JP2009012012A - Pulse arc welding control method and pulse arc welding apparatus - Google Patents

Pulse arc welding control method and pulse arc welding apparatus Download PDF

Info

Publication number
JP2009012012A
JP2009012012A JP2007173680A JP2007173680A JP2009012012A JP 2009012012 A JP2009012012 A JP 2009012012A JP 2007173680 A JP2007173680 A JP 2007173680A JP 2007173680 A JP2007173680 A JP 2007173680A JP 2009012012 A JP2009012012 A JP 2009012012A
Authority
JP
Japan
Prior art keywords
welding
period
current
steady
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173680A
Other languages
Japanese (ja)
Other versions
JP4715813B2 (en
Inventor
Junji Fujiwara
潤司 藤原
Atsuhiro Kawamoto
篤寛 川本
Akira Nakagawa
晶 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007173680A priority Critical patent/JP4715813B2/en
Publication of JP2009012012A publication Critical patent/JP2009012012A/en
Application granted granted Critical
Publication of JP4715813B2 publication Critical patent/JP4715813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, in a material having the low specific resistivity such as aluminum, a welding starting end is subjected to insufficient heat input and incomplete penetration under the same condition as that during the stationary welding period, and occurrence of crater at a welding terminating end can be reduced by controlling the welding voltage and the wire feeding rate, however the crater state can not be consistently formed only by making an adjustment so that the welding voltage and the wire feeding rate during the end welding period become those during the stationary welding period to those during the welding completing point of the end welding period. <P>SOLUTION: Excellent welding quality can be realized by performing the welding with the pulse current waveform different from that the stationary welding period during the start welding period and the end welding period according to the set material of a welding wire and the set material of an object to be welded. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、消耗電極である溶接ワイヤを送給しながらパルスアーク溶接を行うパルスアーク溶接制御方法およびパルスアーク溶接装置に関するものである。   The present invention relates to a pulse arc welding control method and a pulse arc welding apparatus for performing pulse arc welding while feeding a welding wire as a consumable electrode.

従来のアーク溶接において、アルミをアーク溶接する場合、溶接のスタート期間では、被溶接部に供給する溶接電圧や溶接ワイヤ送給速度を、定常溶接時の設定レベルと同じ設定レベルで行っていた。また、溶接のエンド期間では、クレータ発生を抑制するクレータ処理を目的として、クレータ処理期間内に被溶接部に供給する溶接電圧を定常時の設定レベルからクレータ処理設定レベルまで減少させると共に、溶接ワイヤの送給速度を前記溶接電圧の変化に応じて減少させるものが知られている(例えば、特許文献1参照)。
特開平1−107968号公報
In conventional arc welding, when aluminum is arc-welded, the welding voltage supplied to the welded part and the welding wire feed speed are set at the same setting level as that during steady welding during the welding start period. In addition, in the welding end period, for the purpose of crater processing to suppress crater generation, the welding voltage supplied to the welded part during the crater processing period is reduced from the steady setting level to the crater processing setting level. Is known in which the feeding speed is reduced in accordance with the change in the welding voltage (see, for example, Patent Document 1).
JP-A-1-107968

上記従来のアーク溶接においては、図12に示すように溶接始端部103では溶接電圧と溶接ワイヤ送給速度が定常溶接期間TNと同条件となっているので、被溶接物101としてアルミなどの固有抵抗率が低く熱伝導率が高い材質を溶接する場合、溶接始端部103の付近では入熱不足となり、溶け込み不足が発生してしまうことがある。そして、ビード幅が狭く、ビード高さが高く、溶け込みが浅いビード外観になってしまうことがある。   In the above conventional arc welding, as shown in FIG. 12, the welding voltage and the welding wire feed speed are the same as those in the steady welding period TN at the welding start end portion 103. When welding a material having a low resistivity and a high thermal conductivity, heat input may be insufficient near the welding start end portion 103, resulting in insufficient penetration. In some cases, the bead has a narrow bead width, a high bead height, and a shallow bead appearance.

また、従来のアーク溶接において、溶接終端部におけるクレータ102の発生を軽減することは、溶接電圧Vとワイヤ送給速度WSの制御により可能である。しかし、定常溶接期間TNの溶接電圧V1とワイヤ送給速度WS1から、エンド期間の溶接終了点にかけて溶接電圧V2とワイヤ送給速度WS2になるように調整するだけでは、クレータ状態を安定して形成することができない場合がある。その理由としては、エンド期間において定常溶接期間TNと同じ溶接速度で溶接ワイヤを溶接方向に移動させる場合、溶接ワイヤを送給する速度をワイヤ送給速度WS1からワイヤ送給速度WS2に減速すると、溶接ワイヤの供給量が減少してビード幅が細くなり、クレータ状態を安定して形成することができないからである。   Further, in the conventional arc welding, it is possible to reduce the occurrence of the crater 102 at the welding end portion by controlling the welding voltage V and the wire feed speed WS. However, the crater state is stably formed only by adjusting the welding voltage V1 and the wire feed speed WS1 in the steady welding period TN to the welding voltage V2 and the wire feed speed WS2 from the welding end point in the end period. You may not be able to. The reason for this is that when the welding wire is moved in the welding direction at the same welding speed as the steady welding period TN in the end period, the speed at which the welding wire is fed is reduced from the wire feeding speed WS1 to the wire feeding speed WS2. This is because the supply amount of the welding wire is reduced, the bead width is narrowed, and the crater state cannot be stably formed.

従って、従来のアーク溶接においては、溶接始端部から溶接終端部に至る全溶接長において溶接品質を確保できないおそれがある。   Therefore, in conventional arc welding, there is a possibility that the welding quality cannot be ensured over the entire welding length from the welding start end to the welding end.

上記課題を解決するために、本発明のパルスアーク溶接制御方法は、アルミを主成分とする溶接ワイヤと被溶接物との間でアークを発生させて溶接を行うパルスアーク溶接制御方法であって、定常溶接期間になる前のスタート溶接期間では、平均溶接電流が前記定常溶接期間の平均溶接電流以上の大きさであり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも高いピーク電流値のパルス電流波形により溶接を行うものである。   In order to solve the above problems, a pulse arc welding control method of the present invention is a pulse arc welding control method for performing welding by generating an arc between a welding wire mainly composed of aluminum and a workpiece. In the start welding period before the steady welding period, the average welding current is larger than the average welding current in the steady welding period and has a peak higher than the peak current value of the pulse current waveform in the steady welding period. Welding is performed using a pulse current waveform of the current value.

また、本発明のパルスアーク溶接制御方法は、上記に加えて、スタート溶接期間内において、平均溶接電流を定常溶接期間の平均溶接電流よりも高い平均溶接電流から前記定常溶接期間の平均溶接電流に向かって低減するように制御し、溶接速度を前記定常溶接期間の溶接速度よりも低い溶接速度から前記定常溶接期間の溶接速度に向かって増加するように制御し、前記平均溶接電流の低減と前記溶接速度の増加とを同期させて溶接を行うものである。   Further, in addition to the above, the pulse arc welding control method of the present invention changes the average welding current from the average welding current higher than the average welding current in the steady welding period to the average welding current in the steady welding period within the start welding period. The welding speed is controlled to increase from a welding speed lower than the welding speed during the steady welding period toward the welding speed during the steady welding period, and the reduction of the average welding current and the Welding is performed in synchronization with an increase in welding speed.

また、本発明のパルスアーク溶接制御方法は、上記に加えて、鉄あるいはステンレスを主成分とする溶接ワイヤと被溶接物との間でアークを発生させて溶接を行うアーク溶接制御方法であって、定常溶接期間になる前のスタート溶接期間では、平均溶接電流が前記定常溶接期間の平均溶接電流以下の大きさであり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行うものである。   In addition to the above, the pulse arc welding control method of the present invention is an arc welding control method for performing welding by generating an arc between a welding wire mainly composed of iron or stainless steel and a workpiece. In the start welding period before the steady welding period, the average welding current has a peak that is smaller than the average welding current in the steady welding period and lower than the peak current value of the pulse current waveform in the steady welding period. Welding is performed using a pulse current waveform of the current value.

また、本発明のパルスアーク溶接制御方法は、上記に加えて、スタート溶接期間内において、平均溶接電流を定常溶接期間の平均溶接電流よりも低い平均溶接電流から前記定常溶接期間の平均溶接電流に向かって増加するように制御し、溶接速度を前記定常溶接期間の溶接速度よりも低い溶接速度から前記定常溶接期間の溶接速度に向かって増加するように制御し、前記平均溶接電流の増加と前記溶接速度の増加とを同期させて溶接を行うものである。   Further, in addition to the above, the pulse arc welding control method of the present invention changes the average welding current from the average welding current lower than the average welding current in the steady welding period to the average welding current in the steady welding period within the start welding period. The welding speed is controlled to increase from a welding speed lower than the welding speed in the steady welding period toward the welding speed in the steady welding period, and the increase in the average welding current and the Welding is performed in synchronization with an increase in welding speed.

また、本発明のパルスアーク溶接制御方法は、上記に加えて、定常溶接期間の後のエンド溶接期間では、平均溶接電流が前記定常溶接期間の平均溶接電流以下の大きさであり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行うものである。   Further, in addition to the above, the pulse arc welding control method of the present invention has an average welding current that is equal to or smaller than an average welding current in the steady welding period in the end welding period after the steady welding period, and Welding is performed with a pulse current waveform having a peak current value lower than the peak current value of the pulse current waveform in the steady welding period.

また、本発明のパルスアーク溶接制御方法は、上記に加えて、エンド溶接期間において、平均溶接電流を定常溶接期間の平均溶接電流から前記エンド溶接期間の溶接終了位置での平均溶接電流に向かって低減するように制御し、溶接速度を前記定常溶接期間の溶接速度から前記エンド溶接期間の溶接終了位置での溶接速度に向かって低減するように制御し、前記平均溶接電流の低減と前記溶接速度の低減とを同期させて溶接を行うものである。   In addition to the above, the pulse arc welding control method of the present invention is configured so that, in the end welding period, the average welding current is changed from the average welding current in the steady welding period to the average welding current at the welding end position in the end welding period. The welding speed is controlled to decrease from the welding speed in the steady welding period toward the welding speed at the welding end position in the end welding period, and the average welding current is reduced and the welding speed is reduced. The welding is performed in synchronism with the reduction.

また、本発明のパルスアーク溶接装置は、溶接ワイヤと被溶接物との間でアークを発生させて溶接を行うパルスアーク溶接装置であって、前記溶接ワイヤの材質あるいは被溶接物の材質を設定するための材質設定部と、前記材質設定部に設定された材質に基づいてスタート溶接期間と前記スタート溶接期間の後の定常溶接期間と前記定常溶接期間の後のエンド溶接期間でのそれぞれのパルス電流波形信号を出力するパルス波形制御部と、前記材質設定部に設定された材質と前記パルス波形制御部からの信号に基づいて前記スタート溶接期間と前記定常溶接期間と前記エンド溶接期間の各々の期間でのパルス電流波形と平均溶接電流と溶接速度を制御する信号を出力する溶接条件制御部と、パルス電流波形と平均溶接電流を制御するスイッチング素子と、前記溶接条件制御部からの信号に基づいて前記スイッチング素子を制御する出力制御部と、前記溶接ワイヤを送給するための溶接トーチを保持するマニピュレータと、前記溶接条件制御部からの信号に基づいて前記マニピュレータの動作を制御することで溶接速度を制御するロボット制御部とを備え、設定される溶接ワイヤの材質あるいは被溶接物の材質に応じて、前記スタート溶接期間および前記エンド溶接期間では前記定常溶接期間とは異なるパルス電流波形により溶接を行うものである。   The pulse arc welding apparatus of the present invention is a pulse arc welding apparatus that performs welding by generating an arc between a welding wire and a workpiece, and sets the material of the welding wire or the material of the workpiece. And a pulse for each of a start welding period, a steady welding period after the start welding period, and an end welding period after the steady welding period based on the material set in the material setting part. A pulse waveform control unit for outputting a current waveform signal, a material set in the material setting unit, and a signal from the pulse waveform control unit, each of the start welding period, the steady welding period, and the end welding period A welding condition control unit that outputs a signal that controls the pulse current waveform, average welding current, and welding speed over a period, and a switch that controls the pulse current waveform and average welding current An element, an output control unit that controls the switching element based on a signal from the welding condition control unit, a manipulator that holds a welding torch for feeding the welding wire, and a signal from the welding condition control unit A robot controller that controls the welding speed by controlling the operation of the manipulator based on the start welding period and the end welding period according to the set material of the welding wire or the material of the workpiece Then, welding is performed with a pulse current waveform different from the steady welding period.

また、本発明のパルスアーク溶接装置は、上記に加えて、材質設定部により溶接ワイヤの材質あるいは被溶接物の材質としてアルミを主成分とする材質が設定された場合、スタート溶接期間では、平均溶接電流が定常溶接期間の平均溶接電流以上の大きさであり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも高いピーク電流値のパルス電流波形により溶接を行うものである。   In addition to the above, the pulse arc welding apparatus of the present invention has an average during the start welding period when a material mainly composed of aluminum is set as the material of the welding wire or the material of the workpiece by the material setting unit. Welding is performed with a pulse current waveform having a peak current value higher than the average current during the steady welding period and higher than the peak current value of the pulse current waveform during the steady welding period.

また、本発明のパルスアーク溶接装置は、上記に加えて、材質設定部により溶接ワイヤの材質あるいは被溶接物の材質として鉄あるいはステンレスを主成分とする材質が設定された場合、スタート溶接期間では、平均溶接電流が定常溶接期間の平均溶接電流以下の大きさであり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行うものである。   Further, in addition to the above, the pulse arc welding apparatus of the present invention has a start welding period when a material mainly composed of iron or stainless steel is set as the material of the welding wire or the material of the workpiece by the material setting unit. The welding is performed using a pulse current waveform having a peak current value lower than the peak current value of the pulse current waveform in the steady welding period, in which the average welding current is equal to or smaller than the average welding current in the steady welding period. .

また、本発明のパルスアーク溶接装置は、上記に加えて、エンド溶接期間では、平均溶接電流が定常溶接期間の平均溶接電流以下の大きさであり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行うものである。   In addition to the above, the pulse arc welding apparatus according to the present invention has an average welding current having a magnitude equal to or smaller than an average welding current in the steady welding period in the end welding period, and a pulse current waveform in the steady welding period. Welding is performed with a pulse current waveform having a peak current value lower than the peak current value.

本発明によれば、スタート溶接期間、定常溶接期間、エンド溶接期間において、溶接ワイヤの材質あるいは被溶接物の材質に応じたパルス波形電流により溶接を行うことで被溶接物への入熱を適切に行うことができ、溶接始端部から溶接終端部で良好な溶接品質を実現することができる。   According to the present invention, in the start welding period, the steady welding period, and the end welding period, the heat input to the workpiece is appropriately performed by performing welding with the pulse waveform current corresponding to the material of the welding wire or the workpiece. Therefore, good welding quality can be realized from the welding start end portion to the welding end portion.

以下、本発明の実施の形態について、図1から図11を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

なお、アルミなどの固有抵抗率が低く熱伝導率が高い材質に有効なパルスアーク溶接制御方法およびパルスアーク溶接装置について実施の形態1で説明し、アルミとは異なり固有抵抗率が高く熱伝導率が低い材質である鉄やステンレスに有効なパルスアーク溶接制御方法およびパルスアーク溶接装置について実施の形態2で説明する。   A pulse arc welding control method and a pulse arc welding apparatus effective for a material having a low specific resistivity such as aluminum and a high thermal conductivity will be described in Embodiment 1, and unlike aluminum, the specific resistivity is high and the thermal conductivity is high. A pulse arc welding control method and a pulse arc welding apparatus effective for iron and stainless steel, which are low-quality materials, will be described in Embodiment 2.

(実施の形態1)
アルミなどの固有抵抗率が低く熱伝導性が良い材質に有効なパルスアーク制御方法およびパルスアーク溶接装置について、以下、図1から図9を用いて説明する。
(Embodiment 1)
A pulse arc control method and a pulse arc welding apparatus effective for a material having a low specific resistivity such as aluminum and good thermal conductivity will be described below with reference to FIGS.

なお、本実施の形態においては、スタート溶接期間TSの後に定常溶接期間TNとなり、定常溶接期間TNの後にエンド期間TNとなる場合について説明する。また、定常溶接期間TNの間に繰り返されるパルス電流の波形を標準パルス波形と呼び、この標準パルス波形のピーク電流をIpとし、ベース電流をIbとする。   In the present embodiment, a case will be described in which the steady welding period TN comes after the start welding period TS and the end period TN comes after the steady welding period TN. Further, the waveform of the pulse current repeated during the steady welding period TN is called a standard pulse waveform, the peak current of this standard pulse waveform is Ip, and the base current is Ib.

図1は、被溶接物への入熱の増加および溶け込みを深くさせるためのパルス波形の例を示す図である。図1(a)は標準パルス波形を示しており。図1(b)と図1(c)は図1(a)の標準パルス波形に比べて入熱の増加および溶け込み量を深くできるパルス波形の例を示している。図1(b)の波形は、図1(a)の波形に比べてピーク電流Ip2が高くピーク電流期間およびパルス幅PW2が短い波形の例である。また、図1(c)の波形は、図1(a)の波形に比べてピーク電流Ip2が高くピーク電流期間およびパルス幅PW3が短くベース電流Ib2が低い波形の例である。ここで、パルス幅については、PW1>PW2>PW3となっている。ピーク電流については、Ip<Ip2となっている。ベース電流については、Ib>Ib2となっている。   FIG. 1 is a diagram showing an example of a pulse waveform for deepening an increase in heat input and penetration into a workpiece. FIG. 1A shows a standard pulse waveform. FIGS. 1B and 1C show examples of pulse waveforms that can increase the heat input and deepen the penetration compared to the standard pulse waveform of FIG. The waveform in FIG. 1B is an example of a waveform in which the peak current Ip2 is high and the peak current period and the pulse width PW2 are short compared to the waveform in FIG. The waveform of FIG. 1C is an example of a waveform in which the peak current Ip2 is high, the peak current period and the pulse width PW3 are short, and the base current Ib2 is low compared to the waveform of FIG. Here, the pulse width is PW1> PW2> PW3. Regarding the peak current, Ip <Ip2. Regarding the base current, Ib> Ib2.

図1(b)と図1(c)に示すパルス波形は、定常溶接期間TNの間繰り返される図1(a)に示す標準パルス波形のピーク電流Ipより高いピーク電流Ip2を設定し、溶滴離脱状態が成立する、すなわち、1パルス1ドロップを実現するようにパルス幅PW2,PW3やピーク電流Ip2やベース電流Ib2を調整したものである。ここで、ピーク電流Ip2やベース電流Ib2やパルス幅PW2,PW3等は被溶接物や使用する溶接ワイヤ等の溶接条件によって異なるものであり、例えば、実験等により求めておくことができる。   The pulse waveforms shown in FIG. 1 (b) and FIG. 1 (c) set a peak current Ip2 higher than the peak current Ip of the standard pulse waveform shown in FIG. 1 (a) repeated during the steady welding period TN. That is, the pulse widths PW2 and PW3, the peak current Ip2, and the base current Ib2 are adjusted so that the separation state is established, that is, one pulse and one drop are realized. Here, the peak current Ip2, the base current Ib2, the pulse widths PW2 and PW3, and the like vary depending on the welding conditions such as the work piece and the welding wire to be used, and can be obtained by, for example, experiments.

なお、ピーク電流を高くすることにより、アーク力が強く、溶融プールの押し付け力が強くなるため、溶け込み量を深くすることができ、また被溶接物へ入熱を十分に入れることができる。   Note that by increasing the peak current, the arc force is strong and the pressing force of the molten pool is strong, so that the amount of penetration can be deepened and heat can be sufficiently input to the work piece.

ここで、アルミを主成分とする被溶接物を溶接する場合、固有抵抗率が低く、熱伝導性が良く、熱が逃げやすい材質であるため、従来、溶接始端部付近はビード幅が狭く、ビード高さが高く、溶け込みが浅いビード形成状態であった。しかし、本実施の形態のアーク溶接制御方法のように、スタート溶接期間TSの間、図1(b)や図1(c)に示すような図1(a)に示す標準パルス波形よりもピーク電流が高いパルス波形を繰り返すことにより、溶接開始部で被溶接物に対して急峻に入熱を入れることができ、ビード幅が広く、ビード高さが低く、溶け込みが深いビード形成状態を確保することができる。   Here, when welding an object to be welded mainly of aluminum, since the specific resistivity is low, the thermal conductivity is good, and the material easily escapes heat, conventionally, the bead width is narrow near the welding start end, The bead formation was high in bead height and shallow penetration. However, as in the arc welding control method of the present embodiment, during the start welding period TS, the peak is higher than the standard pulse waveform shown in FIG. 1 (a) as shown in FIG. 1 (b) or FIG. 1 (c). By repeating a pulse waveform with a high current, it is possible to apply heat sharply to the work piece at the welding start part, ensuring a bead formation state with a wide bead width, low bead height, and deep penetration. be able to.

図2は、被溶接物への入熱の減少および溶け込みを浅くさせるためのパルス波形の例を示す図である。図2(a)は標準パルス波形を示しており。図2(b)と図2(c)は図2(a)の標準パルス波形に比べて入熱の減少および溶け込み量を浅くできるパルス波形の例を示している。図2(b)の波形は、図2(a)の波形に比べてピーク電流が低くピーク電流期間およびパルス幅が長い波形である。また、図2(c)の波形は、図2(a)の波形に比べてピーク電流が低くてピーク電流期間が長くベース電流が高い波形である。   FIG. 2 is a diagram showing an example of a pulse waveform for reducing the heat input to the work piece and making the penetration shallow. FIG. 2 (a) shows a standard pulse waveform. FIG. 2B and FIG. 2C show examples of pulse waveforms that can reduce the heat input and make the amount of penetration shallower than the standard pulse waveform of FIG. The waveform of FIG. 2 (b) is a waveform with a lower peak current and a longer peak current period and longer pulse width than the waveform of FIG. 2 (a). Further, the waveform of FIG. 2C is a waveform in which the peak current is lower, the peak current period is longer, and the base current is higher than that of the waveform of FIG.

図2(b)と図2(c)に示すパルス波形は、定常溶接期間TNの間繰り返される図2(a)に示す標準パルス波形のピーク電流Ipより低いピーク電流Ip3を設定し、溶滴離脱状態が成立する、すなわち、1パルス1ドロップを実現するようにパルス幅PW4,PW5やピーク電流Ip3やベース電流Ib3を調整したものである。ここで、ピーク電流Ip3やベース電流Ib3やパルス幅PW4,PW5等は被溶接物や使用する溶接ワイヤ等の溶接条件によって異なるものであり、例えば、実験等により求めておくことができる。   The pulse waveforms shown in FIG. 2B and FIG. 2C set a peak current Ip3 lower than the peak current Ip of the standard pulse waveform shown in FIG. That is, the pulse widths PW4 and PW5, the peak current Ip3, and the base current Ib3 are adjusted so that the separation state is established, that is, one pulse and one drop are realized. Here, the peak current Ip3, the base current Ib3, the pulse widths PW4, PW5, and the like vary depending on the welding conditions of the work piece, the welding wire used, and the like, and can be obtained, for example, by experiments.

なお、ピーク電流Ipを低くすることにより、アーク力は弱く、溶融プールの押し付け力が弱くなるため、溶け込み量を浅くすることができ、また被溶接物への入熱を抑えることができる。よって、アルミなどの固有抵抗率が低く熱伝導率が高い材質には、溶接終端部付近に有効なパルス波形である。   Note that, by reducing the peak current Ip, the arc force is weak and the pressing force of the molten pool is weakened, so that the amount of penetration can be made shallow and the heat input to the workpiece can be suppressed. Therefore, a material having a low specific resistivity such as aluminum and a high thermal conductivity has a pulse waveform effective near the end of the weld.

図3は、スタート溶接期間TSおよび定常溶接期間TNにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。なお、この溶接位置に対する変化は、時間変化と見ることもできる。また、溶接速度とは、例えば産業用ロボットに取り付けられた溶接トーチが溶接線方向に移動する速度である。図3において、スタート溶接期間TSでは、図1(b)や図1(c)に示す被溶接物への入熱の増加および溶け込みを深くできるパルス波形を設定した場合の平均溶接電流および溶接速度の一例であり、スタート溶接期間TSと定常溶接期間TNとで平均溶接電流と溶接速度が同じ場合の例を示している。なお、平均溶接電流と溶接電圧とは同期して変化するものである。   FIG. 3 is a diagram illustrating a welding state and a change in average welding current and welding speed with respect to the welding position in the start welding period TS and the steady welding period TN. Note that the change with respect to the welding position can be regarded as a time change. The welding speed is a speed at which, for example, a welding torch attached to an industrial robot moves in the welding line direction. In FIG. 3, in the start welding period TS, the average welding current and welding speed in the case of setting a pulse waveform capable of deepening the increase in heat input and penetration into the workpiece shown in FIGS. 1B and 1C. In this example, the average welding current and the welding speed are the same in the start welding period TS and the steady welding period TN. Note that the average welding current and the welding voltage change synchronously.

従来の溶接始端部付近では、被溶接物の材質がアルミの場合、固有抵抗率が低く、熱伝導性が良く、熱が逃げやすいため、ビード幅が狭く、ビード高さが高く、溶け込みが浅いビード形成状態であった。   In the vicinity of the conventional welding start end, when the material of the work piece is aluminum, the specific resistivity is low, the thermal conductivity is good, and the heat easily escapes, so the bead width is narrow, the bead height is high, and the penetration is shallow. It was a bead formation state.

そこで、スタート溶接期間TSに被溶接物への入熱の増加および溶け込みを深くできるパルス波形を設定して溶接することにより、溶接始端部に入熱を十分に入れることができ、ビード幅が広がり、ビード高さが低く、溶け込みが深くなり、溶接品質を向上させることができる。すなわち、溶接条件にもよるが、スタート溶接期間TSと定常溶接期間TNとで平均溶接電流が一定でも、スタート溶接期間TSにおけるパルス電流波形のピーク電流を定常溶接期間TNのパルス電流波形のピーク電流より高くすることで溶接品質を向上させることができる。   Therefore, by setting a pulse waveform that can increase the heat input to the work piece and deepen the penetration during the start welding period TS and welding, it is possible to sufficiently input heat to the welding start end and widen the bead width. The bead height is low, the penetration is deep, and the welding quality can be improved. That is, although depending on welding conditions, even if the average welding current is constant between the start welding period TS and the steady welding period TN, the peak current of the pulse current waveform in the start welding period TS is the peak current of the pulse current waveform in the steady welding period TN. The welding quality can be improved by making it higher.

図4は、スタート溶接期間TSおよび定常溶接期間TNにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。図4では、スタート溶接期間TSにおいて、図1(b)や図1(c)で示した被溶接物への入熱の増加または溶け込みを深くできるパルス波形を設定したことに加えて、溶接開始時には定常溶接期間TNの平均溶接電流INと溶接速度SNよりも高い平均溶接電流ISと低い溶接速度SSで溶接を開始し、さらに、スタート溶接期間TSの開始位置である位置PSから定常溶接期間TNの開始位置である位置P1に向かって、平均溶接電流ISから平均溶接電流INになるように所定の傾きで低下させ、また、溶接速度SSから溶接速度SNになるように所定の傾きで増加させる制御を行っている。ここで、平均溶接電流の低下と溶接速度の増加は同期するように制御される。   FIG. 4 is a diagram illustrating a welding state and a change in average welding current and welding speed with respect to the welding position in the start welding period TS and the steady welding period TN. In FIG. 4, in the start welding period TS, in addition to setting a pulse waveform that can deepen the increase in heat input or penetration into the workpiece as shown in FIGS. 1B and 1C, welding is started. Sometimes, welding is started at an average welding current IS higher than the average welding current IN and welding speed SN and a welding speed SS lower than the welding speed SN, and from the position PS, which is the starting position of the start welding period TS, the steady welding period TN. Toward the position P1 which is the starting position of the welding temperature, the average welding current IS is decreased with a predetermined inclination so as to become the average welding current IN, and the welding speed SS is increased with a predetermined inclination so as to become the welding speed SN. Control is in progress. Here, the decrease in average welding current and the increase in welding speed are controlled to be synchronized.

なお、平均溶接電流を低下させるには、ピーク電流の低減、ピーク期間の短縮、ベース電流の低減等により実現することができる。また、平均溶接電流および溶接速度を所定の傾きで変化させているが、この所定の傾きは、例えば、溶接条件に基づき実験等により求めておくことができる。   The average welding current can be reduced by reducing the peak current, shortening the peak period, reducing the base current, or the like. Moreover, although the average welding current and the welding speed are changed with a predetermined inclination, the predetermined inclination can be obtained by experiments or the like based on welding conditions, for example.

そして、スタート溶接期間TSにおいてこのような制御を行うことで、図3を用いて説明した溶接制御方法よりも更に入熱制御が十分に行うことができ、溶接始端部のビード形成状態を更に良くすることができる。また、通常調整しないパルスパラメータを調整できることにより、入熱調整の幅が広がる、すなわち選択肢が増え、溶接品質を向上させることができる。   And by performing such control in the start welding period TS, heat input control can be performed more sufficiently than the welding control method described with reference to FIG. 3, and the bead formation state at the welding start end can be further improved. can do. Further, since the pulse parameters that are not normally adjusted can be adjusted, the range of heat input adjustment is widened, that is, the options are increased, and the welding quality can be improved.

図5は、スタート溶接期間TSおよび定常溶接期間TNにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。図5では、スタート溶接期間TSにおいて図1(b)や図1(c)で示した被溶接物への入熱の増加および溶け込みを深くできるパルス波形を設定して溶接を行うことに加えて、溶接開始時には定常溶接期間TNの平均溶接電流INおよび溶接速度SNより高い平均溶接電流ISと低い溶接速度SSをスタート溶接期間TSの開始位置PSから一定時間TS2経過するまであるいは一定溶接長さを溶接した場合の位置P1になるまで継続する。そしてその後、位置P1から定常溶接期間TNの開始位置である位置P2に向かって、平均溶接電流ISから平均溶接電流INになるように所定の傾きで低下させ、また、溶接速度SSから溶接速度SNになるように所定の傾きで増加させる制御を行っている。   FIG. 5 is a diagram showing a change and welding state of the average welding current and welding speed with respect to the welding position in the start welding period TS and the steady welding period TN. In FIG. 5, in addition to performing welding by setting a pulse waveform capable of deepening the increase in heat input and penetration into the workpiece shown in FIGS. 1B and 1C in the start welding period TS. At the start of welding, the average welding current IN and the average welding current IS higher than the welding speed SN and the welding speed SS lower than the welding speed SN are set to a constant welding length until a certain time TS2 elapses from the starting position PS of the starting welding period TS. Continue until position P1 when welding. After that, from the position P1 to the position P2, which is the start position of the steady welding period TN, the average welding current IS is decreased with a predetermined inclination so as to become the average welding current IN, and the welding speed SS is changed to the welding speed SN. Control is performed so as to increase at a predetermined inclination.

そして、スタート溶接期間TSにおいてこのような制御を行うことで、図4を用いて説明した溶接制御方法よりも更に入熱制御が十分に行うことができるので、溶接始端部のビード形成状態を更に良くすることができる。また、ビード形成状態や溶接状態に対して入熱調整の幅が広がるため、溶接品質を向上させることができる。   And by performing such control in the start welding period TS, the heat input control can be performed sufficiently more than the welding control method described with reference to FIG. Can be better. Moreover, since the range of heat input adjustment with respect to a bead formation state or a welding state spreads, welding quality can be improved.

図6は、定常溶接期間TNおよびエンド溶接期間TEにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。なお、この溶接位置に対する変化は、時間変化と見ることもできる。また、溶接速度とは、例えば産業用ロボットに取り付けられた溶接トーチが溶接線方向に移動する速度である。図6において、エンド溶接期間TEでは、図2(b)や図2(c)に示す被溶接物への入熱の減少および溶け込みを浅くできるパルス波形を設定した場合の平均溶接電流および溶接速度の一例であり、定常溶接期間TNとエンド溶接期間TEとで平均溶接電流と溶接速度が同じ場合の例を示している。   FIG. 6 is a diagram showing a change and welding state of the average welding current and the welding speed with respect to the welding position in the steady welding period TN and the end welding period TE. Note that the change with respect to the welding position can be regarded as a time change. The welding speed is a speed at which, for example, a welding torch attached to an industrial robot moves in the welding line direction. In FIG. 6, in the end welding period TE, the average welding current and welding speed in the case of setting a pulse waveform capable of reducing the heat input to the workpiece and reducing the penetration shown in FIGS. 2 (b) and 2 (c). In this example, the average welding current and the welding speed are the same in the steady welding period TN and the end welding period TE.

そして、エンド溶接期間TEにおいて被溶接物への入熱の減少および溶け込みを浅くできるパルス波形を設定して溶接を行うことにより、被溶接物への入熱を減少させることができ、アーク力を低減できるので溶融プールへの押し付け力が低下し、掘れ込み状態を低減でき、溶接品質を向上させることができる。   And, by setting the pulse waveform that can reduce the heat input to the work piece to be reduced and penetration during the end welding period TE, the heat input to the work piece can be reduced and the arc force can be reduced. Since it can reduce, the pressing force to a molten pool falls, a digging state can be reduced and welding quality can be improved.

図7は、定常溶接期間TNおよびエンド溶接期間TEにおける平均溶接電流と溶接速度の溶接位置に対する変化を示す図である。図7では、エンド溶接期間TEにおいて図2(b)や図2(c)で示した被溶接物への入熱の減少および溶け込みを浅くできるパルス波形を設定したことに加えて、定常溶接期間TNの終了位置でありエンド溶接期間TEの開始位置である位置P11からエンド溶接期間TEの終了位置である位置PEに向かって、平均溶接電流INから平均溶接電流IEになるように所定の傾きで低下させ、また、溶接速度SNから溶接速度SEになるように所定の傾きで低下させる制御を行っている。なお、平均溶接電流の低下と溶接速度の低下は同期するように制御せれる。   FIG. 7 is a diagram illustrating changes in the average welding current and the welding speed with respect to the welding position in the steady welding period TN and the end welding period TE. In FIG. 7, in the end welding period TE, in addition to setting the pulse waveform that can reduce the heat input to the work piece shown in FIG. 2B and FIG. From the position P11, which is the end position of TN and the start position of the end welding period TE, to the position PE, which is the end position of the end welding period TE, with a predetermined inclination so that the average welding current IN becomes the average welding current IE. In addition, control is performed such that the welding speed is decreased from the welding speed SN to the welding speed SE with a predetermined inclination. Note that the average welding current and the welding speed are controlled to be synchronized.

そして、エンド溶接期間TEにこのような制御を行うことで、図6を用いて説明した溶接制御方法よりも更に入熱制御が十分に行えるので、溶接終端部のビード形成状態を更に良くすることができる。また、ビード形成状態や溶接状態に対して入熱調整の幅が広がるため、溶接品質を向上させることができる。   Further, by performing such control during the end welding period TE, heat input control can be performed more sufficiently than the welding control method described with reference to FIG. 6, so that the bead formation state of the welding end portion can be further improved. Can do. Moreover, since the range of heat input adjustment with respect to a bead formation state or a welding state spreads, welding quality can be improved.

図8は、定常溶接期間TNおよびエンド溶接期間TEにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。図8では、エンド溶接期間TEにおいて図2(b)や図2(c)で示した被溶接物への入熱の減少および溶け込みを浅くできるパルス波形を設定したことに加えて、定常溶接期間TNの終了位置でありエンド溶接期間TEの開始位置である位置P11からエンド溶接期間TEの途中の位置である位置P12に向かって、平均溶接電流INから平均溶接電流IEになるように所定の傾きで低下させ、また、溶接速度SNから溶接速度SEになるように所定の傾きで低下させ、その後、エンド溶接期間TEの途中の位置である位置P12からエンド溶接期間TEの終了位置PEまでは、平均溶接電流IEと溶接速度SEを一定に継続する制御を行っている。   FIG. 8 is a diagram illustrating a welding state and a change in average welding current and welding speed with respect to the welding position in the steady welding period TN and the end welding period TE. In FIG. 8, in addition to setting the pulse waveform that can reduce the heat input to the work piece shown in FIGS. 2B and 2C and shallow the penetration in the end welding period TE, the steady welding period From the position P11 which is the end position of TN and the start position of the end welding period TE to the position P12 which is a position in the middle of the end welding period TE, a predetermined slope is set so that the average welding current IE becomes the average welding current IE. And at a predetermined inclination so that the welding speed SN becomes the welding speed SE, and thereafter, from the position P12 that is in the middle of the end welding period TE to the end position PE of the end welding period TE, Control is performed to keep the average welding current IE and the welding speed SE constant.

そして、エンド溶接期間TEにおいてこのような制御を行うことで、図7を用いて説明した溶接制御方法よりも更に入熱制御が十分に行えるので、溶接終端部のビード形成状態を更に良くすることができる。また、ビード形成状態や溶接状態に対して入熱調整の幅が広がるため、溶接品質を向上させることができる。   And by performing such control in the end welding period TE, the heat input control can be sufficiently performed as compared with the welding control method described with reference to FIG. 7, so that the bead formation state of the welding end portion is further improved. Can do. Moreover, since the range of heat input adjustment with respect to a bead formation state or a welding state spreads, welding quality can be improved.

上記において、図1から図8を用いて溶接電流や溶接速度の制御について説明したが、ここで、上記したアーク溶接制御方法を行うためのパルスアーク溶接装置の例について、図9を用いて説明する。   In the above, the control of the welding current and the welding speed has been described with reference to FIGS. 1 to 8. Here, an example of a pulse arc welding apparatus for performing the above-described arc welding control method will be described with reference to FIG. To do.

図9はパルスアーク溶接装置の概略構成を示す図であり、パルスアーク溶接装置は主に溶接機20とロボット21とから構成される。   FIG. 9 is a diagram showing a schematic configuration of the pulse arc welding apparatus. The pulse arc welding apparatus mainly includes a welding machine 20 and a robot 21.

溶接機20において、入力電源1からの電力は1次整流部2で整流され、スイッチング素子3により交流に変換され、トランス4により降圧され、2次整流部5およびDCL(インダクタ)6により整流され、溶接ワイヤ14と被溶接物17との間に印加され、溶接ワイヤ14と被溶接物17との間に溶接アーク16を発生させて溶接を行う。また、溶接機20は、スイッチング素子3を制御するための出力制御部7と、出力制御部7に制御信号を出力する溶接条件出力部8と、使用する溶接ワイヤの材質あるいは被溶接物17の材質を設定するための材質設定部9と、ワイヤ送給装置13を制御するためのワイヤ送給制御部11と、パルス波形出力部18を備えている。なお、このパルス波形出力部18は、材質設定部9からの信号を受け予め材質毎に設定されており図示しない記憶部に記憶されているスタート期間TS、定常溶接期間TN、エンド期間TEのそれぞれの期間におけるピーク電流値やベース電流値やピーク期間などパルス電流波形に関する情報を選択して溶接条件出力部8に出力するものである。   In the welding machine 20, the electric power from the input power source 1 is rectified by the primary rectification unit 2, converted into alternating current by the switching element 3, stepped down by the transformer 4, and rectified by the secondary rectification unit 5 and DCL (inductor) 6. The welding arc 14 is applied between the welding wire 14 and the workpiece 17 and the welding arc 16 is generated between the welding wire 14 and the workpiece 17 to perform welding. Further, the welding machine 20 includes an output control unit 7 for controlling the switching element 3, a welding condition output unit 8 for outputting a control signal to the output control unit 7, a material of a welding wire to be used or a workpiece 17 to be welded. A material setting unit 9 for setting the material, a wire feeding control unit 11 for controlling the wire feeding device 13, and a pulse waveform output unit 18 are provided. The pulse waveform output unit 18 receives a signal from the material setting unit 9 and is set in advance for each material, and each of the start period TS, steady welding period TN, and end period TE stored in a storage unit (not shown). In this period, information on the pulse current waveform such as the peak current value, base current value, and peak period in the period is selected and output to the welding condition output unit 8.

また、ロボット21は、主にマニピュレータ12とロボット制御部10とから構成されている。そして、マニピュレータ12には、溶接ワイヤ14を被溶接物17に対して送給するためのワイヤ送給装置13と、溶接トーチ15が設けられている。   The robot 21 is mainly composed of a manipulator 12 and a robot control unit 10. The manipulator 12 is provided with a wire feeding device 13 for feeding the welding wire 14 to the workpiece 17 and a welding torch 15.

材質設定部9において溶接ワイヤ14の材質あるいは被溶接物17の材質が設定された場合、設定された材質に対応する信号を溶接条件出力部8およびにパルス波形出力部18に出力する。そして、材質設定部9からの信号およびパルス波形出力部18からの信号を受信した溶接条件出力部8は、この信号に基づいて予め材質毎に設定されている溶接スタート期間TSと定常溶接期間TNと溶接エンド期間TEにおけるパルス電流波形信号と平均溶接電流IEに関する信号を出力制御部7に出力する。そして、出力制御部7は、溶接条件出力部8からの信号に基づいてスイッチング素子3を制御することで、平均溶接電流IEおよびパルス電流の波形が制御される。   When the material of the welding wire 14 or the material of the workpiece 17 is set in the material setting unit 9, a signal corresponding to the set material is output to the welding condition output unit 8 and the pulse waveform output unit 18. Then, the welding condition output unit 8 that has received the signal from the material setting unit 9 and the signal from the pulse waveform output unit 18 sets the welding start period TS and the steady welding period TN set in advance for each material based on this signal. And a pulse current waveform signal in the welding end period TE and a signal related to the average welding current IE are output to the output control unit 7. And the output control part 7 controls the waveform of the average welding current IE and a pulse current by controlling the switching element 3 based on the signal from the welding condition output part 8. FIG.

また、溶接条件出力部8は、材質設定部9からの信号に基づいて予め材質毎に設定されている溶接スタート期間TSにおける溶接速度を制御する信号と、定常溶接期間TNにおける溶接速度を制御する信号と、溶接エンド期間TEにおける溶接速度を制御する信号をロボット制御部10に出力する。そして、ロボット制御部10が溶接条件出力部8からの信号に基づいてマニピュレータ12を制御することで、被溶接物17の溶接方向に対する溶接速度、すなわち、溶接ワイヤ14の溶接方向に対する移動速度が制御される。   Further, the welding condition output unit 8 controls a signal for controlling the welding speed in the welding start period TS set for each material in advance based on the signal from the material setting unit 9 and the welding speed in the steady welding period TN. A signal and a signal for controlling the welding speed in the welding end period TE are output to the robot controller 10. The robot control unit 10 controls the manipulator 12 based on the signal from the welding condition output unit 8 to control the welding speed of the workpiece 17 in the welding direction, that is, the moving speed of the welding wire 14 in the welding direction. Is done.

また、溶接条件出力部8は、溶接電流と一元関係にある溶接ワイヤ14の送給速度を制御する信号をワイヤ送給制御部11に出力し、ワイヤ送給制御部11は溶接条件出力部8からの信号に基づいてワイヤ送給装置13を制御することで溶接ワイヤ14の送給速度が制御される。   Further, the welding condition output unit 8 outputs a signal for controlling the feeding speed of the welding wire 14 having a unitary relationship with the welding current to the wire feeding control unit 11, and the wire feeding control unit 11 performs the welding condition output unit 8. The feeding speed of the welding wire 14 is controlled by controlling the wire feeding device 13 based on the signal from.

ここで、例えば、材質設定部9において、溶接ワイヤ14の材質あるいは被溶接物17の材質がアルミを主成分とする材質であることが設定されると、図1と図2および図3から図8を用いて説明した平均溶接電流、パルス電流の波形、溶接速度の制御が実行される。   Here, for example, when the material setting unit 9 sets the material of the welding wire 14 or the material of the workpiece 17 to be a material mainly composed of aluminum, FIG. 1, FIG. 2, and FIG. Control of the average welding current, the pulse current waveform, and the welding speed described with reference to FIG.

なお、図9で示したアーク溶接装置を構成する各構成部は、各々単独に構成してもよいし、複数の構成部を複合して構成するようにしてもよい。   In addition, each component which comprises the arc welding apparatus shown in FIG. 9 may each be comprised independently, and you may make it comprise combining a some component.

以上のように、本実施の形態のアーク溶接制御方法およびパルスアーク溶接制御装置によれば、例えば、重ねすみ肉や水平すみ肉溶接を行う際に、被溶接物17である母材の材質の固有抵抗率,熱伝導率に応じて、溶接スタート期間TSおよび/または溶接エンド期間TEにおいて、定常溶接期間TNのパルス波形の電流とは異なるパルス波形の電流や溶接速度でアーク溶接を行うことにより、溶接始端部から溶接終端部に至る全溶接長において均質な溶接品質を実現することができる。   As described above, according to the arc welding control method and the pulse arc welding control apparatus of the present embodiment, for example, when performing the overlap fillet or the horizontal fillet welding, the material of the base material that is the workpiece 17 is determined. By performing arc welding in the welding start period TS and / or the welding end period TE according to the specific resistivity and thermal conductivity, at a pulse waveform current or welding speed different from the pulse waveform current in the steady welding period TN A uniform weld quality can be realized over the entire weld length from the weld start end to the weld end.

(実施の形態2)
アルミとは異なり固有抵抗率が高く熱伝導率が低い材質である鉄やステンレスに有効なパルスアーク溶接制御方法について以下に説明する。なお、実施の形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。実施の形態1と異なる主な点は、スタート溶接期間TSにおける溶接電流であり、より詳しくは、パルス電流波形である。
(Embodiment 2)
A pulse arc welding control method effective for iron or stainless steel, which is a material having a high specific resistivity and low thermal conductivity unlike aluminum, will be described below. In addition, about the location similar to Embodiment 1, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. The main difference from the first embodiment is the welding current in the start welding period TS, and more specifically, the pulse current waveform.

図3は、スタート溶接期間TSおよび定常溶接期間TNにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。なお、この溶接位置に対する変化は、時間変化と見ることもできる。また、溶接速度とは、例えば産業用ロボットに取り付けられた溶接トーチが溶接線方向に移動する速度である。また、後述するようにスタート溶接期間TSにおけるパルス電流波形は実施の形態1とは異なるが平均溶接電流は実施の形態1と同じである場合について説明する。   FIG. 3 is a diagram illustrating a welding state and a change in average welding current and welding speed with respect to the welding position in the start welding period TS and the steady welding period TN. Note that the change with respect to the welding position can be regarded as a time change. The welding speed is a speed at which, for example, a welding torch attached to an industrial robot moves in the welding line direction. As will be described later, the pulse current waveform in the start welding period TS is different from that in the first embodiment, but the average welding current is the same as that in the first embodiment.

図3において、スタート溶接期間TSでは、図2(b)や図2(c)に示す被溶接物への入熱の減少および溶け込みを浅くできるパルス電流波形を設定して溶接を行った場合の平均溶接電流および溶接速度の一例である。   In FIG. 3, in the start welding period TS, welding is performed by setting a pulse current waveform that can reduce the heat input to the workpieces shown in FIGS. 2B and 2C and shallow the penetration. It is an example of an average welding current and welding speed.

従来の溶接始端部付近は、被溶接物への入熱が入り過ぎ、定常溶接期間TNの溶融金属が溶接始端部に引かれて溶接始端部付近のビード幅が広く、定常溶接期間TNのビードが細くなってしまうビード形成状態であった。   In the vicinity of the conventional welding start end, too much heat is input to the work piece, the molten metal in the steady welding period TN is drawn to the welding start end, the bead width near the welding start end is wide, and the bead in the steady welding period TN It was a bead formation state that became thin.

スタート溶接期間TSに被溶接物への入熱の減少および溶け込みを浅くできるパルス電流波形を設定して溶接することにより、溶接始端部付近の入熱を抑えることができ、定常溶接期間TNの溶融金属が引かれることを抑制し、溶接始端部付近から定常溶接期間TNまでビード幅を均質にすることができ、溶接品質を向上させることができる。   By setting a pulse current waveform that can reduce the heat input to the work piece and reducing the penetration during the start welding period TS, it is possible to suppress the heat input near the welding start end, and melt during the steady welding period TN. It is possible to suppress the metal from being pulled, to make the bead width uniform from the vicinity of the welding start end portion to the steady welding period TN, and to improve the welding quality.

図10は、スタート溶接期間TSおよび定常溶接期間TNにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。図10では、スタート溶接期間TSにおいて図2(b)や図2(c)で示した被溶接物への入熱の減少および溶け込みを浅くできるパルス波形を設定したことに加えて、溶接開始時には定常溶接期間TNの平均溶接電流INおよび溶接速度SNより低い平均溶接電流IS2および低い溶接速度SSで溶接を開始し、さらに、スタート溶接期間TSの開始位置である位置PSから定常溶接期間TNの開始位置である位置P1に向かって、平均溶接電流IS2から平均溶接電流INになるように所定の傾きで増加させ、また、溶接速度SSから溶接速度SNになるように所定の傾きで増加させる制御を行っている。なお、平均溶接電流の増加と溶接速度の増加は同期するように制御される。   FIG. 10 is a diagram illustrating a welding state and a change in average welding current and welding speed with respect to the welding position in the start welding period TS and the steady welding period TN. In FIG. 10, in addition to setting a pulse waveform that can reduce the heat input to the work piece shown in FIG. 2 (b) and FIG. 2 (c) and shallow the penetration in the start welding period TS, Welding is started at an average welding current IS2 and a welding speed SS lower than the average welding current IN and welding speed SN in the steady welding period TN, and further, the steady welding period TN is started from a position PS that is a start position of the start welding period TS. Control is performed such that the average welding current IS2 increases to the average welding current IN from the average welding current IS2 toward the position P1, which is the position, and increases at a predetermined inclination from the welding speed SS to the welding speed SN. Is going. The increase in average welding current and the increase in welding speed are controlled to be synchronized.

そして、スタート溶接期間TSにこのような制御を行うことで、図3を用いて説明した溶接制御方法よりも更に入熱制御が十分に行えるので、溶接始端部のビード形成状態を更に良くすることができる。また、ビード形成状態や溶接状態に対して入熱調整の幅が広がるため、溶接品質を向上させることができる。   Further, by performing such control during the start welding period TS, heat input control can be performed more sufficiently than the welding control method described with reference to FIG. 3, so that the bead formation state at the welding start end can be further improved. Can do. Moreover, since the range of heat input adjustment with respect to a bead formation state or a welding state spreads, welding quality can be improved.

図11は、スタート溶接期間TSおよび定常溶接期間TSにおける平均溶接電流と溶接速度の溶接位置に対する変化と溶接状態を示す図である。図11では、スタート溶接期間TSにおいて図2(b)や図2(c)で示した被溶接物への入熱の減少および溶け込みを浅くできるパルス波形を設定して溶接を行うことに加えて、溶接開始時には定常溶接期間TNの平均溶接電流INおよび溶接速度SNより低い平均溶接電流ISおよび溶接速度SSをスタート溶接期間TSの開始位置PSから一定時間TS1が経過するまであるいは一定溶接長さを溶接した場合の位置P1になるまで継続し、その後、位置P1から定常溶接期間TNの開始位置である位置P2に向かって、溶接電流IS2から溶接電流INになるように所定の傾きで増加させ、また、溶接速度SSから溶接速度SNになるように所定の傾きで増加させる制御を行っている。   FIG. 11 is a diagram illustrating a welding state and a change in average welding current and welding speed with respect to the welding position in the start welding period TS and the steady welding period TS. In FIG. 11, in addition to performing welding by setting a pulse waveform that can reduce the heat input to the work piece shown in FIGS. 2B and 2C and shallow the penetration in the start welding period TS. At the start of welding, the average welding current IN and welding speed SS lower than the average welding current IN and welding speed SN in the steady welding period TN are set to a certain welding length until a certain time TS1 elapses from the starting position PS of the starting welding period TS. Continue until it reaches the position P1 in the case of welding, and then increase from the position P1 toward the position P2, which is the starting position of the steady welding period TN, with a predetermined slope from the welding current IS2 to the welding current IN, In addition, control is performed to increase the welding speed SS from the welding speed SS to a welding speed SN with a predetermined inclination.

そして、スタート溶接期間TSにこのような制御を行うことで、図10を用いて説明した溶接制御方法よりも更に入熱制御が十分に行えるので、溶接始端部のビード形成状態を更に良くすることができる。また、ビード形成状態や溶接状態に対して入熱調整の幅が広がるため、溶接品質を向上させることができる。   And, by performing such control during the start welding period TS, heat input control can be performed more sufficiently than the welding control method described with reference to FIG. 10, so that the bead formation state at the welding start end is further improved. Can do. Moreover, since the range of heat input adjustment with respect to a bead formation state or a welding state spreads, welding quality can be improved.

なお、アルミとは異なる固有抵抗率が高い材質である鉄やステンレスの溶接においても、溶接エンド期間に実施の形態1で説明したパルスアーク溶接制御方法を適用することで、実施の形態1と同様に溶接品質を向上させることができる。   In addition, even in the welding of iron or stainless steel, which is a material having a high specific resistivity different from that of aluminum, by applying the pulse arc welding control method described in the first embodiment during the welding end period, the same as in the first embodiment. The welding quality can be improved.

また、本実施の形態のパルスアーク溶接制御を行うパルスアーク溶接装置の構成も図9を用いて説明した実施の形態1と同様であり、図示しない記憶部に固有抵抗率が高い材質である鉄やステンレスを溶接する際のパルス波形の情報を記憶させておくことで本実施の形態のパルスアーク溶接制御方法を実現することができる。   Further, the configuration of the pulse arc welding apparatus for performing the pulse arc welding control of the present embodiment is the same as that of the first embodiment described with reference to FIG. 9, and iron that is a material having a high specific resistivity in a storage unit (not shown). The pulse arc welding control method of the present embodiment can be realized by storing information on the pulse waveform when welding stainless steel or stainless steel.

本発明の消耗電極を使用して重ね隅肉や水平すみ肉溶接を行う際のアーク溶接の制御方法について、溶接始端部での被溶接物への適正な入熱を確保すると共に溶接終端部での被溶接物への過度な入熱を防止して、溶接始端部から溶接終端部に至る重ね隅肉溶接や水平すみ肉の全領域に渡って均質な溶接品質を実現することができるアーク溶接の制御方法を提供することが可能となる。消耗電極である溶接ワイヤを連続的に送給しながらアーク溶接を行う溶接装置に有用である。   Regarding the arc welding control method when performing the fillet fillet or horizontal fillet welding using the consumable electrode of the present invention, it is possible to ensure proper heat input to the work piece at the welding start end and at the welding end. Arc welding that prevents excessive heat input to the work piece and realizes uniform weld quality over the entire area of overlap fillet welding and horizontal fillet from the welding start end to the welding end It is possible to provide a control method. It is useful for a welding apparatus that performs arc welding while continuously feeding a welding wire that is a consumable electrode.

(a)本発明の実施の形態1における標準パルス波形を示す図(b)本発明の実施の形態1における入熱の増加および溶け込み量を深くできるパルス波形の例を示す図(c)本発明の実施の形態1における入熱の増加および溶け込み量を深くできるパルス波形の別の例を示す図(A) The figure which shows the standard pulse waveform in Embodiment 1 of this invention (b) The figure which shows the example of the pulse waveform which can deepen the increase in heat input and the amount of penetration in Embodiment 1 of this invention (c) This invention The figure which shows another example of the pulse waveform which can deepen the increase in heat input and the amount of penetration in Embodiment 1 of this (a)本発明の実施の形態1および実施の形態2における標準パルス波形を示す図(b)本発明の実施の形態1および実施の形態2における入熱の減少および溶け込み量を浅くできるパルス波形の例を示す図(c)本発明の実施の形態1および実施の形態2における入熱の減少および溶け込み量を浅くできるパルス波形の別の例を示す図(A) The figure which shows the standard pulse waveform in Embodiment 1 and Embodiment 2 of this invention (b) The pulse waveform which can reduce the heat input and the amount of penetration in Embodiment 1 and Embodiment 2 of this invention shallowly (C) The figure which shows another example of the pulse waveform which can reduce the heat input reduction and penetration amount in Embodiment 1 and Embodiment 2 of this invention 本発明の実施の形態1および実施の形態2におけるスタート溶接期間と定常溶接期間の溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current with respect to the welding position of the start welding period and steady welding period in Embodiment 1 and Embodiment 2 of this invention, the change of a welding speed, and a welding state. 本発明の実施の形態1におけるスタート溶接期間と定常溶接期間の溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current with respect to the welding position of the start welding period in the Embodiment 1 of this invention, and a regular welding period, the change of welding speed, and a welding state. 本発明の実施の形態1におけるスタート溶接期間と定常溶接期間の溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current with respect to the welding position of the start welding period in the Embodiment 1 of this invention, and a regular welding period, the change of welding speed, and a welding state. 本発明の実施の形態1および実施の形態2における定常溶接期間とエンド溶接期間における溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current with respect to the welding position and the welding state with respect to the welding position in the steady welding period and end welding period in Embodiment 1 and Embodiment 2 of this invention, and a welding state. 本発明の実施の形態1における定常溶接期間とエンド溶接期間における溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current with respect to the welding position in the steady welding period in Embodiment 1 of this invention, and an end welding period, the change of welding speed, and a welding state. 本発明の実施の形態1における定常溶接期間とエンド溶接期間における溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current with respect to the welding position in the steady welding period in Embodiment 1 of this invention, and an end welding period, the change of welding speed, and a welding state. 本発明の実施の形態1および実施の形態2におけるパルスアーク溶接装置の概略構成を示す図The figure which shows schematic structure of the pulse arc welding apparatus in Embodiment 1 and Embodiment 2 of this invention 本発明の実施の形態2におけるスタート溶接期間と定常溶接期間の溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current and the change of a welding speed with respect to the welding position of the start welding period in the Embodiment 2 of this invention and a regular welding period, and a welding state. 本発明の実施の形態2におけるスタート溶接期間と定常溶接期間の溶接位置に対する溶接電流および溶接速度の変化と溶接状態を示す図The figure which shows the welding current and the change of a welding speed with respect to the welding position of the start welding period in the Embodiment 2 of this invention and a regular welding period, and a welding state. (a)従来のアーク溶接の溶接開始から溶接終了までの溶接電圧の変化を示す図(b)従来のアーク溶接の溶接開始から溶接終了までの溶接ワイヤ送給信号の変化を示す図(c)従来のアーク溶接の溶接状態を示す図(d)従来のアーク溶接の溶接状態を示す図(A) The figure which shows the change of the welding voltage from the welding start of the conventional arc welding to the end of welding (b) The figure which shows the change of the welding wire feed signal from the welding start of the conventional arc welding to the end of welding (c) The figure which shows the welding state of the conventional arc welding (d) The figure which shows the welding state of the conventional arc welding

符号の説明Explanation of symbols

Ip ピーク電流
Ip2 ピーク電流(Ipよりも高い)
Ip3 ピーク電流(Ipよりも低い)
Ib ベース電流
Ib2 ベース電流(Ibよりも低い)
Ib3 ベース電流(Ibよりも高い)
PW1,PW2,PW3,PW4,PW5 パルス幅
PFRQ パルス周波数
TN 定常溶接期間
TS スタート溶接期間
TS2 一定時間
TE エンド溶接期間
IN 平均溶接電流(定常溶接期間)
IS 平均溶接電流(スタート溶接期間)
IE 平均溶接電流(エンド溶接期間)
SN 溶接速度(定常溶接期間)
SS 溶接速度(スタート溶接期間)
SE 溶接速度(エンド溶接期間)
P1,P2,P11,P12 位置
V1 溶接電圧(定常溶接期間)
V2 溶接電圧(エンド溶接期間)
WS1 ワイヤ送給速度(定常溶接期間)
WS2 ワイヤ送給速度(エンド溶接期間)
1 入力電源
2 1次整流部
3 スイッチング素子
4 トランス
5 2次整流部
6 DCL
7 出力制御部
8 溶接条件出力部
9 材質設定部
10 ロボット制御部
11 ワイヤ送給制御部
12 マニュピレータ
13 ワイヤ送給装置
14 溶接ワイヤ
15 溶接トーチ
16 溶接アーク
17 被溶接物
18 パルス波形出力部
20 溶接機
21 ロボット
101 被溶接物
102 溶接終端部(クレータ)
103 溶接始端部
Ip peak current Ip2 peak current (higher than Ip)
Ip3 peak current (lower than Ip)
Ib base current Ib2 base current (lower than Ib)
Ib3 Base current (higher than Ib)
PW1, PW2, PW3, PW4, PW5 Pulse width PFRQ Pulse frequency TN Steady welding period TS Start welding period TS2 Constant time TE End welding period IN Average welding current (steady welding period)
IS average welding current (start welding period)
IE average welding current (end welding period)
SN welding speed (steady welding period)
SS welding speed (start welding period)
SE welding speed (end welding period)
P1, P2, P11, P12 Position V1 Welding voltage (steady welding period)
V2 Welding voltage (End welding period)
WS1 Wire feed speed (steady welding period)
WS2 Wire feed speed (end welding period)
DESCRIPTION OF SYMBOLS 1 Input power supply 2 Primary rectification part 3 Switching element 4 Transformer 5 Secondary rectification part 6 DCL
DESCRIPTION OF SYMBOLS 7 Output control part 8 Welding condition output part 9 Material setting part 10 Robot control part 11 Wire feeding control part 12 Manipulator 13 Wire feeding apparatus 14 Welding wire 15 Welding torch 16 Welding arc 17 Workpiece 18 Pulse waveform output part 20 Welding Machine 21 Robot 101 Workpiece 102 Welding end (crater)
103 Weld start

Claims (10)

アルミを主成分とする溶接ワイヤと被溶接物との間でアークを発生させて溶接を行うパルスアーク溶接制御方法であって、
定常溶接期間になる前のスタート溶接期間では、平均溶接電流が前記定常溶接期間の平均溶接電流以上であり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも高いピーク電流値のパルス電流波形により溶接を行うパルスアーク溶接制御方法。
A pulse arc welding control method for performing welding by generating an arc between a welding wire mainly composed of aluminum and a workpiece,
In the start welding period before the steady welding period, the average welding current is equal to or higher than the average welding current in the steady welding period, and the pulse has a peak current value higher than the peak current value of the pulse current waveform in the steady welding period. A pulse arc welding control method for performing welding with a current waveform.
スタート溶接期間内において、平均溶接電流を定常溶接期間の平均溶接電流よりも高い平均溶接電流から前記定常溶接期間の平均溶接電流に向かって低減するように制御し、溶接速度を前記定常溶接期間の溶接速度よりも低い溶接速度から前記定常溶接期間の溶接速度に向かって増加するように制御し、前記平均溶接電流の低減と前記溶接速度の増加とを同期させて溶接を行う請求項1記載のパルスアーク溶接制御方法。 Within the start welding period, the average welding current is controlled to decrease from the average welding current higher than the average welding current in the steady welding period toward the average welding current in the steady welding period, and the welding speed is controlled in the steady welding period. The welding is performed in such a manner that the welding speed is controlled to increase from a welding speed lower than the welding speed toward the welding speed in the steady welding period, and the reduction in the average welding current and the increase in the welding speed are synchronized. Pulse arc welding control method. 鉄あるいはステンレスを主成分とする溶接ワイヤと被溶接物との間でアークを発生させて溶接を行うアーク溶接制御方法であって、
定常溶接期間になる前のスタート溶接期間では、平均溶接電流が前記定常溶接期間の平均溶接電流以下であり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行うパルスアーク溶接制御方法。
An arc welding control method for performing welding by generating an arc between a welding wire mainly composed of iron or stainless steel and an object to be welded,
In the start welding period before the steady welding period, the average welding current is a pulse having a peak current value that is equal to or lower than the average welding current in the steady welding period and lower than the peak current value of the pulse current waveform in the steady welding period. A pulse arc welding control method for performing welding with a current waveform.
スタート溶接期間内において、平均溶接電流を定常溶接期間の平均溶接電流よりも低い平均溶接電流から前記定常溶接期間の平均溶接電流に向かって増加するように制御し、溶接速度を前記定常溶接期間の溶接速度よりも低い溶接速度から前記定常溶接期間の溶接速度に向かって増加するように制御し、前記平均溶接電流の増加と前記溶接速度の増加とを同期させて溶接を行う請求項3記載のパルスアーク溶接制御方法。 Within the start welding period, the average welding current is controlled to increase from the average welding current lower than the average welding current during the steady welding period toward the average welding current during the steady welding period, and the welding speed is controlled during the steady welding period. The welding is performed in such a manner that the welding speed is controlled to increase from a welding speed lower than the welding speed toward the welding speed in the steady welding period, and the increase in the average welding current and the increase in the welding speed are synchronized. Pulse arc welding control method. 定常溶接期間の後のエンド溶接期間では、平均溶接電流が前記定常溶接期間の平均溶接電流以下であり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行う請求項1から4のいずれか1項に記載のパルスアーク溶接制御方法。 In the end welding period after the steady welding period, the average welding current is equal to or less than the average welding current in the steady welding period, and the pulse current has a peak current value lower than the peak current value of the pulse current waveform in the steady welding period. The pulse arc welding control method according to any one of claims 1 to 4, wherein welding is performed using a waveform. エンド溶接期間において、平均溶接電流を定常溶接期間の平均溶接電流から前記エンド溶接期間の溶接終了位置での平均溶接電流に向かって低減するように制御し、溶接速度を前記定常溶接期間の溶接速度から前記エンド溶接期間の溶接終了位置での溶接速度に向かって低減するように制御し、前記平均溶接電流の低減と前記溶接速度の低減とを同期させて溶接を行う請求項5記載のパルスアーク溶接制御方法。 In the end welding period, the average welding current is controlled so as to decrease from the average welding current in the steady welding period toward the average welding current at the welding end position in the end welding period, and the welding speed is controlled in the steady welding period. 6. The pulse arc according to claim 5, wherein the welding is controlled so as to decrease toward a welding speed at a welding end position in the end welding period, and welding is performed by synchronizing the reduction of the average welding current and the reduction of the welding speed. Welding control method. 溶接ワイヤと被溶接物との間でアークを発生させて溶接を行うパルスアーク溶接装置であって、
前記溶接ワイヤの材質あるいは被溶接物の材質を設定するための材質設定部と、
前記材質設定部に設定された材質に基づいてスタート溶接期間と前記スタート溶接期間の後の定常溶接期間と前記定常溶接期間の後のエンド溶接期間でのそれぞれのパルス電流波形信号を出力するパルス波形出力部と、
前記材質設定部からの信号と前記パルス波形出力部からの信号を入力し、前記スタート溶接期間と前記定常溶接期間と前記エンド溶接期間の各々の期間でのパルス電流波形と平均溶接電流と溶接速度を制御する信号を出力する溶接条件出力部と、
パルス電流波形と平均溶接電流を制御するスイッチング素子と、
前記溶接条件出力部からの信号に基づいて前記スイッチング素子を制御する出力制御部と、
前記溶接ワイヤを送給するための溶接トーチを保持するマニピュレータと、
前記溶接条件出力部からの信号に基づいて前記マニピュレータの動作を制御することで溶接速度を制御するロボット制御部とを備え、
設定される溶接ワイヤの材質あるいは被溶接物の材質に応じて、前記スタート溶接期間および前記エンド溶接期間では前記定常溶接期間とは異なるパルス電流波形により溶接を行うパルスアーク溶接装置。
A pulse arc welding apparatus for performing welding by generating an arc between a welding wire and a workpiece,
A material setting section for setting the material of the welding wire or the material of the workpiece;
Pulse waveforms for outputting respective pulse current waveform signals in a start welding period, a steady welding period after the start welding period, and an end welding period after the steady welding period based on the material set in the material setting unit An output section;
A signal from the material setting unit and a signal from the pulse waveform output unit are input, and a pulse current waveform, an average welding current, and a welding speed in each of the start welding period, the steady welding period, and the end welding period. A welding condition output section for outputting a signal for controlling
A switching element that controls the pulse current waveform and the average welding current;
An output control unit for controlling the switching element based on a signal from the welding condition output unit;
A manipulator holding a welding torch for feeding the welding wire;
A robot controller that controls the welding speed by controlling the operation of the manipulator based on a signal from the welding condition output unit;
A pulse arc welding apparatus for performing welding with a pulse current waveform different from that in the steady welding period in the start welding period and the end welding period in accordance with a welding wire material or a workpiece material to be set.
材質設定部により溶接ワイヤの材質あるいは被溶接物の材質としてアルミを主成分とする材質が設定された場合、出力制御部が溶接条件出力部からの信号に基づいてスイッチング素子を制御することにより、スタート溶接期間では、平均溶接電流が定常溶接期間の平均溶接電流以上であり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも高いピーク電流値のパルス電流波形により溶接を行う請求項7記載のパルスアーク溶接装置。 When a material mainly composed of aluminum is set as the material of the welding wire or the material of the workpiece by the material setting unit, the output control unit controls the switching element based on the signal from the welding condition output unit, The welding is performed with a pulse current waveform having a peak current value higher than the peak current value of the pulse current waveform in the steady welding period, in which the average welding current is equal to or higher than the average welding current in the steady welding period in the start welding period. 7. The pulse arc welding apparatus according to 7. 材質設定部により溶接ワイヤの材質あるいは被溶接物の材質として鉄あるいはステンレスを主成分とする材質が設定された場合、出力制御部が溶接条件出力部からの信号に基づいてスイッチング素子を制御することにより、スタート溶接期間では、平均溶接電流が定常溶接期間の平均溶接電流以下であり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行う請求項7記載のパルスアーク溶接装置。 When the material setting unit sets the material of the welding wire or the material to be welded as the main component of iron or stainless steel, the output control unit controls the switching element based on the signal from the welding condition output unit. Thus, in the start welding period, welding is performed with a pulse current waveform having a peak current value that is lower than the average welding current in the steady welding period and that is lower than the peak current value of the pulse current waveform in the steady welding period. The pulse arc welding apparatus according to claim 7. エンド溶接期間では、平均溶接電流が定常溶接期間の平均溶接電流以下であり、かつ、前記定常溶接期間のパルス電流波形のピーク電流値よりも低いピーク電流値のパルス電流波形により溶接を行う請求項7から9のいずれか1項に記載のパルスアーク溶接装置。 The welding is performed with a pulse current waveform having a peak current value lower than a peak current value of the pulse current waveform in the steady welding period, in which the average welding current is equal to or lower than the average welding current in the steady welding period in the end welding period. The pulse arc welding apparatus according to any one of 7 to 9.
JP2007173680A 2007-07-02 2007-07-02 Pulse arc welding control method and pulse arc welding apparatus Expired - Fee Related JP4715813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173680A JP4715813B2 (en) 2007-07-02 2007-07-02 Pulse arc welding control method and pulse arc welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173680A JP4715813B2 (en) 2007-07-02 2007-07-02 Pulse arc welding control method and pulse arc welding apparatus

Publications (2)

Publication Number Publication Date
JP2009012012A true JP2009012012A (en) 2009-01-22
JP4715813B2 JP4715813B2 (en) 2011-07-06

Family

ID=40353573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173680A Expired - Fee Related JP4715813B2 (en) 2007-07-02 2007-07-02 Pulse arc welding control method and pulse arc welding apparatus

Country Status (1)

Country Link
JP (1) JP4715813B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480941A (en) * 2013-09-06 2014-01-01 合肥鑫伟电力设备有限公司 Low-voltage copper wire welding process
KR20140013958A (en) * 2012-07-25 2014-02-05 가부시키가이샤 다이헨 Method of controlling pulse arc welding method
JP2016128187A (en) * 2015-01-05 2016-07-14 株式会社ダイヘン Arc start control method for pulse arc welding
JP2016132003A (en) * 2015-01-20 2016-07-25 株式会社ダイヘン Pulse arc welding output control method
EP2505294B1 (en) 2010-10-07 2016-08-31 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding device
WO2017167520A1 (en) * 2016-03-26 2017-10-05 Audi Ag Method for producing a joining connection via welding and joining connection produced according to said method
JP6994623B2 (en) 2016-04-08 2022-01-14 パナソニックIpマネジメント株式会社 Arc start method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132374A (en) * 1982-01-29 1983-08-06 Sumitomo Metal Ind Ltd Mig welding method of pipe
JPS61140372A (en) * 1984-12-12 1986-06-27 Nippon Kokan Kk <Nkk> Seam terminal welding method of uoe steel pipe
JPS62183965A (en) * 1986-02-10 1987-08-12 Nippon Kokan Kk <Nkk> High speed welding method
JPH05318108A (en) * 1992-05-19 1993-12-03 Ishikawajima Harima Heavy Ind Co Ltd Method for starting arc for backing weld
JPH06179077A (en) * 1992-12-11 1994-06-28 Fanuc Ltd Arc welding control method for welding robot
JPH07155948A (en) * 1993-12-09 1995-06-20 Daihen Corp Method for controlling arc start of pulse mag welding
JP2007030018A (en) * 2005-07-29 2007-02-08 Daihen Corp Arc start control method for robot welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132374A (en) * 1982-01-29 1983-08-06 Sumitomo Metal Ind Ltd Mig welding method of pipe
JPS61140372A (en) * 1984-12-12 1986-06-27 Nippon Kokan Kk <Nkk> Seam terminal welding method of uoe steel pipe
JPS62183965A (en) * 1986-02-10 1987-08-12 Nippon Kokan Kk <Nkk> High speed welding method
JPH05318108A (en) * 1992-05-19 1993-12-03 Ishikawajima Harima Heavy Ind Co Ltd Method for starting arc for backing weld
JPH06179077A (en) * 1992-12-11 1994-06-28 Fanuc Ltd Arc welding control method for welding robot
JPH07155948A (en) * 1993-12-09 1995-06-20 Daihen Corp Method for controlling arc start of pulse mag welding
JP2007030018A (en) * 2005-07-29 2007-02-08 Daihen Corp Arc start control method for robot welding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505294B1 (en) 2010-10-07 2016-08-31 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding device
KR20140013958A (en) * 2012-07-25 2014-02-05 가부시키가이샤 다이헨 Method of controlling pulse arc welding method
KR102039750B1 (en) * 2012-07-25 2019-11-01 가부시키가이샤 다이헨 Method of controlling pulse arc welding method
CN103480941A (en) * 2013-09-06 2014-01-01 合肥鑫伟电力设备有限公司 Low-voltage copper wire welding process
JP2016128187A (en) * 2015-01-05 2016-07-14 株式会社ダイヘン Arc start control method for pulse arc welding
JP2016132003A (en) * 2015-01-20 2016-07-25 株式会社ダイヘン Pulse arc welding output control method
WO2017167520A1 (en) * 2016-03-26 2017-10-05 Audi Ag Method for producing a joining connection via welding and joining connection produced according to said method
US11135678B2 (en) 2016-03-26 2021-10-05 Audi Ag Method for producing a joining connection via welding and joining connection produced according to said method
JP6994623B2 (en) 2016-04-08 2022-01-14 パナソニックIpマネジメント株式会社 Arc start method

Also Published As

Publication number Publication date
JP4715813B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4911033B2 (en) Arc welding equipment
JP5278634B2 (en) Arc welding control method and arc welding apparatus
JP4715813B2 (en) Pulse arc welding control method and pulse arc welding apparatus
JP4950819B2 (en) AC consumable electrode short-circuit arc welding method
CN109715335B (en) Arc welding control method
JP4652825B2 (en) Arc start control method for AC arc welding
CN111093877B (en) Arc welding control method
WO2017135080A1 (en) Pulsed arc welding control method and pulsed arc welding device
WO2018079345A1 (en) Ac pulse arc welding control method
JP6524412B2 (en) Arc welding control method
WO2016080166A1 (en) Arc welding control method
JP5120073B2 (en) AC pulse arc welding apparatus and control method
JP7373774B2 (en) Arc welding control method
JP5918021B2 (en) AC pulse arc welding control method
JP2009101370A (en) Arc welding control method and arc welding apparatus
JP4391877B2 (en) Heat input control DC arc welding / pulse arc welding switching welding method
JP2010075983A (en) Control method of ac pulse arc welding
JP7113329B2 (en) Arc welding control method
JP6994623B2 (en) Arc start method
JP5349152B2 (en) AC pulse arc welding control method
JP5145889B2 (en) Welding equipment
WO2018070364A1 (en) Arc welding method and arc welding device
JP5145888B2 (en) Welding equipment
JP6746452B2 (en) AC arc welding control method
JP5499472B2 (en) Arc welding control method and arc welding apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R151 Written notification of patent or utility model registration

Ref document number: 4715813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees