JP2009013057A - Method for manufacturing ceramic body having functionalized pore surface - Google Patents

Method for manufacturing ceramic body having functionalized pore surface Download PDF

Info

Publication number
JP2009013057A
JP2009013057A JP2008178591A JP2008178591A JP2009013057A JP 2009013057 A JP2009013057 A JP 2009013057A JP 2008178591 A JP2008178591 A JP 2008178591A JP 2008178591 A JP2008178591 A JP 2008178591A JP 2009013057 A JP2009013057 A JP 2009013057A
Authority
JP
Japan
Prior art keywords
pore
ceramic body
ceramic
functionalized
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008178591A
Other languages
Japanese (ja)
Inventor
Andreas Mattern
マッテルン アンドレアス
Ulrich Eisele
アイゼレ ウルリヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2009013057A publication Critical patent/JP2009013057A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • C04B38/0096Pores with coated inner walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic body not exhibiting defects found in a conventional technology and having a functionalized pore surface which has a material composition different from that of residual base material and/or functionalization. <P>SOLUTION: The method for manufacturing the ceramic body having the functionalized pore surface includes (a) a process for mixing one or more kinds of inorganic pore forming agents with a ceramic matrix material, (b) a process for forming the resulting mixture into a formed body, and (c) a process for heat treating the formed body formed in the process (b). At this time, the one or more kinds of inorganic pore forming agents form the functionalized surface after the conversion in the process (c). The ceramic body produced by this method and its applications are also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

発明の詳細な説明
本発明は、官能化された細孔表面を有するセラミック体の製造方法及び官能化された細孔表面を有するセラミック体、特に、内燃機関のための排ガス後処理装置のためのフィルター要素及び担体構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a ceramic body having a functionalized pore surface and a ceramic body having a functionalized pore surface, in particular for an exhaust gas aftertreatment device for an internal combustion engine. The filter element and carrier structure.

従来技術
従来技術からは、多孔質の部材及び成形体の製造が公知である。このような大抵はセラミック性の部材又は成形体中での多孔性は、通常は、いわゆる細孔形成剤の燃焼(Ausbrennen)により生じさせられる。このために、大抵は安価な有機物質、例えばセルロース、炭素繊維、デンプン又はロウが、この成形の前にセラミック粉末に混合され、かつ、焼結工程の際に燃焼される。この細孔形成剤の形態及び大きさに応じて、細孔はセラミック構造中に残存する。このような方法は例えば、ディーゼル−パーティクルフィルター及び排ガスセンサーでの多孔質層におけるこの多孔性の調整の際に使用される。この際の欠点は、焼結が、極めて小さな温度−時間勾配でもってこの有機の細孔形成剤の分解及び/又は燃焼の温度範囲で実施されなくてはならないことであり、というのも、さもなければ、激しいガス発生が生じ、かつ、このセラミック体を損なう可能性があるからである。加えて、有機の細孔形成剤の熱分解の際には、環境に害を及ぼす物質が生じる可能性があり、前記物質は次いでこの排気から手間をかけて除去されなくてはならない。更に、有機の細孔形成剤の燃焼の際の発熱反応が、この炉の過熱を生じる可能性があり、これによりこの燃焼物の損傷を生じる。これは、この炉の可能性のある装入物を制限する。
Prior art From the prior art, the production of porous members and shaped bodies is known. Such porosity in mostly ceramic parts or shaped bodies is usually caused by the so-called combustion of pore formers (Ausbrennen). For this purpose, usually cheap organic substances such as cellulose, carbon fibers, starch or wax are mixed into the ceramic powder prior to this shaping and burned during the sintering process. Depending on the form and size of the pore former, the pores remain in the ceramic structure. Such a method is used, for example, in the adjustment of this porosity in the porous layer in diesel-particle filters and exhaust gas sensors. The disadvantage here is that sintering must be carried out in the temperature range of decomposition and / or combustion of this organic pore former with a very small temperature-time gradient, If not, vigorous gas generation occurs and the ceramic body may be damaged. In addition, during the pyrolysis of the organic pore former, environmentally harmful substances can be generated, which must then be removed from the exhaust by labor. In addition, the exothermic reaction during combustion of the organic pore former can cause overheating of the furnace, thereby causing damage to the combustion product. This limits the potential charge of this furnace.

様々な適用のためには、この成形体の細孔表面が残りの基材材料とは異なる材料組成及び/又は官能化を有することが望ましい。   For various applications, it is desirable that the pore surface of the compact has a different material composition and / or functionalization than the rest of the substrate material.

DE 42 34 779 A1中には、開放孔を有する担体材料からなる担体触媒の製造が記載され、この外側の及び内側の表面にはマクロ孔を有するポリマーが生じさせられ、これには引き続きスルホン化によりイオン交換体−特性が付与される。この生じるイオン交換樹脂は機械的及び/又は化学的に固定されている。この担体材料は例えば開放孔を有する焼結ガラス(Sinterglas)又は開放孔を有するセラミック材料であってケイ酸アルミニウムベースのものであることができる。このポリマー層のための細孔形成剤として、例えばC6〜C16−アルカンが使用される。このポリマー層は、含浸重合(Traenkpolymerisation)方法において又は沈殿重合(Faellungspolymerisation)において、この成形体の多孔質担体材料に設けられる。含浸重合方法では、この多孔質成形体は反応混合物で含浸され、取り込まれなかった含浸溶液は除去され、引き続き重合が実施される。沈殿重合方法では、この成形体はこの重合の間に過多量の反応混合物中にある。 In DE 42 34 779 A1, the preparation of a supported catalyst consisting of a support material with open pores is described, which produces a polymer with macropores on the outer and inner surfaces, which is subsequently sulfonated. Gives the ion exchanger properties. The resulting ion exchange resin is mechanically and / or chemically fixed. The carrier material can be, for example, sintered glass with open holes or a ceramic material with open holes, based on aluminum silicate. For example, C 6 -C 16 -alkanes are used as pore formers for this polymer layer. This polymer layer is provided on the porous carrier material of this shaped body in an impregnation polymerization (Traenkpolymerisation) method or in precipitation polymerization (Faellungspolymerisation). In the impregnation polymerization method, the porous molded body is impregnated with the reaction mixture, the impregnated solution which has not been taken in is removed, and the polymerization is subsequently carried out. In the precipitation polymerization process, the compact is in an excessive amount of reaction mixture during the polymerization.

特殊なフィルター要素、例えばディーゼル−パーティクルフィルター、及び、マグネシウム−アルミニウム−シリカートベースの触媒の担体基材は、相当な熱負荷及び熱化学的攻撃に曝されている可能性がある。相応する保護コーティングにより温度−及びアルカリ抵抗性が、そしてこれにより、このような特に必要とされるセラミック基材(例えば、前述のフィルター要素)の耐用年数が改善されることができることが既に示されることができた。DE 42 34 779 A1に応じたポリマー被覆は、このような使用のためには適さず、かつ更に、開放孔を有する成形体の場合にのみ実現されることができる。閉鎖孔の官能化は可能でない。   Special filter elements such as diesel-particle filters and magnesium-aluminum-silicate based catalyst support substrates may be subject to significant thermal loads and thermochemical attack. It has already been shown that a corresponding protective coating can improve the temperature and alkali resistance, and thereby the service life of such a particularly required ceramic substrate (for example the filter elements mentioned above). I was able to. A polymer coating according to DE 42 34 779 A1 is not suitable for such use and can only be realized in the case of shaped bodies with open holes. Functionalization of the closed hole is not possible.

他の被覆(例えばセラミックをベースとする)を有する細孔表面の作出及び/又は官能化は、これまでに公知の方法において、原則的に、後からの被覆により行われることができる。細孔の被覆は、これまでに公知の製造方法では別個の方法工程である。例えば、細孔−被覆は、ゾル−ゲル−プロセスによっても、ナノ分散性懸濁液中への多孔質基材の浸漬によって、又は、蒸着によって実施されることができる。この被覆工程の欠点は、この基材の細孔を被覆プロセスの際に閉塞したり使用不可にしたりすることなしに、しかしながらそれでも保護コーティングを備えるべく、高価であり、かつ、しばしばナノスケールですらある原料が必要とされることである。乾燥の際の細管形成及びガセット形成(Zwickelbildung)のために、この方法により設けられた被覆は、加えて、均一な厚さでないか、又は、この細孔は不完全に被覆される。特に細孔の内側被覆は、この際特別な問題を提示する。更に、閉鎖孔はこれまでに被覆されることができない。付加的な引き続く方法工程において、この被覆は自体で、場合により次いで更に、付加的なコストのかかる熱処理において焼成又は焼結されなくてはならない。
DE 42 34 779 A1
The creation and / or functionalization of pore surfaces with other coatings (eg based on ceramics) can in principle be carried out by subsequent coatings in a known manner. Pore coating is a separate process step in previously known production methods. For example, pore-coating can be performed by a sol-gel process, by dipping a porous substrate in a nanodisperse suspension, or by vapor deposition. The disadvantage of this coating process is that it is expensive and often even nanoscale to provide a protective coating without obstructing or disabling the pores of the substrate during the coating process. Some raw materials are needed. Due to the formation of tubules and gussets during drying, the coating provided by this method is additionally not of uniform thickness or the pores are incompletely coated. In particular, the inner coating of the pores presents a special problem. Furthermore, the closure hole cannot be covered so far. In an additional subsequent process step, this coating must be fired or sintered by itself, optionally then further in an additional costly heat treatment.
DE 42 34 779 A1

発明の開示
官能化された細孔表面を有するセラミック体の本発明による製造方法は、次の工程
(a)1種又は数種の無機の細孔形成剤をセラミックマトリックス材料と混合する工程、
(b)成形して成形体にする工程、及び
(c)工程b)において成形された成形体を熱処理する工程
を含み、その際前記の1種又は数種の無機の細孔形成剤が、官能化された細孔表面を工程c)における変換後に形成する。
DISCLOSURE OF THE INVENTION A method according to the invention for producing a ceramic body having a functionalized pore surface comprises the following step (a) mixing one or several inorganic pore formers with a ceramic matrix material,
(B) a step of forming into a formed body, and (c) a step of heat-treating the formed body in step b), wherein the one or several inorganic pore forming agents are A functionalized pore surface is formed after the conversion in step c).

いいかえれば、無機の細孔形成剤として工程a)において、1種又は数種の物質又は物質混合物の1種又は数種の前駆物質が使用されることができ、これはこの生じる細孔表面を形成する。前駆物質とは、ここでは及び以下では、工程c)における熱処理の間にセラミック基材中で細孔表面及び/又は細孔被覆として所望される物質又は物質混合物に移行することができる物質又は材料が理解される。この熱処理は、焼結によるこの物体の緻密化にも用いられる。   In other words, one or several precursors of one or several substances or substance mixtures can be used in step a) as inorganic pore formers, which Form. Precursor here and hereinafter is a substance or material that can be transferred to the desired substance or substance mixture as a pore surface and / or pore coating in the ceramic substrate during the heat treatment in step c) Is understood. This heat treatment is also used for densification of the object by sintering.

本発明により、前記成形体が形成される基礎材料が、マトリックス材料と呼ばれる。本発明により有利なマトリックス材料として、セラミック材料、例えば粉末又は粉末混合物が使用される。このようなセラミック材料のための例は、マグネシウム−アルミニウム−シリカート、特にコーディエライト及びコーディエライト混合物、チタン酸アルミニウム、酸化ジルコニウム、酸化マグネシウム、酸化ケイ素、酸化アルミニウム及びムライト及び/又はその前駆物質である。   According to the invention, the basic material on which the shaped body is formed is called a matrix material. As matrix material which is advantageous according to the invention, ceramic materials such as powders or powder mixtures are used. Examples for such ceramic materials are magnesium-aluminum-silicates, in particular cordierite and cordierite mixtures, aluminum titanate, zirconium oxide, magnesium oxide, silicon oxide, aluminum oxide and mullite and / or precursors thereof. It is.

本発明により、基材のマトリックス材料とは異なる組成を有する細孔表面が、官能化された細孔表面と呼ばれる。このような官能化された細孔表面は、本発明により、被覆又は細孔被覆とも呼ばれる。   According to the present invention, a pore surface having a composition different from the matrix material of the substrate is referred to as a functionalized pore surface. Such functionalized pore surfaces are also referred to as coatings or pore coatings according to the present invention.

無機の細孔形成剤として、本発明の有利な一態様において、1種又は数種の金属酸化物、有利にはMgO、ZrO2、HfO2、SiO2、GeO2、Ta25、SnO2及び/又はランタニド酸化物の、1種又は数種の前駆物質が使用されることができる。 As an inorganic pore-forming agent, in one advantageous embodiment of the invention, one or several metal oxides, preferably MgO, ZrO 2 , HfO 2 , SiO 2 , GeO 2 , Ta 2 O 5 , SnO, are used. One and several precursors of 2 and / or lanthanide oxides can be used.

有利に、有機の細孔形成剤は断念されることができる。本発明による方法を用いて、従って、工程c)における熱処理の際の有機の燃焼物の量は顕著に減少されるか又は完全に回避されることさえできる。これにより引き起こされる激しいガス発生(これは、セラミック体を損なうことができるものである)は、生じることができない。有機の細孔形成剤の熱分解による環境に害を及ぼす物質の発生は、同様に回避されるか又は少なくとも減少される。更に、金属酸化物−前駆物質の、金属酸化物への反応は、吸熱的に進行することができ、この結果、これによりこの炉の過熱及びこれにより引き起こされる、燃焼物の損傷は生じることができない。   Advantageously, organic pore formers can be abandoned. With the method according to the invention, the amount of organic combustion products during the heat treatment in step c) can therefore be significantly reduced or even avoided altogether. Vigorous gas generation caused by this, which can damage the ceramic body, cannot occur. The generation of environmentally harmful substances due to the thermal decomposition of the organic pore former is likewise avoided or at least reduced. Furthermore, the reaction of the metal oxide-precursor to the metal oxide can proceed endothermically, which can result in overheating of the furnace and thereby burnt damage. Can not.

本発明による方法の更なる利点は、開放孔もまた同様に閉鎖孔も官能化されることができることである。   A further advantage of the method according to the invention is that both open holes as well as closed holes can be functionalised.

本発明による方法は、更に、この多孔質体の製造、この細孔の形成及び細孔表面の官能化(Funktionalisierung)が同時に行われることができる利点を有する。加えて、有利には、細孔被覆の固定のために場合により必要な熱処理は、前記物体の熱処理と一緒に行われることができ、この結果、これにより、その他に必要な更なるコストのかかる方法工程は省略されることができる。   The method according to the invention further has the advantage that the production of the porous body, the formation of the pores and the functionalization of the pore surface can be carried out simultaneously. In addition, advantageously the heat treatment that is optionally necessary for fixing the pore coating can be carried out together with the heat treatment of the object, which results in the additional cost required for others. The method steps can be omitted.

更に、これまでに公知の方法に対して、被覆材料の顕著な節約が達成されることができ、かつ、加えて、ナノスケールでない、従ってより安価な原料が使用されることができる。更なる細孔形成剤の使用は本発明により断念されることができる。   Furthermore, significant savings in coating materials can be achieved over previously known methods, and in addition, raw materials that are not nanoscale and therefore less expensive can be used. The use of further pore formers can be abandoned by the present invention.

更に、本発明による方法により、前記細孔に対する被覆は、密度の点で、顕著により均一に及びより一様に生じさせられることができる。この生じる被覆は従って、公知の方法に応じた別個の工程において被覆された物体中の被覆に対して、質的に顕著に改善されている。   Furthermore, with the method according to the invention, the coating on the pores can be produced significantly more uniformly and more uniformly in terms of density. This resulting coating is therefore significantly improved qualitatively over coating in an object coated in a separate step according to known methods.

本発明による方法の特に有利な一態様において、無機の細孔形成剤として1種又は数種の金属−水酸化物−水和物、金属−炭酸塩−水和物、金属−硝酸塩又は金属−重炭酸塩が使用されることができる。   In a particularly advantageous embodiment of the process according to the invention, one or several metal-hydroxide-hydrates, metal-carbonate-hydrates, metal-nitrates or metal-as inorganic pore formers. Bicarbonate can be used.

この細孔形成剤は、工程a)において粉末としてこのセラミックマトリックス材料の処理の際に混入されることができる。この後で成形が行われる。本発明による方法の工程c)における引き続く熱処理の際には、まず、セラミックマトリックス材料の脱脂が起こる。これに並行してまず水、CO2又は他の低分子量化合物が、無機の細孔形成剤からの分解生成物として分離されることができる。従ってまず、例えばこの相応する水酸化物が形成されることができ、これは、出発化合物に対してより少ない体積を有する。この際、セラミック未処理成形体(Gruenkoerper)中に細孔が生じることができる。より高い温度では引き続きこの物体が焼結することができ、かつ、前記細孔形成剤からのそれぞれの安定な酸化物の形成が行われることができ、これは再度、前記水酸化物と比較してより少ない比容積を有する。まず未処理成形体中に生じる細孔は、セラミック基材の一般的な焼結収縮に関与することができる。生じるセラミック成形体D中の孔径はこの際、焼結収縮Δl/l0、細孔形成剤の粒径D0、及び、細孔形成剤中の有効酸化物含有量ν(容積部で)から、式Iから生じる。

Figure 2009013057
This pore former can be incorporated as a powder in step a) during the treatment of the ceramic matrix material. This is followed by molding. During the subsequent heat treatment in step c) of the method according to the invention, the ceramic matrix material is first degreased. In parallel to this, water, CO 2 or other low molecular weight compounds can first be separated as decomposition products from the inorganic pore former. Thus, first, for example, this corresponding hydroxide can be formed, which has a smaller volume relative to the starting compound. At this time, pores can be formed in the ceramic green compact (Gruenkoerper). At higher temperatures, the body can continue to sinter and the formation of the respective stable oxide from the pore former can take place, again compared to the hydroxide. Less specific volume. First, the pores generated in the green compact can be involved in general sintering shrinkage of the ceramic substrate. The resulting pore diameter in the ceramic molded body D is determined from the sintering shrinkage Δl / l 0 , the particle diameter D 0 of the pore forming agent, and the effective oxide content ν (in volume parts) in the pore forming agent. Arising from Formula I.
Figure 2009013057

本発明による方法により、この物体の残りの組成とは異なる、本発明の意味合いにおいて官能化された細孔表面が狙いを定めて生じさせられることができる。この被覆はこのようにして極めて一様に、かつ極めて固く前記物体に連結されることができる。焼結のため及び/又は前記被覆の前記物体への固定のための更なる熱処理工程は、有利には必要でない。   By means of the method according to the invention, pore surfaces that are functionalized in the sense of the invention, which are different from the rest of the composition of this object, can be targeted. This coating can thus be connected to the object very uniformly and very firmly. A further heat treatment step for sintering and / or for fixing the coating to the object is advantageously not necessary.

更なる一態様において、前記マトリックス材料は細孔形成剤及び/又はこの生じる金属酸化物と反応することができ、かつ、相状態に応じて、この際物質勾配が、マトリックス材料と被覆との間で混晶の形で、又は、新規の相が、形成されることができる。これにより、細孔表面は、適した前駆物質が存在しない物質でも被覆される。物質勾配は、この被覆とマトリックス材料との間で、材料特性における流動的な遷移を形成することができる利点を有する。これにより、この層とこの被覆の剥離の間で応力は減少されるか又は回避さえされることができる。   In a further embodiment, the matrix material can react with the pore-forming agent and / or the resulting metal oxide, and depending on the phase state, the substance gradient is between the matrix material and the coating. In the form of mixed crystals or new phases can be formed. Thereby, the pore surface is also coated with a material for which no suitable precursor is present. The material gradient has the advantage that a fluid transition in material properties can be formed between this coating and the matrix material. Thereby, stress can be reduced or even avoided between peeling of this layer and this coating.

本発明による方法の特に有利な一態様は、細孔形成剤としてジルコニウム−水酸化物−水和物及び/又はジルコニウム−炭酸塩−水和物が使用されることを予定する。このようにして、本発明による方法により、前記細孔の酸化ジルコニウム被覆が形成されることができる。酸化ジルコニウムを基礎とするこのような被覆は、本発明により製造された物体中で、断熱層として使用され、かつ/又は熱容量の向上を生じる。このような断熱層で被覆された物体、例えばディーゼルパーティクルフィルターは、従って、被覆されていない基材よりも、熱的により負荷をかけることができる。この高められた熱容量は、特に、短期間の温度最高値に対して許容性(Toleranz)を高めることができる。   One particularly advantageous embodiment of the process according to the invention envisages that zirconium-hydroxide-hydrate and / or zirconium-carbonate-hydrate are used as pore former. In this way, a zirconium oxide coating of the pores can be formed by the method according to the invention. Such coatings based on zirconium oxide are used as thermal insulation layers and / or result in an increase in heat capacity in the bodies produced according to the invention. Objects coated with such a thermal barrier, such as diesel particle filters, can therefore be more thermally loaded than uncoated substrates. This increased heat capacity can increase the tolerance (Toleranz), especially for short-term temperature maxima.

本発明による方法の他の一実施態様において、工程a)及び/又はb)における水性の方法の実施の際に、細孔形成剤は、水溶性でないか、又は、1種又は数種の細孔形成剤の添加がこの水性の方法工程の直後に工程c)における熱処理前に行われるように選択されることができる。後者は、例えば、細孔形成剤としての、大抵の硝酸塩又は重炭酸塩に関する。また、好ましくは、工程a)及びb)において生じる最高温度は、前記細孔形成剤の分解温度を超えない。   In another embodiment of the process according to the invention, in carrying out the aqueous process in steps a) and / or b), the pore-forming agent is not water-soluble or contains one or several fine particles. The addition of pore former can be chosen to take place immediately after this aqueous process step and before the heat treatment in step c). The latter relates to most nitrates or bicarbonates, for example as pore formers. Also preferably, the maximum temperature generated in steps a) and b) does not exceed the decomposition temperature of the pore former.

本発明は更に、無機の金属−水酸化物−水和物及び金属−炭酸塩−水和物の、セラミック基材の製造のための細孔形成剤としての使用に関する。このような無機の細孔形成剤の使用により、有機の燃焼物(Ausbrand)の量は、多孔質セラミック体の製造の際のこの熱処理の際に、顕著に減少されるか又は完全に回避されることさえできる。これにより引き起こされる激しいガス発生は、これはセラミック体を損なうことができるものであるが、生じることができない。有機の細孔形成剤の熱分解による、環境に害のある物質の発生は、同様に回避されるか又は少なくとも減少される。更に、金属酸化物−前駆物質の金属酸化物への反応は、吸熱性に進行することができ、この結果、これにより炉の過熱及びこれにより引き起こされる、燃焼物の損傷が生じることができない。   The invention further relates to the use of inorganic metal-hydroxide-hydrates and metal-carbonate-hydrates as pore formers for the production of ceramic substrates. Through the use of such inorganic pore formers, the amount of organic combustibles (Ausbrand) is significantly reduced or completely avoided during this heat treatment during the production of the porous ceramic body. Can even do. Vigorous gas generation caused by this can damage the ceramic body, but cannot. The generation of environmentally harmful substances due to the thermal decomposition of the organic pore former is likewise avoided or at least reduced. Furthermore, the reaction of the metal oxide-precursor to the metal oxide can proceed endothermically, so that this does not result in furnace overheating and combustible damage caused thereby.

以下に、本発明を実施例に基づいて、これに限定すること無しに詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples, without being limited thereto.

実施例1
ZrO2細孔被覆を有するAl23成形体の製造
粒径10μmを有する、75質量%(=34Vol%)のZrO2を有するZr(OH)4・xH2Oを乾燥状態でAl23と混合した。この後で、乾燥プレス処理により成形を行った。この引き続く熱処理の際に少なくとも部分的に、前記細孔形成剤の分解が生じた。この際、未処理成形体中に、マトリックス材料の一般的な焼結収縮に関与する細孔が生じた。
Example 1
Having manufacturing particle size 10μm of Al 2 O 3 formed body having a ZrO 2 pore coating, 75 wt% (= 34Vol%) Al 2 O to Zr (OH) 4 · xH 2 O with ZrO 2 in a dry state Mixed with 3 . Thereafter, molding was performed by a dry press process. During the subsequent heat treatment, the pore former was decomposed at least partially. At this time, pores related to general sintering shrinkage of the matrix material were generated in the untreated molded body.

焼結収縮20%では、7μmの直径の細孔が形成され、これは、ZrO2からなる0.5μmの厚さの表面被覆を備えていた。 At 20% sintering shrinkage, 7 μm diameter pores were formed, which had a surface coating of 0.5 μm thickness made of ZrO 2 .

実施例2
ZrO2被覆を有するDPFフィルター体の製造
ハニカム体の押出のためのコーディエライト充填体、例えばDE 2450071 B2又はEP 549873 B1の実施例に記載されている、カオリン、焼結ムライト及びタルク、並びに水及び有機助剤、例えば可塑剤及びバインダーからなるものを混合し、かつ混練した。この混合比を、この化学量論的な組成Mg2Al4Si518が得られるように選択した。混合の際に、25μmの粒径を有する、90質量%(=60Vol%)のZrO2を有するZr(OH)4・xH2Oを添加した。この後で、慣用の様式でこの混合物を押出、かつ、1400℃の温度で焼結プロセスにかけた。このバインダー及び更なる助剤をこれにより燃焼させる。このジルコニウム−ヒドロキシ−水和物は分解し、かつ、この容積減少に基づき細孔を形成した。物体中のこの生じる細孔の壁には、ZrO2が付着したままであり、かつ、密に焼結した保護層が形成された。
Example 2
Production of DPF filter bodies with ZrO 2 coating Cordierite fillers for extrusion of honeycomb bodies, eg kaolin, sintered mullite and talc, as described in the examples of DE 2450071 B2 or EP 549873 B1, and water And organic assistants such as those composed of a plasticizer and a binder were mixed and kneaded. This mixing ratio was selected so as to obtain this stoichiometric composition Mg 2 Al 4 Si 5 O 18 . During the mixing, Zr (OH) 4 .xH 2 O having a particle diameter of 25 μm and containing 90% by mass (= 60 Vol%) ZrO 2 was added. This mixture was then extruded in a conventional manner and subjected to a sintering process at a temperature of 1400 ° C. The binder and further auxiliaries are thereby combusted. The zirconium-hydroxy-hydrate decomposed and formed pores based on this volume reduction. The resulting pore walls in the object had ZrO 2 still attached and a densely sintered protective layer was formed.

実施例3
加水分解安定性MgOフィルター体の製造
MgO粉末を、粒度20〜40μm及び有効ZrO2含有量10Vol%を有する、ZrO(CO3)・xH2O粉末と一緒に、ボールミル中で高温注型材料(Heissgiessmasse )に加工した。この高温注型材料は、融点60〜80℃を有するロウ混合物及び分散剤(Dispergator)からなった。この成形を、シリコーン型中への低圧射出成形により行った。粉末層中での脱脂後に1500℃で焼結した。焼結の際にMgOはZrO2中に拡散し、かつ、ここで混晶形成を生じた。この生じた、勾配を有する物質移動は、細孔内側表面に対するZrO2被覆の安定な付着をもたらした。直径16〜32μmを有する細孔が生じ、これは、0.5〜1μmの厚さのZrO2層でコーティングされていた。MgO体は、水により表面的に攻撃されることができる。この製造された、ZrO2被覆を有するMgO成形体は、水の攻撃に対して安定であった。他の孔径は、ZrO(CO3)・xH2O粉末の粉砕処理により狙いを定めて調整されることができる。
Example 3
Production of hydrolysis-stable MgO filter bodies MgO powder is mixed with ZrO (CO 3 ) xH 2 O powder having a particle size of 20-40 μm and an effective ZrO 2 content of 10 Vol% in a ball mill at high temperature ( Heissgiessmasse). This hot casting material consisted of a wax mixture having a melting point of 60-80 ° C. and a dispersant (Dispergator). This molding was performed by low pressure injection molding into a silicone mold. After degreasing in the powder layer, sintering was performed at 1500 ° C. During the sintering, MgO diffused into ZrO 2 and formed mixed crystals here. This resulting mass transfer with a gradient resulted in a stable attachment of the ZrO 2 coating to the pore inner surface. Pore with a diameter of 16-32 μm was produced, which was coated with a ZrO 2 layer with a thickness of 0.5-1 μm. The MgO body can be superficially attacked by water. This produced MgO compact with ZrO 2 coating was stable against water attack. Other pore sizes can be targeted and adjusted by grinding the ZrO (CO 3 ) · xH 2 O powder.

本発明は、その実施において、前述の有利な実施例に限定されない。更に、被覆、特に細孔被覆、官能性の多孔性を有する更なる部材に関するいくつかの変形が考慮できる。   The invention is not limited in its implementation to the advantageous embodiments described above. In addition, several variants with regard to the coating, in particular the pore coating, further members with functional porosity can be considered.

まとめると、本発明により、官能化された細孔を有するセラミック成形体の改善された製造方法が提供される。この製造されたセラミック成形体は例えば、内燃機関のためのフィルター要素、内燃機関のための触媒のための担体構造又は他の温度−又は腐食負荷されたセラミック成形体又は部材であることができる。   In summary, the present invention provides an improved process for producing ceramic compacts having functionalized pores. The produced ceramic body can be, for example, a filter element for an internal combustion engine, a carrier structure for a catalyst for an internal combustion engine or other temperature- or corrosion-loaded ceramic body or member.

Claims (11)

官能化された細孔を有するセラミック体の製造方法であって、次の工程
(a)1種又は数種の無機の細孔形成剤をセラミックマトリックス材料と混合する工程、
(b)成形して成形体にする工程、及び
(c)工程b)において成形された成形体を熱処理する工程を含み、
その際前記の1種又は数種の無機の細孔形成剤が、官能化された細孔表面を工程c)における変換後に形成する、官能化された細孔を有するセラミック体の製造方法。
A method for producing a ceramic body having functionalized pores, the following step (a) mixing one or several inorganic pore formers with a ceramic matrix material,
(B) a step of forming into a molded body, and (c) a step of heat-treating the molded body molded in step b),
A process for producing a ceramic body with functionalized pores, wherein the one or several inorganic pore formers then form a functionalized pore surface after the transformation in step c).
細孔形成剤として、1種又は数種の金属酸化物、有利にはMgO、ZrO2、HfO2、SiO2、GeO2、Ta25、SnO2及び/又はランタニド酸化物の、1種又は数種の前駆物質が使用されることを特徴とする、請求項1記載の方法。 One or several metal oxides, preferably MgO, ZrO 2 , HfO 2 , SiO 2 , GeO 2 , Ta 2 O 5 , SnO 2 and / or lanthanide oxides as pore formers 2. A method according to claim 1, characterized in that several precursors are used. 細孔形成剤として、金属−水酸化物−水和物及び/又は金属−炭酸塩−水和物及び/又は硝酸塩又は重炭酸塩が使用されることを特徴とする、請求項1又は2記載の方法。   The metal-hydroxide-hydrate and / or metal-carbonate-hydrate and / or nitrate or bicarbonate is used as the pore-forming agent. the method of. 細孔形成剤が、Zr(OH)4・xH2O、ZrO(CO3)・xH2O又はこれらの混合物から選択されていることを特徴とする、請求項1から3までのいずれか1項記載の方法。 4. The method according to claim 1, wherein the pore-forming agent is selected from Zr (OH) 4 .xH 2 O, ZrO (CO 3 ) .xH 2 O, or a mixture thereof. The method described in the paragraph. マトリックス材料が、マグネシウム−アルミニウム−シリカート、コーディエライト、コーディエライト−混合物、チタン酸アルミニウム、酸化ジルコニウム、酸化ケイ素、酸化アルミニウム、酸化マグネシウム及びムライト及び/又はこれらの前駆物質から選択されていることを特徴とする、請求項1から4までのいずれか1項記載の方法。   The matrix material is selected from magnesium-aluminum-silicate, cordierite, cordierite-mixture, aluminum titanate, zirconium oxide, silicon oxide, aluminum oxide, magnesium oxide and mullite and / or precursors thereof. The method according to claim 1, characterized in that: 細孔形成剤及び/又は工程c)における変換後に生じる物質又は物質混合物がマトリクス材料と反応することを特徴とする、請求項1から5までのいずれか1項記載の方法。   6. Process according to any one of claims 1 to 5, characterized in that the pore-forming agent and / or the substance or substance mixture resulting after the conversion in step c) reacts with the matrix material. 工程a)及びb)において生じる最高温度が、前記細孔形成剤の分解温度を超えないことを特徴とする、請求項1から6までのいずれか1項記載の方法。   7. A process according to any one of claims 1 to 6, characterized in that the maximum temperature occurring in steps a) and b) does not exceed the decomposition temperature of the pore former. 工程a)及び/又はb)において水性の方法が実施される際には、細孔形成剤は水溶性でないか、又は、細孔形成剤の添加が、この水性の方法工程の直後に工程c)における熱処理の前に行われることを特徴とする、請求項1から7までのいずれか1項記載の方法。   When the aqueous process is carried out in steps a) and / or b), the pore-forming agent is not water-soluble or the addition of the pore-forming agent is immediately after this aqueous process step c The method according to claim 1, wherein the method is performed before the heat treatment. 請求項1から8までのいずれか1項記載の方法により製造された、官能化された細孔を有するセラミック体。   9. A ceramic body having functionalized pores produced by the method of any one of claims 1-8. 内燃機関のための排ガス後処理装置のための、フィルター要素及び/又は担体構造としての、請求項9記載のセラミック体の使用。   Use of a ceramic body according to claim 9 as filter element and / or carrier structure for an exhaust gas aftertreatment device for an internal combustion engine. 多孔質セラミック体の製造のための、細孔形成剤としての金属−水酸化物−水和物及び/又は金属−炭酸塩−水和物の使用。   Use of metal-hydroxide-hydrate and / or metal-carbonate-hydrate as a pore former for the production of porous ceramic bodies.
JP2008178591A 2007-07-09 2008-07-09 Method for manufacturing ceramic body having functionalized pore surface Withdrawn JP2009013057A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007031854.7A DE102007031854B4 (en) 2007-07-09 2007-07-09 Process for the production of ceramic bodies with functionalized pore surfaces and subsequently produced bodies

Publications (1)

Publication Number Publication Date
JP2009013057A true JP2009013057A (en) 2009-01-22

Family

ID=40121320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178591A Withdrawn JP2009013057A (en) 2007-07-09 2008-07-09 Method for manufacturing ceramic body having functionalized pore surface

Country Status (2)

Country Link
JP (1) JP2009013057A (en)
DE (1) DE102007031854B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875365A (en) * 2020-08-13 2020-11-03 洛阳科创新材料股份有限公司 Aluminum-silicon porous ceramic part for metal liquid purifier and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044234B4 (en) * 2010-09-02 2015-04-09 Fachhochschule Kiel Porous layers and their production
DE102014215112A1 (en) * 2014-07-31 2016-02-04 Johnson Matthey Public Limited Company Process for preparing a catalyst and catalyst articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885977A (en) 1973-11-05 1975-05-27 Corning Glass Works Anisotropic cordierite monolith
DE2632084A1 (en) * 1976-07-16 1978-01-26 Jaklin Hans Hollow lightweight bricks - made from expanded perlite, lean clay and colloidal silica or silicate(s) which improve strength
US4203772A (en) * 1977-04-18 1980-05-20 Corning Glass Works Porous zirconia containing ceramics
US5183608A (en) 1992-01-03 1993-02-02 Corning Incorporated Method of making diesel particulate filters
DE4234779A1 (en) 1992-10-15 1994-04-21 Veba Oel Ag Supported catalyst and use of the same
DE19605149C2 (en) * 1996-02-13 2001-09-27 Horst R Maier Process for the production of porous ceramic moldings, moldings made therefrom from titanium dioxide and their uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875365A (en) * 2020-08-13 2020-11-03 洛阳科创新材料股份有限公司 Aluminum-silicon porous ceramic part for metal liquid purifier and preparation method thereof

Also Published As

Publication number Publication date
DE102007031854B4 (en) 2017-03-02
DE102007031854A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
EP2358359B1 (en) Ceramic honeycomb structure skin coating
US4976760A (en) Porous ceramic article for use as a filter for removing particulates from diesel exhaust gases
JP5175212B2 (en) High porosity cordierite ceramic honeycomb articles and methods
JP6625683B2 (en) Multi-cell type ceramic article and manufacturing method thereof
US4871495A (en) Process for producing porous ceramic filter for filtering of particulates from diesel exhaust gases
JP5275972B2 (en) Reactive binders for porous wall flow filters.
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
JP2010510916A (en) Durable honeycomb structure
JP2012254923A (en) Plugging material for aluminum titanate ceramic wall flow filter manufacture
JP2012507464A (en) Fibrous aluminum titanate substrate and method for producing the same
JP2013514966A (en) Fiber reinforced porous substrate
EP2519482B1 (en) Method of making polymeric barrier coating to mitigate binder migration in a diesel particulate filter to reduce filter pressure drop and temperature gradients
JP2007528342A (en) Ceramic composition comprising a silsesquioxane polymer
EP0344284A1 (en) Porous ceramic shapes, compositions for the preparation thereof, and method for producing same.
JP2012504092A (en) Method for producing porous SiC material
JP2009013057A (en) Method for manufacturing ceramic body having functionalized pore surface
EP1355865A1 (en) Fabrication of ultra-thinwall cordierite structures
WO2011008463A1 (en) Process for producing cemented and skinned acicular mullite honeycomb structures
US20120021895A1 (en) Honeycomb catalyst substrate and method for producing same
RU2610482C1 (en) Method for obtaining porous aluminium oxide ceramics
JP4511103B2 (en) Manufacturing method of composite material
JP2004275854A (en) Silicon carbide honeycomb structure and ceramic filter using the same
JPH03150276A (en) Multilayered ceramic material and production thereof
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP2004189575A (en) Silicon carbide-based porous structure material coated with ceramic and method of producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110711

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120307