to a low value to enable individual operation of a specific actuator at a high operating speed. In spite of the low frequency of single operation, there is a problem in that a large-output prime mover corresponding to the maximum output at the time of single operation of a specific actuator is provided, which increases the equipment cost.

本発明は、上述した従来技術における実状からなされたもので、その目的は、特定アクチュエータと他のアクチュエータとの複合操作による作業と、速い作動速度による特定アクチュエータの単独操作の双方を比較的小出力の原動機を設けることによって実現させることができる油圧式建設機械を提供することにある。   The present invention has been made from the actual situation in the above-described prior art, and its purpose is to produce relatively small outputs of both work by a combined operation of a specific actuator and another actuator and a single operation of the specific actuator at a high operating speed. It is to provide a hydraulic construction machine that can be realized by providing a prime mover.

この目的を達成するために、本発明は、原動機と、この原動機により駆動される油圧ポンプと、この油圧ポンプから吐出される圧油により駆動される特定アクチュエータ、及びこの特定アクチュエータとは異なる他のアクチュエータを含む複数のアクチュエータと、前記特定アクチュエータを操作する特定操作手段とを備えた油圧式建設機械において、前記特定操作手段の操作量が第1操作量以下のときには、前記原動機の回転数を前記特定アクチュエータと前記他のアクチュエータとの複合操作を可能とする一定の第1回転数に制御し、前記特定操作手段の操作量が前記第1操作量よりも大きい第2操作量以上のときには、前記原動機の回転数を前記第1回転数よりも高い一定の第2回転数に制御し、前記特定操作手段の操作量が前記第1操作量より大きく前記第2操作量より小さい操作量のときには、前記第1回転数と前記第2回転数との間で、前記特定操作手段の操作量の増加に応じて次第に高くなるように前記原動機の回転数を制御する原動機回転数制御手段を備えたことを特徴としている。   In order to achieve this object, the present invention provides a prime mover, a hydraulic pump driven by the prime mover, a specific actuator driven by pressure oil discharged from the hydraulic pump, and other different from the specific actuator. In a hydraulic construction machine including a plurality of actuators including an actuator and a specific operation unit that operates the specific actuator, when the operation amount of the specific operation unit is equal to or less than a first operation amount, the rotational speed of the prime mover is When the operation amount of the specific operation means is greater than or equal to the second operation amount that is greater than the first operation amount, the control is performed to a constant first rotation speed that enables a combined operation of the specific actuator and the other actuator. The rotational speed of the prime mover is controlled to a constant second rotational speed higher than the first rotational speed, and the operation amount of the specific operation means is the first When the operation amount is larger than the work amount and smaller than the second operation amount, the operation amount is gradually increased between the first rotation speed and the second rotation speed as the operation amount of the specific operation means increases. A motor speed control means for controlling the speed of the prime mover is provided.

このように構成した本発明は、特定アクチュエータと他のアクチュエータとの複合操作時に特定操作手段を第1操作量以下の操作量で操作すると、原動機回転数制御手段により原動機の回転数が一定の低目の第1回転数に制御される。これにより特定アクチュエータと他のアクチュエータとの複合操作による作業が可能となる。また、特定アクチュエータの単独操作時に特定操作手段を上述の第1操作量よりも大きい第2操作量以上の操作量で操作すると、原動機回転数制御手段により上述の第1回転数よりも高い一定の第2回転数で制御される。これにより速い作動速度による特定アクチュエータの単独操作が可能となる。   In the present invention configured as described above, when the specific operation means is operated with an operation amount equal to or less than the first operation amount during the combined operation of the specific actuator and another actuator, the motor rotation speed control means causes the motor rotation speed to be kept constant. It is controlled to the first rotation speed of the eye. As a result, it is possible to perform work by a combined operation of the specific actuator and another actuator. Further, when the specific operation means is operated with an operation amount equal to or larger than the second operation amount larger than the above-mentioned first operation amount when the specific actuator is operated alone, a constant higher than the above-mentioned first rotation speed is set by the motor rotation speed control means. It is controlled at the second rotational speed. As a result, the specific actuator can be operated independently at a high operating speed.

また、例えば特定操作手段の操作量を第1操作量以下の操作量にして原動機の回転数を一定の低目の第1回転数に制御している状態から、特定操作手段の操作量を増加させて、原動機の回転数を一定の高い第2回転数に移行させる場合には、原動機回転数制御手段により、特定操作手段の操作量の増加に伴って原動機の回転数は次第に高くなるように制御されるので、原動機の回転数を第1回転数から第2回転数に円滑に移行させることができる。高い第2回転数から低目の第1回転数に移行させる場合も同様に円滑に移行させることができる。   Further, for example, the operation amount of the specific operation means is increased from the state in which the operation amount of the specific operation means is set to an operation amount equal to or less than the first operation amount and the motor speed is controlled to a constant lower first rotation speed. Thus, when the rotational speed of the prime mover is shifted to a constant high second rotational speed, the rotational speed of the prime mover gradually increases as the operation amount of the specific operation means increases by the prime mover rotational speed control means. Since it is controlled, the rotational speed of the prime mover can be smoothly shifted from the first rotational speed to the second rotational speed. In the case of shifting from the high second rotation speed to the lower first rotation speed, it is possible to smoothly shift similarly.

また、本発明は上記発明において、前記原動機回転数制御手段は、前記油圧ポンプの吸収馬力が前記第1回転数における最大吸収馬力を超えないように前記原動機の回転数を制御可能なものから成ることを特徴としている。このように構成した本発明にあっては、原動機は、一定の低目の第1回転数に応じた出力を有するものであればよく、小出力の原動機を設けることができる。   Further, the present invention is the above invention, wherein the prime mover rotational speed control means is capable of controlling the rotational speed of the prime mover so that the absorption horsepower of the hydraulic pump does not exceed the maximum absorption horsepower at the first rotational speed. It is characterized by that. In the present invention configured as described above, the prime mover need only have an output corresponding to a constant low first rotation speed, and a prime mover with a small output can be provided.

また、本発明は上記発明において、前記油圧式建設機械がバッテリ駆動式油圧ショベルから成り、前記原動機が油圧ポンプ用電動機から成り、この油圧ポンプ用電動機を駆動する電力を供給可能なバッテリを備え、前記特定アクチュエータが右走行モータ及び左走行モータから成り、前記他のアクチュエータがフロント作業機を駆動するアクチュエータから成り、前記特定操作手段が、前記右走行モータを操作する操作装置及び前記左走行モータを操作する操作装置から成ることを特徴としている。   Further, the present invention is the above invention, wherein the hydraulic construction machine comprises a battery-driven hydraulic excavator, the prime mover comprises a hydraulic pump electric motor, and comprises a battery capable of supplying electric power for driving the hydraulic pump electric motor, The specific actuator includes a right travel motor and a left travel motor, the other actuator includes an actuator that drives a front work machine, and the specific operation means includes an operation device that operates the right travel motor and the left travel motor. It is characterized by comprising an operating device for operation.

このように構成した本発明は、右走行モータ、左走行モータとフロント作業機を駆動するアクチュエータとの複合操作による掘削作業等の作業時に、操作装置を第1操作量以下の操作量で操作すると、原動機回転数制御手段により原動機の回転数は低目の一定の第1回転数に制御される。これにより、右走行モータ、左走行モータとフロント作業機を駆動するアクチュエータとの複合操作による掘削作業等が可能となる。また、右走行モータ、左走行モータの駆動による走行単独操作時に操作装置を上述の第1操作量よりも大きい第2操作量で操作すると、原動機回転数制御手段により原動機の回転数が上述の第1回転数よりも高い一定の第2回転数に制御される。これにより速い作動速度による走行単独操作が可能となる。原動機は、一定の低目の第1回転数における出力を有するものであればよく、したがって比較的小出力の原動機を設けることができる。すなわち、右走行モータ、左走行モータと、フロント作業機を駆動するアクチュエータとの複合操作による作業と、速い作動速度による走行単独操作の双方を比較的小出力の原動機を設けることによって実現させることができる。   In the present invention configured as described above, when the operation device is operated with an operation amount equal to or less than the first operation amount during work such as excavation work by a combined operation of the right travel motor, the left travel motor, and the actuator that drives the front work machine. The prime mover rotational speed control means controls the rotational speed of the prime mover to a lower fixed first rotational speed. As a result, excavation work by a combined operation of the right travel motor, the left travel motor, and the actuator that drives the front work machine can be performed. Further, when the operating device is operated with a second operation amount larger than the first operation amount at the time of traveling independent operation by driving the right traveling motor and the left traveling motor, the engine rotational speed control means controls the number of rotations of the motor. It is controlled to a constant second rotational speed higher than one rotational speed. As a result, traveling alone operation at a high operating speed is possible. The prime mover only needs to have an output at a constant low first rotation speed, and therefore a prime mover with a relatively small output can be provided. That is, it is possible to realize both the operation by the combined operation of the right traveling motor, the left traveling motor, and the actuator that drives the front working machine and the traveling single operation at a high operating speed by providing a relatively small output prime mover. it can.

本発明によれば、特定アクチュエータと他のアクチュエータとの複合操作による作業と、速い作動速度による特定アクチュエータの単独操作の双方を比較的小出力の原動機を設けることによって実現させることができ、したがって従来では難しかった原動機の小型化による設備コストの低減を実現させることができる。   According to the present invention, it is possible to realize both a work by a combined operation of a specific actuator and another actuator and a single operation of the specific actuator at a high operating speed by providing a relatively small output prime mover. Therefore, it is possible to realize a reduction in equipment cost by reducing the size of the prime mover.

以下,本発明に係る油圧式建設機械を実施するための最良の形態を図に基づいて説明する。   The best mode for carrying out the hydraulic construction machine according to the present invention will be described below with reference to the drawings.

図1〜4は本発明に係る油圧式建設機械の第1実施形態を示す図で、図1は本発明に係る油圧式建設機械の一実施形態を示すバッテリ駆動式油圧ショベルを示す側面図、図2は図1に示す油圧式建設機械の一実施形態に備えられる制御システムを示すブロック図、図3は図2に示す制御システムに含まれる制御器に設定される走行レバー入力と油圧ポンプ電動機の回転数との関係を示す図である。図4は本実施形態に備えられる油圧ポンプ用電動機に作用するパワーに関わる各パラメータを示した図で、(a)図は制御器に設定されるポンプ吐出圧(P)と油圧ポンプ用電動機の回転数(N)との関係を示す図、(b)図は本実施形態で得られるポンプ吐出圧(P)と流量(Q)との関係、及び本実施形態で得られるポンプ吐出圧(P)と押退け容積(q)との関係を示す特性図、(c)図は本実施形態で得られるポンプ吐出圧(P)とポンプ吸収トルク(T)との関係、及び本実施形態で得られるポンプ吐出圧(P)と出力(E)すなわち油圧ポンプの吸収馬力との関係を示す特性図である。   1 to 4 are views showing a first embodiment of a hydraulic construction machine according to the present invention, and FIG. 1 is a side view showing a battery-driven hydraulic excavator showing an embodiment of the hydraulic construction machine according to the present invention. 2 is a block diagram showing a control system provided in an embodiment of the hydraulic construction machine shown in FIG. 1, and FIG. 3 is a travel lever input and a hydraulic pump motor set in the controller included in the control system shown in FIG. It is a figure which shows the relationship with the rotation speed. FIG. 4 is a diagram showing parameters related to the power acting on the hydraulic pump motor provided in the present embodiment. FIG. 4A shows the pump discharge pressure (P) set in the controller and the hydraulic pump motor. The figure which shows the relationship with the rotation speed (N), (b) The figure shows the relationship between the pump discharge pressure (P) and the flow rate (Q) obtained in this embodiment, and the pump discharge pressure (P) obtained in this embodiment. ) And the displacement volume (q), a characteristic diagram showing the relationship between the pump discharge pressure (P) and the pump absorption torque (T) obtained in this embodiment, and in this embodiment. It is a characteristic view which shows the relationship between the pump discharge pressure (P) and output (E) which are obtained, ie, the absorption horsepower of a hydraulic pump.

本発明の第1実施形態に係るバッテリ駆動式油圧ショベルは、図1に示すように、走行体10を備え、この走行体10は、左右一対のクローラ11と、クローラフレーム12と、各クローラ11を独立して駆動制御する一対の走行用油圧モータ、すなわち右走行モータ13、左走行モータ14と、これらの走行モータ13,14の図示しない減速機構とを有している。上述した右走行モータ13及び左走行モータ14は、複数のアクチュエータのうちの例えば特定アクチュエータを構成している。   As shown in FIG. 1, the battery-driven hydraulic excavator according to the first embodiment of the present invention includes a traveling body 10, which includes a pair of left and right crawlers 11, a crawler frame 12, and each crawler 11. Are provided with a pair of traveling hydraulic motors, that is, a right traveling motor 13 and a left traveling motor 14, and a speed reduction mechanism (not shown) of these traveling motors 13 and 14. The right traveling motor 13 and the left traveling motor 14 described above constitute, for example, a specific actuator among a plurality of actuators.

また、走行体10上に配置される旋回体20を備え、この旋回体20は、旋回フレーム21と、旋回フレーム21上に設けられ、原動機を構成する油圧ポンプ用電動機22と、この油圧ポンプ用電動機22に電力を供給するバッテリ23と、このバッテリ23からの電力により駆動される旋回用電動機24と、この旋回用電動機24の回転を減速する減速機構を含み、旋回用電動機24の駆動力により走行体10に対して旋回体20を旋回させる旋回機構25等を有している。   The revolving body 20 is disposed on the traveling body 10, and the revolving body 20 is provided on the revolving frame 21, the hydraulic pump electric motor 22 that constitutes the prime mover, and the hydraulic pump. It includes a battery 23 that supplies electric power to the electric motor 22, a turning electric motor 24 that is driven by electric power from the battery 23, and a reduction mechanism that decelerates the rotation of the electric turning motor 24. A turning mechanism 25 for turning the turning body 20 with respect to the traveling body 10 is provided.

また、旋回体20には、フロント作業機30が取り付けられている。このフロント作業機30は、起伏可能なブーム31と、このブーム31を駆動するブームシリンダ32と、ブーム31の先端部近傍に回転自在に軸支されたアーム33と、このアーム33を駆動するアームシリンダ34と、アーム33の先端に回動可能に軸支されたバケット35と、このバケット35を駆動するバケットシリンダ36等を有している。上述したブームシリンダ32、アームシリンダ34、及びバケットシリンダ36は、例えば複数のアクチュエータのうちの特定アクチュエータとは異なる他のアクチュエータを構成している。   A front working machine 30 is attached to the revolving unit 20. The front work machine 30 includes a boom 31 that can be raised and lowered, a boom cylinder 32 that drives the boom 31, an arm 33 that is rotatably supported near the tip of the boom 31, and an arm that drives the arm 33. A cylinder 34, a bucket 35 pivotally supported at the tip of the arm 33, a bucket cylinder 36 for driving the bucket 35, and the like are provided. The boom cylinder 32, the arm cylinder 34, and the bucket cylinder 36 described above constitute, for example, another actuator different from the specific actuator among the plurality of actuators.

さらに、旋回体20の旋回フレーム21上には、原動機すなわち油圧ポンプ用電動機22によって駆動する油圧ポンプ41と、この油圧ポンプ41から上述の右走行モータ13、左走行モータ14、ブームシリンダ32、アームシリンダ34、バケットシリンダ36へ供給される圧油の方向と流量を制御する油圧制御弁42とから成る油圧制御機構が搭載されている。油圧制御弁42には各アクチュエータに対応させて複数の制御弁が含まれている。   Further, on the swing frame 21 of the swing body 20, a hydraulic pump 41 driven by a prime mover, that is, a hydraulic pump electric motor 22, and the right travel motor 13, the left travel motor 14, the boom cylinder 32, the arm from the hydraulic pump 41 described above. A hydraulic control mechanism including a hydraulic control valve 42 for controlling the direction and flow rate of the pressure oil supplied to the cylinder 34 and the bucket cylinder 36 is mounted. The hydraulic control valve 42 includes a plurality of control valves corresponding to each actuator.

また、本発明の第1実施形態に係るバッテリ駆動式油圧ショベルは、図2に示す制御システムを備えている。なお、この図において、太線は機械的駆動系統を、中線は油圧駆動系統を、細線は電気的駆動系統を、また点線は電気信号系統をそれぞれ示している。   The battery-driven hydraulic excavator according to the first embodiment of the present invention includes the control system shown in FIG. In this figure, a thick line indicates a mechanical drive system, a middle line indicates a hydraulic drive system, a thin line indicates an electrical drive system, and a dotted line indicates an electrical signal system.

この図2に示すように、バッテリ23からの直流電力は、油圧ポンプ用インバータ52により所定の電圧、及び周波数の交流電力に変換され、油圧ポンプ用電動機22に入力される。油圧ポンプ用電動機22の駆動力は油圧ポンプ41に伝達される。油圧制御弁42は、操作装置54からの動作指令に応じて、ブームシリンダ32、アームシリンダ34、バケットシリンダ36、右走行モータ13、左走行モータ14への動作油の吐出量及び吐出方向を制御する。なお、操作装置54は、特定アクチュエータである右走行モータ13、左走行モータ14を操作する特定操作手段と、ブームシリンダ32、アームシリンダ34、バケットシリンダ36を操作する他のアクチュエータ操作手段等の複数の操作手段、すなわち複数の操作装置を含んでいる。   As shown in FIG. 2, the DC power from the battery 23 is converted into AC power having a predetermined voltage and frequency by the hydraulic pump inverter 52 and input to the hydraulic pump motor 22. The driving force of the hydraulic pump electric motor 22 is transmitted to the hydraulic pump 41. The hydraulic control valve 42 controls the discharge amount and the discharge direction of the operating oil to the boom cylinder 32, the arm cylinder 34, the bucket cylinder 36, the right traveling motor 13, and the left traveling motor 14 in accordance with an operation command from the operation device 54. To do. The operation device 54 includes a plurality of specific operation means for operating the right travel motor 13 and the left travel motor 14 which are specific actuators, and other actuator operation means for operating the boom cylinder 32, the arm cylinder 34, and the bucket cylinder 36. Operating means, that is, a plurality of operating devices.

また、バッテリ23からの直流電力は旋回用インバータ28により所定の電圧、及び周波数の交流電力に変換され、旋回用電動機24に入力される。また、例えば旋回用電動機24は減速時には発電機特性で使用され、この旋回用電動機24によって回生された電力が直流に変換されてバッテリ24に蓄えられるようになっている。   Further, the DC power from the battery 23 is converted into AC power having a predetermined voltage and frequency by the turning inverter 28 and input to the turning motor 24. Further, for example, the turning electric motor 24 is used in the generator characteristics at the time of deceleration, and the electric power regenerated by the turning electric motor 24 is converted into direct current and stored in the battery 24.

操作装置54からの操作信号は制御器55に入力され、この制御器55によって実行される演算処理に相応する駆動指令が旋回用インバータ28、油圧ポンプ用インバータ52へ与えられるようになっている。   An operation signal from the operation device 54 is input to the controller 55, and a drive command corresponding to the arithmetic processing executed by the controller 55 is given to the turning inverter 28 and the hydraulic pump inverter 52.

制御器55内には、この第1実施形態の特徴とする原動機回転数制御手段が備えられている。この原動機回転数制御手段は、図3に示す走行レバー入力、すなわち走行用の操作装置の操作量(Pi)と油圧ポンプ用電動機の回転数(N)との設定関係、及び図4の(a)図に示すポンプ吐出圧(P)と油圧ポンプ用電動機の回転数(N)との設定関係によって構成されている。   The controller 55 is provided with prime mover rotation speed control means that is a feature of the first embodiment. This prime mover rotation speed control means includes the travel lever input shown in FIG. 3, that is, the setting relationship between the operation amount (Pi) of the travel operation device and the rotation speed (N) of the hydraulic pump motor, and (a ) It is constituted by the set relationship between the pump discharge pressure (P) and the rotational speed (N) of the hydraulic pump motor shown in the figure.

すなわち、原動機回転数制御手段は、特定操作手段すなわち走行モータ13,14の操作装置の走行レバー入力、すなわち操作量(Pi)が、図3で示す第1操作量Pi1以下のときには、原動機すなわち油圧ポンプ用電動機22の回転数(N)を、特定アクチュエータである走行モータ13,14と、他のアクチュエータであるブームシリンダ32、アームシリンダ34、バケットシリンダ36との複合操作を可能とする少し低めの一定の第1回転数(N1)に制御し、走行レバーの操作量(Pi)が第1操作量Pi1よりも大きい第2操作量Pi2以上のときには、油圧ポンプ用電動機22の回転数(N)を、第1回転数(N1)よりも高い一定の第2回転数(N2)に制御し、走行レバーの操作量(Pi)が第1操作量Pi1より大きく第2操作量Pi2より小さい操作量のときには、第1回転数(N1)と第2回転数(N2)との間で、走行レバーの操作量の増加に応じて次第に、例えば比例的に高くなるように油圧ポンプ用電動機22の回転数(N)を制御するものから成っている。   That is, the prime mover rotation speed control means is the prime mover, that is, the hydraulic pressure when the specific operation means, that is, the travel lever input of the operation device of the travel motors 13 and 14, that is, the operation amount (Pi) is less than or equal to the first operation amount Pi1 shown in FIG. The rotational speed (N) of the pump electric motor 22 is slightly lower to enable combined operation of the traveling motors 13 and 14 that are specific actuators and the boom cylinder 32, arm cylinder 34, and bucket cylinder 36 that are other actuators. When the operation amount (Pi) of the travel lever is equal to or greater than the second operation amount Pi2 that is larger than the first operation amount Pi1, the rotation speed (N) of the hydraulic pump motor 22 is controlled. Is controlled to a constant second rotational speed (N2) higher than the first rotational speed (N1), and the operation amount (Pi) of the travel lever is larger than the first operational amount Pi1. When the operation amount is smaller than the second operation amount Pi2, it gradually increases, for example, proportionally between the first rotation speed (N1) and the second rotation speed (N2) as the operation amount of the travel lever increases. Thus, it consists of what controls the rotation speed (N) of the electric motor 22 for hydraulic pumps.

また、この原動機回転数制御手段は、図4の(a)図に示すように、図3の走行レバーの入力、すなわち操作量Piに応じて第1回転数(N1)あるいは第2回転数(N2)が選定された状態にあっては、油圧ポンプ41の吐出圧(P)の大きさの如何に拘わらず、この選定された第1回転数(N1)、あるいは第2回転数(N2)を保持するように構成されている。   Further, as shown in FIG. 4 (a), the prime mover rotational speed control means is provided with the first rotational speed (N1) or the second rotational speed (in accordance with the input of the travel lever of FIG. 3, ie, the operation amount Pi. In a state where N2) is selected, the selected first rotational speed (N1) or second rotational speed (N2) regardless of the magnitude of the discharge pressure (P) of the hydraulic pump 41. Is configured to hold.

このように構成した第1実施形態では、図4の(b)図に示すように、油圧ポンプ41の吐出圧(P)に対する押退け容積(q)は、油圧ポンプ用電動機22の回転数が上述の第1回転数N1のときの押退け容積q1、上述の第2回転数N2のときの押退け容積q2ともに、ポンプ吐出圧(P)が所定圧P1以上の範囲ではトルク一定となるように制御される。すなわち、
P×q(q1=q2)=一定 (1)
である。また、油圧ポンプ41の吐出流量(Q)は、
Q=q×N (2)
で表わすことができるので、油圧ポンプ41の吐出圧(P)の如何によらず、上述の第1回転数N1のときには、
Q1=q1×N1 (3)
の関係に、また、上述の第2回転数N2のときは、
Q2=q2×N2=Q1×N2/N1 (4)
の関係にある。
In the first embodiment configured as described above, as shown in FIG. 4B, the displacement volume (q) with respect to the discharge pressure (P) of the hydraulic pump 41 is determined by the rotational speed of the hydraulic pump motor 22. Both the displacement volume q1 at the first rotation speed N1 and the displacement volume q2 at the second rotation speed N2 are such that the torque is constant when the pump discharge pressure (P) is greater than or equal to the predetermined pressure P1. Controlled. That is,
P × q (q1 = q2) = constant (1)
It is. The discharge flow rate (Q) of the hydraulic pump 41 is
Q = q × N (2)
Therefore, regardless of the discharge pressure (P) of the hydraulic pump 41, at the above-mentioned first rotational speed N1,
Q1 = q1 × N1 (3)
In addition, in the case of the second rotation speed N2 described above,
Q2 = q2 × N2 = Q1 × N2 / N1 (4)
Are in a relationship.

油圧ポンプ用電動機22の回転数(N)は、図4の(a)図に示すように、第2回転数(N2)に保持されているときには、油圧ポンプ41の吐出圧(P)の如何によらず、N1<N2の一定値となる。   When the rotation speed (N) of the hydraulic pump motor 22 is maintained at the second rotation speed (N2) as shown in FIG. 4 (a), it is determined whether the discharge pressure (P) of the hydraulic pump 41 varies. Regardless, N1 <N2 is a constant value.

図4の(c)図は油圧ポンプ41の吐出圧(P)に対するトルク(T)、及び出力(E)すなわちポンプ吸収馬力を示しており、第1回転数N1のときのトルク(T)をT1、出力(E)をE1、第2回転数N2のときのトルク(T)をT2、出力(E)をE2とすると、
T∝P×q(q1=q2) (5)
E=P×Q (6)
の関係にあることから、油圧ポンプ41の吐出圧(P)の如何によらず、
T1=T2 (7)
E1=P×Q1 (8)
E2=P×Q2=E1×Q2/Q1=E1×N2/N1 (9)
の関係にある。
FIG. 4C shows the torque (T) with respect to the discharge pressure (P) of the hydraulic pump 41 and the output (E), that is, the pump absorption horsepower. The torque (T) at the first rotation speed N1 is shown. When T1, the output (E) is E1, the torque (T) at the second rotation speed N2 is T2, and the output (E) is E2,
T∝P × q (q1 = q2) (5)
E = P × Q (6)
Therefore, regardless of the discharge pressure (P) of the hydraulic pump 41,
T1 = T2 (7)
E1 = P × Q1 (8)
E2 = P × Q2 = E1 × Q2 / Q1 = E1 × N2 / N1 (9)
Are in a relationship.

上述の第1実施形態において、右走行モータ13、左走行モータ14とフロント作業機30を駆動するブームシリンダ32等のアクチュエータとの複合操作による掘削作業等の作業時に、図2に示す操作装置54に含まれる右走行モータ13、左走行モータ14の操作装置の走行レバーを、図3に示す第1操作量Pi1以下の操作量で操作すると、制御器55に含まれる原動機回転数制御手段により、すなわち図3に示す設定関係により油圧ポンプ用電動機22の回転数(N)は低目の一定の第1回転数(N1)に制御される。これにより、右走行モータ13、左走行モータ14と、フロント作業機30を駆動するブームシリンダ32等のアクチュエータとの複合操作による長時間の省エネの掘削作業等が可能となる。また、右走行モータ13、左走行モータ14の駆動による走行単独操作時に、右走行モータ13、左走行モータ14の操作装置を上述の第1操作量Pi1よりも大きい第2操作量Pi2以上で操作すると、制御器55に含まれる原動機回転数制御手段により油圧ポンプ用電動機22の回転数(N)が上述の第1回転数(N1)よりも高い一定の第2回転数(N2)に制御される。これにより頻度の少ない速い作動速度による走行単独操作が可能となる。   In the first embodiment, the operating device 54 shown in FIG. 2 is used during excavation work or the like by a combined operation of the right travel motor 13, the left travel motor 14 and an actuator such as a boom cylinder 32 that drives the front work machine 30. When the travel levers of the operating devices for the right travel motor 13 and the left travel motor 14 included in FIG. 3 are operated with an operation amount equal to or less than the first operation amount Pi1 shown in FIG. 3, the motor rotational speed control means included in the controller 55 That is, the rotational speed (N) of the hydraulic pump electric motor 22 is controlled to a lower constant first rotational speed (N1) by the setting relationship shown in FIG. Accordingly, long-time energy-saving excavation work and the like can be performed by a combined operation of the right travel motor 13 and the left travel motor 14 and an actuator such as a boom cylinder 32 that drives the front work machine 30. In addition, when the single traveling operation is performed by driving the right traveling motor 13 and the left traveling motor 14, the operating devices for the right traveling motor 13 and the left traveling motor 14 are operated at a second operation amount Pi2 or more that is larger than the first operation amount Pi1. Then, the rotational speed (N) of the hydraulic pump motor 22 is controlled to a constant second rotational speed (N2) higher than the first rotational speed (N1) by the prime mover rotational speed control means included in the controller 55. The As a result, it is possible to perform a traveling single operation at a low operating speed with a low frequency.

なお、例えば右走行モータ13、左走行モータ14の操作装置の操作量を第1操作量Pi1以下の操作量にして油圧ポンプ用電動機22の回転数(N)を一定の低目の第1回転数(N1)に制御している状態から、上述の操作装置の操作量を増加させて、油圧ポンプ用電動機22の回転数(N)を一定の高い回転数(N2)に移行させる場合、制御器55に含まれる原動機回転数制御手段により、すなわち図3に示す設定関係により、上述の操作装置の操作量の増加に伴って油圧ポンプ用電動機22の回転数(N)は次第に高くなるように制御されるので、油圧ポンプ用電動機22の回転数(N)を第1回転数(N1)から第2回転数(N2)に円滑に移行させることができる。第2回転数(N2)から第1回転数(N1)に移行させる場合も同様に円滑に移行させることができる。   For example, the operation amount of the operating device of the right travel motor 13 and the left travel motor 14 is set to an operation amount equal to or less than the first operation amount Pi1, and the rotation speed (N) of the hydraulic pump electric motor 22 is set to a constant low first rotation. When the operation amount of the above-described operation device is increased from the state where the number (N1) is controlled, and the rotational speed (N) of the hydraulic pump motor 22 is shifted to a constant high rotational speed (N2), the control is performed. 3 so that the rotational speed (N) of the hydraulic pump motor 22 gradually increases with an increase in the operation amount of the operating device, by the motor speed control means included in the device 55, that is, according to the setting relationship shown in FIG. Since it is controlled, the rotational speed (N) of the hydraulic pump electric motor 22 can be smoothly shifted from the first rotational speed (N1) to the second rotational speed (N2). Similarly, when shifting from the second rotational speed (N2) to the first rotational speed (N1), the transition can be made smoothly.

このように第1実施形態によれば、比較的小出力の原動機、すなわち油圧ポンプ用電動機22を設けることができるとともに、制御器55に含まれる原動機回転数制御手段によって、特定アクチュエータである右走行モータ13、左走行モータ14と、他のアクチュエータであるフロント作業機30のブームシリンダ32等のアクチュエータとの複合操作による長時間の省エネの掘削作業等と、頻度の少ない速い作動速度による走行単独操作の双方を実現させることができる。   As described above, according to the first embodiment, the prime mover having a relatively small output, that is, the hydraulic pump electric motor 22 can be provided, and the prime mover rotation speed control means included in the controller 55 allows the right traveling as the specific actuator. Long-time energy-saving excavation work by a combined operation of the motor 13, the left travel motor 14 and an actuator such as the boom cylinder 32 of the front work machine 30 which is another actuator, and a single traveling operation with a low frequent operation speed Both can be realized.

また、制御器55に含まれる原動機回転数制御手段によって、第1回転数(N1)と第2回転数(N2)相互間の回転数の移行を円滑に行わせることができ、これにより優れたアクチュエータの操作性を実現させることができる。   In addition, the prime mover rotation speed control means included in the controller 55 can smoothly shift the rotation speed between the first rotation speed (N1) and the second rotation speed (N2). The operability of the actuator can be realized.

図5は本発明の別の実施形態に備えられる油圧ポンプ用電動機に作用するパワーに関わる各パラメータを示した図で、(a)図は制御器に設定されるポンプ吐出圧(P)と油圧ポンプ用電動機の回転数(N)との関係を示す図、(b)図はこの別の実施形態で得られるポンプ吐出圧(P)と流量(Q)との関係、及びこの別の実施形態で得られるポンプ吐出圧(P)と押退け容積(q)との関係を示す特性図、(c)図はこの別の実施形態で得られるポンプ吐出圧(P)とポンプ吸収トルク(T)との関係、及びこの別の実施形態で得られるポンプ吐出圧(P)と出力(E)すなわち油圧ポンプの吸収馬力との関係を示す特性図である。   FIG. 5 is a diagram showing parameters related to power acting on a hydraulic pump electric motor provided in another embodiment of the present invention. FIG. 5A shows pump discharge pressure (P) and hydraulic pressure set in a controller. The figure which shows the relationship with the rotation speed (N) of the motor for pumps, (b) The figure shows the relationship between the pump discharge pressure (P) and the flow rate (Q) obtained in this another embodiment, and this another embodiment. (C) is a characteristic diagram showing the relationship between the pump discharge pressure (P) and displacement volume (q) obtained in step (c), and the pump discharge pressure (P) and pump absorption torque (T) obtained in this other embodiment. And the relationship between the pump discharge pressure (P) and the output (E), that is, the absorption horsepower of the hydraulic pump, obtained in this another embodiment.

この第2実施形態は、本願請求項2に対応するものであり、制御器55内に備えられる原動機回転数制御手段が、油圧ポンプ41の吸収馬力すなわち出力(E)が第1回転数(N1)における最大吸収馬力を超えないように、油圧ポンプ用電動機22の回転数(N)を制御可能なものから成っている。すなわち、この第2実施形態の原動機回転数制御手段が、図3に示す走行レバー入力すなわち操作量(Pi)と油圧ポンプ用電動機41の回転数(N)との設定関係、及び図5の(a)図に示すポンプ吐出圧(P)と油圧ポンプ用電動機22の回転数(N)との設定関係によって構成されている。その他の構成は上述した第1実施形態におけるのと同等である。   This second embodiment corresponds to claim 2 of the present application. The prime mover rotational speed control means provided in the controller 55 is configured such that the absorption horsepower, that is, the output (E) of the hydraulic pump 41 is the first rotational speed (N1). The number of revolutions (N) of the hydraulic pump electric motor 22 can be controlled so that the maximum absorption horsepower in (1) is not exceeded. That is, the prime mover rotational speed control means of the second embodiment performs the setting relationship between the travel lever input, that is, the operation amount (Pi) and the rotational speed (N) of the hydraulic pump motor 41 shown in FIG. a) It is comprised by the setting relationship of the pump discharge pressure (P) shown in the figure, and the rotation speed (N) of the electric motor 22 for hydraulic pumps. Other configurations are the same as those in the first embodiment described above.

この第2実施形態は、原動機回転数制御手段が、上述した図3に示す設定関係、すなわち第1実施形態におけるのと同等の図3に示す設定関係を有するとともに、図5の(a)図に示すように、図3の走行レバーの入力すなわち操作量Pi1以下に応じて第1回転数(N1)が選択された状態にあっては、油圧ポンプ41の吐出圧(P)の大きさの如何に拘わらず、この選定された第1回転数(N1)を保持するように構成されている。また、図3の走行レバーの入力すなわち操作量Pi2以上に応じて第2回転数(N2)が選定された状態にあっては、油圧ポンプ41の吐出圧(P)が上述の所定圧P1より小さい所定圧P0に至るまでは油圧ポンプ41の吐出圧(P)の大きさの如何に拘わらず、この選定された第2回転数(N2)を保持し、油圧ポンプ41の吐出圧(P)が上述の吐出圧P0からP1の間ではポンプ出力(E)がE1となるように回転数(N)が制御され、油圧ポンプ41の吐出圧(P)が上述の所定圧P1以上となったときには、油圧ポンプ41の吐出圧(P)の大きさの如何に拘わらず、第2回転数(N2)から第1回転数(N1)に回転数(N)が変更され、この変更された第1回転数(N1)を保持するように構成されている。   In the second embodiment, the motor speed control means has the setting relationship shown in FIG. 3 described above, that is, the setting relationship shown in FIG. 3 equivalent to that in the first embodiment, and FIG. As shown in FIG. 3, when the first rotational speed (N1) is selected in accordance with the input of the travel lever in FIG. 3, that is, the operation amount Pi1 or less, the magnitude of the discharge pressure (P) of the hydraulic pump 41 is increased. Regardless of the case, the selected first rotational speed (N1) is maintained. Further, when the second rotational speed (N2) is selected in accordance with the input of the travel lever in FIG. 3, that is, the operation amount Pi2 or more, the discharge pressure (P) of the hydraulic pump 41 is higher than the predetermined pressure P1. The selected second rotational speed (N2) is maintained and the discharge pressure (P) of the hydraulic pump 41 is maintained regardless of the magnitude of the discharge pressure (P) of the hydraulic pump 41 until the predetermined pressure P0 is reached. However, between the discharge pressures P0 and P1, the rotation speed (N) is controlled so that the pump output (E) becomes E1, and the discharge pressure (P) of the hydraulic pump 41 becomes equal to or higher than the predetermined pressure P1. Sometimes, the rotation speed (N) is changed from the second rotation speed (N2) to the first rotation speed (N1) regardless of the magnitude of the discharge pressure (P) of the hydraulic pump 41. It is configured to hold one rotation speed (N1).

このように構成された第2実施形態では、油圧ポンプ41の吐出圧(P)が所定圧P1以上となったときに油圧ポンプ用電動機22は、第1回転数N1における出力E1と、第1回転数N1と第2回転数N2の比(N2/N1)の積に応じた出力特性、すなわちN2=N1であることから第1回転数N1における出力E1に相応する出力特性を持つ電動機であれば済む。したがってこの油圧ポンプ用電動機22を小型な電動機とすることができ、設備コストをより低減させることができる。   In the second embodiment configured as described above, when the discharge pressure (P) of the hydraulic pump 41 becomes equal to or higher than the predetermined pressure P1, the hydraulic pump motor 22 outputs the output E1 at the first rotational speed N1 and the first An electric motor having an output characteristic corresponding to the output E1 at the first rotational speed N1 since the output characteristic according to the product of the ratio (N2 / N1) of the rotational speed N1 and the second rotational speed N2, ie, N2 = N1. I'll do it. Therefore, the hydraulic pump electric motor 22 can be a small electric motor, and the equipment cost can be further reduced.

なお、この第2実施形態における右走行モータ13、左走行モータ14の操作装置の操作量に応じた各動作については、上述した第1実施形態におけるのと同等である。   In addition, each operation | movement according to the operation amount of the operating device of the right traveling motor 13 in this 2nd Embodiment and the left traveling motor 14 is equivalent to the thing in 1st Embodiment mentioned above.

本発明に係る油圧式建設機械の一実施形態を示すバッテリ駆動式油圧ショベルを示す側面図である。1 is a side view showing a battery-driven hydraulic excavator showing an embodiment of a hydraulic construction machine according to the present invention. 図1に示す油圧式建設機械の一実施形態に備えられる制御システムを示すブロック図である。It is a block diagram which shows the control system with which one Embodiment of the hydraulic construction machine shown in FIG. 1 is equipped. 図2に示す制御システムに含まれる制御器に設定される走行レバー入力と油圧ポンプ電動機の回転数との関係を示す図である。It is a figure which shows the relationship between the travel lever input set to the controller contained in the control system shown in FIG. 2, and the rotation speed of a hydraulic pump electric motor. 本実施形態に備えられる油圧ポンプ用電動機に作用するパワーに関わる各パラメータを示した図で、(a)図は制御器に設定されるポンプ吐出圧(P)と油圧ポンプ用電動機の回転数(N)との関係を示す図、(b)図は本実施形態で得られるポンプ吐出圧(P)と流量(Q)との関係、及び本実施形態で得られるポンプ吐出圧(P)と押退け容積(q)との関係を示す特性図、(c)図は本実施形態で得られるポンプ吐出圧(P)とポンプ吸収トルク(T)との関係、及び本実施形態で得られるポンプ吐出圧(P)と出力(E)すなわち油圧ポンプの吸収馬力との関係を示す特性図である。FIG. 5 is a diagram showing parameters related to power acting on a hydraulic pump motor provided in the present embodiment, where FIG. (A) shows the pump discharge pressure (P) set in the controller and the rotational speed of the hydraulic pump motor ( (B) shows the relationship between the pump discharge pressure (P) and the flow rate (Q) obtained in this embodiment, and the pump discharge pressure (P) obtained in this embodiment and the pressure. The characteristic diagram showing the relationship with the displacement volume (q), (c) is the relationship between the pump discharge pressure (P) and the pump absorption torque (T) obtained in this embodiment, and the pump discharge obtained in this embodiment It is a characteristic view which shows the relationship between pressure (P) and output (E), ie, the absorption horsepower of a hydraulic pump. 本発明の別の実施形態に備えられる油圧ポンプ用電動機に作用するパワーに関わる各パラメータを示した図で、(a)図は制御器に設定されるポンプ吐出圧(P)と油圧ポンプ用電動機の回転数(N)との関係を示す図、(b)図はこの別の実施形態で得られるポンプ吐出圧(P)と流量(Q)との関係、及びこの別の実施形態で得られるポンプ吐出圧(P)と押退け容積(q)との関係を示す特性図、(c)図はこの別の実施形態で得られるポンプ吐出圧(P)とポンプ吸収トルク(T)との関係、及びこの別の実施形態で得られるポンプ吐出圧(P)と出力(E)すなわち油圧ポンプの吸収馬力との関係を示す特性図である。FIG. 6 is a diagram showing parameters related to power acting on a hydraulic pump electric motor provided in another embodiment of the present invention, where FIG. (A) shows the pump discharge pressure (P) set in the controller and the hydraulic pump electric motor; FIG. 5B is a diagram showing the relationship between the pump discharge pressure (P) and the flow rate (Q) obtained in this other embodiment, and FIG. A characteristic diagram showing the relationship between pump discharge pressure (P) and displacement volume (q), (c) is a relationship between pump discharge pressure (P) and pump absorption torque (T) obtained in this other embodiment. FIG. 5 is a characteristic diagram showing the relationship between the pump discharge pressure (P) and the output (E), that is, the absorption horsepower of the hydraulic pump, obtained in another embodiment.

符号の説明Explanation of symbols

10 走行体
13 右走行モータ(特定アクチュエータ)
14 左走行モータ(特定アクチュエータ)
20 旋回体
22 油圧ポンプ用電動機(原動機)
23 バッテリ
30 フロント作業機
31 ブーム
32 ブームシリンダ(他のアクチュエータ)
33 アーム
34 アームシリンダ(他のアクチュエータ)
35 バケット
36 バケットシリンダ(他のアクチュエータ)
40 油圧制御機構
41 油圧ポンプ
42 油圧制御弁
52 油圧ポンプ用インバータ
54 操作装置
55 制御器(原動機回転数制御手段)
10 traveling body 13 right traveling motor (specific actuator)
14 Left travel motor (specific actuator)
20 Revolving body 22 Electric motor for hydraulic pump (motor)
23 Battery 30 Front working machine 31 Boom 32 Boom cylinder (other actuator)
33 Arm 34 Arm cylinder (other actuators)
35 Bucket 36 Bucket cylinder (other actuator)
DESCRIPTION OF SYMBOLS 40 Hydraulic control mechanism 41 Hydraulic pump 42 Hydraulic control valve 52 Hydraulic pump inverter 54 Operating device 55 Controller (motor speed control means)

Claims (3)

原動機と、この原動機により駆動される油圧ポンプと、この油圧ポンプから吐出される圧油により駆動される特定アクチュエータ、及びこの特定アクチュエータとは異なる他のアクチュエータを含む複数のアクチュエータと、前記特定アクチュエータを操作する特定操作手段とを備えた油圧式建設機械において、
前記特定操作手段の操作量が第1操作量以下のときには、前記原動機の回転数を前記特定アクチュエータと前記他のアクチュエータとの複合操作を可能とする一定の第1回転数に制御し、前記特定操作手段の操作量が前記第1操作量よりも大きい第2操作量以上のときには、前記原動機の回転数を前記第1回転数よりも高い一定の第2回転数に制御し、前記特定操作手段の操作量が前記第1操作量より大きく前記第2操作量より小さい操作量のときには、前記第1回転数と前記第2回転数との間で、前記特定操作手段の操作量の増加に応じて次第に高くなるように前記原動機の回転数を制御する原動機回転数制御手段を備えたことを特徴とする油圧式建設機械。
A plurality of actuators including a prime mover, a hydraulic pump driven by the prime mover, a specific actuator driven by pressure oil discharged from the hydraulic pump, and another actuator different from the specific actuator, and the specific actuator In a hydraulic construction machine with a specific operating means to operate,
When the operation amount of the specific operation means is less than or equal to the first operation amount, the rotational speed of the prime mover is controlled to a constant first rotation speed that enables a combined operation of the specific actuator and the other actuator, When the operation amount of the operation means is equal to or greater than the second operation amount that is larger than the first operation amount, the rotation speed of the prime mover is controlled to a constant second rotation speed that is higher than the first rotation speed, and the specific operation means When the operation amount is larger than the first operation amount and smaller than the second operation amount, the operation amount of the specific operation means is increased between the first rotation speed and the second rotation speed. A hydraulic construction machine comprising a prime mover rotational speed control means for controlling the rotational speed of the prime mover so as to gradually increase.
前記請求項1記載の発明において、
前記原動機回転数制御手段は、前記油圧ポンプの吸収馬力が前記第1回転数における最大吸収馬力を超えないように前記原動機の回転数を制御可能なものから成ることを特徴とする油圧式建設機械。
In the invention of claim 1,
The prime mover rotational speed control means is configured to be capable of controlling the rotational speed of the prime mover so that the absorption horsepower of the hydraulic pump does not exceed the maximum absorption horsepower at the first rotational speed. .
前記請求項1または2記載の発明において、
前記油圧式建設機械がバッテリ駆動式油圧ショベルから成り、
前記原動機が油圧ポンプ用電動機から成り、
この油圧ポンプ用電動機を駆動する電力を供給可能なバッテリを備え、
前記特定アクチュエータが右走行モータ及び左走行モータから成り、
前記他のアクチュエータがフロント作業機を駆動するアクチュエータから成り、
前記特定操作手段が、前記右走行モータを操作する操作装置及び前記左走行モータを操作する操作装置から成ることを特徴とする油圧式建設機械。
In the invention according to claim 1 or 2,
The hydraulic construction machine comprises a battery-driven hydraulic excavator;
The prime mover comprises a hydraulic pump motor;
A battery capable of supplying electric power for driving the electric motor for the hydraulic pump is provided.
The specific actuator includes a right traveling motor and a left traveling motor,
The other actuator comprises an actuator that drives a front work machine,
The hydraulic construction machine, wherein the specific operation means includes an operation device for operating the right travel motor and an operation device for operating the left travel motor.
JP2007175473A 2007-07-03 2007-07-03 Hydraulic construction machine Expired - Fee Related JP5371210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175473A JP5371210B2 (en) 2007-07-03 2007-07-03 Hydraulic construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175473A JP5371210B2 (en) 2007-07-03 2007-07-03 Hydraulic construction machine

Publications (2)

Publication Number Publication Date
JP2009013635A true JP2009013635A (en) 2009-01-22
JP5371210B2 JP5371210B2 (en) 2013-12-18

Family

ID=40354862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175473A Expired - Fee Related JP5371210B2 (en) 2007-07-03 2007-07-03 Hydraulic construction machine

Country Status (1)

Country Link
JP (1) JP5371210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035658A (en) * 2011-08-08 2013-02-21 Aichi Corp Control device of working vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927207B2 (en) 2021-07-29 2024-03-12 Takeuchi Mfg. Co., Ltd. Working control device in working vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279836A (en) * 1989-04-19 1990-11-15 Hitachi Constr Mach Co Ltd Device for controlling revolution of prime mover for hydraulic construction machine
JPH0497027A (en) * 1990-08-11 1992-03-30 Yutani Heavy Ind Ltd Traveling controller of constructional machinery
JPH04143331A (en) * 1990-10-03 1992-05-18 Hitachi Constr Mach Co Ltd Hydraulic drive device for working vehicle
JPH09329086A (en) * 1996-06-13 1997-12-22 Yutani Heavy Ind Ltd Working machine driven by battery
JP2002266379A (en) * 2001-03-07 2002-09-18 Kobelco Contstruction Machinery Ltd Operation control method and equipment for construction machinery
JP2007120426A (en) * 2005-10-28 2007-05-17 Komatsu Ltd Engine and control device of hydraulic pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02279836A (en) * 1989-04-19 1990-11-15 Hitachi Constr Mach Co Ltd Device for controlling revolution of prime mover for hydraulic construction machine
JPH0497027A (en) * 1990-08-11 1992-03-30 Yutani Heavy Ind Ltd Traveling controller of constructional machinery
JPH04143331A (en) * 1990-10-03 1992-05-18 Hitachi Constr Mach Co Ltd Hydraulic drive device for working vehicle
JPH09329086A (en) * 1996-06-13 1997-12-22 Yutani Heavy Ind Ltd Working machine driven by battery
JP2002266379A (en) * 2001-03-07 2002-09-18 Kobelco Contstruction Machinery Ltd Operation control method and equipment for construction machinery
JP2007120426A (en) * 2005-10-28 2007-05-17 Komatsu Ltd Engine and control device of hydraulic pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035658A (en) * 2011-08-08 2013-02-21 Aichi Corp Control device of working vehicle

Also Published As

Publication number Publication date
JP5371210B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP3969068B2 (en) Actuator drive device for hybrid work machine
JP4424370B2 (en) Hydraulic unit and construction machine having the same
KR101652661B1 (en) Construction machine
US9151019B2 (en) Hybrid type construction machine
KR101834589B1 (en) Construction machine having rotary element
JP5356427B2 (en) Hybrid construction machine
JP5681732B2 (en) Power regeneration device for work machines
WO2013015022A1 (en) Construction machine
US9777463B2 (en) Construction machine
WO2015146219A1 (en) Hydraulic system for work vehicle
WO2010146866A1 (en) Hydraulic control device for construction machine
KR101955751B1 (en) Construction machine
JP2001329573A (en) Construction machine
JP2004340259A (en) Drive system for travelling of construction machinery
JP5371210B2 (en) Hydraulic construction machine
JP2008275100A (en) Construction vehicle
JP5546750B2 (en) Hybrid construction machine
JP2011002085A (en) Hydraulic control device for construction machine
JP2010047125A (en) Traveling control circuit of hybrid construction machine
JP2003184805A (en) Revolving super structure type working vehicle
JP2011117316A (en) Control device of construction machine
JP4381781B2 (en) Pump controller for construction machinery
JP4580896B2 (en) Work vehicle
WO2024142562A1 (en) Electric work machine and method for controlling electric work machine
JP7285380B2 (en) construction machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5371210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees