JP2009011924A - Membrane separation apparatus - Google Patents

Membrane separation apparatus Download PDF

Info

Publication number
JP2009011924A
JP2009011924A JP2007175897A JP2007175897A JP2009011924A JP 2009011924 A JP2009011924 A JP 2009011924A JP 2007175897 A JP2007175897 A JP 2007175897A JP 2007175897 A JP2007175897 A JP 2007175897A JP 2009011924 A JP2009011924 A JP 2009011924A
Authority
JP
Japan
Prior art keywords
membrane
liquid
flow path
permeate
liquid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007175897A
Other languages
Japanese (ja)
Inventor
Kunihiko Hayashi
久仁彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007175897A priority Critical patent/JP2009011924A/en
Publication of JP2009011924A publication Critical patent/JP2009011924A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane separation apparatus which prevents a separation membrane semi-permeable membrane and piping and the like constituting a permeating liquid passage from being damaged owing to the operation error of a valve. <P>SOLUTION: The membrane separation apparatus is provided with a separation membrane semi-permeable membrane unit having a reverse osmosis membrane and/or nano filtration membrane which separates a feed liquid stock solution to a permeating liquid and a condensed liquid, a feed liquid passage to supply the feed liquid to the separation membrane semi-permeable membrane unit, a feed liquid stock solution booster pump installed at the feed liquid passage, a condensed liquid passage to withdraw the condensed liquid separated by the separation membrane semi-permeable membrane unit, a permeating liquid passage to withdraw the permeating liquid separated by the separation membrane semi-permeable membrane unit, a reflux liquid passage which is branched from each of the condensed liquid passage and the permeating liquid passage which communicates with the feed liquid passage and a washing liquid tank installed at the reflux liquid passage. The apparatus is further provided with a three-way valve to close the reflux liquid passage or close the more downstream side than the junction of the permeating liquid passage with the opening and closing operation at the junction where the reflux liquid passage is branched from the permeating liquid passage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、逆浸透膜および/またはナノろ過膜(以下、半透膜とする)が透過液側から濃縮液(供給液)側に掛かる逆圧により損傷することを防ぐことができる膜分離装置に関するものであり、かん水・海水の淡水化、排水の再利用、有価物の回収など様々な膜分離半透膜に用いることができる装置に関する。   The present invention relates to a membrane separation device capable of preventing a reverse osmosis membrane and / or a nanofiltration membrane (hereinafter referred to as a semipermeable membrane) from being damaged by a reverse pressure applied from the permeate side to the concentrate (feed solution) side. The present invention relates to an apparatus that can be used for various membrane separation semipermeable membranes, such as desalination of brine and seawater, reuse of wastewater, and recovery of valuable materials.

半透膜とは、被分離混合液中の一部の成分、例えば溶媒を透過させ他の成分を透過させない半透性の膜である。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材がよく使用されている。またその膜構造は膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜、非対称膜の緻密層の上に別の素材で形成された非常に薄い活性層を有する複合膜がある。この複合膜では上記逆圧により活性層が緻密層から、剥離損傷する問題がある。   The semipermeable membrane is a semipermeable membrane that allows some components in the mixed liquid to be separated, for example, a solvent to permeate and does not allow other components to permeate. As the material, polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer are often used. In addition, the membrane structure has a dense layer on at least one side of the membrane, an asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, and another layer on the dense layer of the asymmetric membrane. There are composite membranes with a very thin active layer formed of a material. In this composite film, there is a problem that the active layer peels off from the dense layer due to the reverse pressure.

ところで、逆浸透膜やナノ濾過膜などの半透膜を用いた装置はその性能を維持するために定期的に装置を停機し、洗浄等のメンテナンスを行う必要がある。洗浄時には操作手順に従って適宜、半透膜廻りの配管の弁を開/閉及び洗浄液供給ポンプの起動/停止作業を行なっている。一般的に半透膜を用いた膜分離装置は供給液流路、濃縮液流路及び透過水流路を有するが、それぞれの流路はさらに、通常運転流路と洗浄液タンクにつながる洗浄流路に分かれており、各々に切り換え弁を備えている。すなわち膜分離装置が有する切り換え弁の数は、少なくとも、供給液流路に計2個(通常運転流路1個及び洗浄流路1個)、濃縮液流路、透過液流路それぞれに2個ずつ(それぞれ通常運転流路1個ずつ及び洗浄流路1個ずつ)の合計6個となる。そして膜分離装置が複数段の膜モジュール構成となる場合は、これらの切り換え弁の数量はさらに増える。   By the way, in order to maintain the performance of a device using a semipermeable membrane such as a reverse osmosis membrane or a nanofiltration membrane, it is necessary to periodically stop the device and perform maintenance such as cleaning. During cleaning, the pipe valves around the semipermeable membrane are opened / closed and the cleaning liquid supply pump is started / stopped as appropriate according to the operation procedure. In general, a membrane separation apparatus using a semipermeable membrane has a supply liquid flow path, a concentrated liquid flow path, and a permeate flow path, and each flow path is further a normal flow path and a cleaning flow path connected to a cleaning liquid tank. They are divided and each has a switching valve. That is, the number of switching valves included in the membrane separation device is at least 2 in total in the supply liquid flow path (1 normal operation flow path and 1 washing flow path), 2 in each of the concentrate liquid flow path and the permeate flow path. There are a total of six each (one normal operation channel and one cleaning channel). When the membrane separation device has a multi-stage membrane module configuration, the number of these switching valves further increases.

しかしながら、洗浄時の弁開閉作業は煩雑であり、誤操作の危険がある。誤操作をした場合には半透膜の透過液側から濃縮液(供給液)側への逆圧が発生し、半透膜を剥離させる恐れがある。   However, the valve opening / closing operation at the time of cleaning is complicated and there is a risk of erroneous operation. Incorrect operation may cause a back pressure from the permeate side of the semipermeable membrane to the concentrated liquid (supply liquid) side, which may cause the semipermeable membrane to peel off.

図1に具体例として、2段の膜モジュール2、3で構成された膜分離装置の洗浄において、透過液の通常運転時の流路に設けられた二方弁(V3)を「閉」とすると共に、洗浄運転時の流路の弁(V4)を誤って「閉」とした場合を示す。このとき洗浄液供給ポンプ5から1段目膜モジュール2に供給された洗浄液は、透過液側に抜けることなく、全量が濃縮液側を流れて、2段目膜モジュール3に供給され、やはりその全量が濃縮液流路を流れて洗浄液タンク4に戻り、循環する。洗浄液が循環する際、膜モジュール2,3においては通常0.1〜0.2MPaの圧力損失が発生するため、供給液流路から濃縮液流路を流れる洗浄液の圧力の関係は1段目モジュール2の入圧力(P1)、同モジュール2の出圧力(P2)、2段目モジュール3の入圧力(P2)、同モジュール3の出圧力(P3)とするとP1>P2>P3となる。但し、1段目モジュール出から2段目モジュール入間の圧力損失は、比較的小さいため無視できるものとする。ここで透過液流路は全閉状態のため、その圧力は1段目モジュール2の出圧力と同じP2となってしまう。一方、2段目モジュール3の出圧力はP3であり、前述の関係式から2段目モジュール3の下流(出に近いところ)では透過液側の圧力が濃縮液側の圧力より高くなり、半透膜表面の活性層剥離の問題が発生する。   As a specific example in FIG. 1, in the cleaning of the membrane separation apparatus constituted by the two-stage membrane modules 2 and 3, the two-way valve (V3) provided in the flow path during the normal operation of the permeate is “closed”. In addition, the case where the flow path valve (V4) during the cleaning operation is erroneously closed is shown. At this time, the cleaning liquid supplied from the cleaning liquid supply pump 5 to the first-stage membrane module 2 does not escape to the permeate side, but the entire amount flows on the concentrated liquid side and is supplied to the second-stage membrane module 3. Flows through the concentrate flow path, returns to the cleaning liquid tank 4 and circulates. When the cleaning liquid circulates, a pressure loss of 0.1 to 0.2 MPa usually occurs in the membrane modules 2 and 3, so the relationship between the pressure of the cleaning liquid flowing from the supply liquid flow path to the concentrate flow path is the first-stage module. 2 input pressure (P1), output pressure (P2) of the module 2, input pressure (P2) of the second stage module 3, and output pressure (P3) of the module 3, P1> P2> P3. However, the pressure loss between the first-stage module and the second-stage module is relatively small and can be ignored. Here, since the permeate flow path is in a fully closed state, the pressure is P2 which is the same as the output pressure of the first-stage module 2. On the other hand, the output pressure of the second-stage module 3 is P3, and the permeate-side pressure is higher than the concentrate-side pressure downstream of the second-stage module 3 (close to the output) from the above-described relational expression. The problem of active layer peeling on the surface of the permeable membrane occurs.

また、図2に示すように、透過液流路の全ての弁(V3およびV4)を閉止した状態で、半透膜装置の運転を再開してしまうと、海水淡水化用途など、供給液昇圧ポンプの吐出圧力が7MPa程度と高圧の場合、透過液流路を構成する配管等を破損する恐れもある。   In addition, as shown in FIG. 2, when the operation of the semipermeable membrane device is restarted with all the valves (V3 and V4) in the permeate flow path closed, the supply liquid pressure is increased for seawater desalination. When the discharge pressure of the pump is as high as about 7 MPa, there is a risk of damaging piping or the like constituting the permeate flow path.

このような透過液流路の全閉状態で発生する問題の対策として、半透膜自体の逆耐圧を向上し、逆圧による膜剥離を防ぐ方法が開示されている(例えば特許文献1)。しかし、逆耐圧性を高めた半透膜は、塩濃度2,000ppm程度の供給液に対応したものであり、海水用途での適用は難しい。また、透過液流路に逆止弁を備えて、逆圧が半透膜に掛かることを防ぐことも行われているが、逆止弁の異物噛み込みの問題や、シール面におけるパッキンの経年劣化等による逆止不良といった問題があり、半透膜に逆圧が掛かることを恒久的に防止することは期待できない。
特開平6−346号公報
As a countermeasure against such a problem that occurs in the fully closed state of the permeate channel, a method of improving the reverse pressure resistance of the semipermeable membrane itself and preventing film peeling due to the reverse pressure is disclosed (for example, Patent Document 1). However, the semipermeable membrane with improved reverse pressure resistance is compatible with a supply liquid having a salt concentration of about 2,000 ppm, and is difficult to apply in seawater applications. In addition, a check valve is provided in the permeate flow path to prevent reverse pressure from being applied to the semipermeable membrane. However, there is a problem of foreign matter biting in the check valve and the aging of the packing on the seal surface. There is a problem of non-return failure due to deterioration or the like, and it cannot be expected to permanently prevent the semipermeable membrane from being applied with a back pressure.
JP-A-6-346

本発明の目的は、このような弁の誤操作による半透膜あるいは透過液流路を構成する配管等の破損をより確実に防止することが可能な膜分離装置を提供することである。   An object of the present invention is to provide a membrane separation apparatus capable of more reliably preventing damage to a semipermeable membrane or piping constituting a permeate flow path due to such a valve misoperation.

上記課題を解決するための本発明は、次の(1)、(2)のいずれかを特徴とするものである。
(1)供給液を透過液と濃縮液とに分離する、逆浸透膜および/またはナノろ過膜を備えた半透膜ユニットと、該半透膜ユニットに供給液を供給する供給液流路と、該供給液流路に設けられた供給液昇圧ポンプと、前記半透膜ユニットで分離された濃縮液を取り出す濃縮液流路と、前記半透膜ユニットで分離された透過液を取り出す透過液流路と、該濃縮液流路および透過液流路それぞれから分岐して前記供給液流路に連通する環流液流路と、該環流液流路に設けられた洗浄液タンクとを備え、前記透過液流路から前記環流液流路が分岐している分岐点に、開閉操作によって前記環流液流路を閉鎖もしくは前記透過液流路の前記分岐点よりも下流側を閉鎖する三方弁を備えている膜分離装置。
(2)前記半透膜ユニットは、逆浸透膜および/またはナノろ過膜を備えた複数の膜モジュールが、一方の膜モジュールの濃縮液を他方の膜モジュールに供給するように接続されるとともに、それぞれの膜モジュールから得られた透過液を集液して前記透過液流路に流すように構成されてなり、かつ、該一方の膜モジュールの濃縮液を昇圧して前記他方の膜モジュールに供給する濃縮液昇圧ポンプを有している、前記(1)に記載の膜分離装置。
The present invention for solving the above-described problems is characterized by either of the following (1) and (2).
(1) A semipermeable membrane unit having a reverse osmosis membrane and / or a nanofiltration membrane that separates a supply solution into a permeate and a concentrated solution, and a supply solution channel for supplying the supply solution to the semipermeable membrane unit A supply liquid booster pump provided in the supply liquid flow path, a concentrate flow path for taking out the concentrate separated by the semipermeable membrane unit, and a permeate for taking out the permeate separated by the semipermeable membrane unit A permeate flow path that branches off from each of the concentrate liquid flow path and the permeate liquid flow path and communicates with the supply liquid flow path, and a cleaning liquid tank provided in the recycle liquid flow path. Provided with a three-way valve that closes the reflux liquid channel by opening / closing operation or closes the downstream side of the permeate channel from the branch point at the branch point where the reflux liquid channel branches from the liquid channel Membrane separator.
(2) The semipermeable membrane unit is connected so that a plurality of membrane modules each having a reverse osmosis membrane and / or a nanofiltration membrane are supplied to the other membrane module with the concentrate of one membrane module; The permeate obtained from each membrane module is collected and allowed to flow through the permeate channel, and the concentrated liquid of the one membrane module is pressurized and supplied to the other membrane module. The membrane separator according to (1), further including a concentrated pressure boosting pump.

本発明によれば、透過液流路から環流液流路が分岐している分岐点に、開閉操作によって環流液流路を閉鎖もしくは透過液流路の前記分岐点よりも下流側を閉鎖する三方弁、すなわち、透過液流路の分岐点よりも下流側もしくは環流液流路のいずれかを必ず開く三方弁を設けるので、透過液流路が全閉状態となることを防ぎ、常に大気開放状態を作ることができる。したがって、半透膜に透過液側からの逆圧が掛かる恐れがなくなり半透膜の破損を防ぐことができ、また配管の破損も防ぐことができる。   According to the present invention, at the branch point where the reflux liquid channel branches off from the permeate flow channel, the reflux liquid channel is closed by an opening / closing operation, or the downstream side of the permeate flow channel from the branch point is closed. There is a valve, that is, a three-way valve that always opens either the downstream side of the permeate flow path or the reflux liquid flow path, preventing the permeate flow path from being fully closed, and always open to the atmosphere. Can be made. Therefore, there is no possibility that a reverse pressure from the permeate side is applied to the semipermeable membrane, the semipermeable membrane can be prevented from being damaged, and the piping can also be prevented from being damaged.

本発明の膜分離装置には、例えば図3に示すように、逆浸透膜やナノ濾過膜(以下、半透膜という)の少なくとも一方を備えた半透膜ユニット9と、該半透膜ユニット9に供給液を供給する供給液流路10と、該供給液流路10に設けられた供給液昇圧ポンプ1と、半透膜9で分離された濃縮液を取り出す濃縮液流路11と、半透膜ユニット9で分離された透過液を取り出す透過液流路12とが設けられている。濃縮液流路11および透過液流路12には、それぞれから分岐して前記供給液流路10に連通する環流液流路13が接続されており、該環流液流路13には洗浄液タンク4および洗浄液供給ポンプ5が設けられている。そして、透過液流路12から環流液流路13が分岐している分岐点には、開閉操作によって環流液流路13を閉鎖もしくは透過液流路12の該分岐点よりも下流側を閉鎖する三方弁V7が設けられている。   In the membrane separation apparatus of the present invention, for example, as shown in FIG. 3, a semipermeable membrane unit 9 provided with at least one of a reverse osmosis membrane and a nanofiltration membrane (hereinafter referred to as a semipermeable membrane), and the semipermeable membrane unit A supply liquid flow path 10 for supplying a supply liquid to 9, a supply liquid booster pump 1 provided in the supply liquid flow path 10, a concentrated liquid flow path 11 for taking out the concentrated liquid separated by the semipermeable membrane 9, A permeate flow path 12 for taking out the permeate separated by the semipermeable membrane unit 9 is provided. The concentrated liquid flow path 11 and the permeated liquid flow path 12 are connected to a circulating liquid flow path 13 that is branched from the concentrated liquid flow path 11 and communicates with the supply liquid flow path 10. In addition, a cleaning liquid supply pump 5 is provided. At the branch point where the reflux liquid channel 13 branches from the permeate channel 12, the reflux liquid channel 13 is closed by opening / closing operation or the downstream side of the branch point of the permeate channel 12 is closed. A three-way valve V7 is provided.

さらに、図3に示す装置においては、半透膜ユニット9が2段の膜モジュールを有しており、一方の膜モジュールの濃縮液を他方の膜モジュールに供給するように接続されている。また、それぞれの膜モジュールから得られた透過液は、集液されて透過液流路12に流すように構成されている。   Further, in the apparatus shown in FIG. 3, the semipermeable membrane unit 9 has a two-stage membrane module, and is connected so as to supply the concentrated liquid of one membrane module to the other membrane module. In addition, the permeate obtained from each membrane module is collected and allowed to flow through the permeate channel 12.

このような図3に示す膜分離装置を用いて海水淡水化など通常の運転を行う際には、二方弁V1、V5を「開」にするとともに、環流液流路13を閉鎖するように、二方弁V2、V6を「閉」、三方弁V7のc側を「閉」(a−b間を「開」)にする。一方、装置を洗浄する際などには、二方弁V1、V5を「閉」にするとともに、環流液流路13を開放するように、二方弁V2、V6を「開」、三方弁V7のb側を「閉」(a−c間を「開」)にする。   When performing a normal operation such as seawater desalination using the membrane separation apparatus shown in FIG. 3, the two-way valves V1 and V5 are opened and the reflux liquid channel 13 is closed. The two-way valves V2 and V6 are “closed”, and the c-side of the three-way valve V7 is “closed” (between a and b is “open”). On the other hand, when the apparatus is cleaned, the two-way valves V1 and V5 are “closed”, the two-way valves V2 and V6 are “open”, and the three-way valve V7 is opened so as to open the reflux liquid flow path 13. B side is closed (a-c is "open").

ここで、従来は、透過液流路および該透過液流路から分岐している環流液流路それぞれに二方弁を設けていたため、順番を間違えばそれら2つの二方弁が共に「閉」となる時間が生じる危険性があったが、本発明においては、透過液流路12から環流液流路13が分岐している分岐点に三方弁V7を設けているので、分岐点よりも下流側の2つの流路が共に「閉」となる時間が生じる危険性がない。すなわち、三方弁V7のa−b間又はa−c間は必ず「開」となるので、透過液流路が全閉状態となる時間はなく、常に大気開放状態を作ることができる。したがって、半透膜に対して透過液側から逆圧が掛かる恐れがなくなる。   Here, conventionally, since the two-way valve is provided in each of the permeate channel and the reflux liquid channel branched from the permeate channel, both the two-way valves are “closed” if the order is incorrect. However, in the present invention, since the three-way valve V7 is provided at the branch point where the permeate liquid channel 12 branches from the permeate channel 12, the downstream of the branch point. There is no risk of causing time for both of the two flow paths on the side to be “closed”. That is, since the three-way valve V7 is always “open” between a and b or a and c, there is no time for the permeate flow path to be fully closed, and an open atmosphere can always be created. Therefore, there is no possibility that reverse pressure is applied to the semipermeable membrane from the permeate side.

なお、本発明においては、上述の図3に示した態様を例えば図4〜図6に示すように変更して実施してもよい。   In the present invention, the above-described embodiment shown in FIG. 3 may be modified as shown in FIGS.

図4に示す膜分離装置は、複数の膜モジュールの透過液流路が合流する地点よりも上流側に、環流液流路13の分岐点を設けた態様であり、三方弁V7が個々の膜モジュールに対応した数だけ設けられている。その他は図3の態様と同じである。   The membrane separation device shown in FIG. 4 is a mode in which a branch point of the reflux liquid channel 13 is provided upstream from the point where the permeate channels of a plurality of membrane modules merge, and the three-way valve V7 has individual membranes. There are as many modules as there are modules. Others are the same as the embodiment of FIG.

図5に示す膜分離装置は、1段目の膜モジュール2の濃縮液を昇圧して2段目の膜モジュール3に供給する濃縮液昇圧ポンプ6を備えている。この態様では洗浄液供給ポンプ5を出た洗浄液は1段目膜モジュール2から濃縮液昇圧ポンプ6を経由して2段目膜モジュール3に入るが、たとえば0.5MPa程度の吐出圧力である洗浄液供給ポンプによる循環流では、濃縮液昇圧ポンプが昇圧ポンプとして働くことはなく流路内の抵抗となってしまい0.1〜0.2MPaの圧力損失が発生する。従って、仮に三方弁V7がなく図1、2に示すような二方弁が設けられているとすれば、該濃縮液昇圧ポンプ6の入圧力(P2)と同ポンプ5の出圧力(P3)の差0.1〜0.2MPaがさらに図1及び図2の態様で発生する逆圧0.1〜0.2MPaに加算されることとなり、1段目モジュール出圧力(P2)と2段目モジュール出圧力(P4)の差、すなわち従来の二方弁方式で誤操作をした場合に発生する逆圧は0.2〜0.4MPaとなる。これは図1及び図2の態様で発生する逆圧の約2倍であり、膜の剥離の度合いが大きくなる危険性が高い。しかしながら、図5に具体的に示す本発明にかかる膜分離装置では、透過液流路12から環流液流路13が分岐している分岐点に、開閉操作によって環流液流路13を閉鎖もしくは透過液流路12の該分岐点よりも下流側を閉鎖する三方弁V7、すなわち、透過液流路の分岐点よりも下流側もしくは環流液流路のいずれかを必ず開く三方弁を設けているので、逆圧が半透膜に透過液側から掛かる恐れがない。なお、図5に示す態様は、上記した点以外は図3の態様と同じである。   The membrane separation apparatus shown in FIG. 5 includes a concentrate booster pump 6 that boosts the concentrate of the first-stage membrane module 2 and supplies it to the second-stage membrane module 3. In this embodiment, the cleaning liquid exiting the cleaning liquid supply pump 5 enters the second-stage membrane module 3 from the first-stage membrane module 2 via the concentrated liquid booster pump 6. For example, the cleaning liquid supply having a discharge pressure of about 0.5 MPa is used. In the circulating flow by the pump, the concentrated liquid booster pump does not work as a booster pump and becomes a resistance in the flow path, resulting in a pressure loss of 0.1 to 0.2 MPa. Therefore, if there is no three-way valve V7 and a two-way valve as shown in FIGS. 1 and 2 is provided, the inlet pressure (P2) of the concentrate booster pump 6 and the outlet pressure (P3) of the pump 5 are provided. The difference of 0.1 to 0.2 MPa is further added to the reverse pressure of 0.1 to 0.2 MPa generated in the embodiment of FIGS. 1 and 2, and the first stage module output pressure (P2) and the second stage The difference in module output pressure (P4), that is, the back pressure generated when the conventional two-way valve system is operated erroneously, is 0.2 to 0.4 MPa. This is about twice the back pressure generated in the embodiment of FIGS. 1 and 2, and there is a high risk that the degree of film peeling will increase. However, in the membrane separation apparatus according to the present invention specifically shown in FIG. 5, the reflux liquid channel 13 is closed or permeated by an opening / closing operation at a branch point where the reflux liquid channel 13 branches from the permeate channel 12. Since the three-way valve V7 that closes the downstream side of the branch point of the liquid channel 12 is provided, that is, the three-way valve that always opens either the downstream side of the branch point of the permeate channel or the reflux liquid channel is provided. There is no possibility that reverse pressure is applied to the semipermeable membrane from the permeate side. The mode shown in FIG. 5 is the same as the mode shown in FIG. 3 except for the points described above.

さらに、半透膜ユニット9を構成する膜モジュールの段数は、2段に限定されるものではなく、3段以上であってもよいし、また、図6に示すように1段であってもよい。   Furthermore, the number of stages of the membrane modules constituting the semipermeable membrane unit 9 is not limited to two, but may be three or more, or may be one as shown in FIG. Good.

膜モジュールの段数が1段の場合は、仮に洗浄液循環中に透過液流路を全閉にしても、1段目の膜モジュールと2段目の膜モジュールの圧力損失の差又は濃縮液昇圧ポンプでの圧力損失により発生する逆圧の懸念がない。しかし、たとえば洗浄終了時に透過液流路を全閉にし残圧が残った状態で洗浄液供給ポンプを停機すると、供給液及び濃縮液流路側が放圧され瞬間的に逆圧が発生し、膜を剥離させる恐れがある。そのため、図6に示すように、透過液流路12から環流液流路13が分岐している分岐点に、開閉操作によって環流液流路13を閉鎖もしくは透過液流路12の該分岐点よりも下流側を閉鎖する三方弁V7、すなわち、透過液流路の分岐点よりも下流側もしくは環流液流路のいずれかを必ず開く三方弁を設けることが好ましい。このように、半透膜ユニット9を構成する膜モジュールの数が1であっても、透過液流路12から環流液流路13が分岐している分岐点に三方弁を設けることで、逆圧が半透膜に透過液側から掛かる恐れがなくなる。   When the number of stages of the membrane module is 1, even if the permeate flow path is fully closed during circulation of the cleaning liquid, the difference in pressure loss between the first stage membrane module and the second stage membrane module or the concentrated liquid booster pump There is no concern of back pressure generated by pressure loss at However, for example, when the permeate flow path is fully closed at the end of cleaning and the cleaning liquid supply pump is stopped with the residual pressure remaining, the supply liquid and concentrate flow path side is released and instantaneously reverse pressure is generated, causing the membrane to There is a risk of peeling. Therefore, as shown in FIG. 6, the reflux liquid channel 13 is closed by the opening / closing operation at the branch point where the reflux liquid channel 13 branches from the permeate channel 12 or from the branch point of the permeate channel 12. It is also preferable to provide a three-way valve V7 that closes the downstream side, that is, a three-way valve that always opens either the downstream side or the reflux liquid channel from the branch point of the permeate channel. Thus, even if the number of the membrane modules constituting the semipermeable membrane unit 9 is 1, by providing a three-way valve at the branch point where the reflux liquid channel 13 branches from the permeate channel 12, There is no risk of pressure being applied to the semipermeable membrane from the permeate side.

従来の膜分離装置を示す模式図である。It is a schematic diagram which shows the conventional membrane separator. 従来の膜分離装置を示す模式図である。It is a schematic diagram which shows the conventional membrane separator. 本発明にかかる膜分離装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the membrane separator concerning this invention. 本発明にかかる膜分離装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the membrane separator concerning this invention. 本発明にかかる膜分離装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the membrane separator concerning this invention. 本発明にかかる膜分離装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the membrane separator concerning this invention.

符号の説明Explanation of symbols

1:供給液昇圧ポンプ
2:膜モジュール(1段目)
3:膜モジュール(2段目)
4:洗浄液タンク
5:洗浄液供給ポンプ
6:濃縮液昇圧ポンプ
9:半透膜ユニット
10:供給液流路
11:濃縮液流路
12:透過液流路
13:環流液流路
V1:二方弁
V2:二方弁
V3:二方弁
V4:二方弁
V5:二方弁
V6:二方弁
V7:三方弁
1: Supply pressure booster pump 2: Membrane module (first stage)
3: Membrane module (second stage)
4: Cleaning liquid tank 5: Cleaning liquid supply pump 6: Concentrated liquid booster pump 9: Semipermeable membrane unit 10: Supply liquid flow path 11: Concentrated liquid flow path 12: Permeate flow path 13: Recirculating liquid flow path V1: Two-way valve V2: Two-way valve V3: Two-way valve V4: Two-way valve V5: Two-way valve V6: Two-way valve V7: Three-way valve

Claims (2)

供給液を透過液と濃縮液とに分離する、逆浸透膜および/またはナノろ過膜を備えた半透膜ユニットと、該半透膜ユニットに供給液を供給する供給液流路と、該供給液流路に設けられた供給液昇圧ポンプと、前記半透膜ユニットで分離された濃縮液を取り出す濃縮液流路と、前記半透膜ユニットで分離された透過液を取り出す透過液流路と、該濃縮液流路および透過液流路それぞれから分岐して前記供給液流路に連通する環流液流路と、該環流液流路に設けられた洗浄液タンクとを備え、前記透過液流路から前記環流液流路が分岐している分岐点に、開閉操作によって前記環流液流路を閉鎖もしくは前記透過液流路の前記分岐点よりも下流側を閉鎖する三方弁を備えている膜分離装置。   A semipermeable membrane unit having a reverse osmosis membrane and / or a nanofiltration membrane that separates the supply solution into a permeate and a concentrated solution, a supply liquid channel for supplying the supply solution to the semipermeable membrane unit, and the supply A supply liquid booster pump provided in the liquid flow path, a concentrated liquid flow path for taking out the concentrated liquid separated by the semipermeable membrane unit, and a permeate flow path for taking out the permeated liquid separated by the semipermeable membrane unit; A permeate flow path that branches off from each of the concentrate liquid flow path and the permeate liquid flow path and communicates with the supply liquid flow path, and a washing liquid tank provided in the recycle liquid flow path. Membrane separation provided with a three-way valve that closes the reflux liquid channel by opening / closing operation or closes the downstream side of the permeate channel from the branch point at the branch point where the reflux liquid channel branches from apparatus. 前記半透膜ユニットは、逆浸透膜および/またはナノろ過膜を備えた複数の膜モジュールが、一方の膜モジュールの濃縮液を他方の膜モジュールに供給するように接続されるとともに、それぞれの膜モジュールから得られた透過液を集液して前記透過液流路に流すように構成されてなり、かつ、該一方の膜モジュールの濃縮液を昇圧して前記他方の膜モジュールに供給する濃縮液昇圧ポンプを有している、請求項1に記載の膜分離装置。   The semipermeable membrane unit is connected so that a plurality of membrane modules each having a reverse osmosis membrane and / or a nanofiltration membrane are supplied to the other membrane module with the concentrated liquid of one membrane module. Concentrated liquid that is configured to collect the permeate obtained from the module and flow it to the permeate flow path, and pressurizes the concentrate of the one membrane module and supplies it to the other membrane module The membrane separation apparatus according to claim 1, comprising a booster pump.
JP2007175897A 2007-07-04 2007-07-04 Membrane separation apparatus Pending JP2009011924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175897A JP2009011924A (en) 2007-07-04 2007-07-04 Membrane separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175897A JP2009011924A (en) 2007-07-04 2007-07-04 Membrane separation apparatus

Publications (1)

Publication Number Publication Date
JP2009011924A true JP2009011924A (en) 2009-01-22

Family

ID=40353493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175897A Pending JP2009011924A (en) 2007-07-04 2007-07-04 Membrane separation apparatus

Country Status (1)

Country Link
JP (1) JP2009011924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104310622A (en) * 2014-10-20 2015-01-28 宁波龙巍环境科技有限公司 One-pump multipurpose zero discharge self-cleaning water purifier
CN105036401A (en) * 2015-09-01 2015-11-11 常州康耐特环保科技股份有限公司 Integrated two-stage reverse osmosis device
CN110304689A (en) * 2018-03-20 2019-10-08 国家能源投资集团有限责任公司 A kind of reverse osmosis treatent method and counter-infiltration system of brackish water
CN110947303A (en) * 2018-09-27 2020-04-03 东丽先端材料研究开发(中国)有限公司 Water purifying device and operation method thereof
CN113797758A (en) * 2021-08-25 2021-12-17 黄山华绿园生物科技有限公司 Plant beverage concentrating device and concentrating method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104310622A (en) * 2014-10-20 2015-01-28 宁波龙巍环境科技有限公司 One-pump multipurpose zero discharge self-cleaning water purifier
CN105036401A (en) * 2015-09-01 2015-11-11 常州康耐特环保科技股份有限公司 Integrated two-stage reverse osmosis device
CN110304689A (en) * 2018-03-20 2019-10-08 国家能源投资集团有限责任公司 A kind of reverse osmosis treatent method and counter-infiltration system of brackish water
CN110947303A (en) * 2018-09-27 2020-04-03 东丽先端材料研究开发(中国)有限公司 Water purifying device and operation method thereof
CN113797758A (en) * 2021-08-25 2021-12-17 黄山华绿园生物科技有限公司 Plant beverage concentrating device and concentrating method thereof

Similar Documents

Publication Publication Date Title
JP6102921B2 (en) Fresh water generation method using separation membrane unit
JP6834360B2 (en) Concentration method and concentrator
US9901878B2 (en) Membrane separation device and operation method for membrane separation device
JP6762258B2 (en) Reverse osmosis treatment system and reverse osmosis treatment method
EP2959963A1 (en) Reverse osmosis membrane device and method for operating same
US10995016B2 (en) Membrane filtration system with concentrate staging and concentrate recirculation, switchable stages, or both
JP5538572B2 (en) Seawater desalination equipment
WO2004062774A2 (en) Direct osmosis cleaning
KR20140040173A (en) Membrane filtration method and membrane filtration device
JP2009011924A (en) Membrane separation apparatus
JP2007000788A (en) Water treatment apparatus using reverse osmosis membrane
JP2008542007A (en) Product membrane filtration
JP2000167358A (en) Membrane separation system and membrane separation method
JP2007136273A (en) Pressurized type membrane filtration apparatus
KR20170140920A (en) Reverse osmosis membrane apparatus for energy saving and water treating method using the same
WO2015141693A1 (en) Semipermeable membrane separation device and semipermeable membrane separation device operation method
JP6505504B2 (en) Desalination system using reverse osmosis membrane and operation method thereof
JPH11347372A (en) Membrane separation device and membrane separation method
US20140054218A1 (en) System to Reduce the Fouling of a Catalytic Seawater Deoxygenation Unit
JP2018012069A (en) Water treatment system
JP2010227851A (en) Membrane filtration system and method of cleaning the same
JP2016203065A (en) Desalination system using reverse osmosis and operational method thereof
JP6169009B2 (en) Reverse osmosis membrane device and operating method thereof
JP2016221446A (en) Water treatment system
JP2006218341A (en) Method and apparatus for treating water