JP2009011271A - Feed conversion method for benthic organism, method for cleaning culture pond of tiger shrimp, and feed conversion agent for benthic organism - Google Patents

Feed conversion method for benthic organism, method for cleaning culture pond of tiger shrimp, and feed conversion agent for benthic organism Download PDF

Info

Publication number
JP2009011271A
JP2009011271A JP2007179044A JP2007179044A JP2009011271A JP 2009011271 A JP2009011271 A JP 2009011271A JP 2007179044 A JP2007179044 A JP 2007179044A JP 2007179044 A JP2007179044 A JP 2007179044A JP 2009011271 A JP2009011271 A JP 2009011271A
Authority
JP
Japan
Prior art keywords
pond
feed conversion
iron oxide
soil
hydrous iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007179044A
Other languages
Japanese (ja)
Inventor
Minoru Hanaka
實 花香
Sadao Kawaguchi
定生 河口
Shingo Nishi
真吾 西
Ken Wakisaka
賢 脇坂
Yasuhiro Harada
康博 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tetsugen Corp
Original Assignee
Tetsugen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tetsugen Corp filed Critical Tetsugen Corp
Priority to JP2007179044A priority Critical patent/JP2009011271A/en
Priority to PCT/JP2007/067359 priority patent/WO2009008094A1/en
Publication of JP2009011271A publication Critical patent/JP2009011271A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/10Cleaning bottoms or walls of ponds or receptacles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming, maintaining and recovering the medium function (soil fertility) of microbial reaction of the bottom mud of a tiger shrimp culture pond, and effective for remarkably improving a culture pond having low productivity, preventing injury by continuous culture, recovering a pond lost its culture potential by continuous culture and improving tidal land environment deteriorated by organic matter loading. <P>SOLUTION: A method for converts either one or both of organic matters deposited on the bottom of a tiger shrimp culture pond and organic matters in the soil of the pond, concretely. The method provides a feed conversion method for benthic organism and a cleaning method for a culture pond or a tidal land by mixing or scattering amorphous hydrous iron oxide to the bottom. Further, a feed conversion agent for benthic organism, containing amorphous hydrous iron oxide and usable in the feed conversion method for benthic organism, is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、養殖池又は干潟等の生物的土壌環境を改善し、特に世界的に問題提起されているエビ養殖事業に伴う自然環境破壊問題を解決しうるものであり、有機物が堆積する養殖池又は干潟の浅海の底泥の底生生物の飼料転換方法、及び養殖池又は干潟の浅海の浄化方法、並びに、底生生物の飼料転換剤に関する。   INDUSTRIAL APPLICABILITY The present invention improves a biological soil environment such as an aquaculture pond or a tidal flat, and can solve a natural environment destruction problem associated with a shrimp aquaculture business that has been particularly raised worldwide. Alternatively, the present invention relates to a feed conversion method for benthic shallow mud benthic organisms, a method for purifying shallow ponds or tidal flats, and a benthic feed conversion agent.

世界のエビ養殖の歴史は自然環境の破壊を伴う生産地移転の経緯でもある。ブラックタイガー海老は海老養殖の主流をなすもので、主に熱帯又は亜熱帯地域の汽水域の堆積土壌地に池を開発造成して養殖が行われてきた。該養殖の欠点として、養殖池造成直後は高い生産性を示すものの、継続使用に従い生産性が低下し、ついには海老が全く出来なくなって池は老朽疲弊したものとして放棄され、次の堆積土壌地を求めて移転することとなり、結果として自然環境破壊を拡大してきた。以上の養殖池の老朽疲弊は早い場合で2年、遅くとも5年程度で発生し、原因不明の連作障害として解決不能な課題とされてきた。
そこで、本発明者は連作障害の原因を研究した結果、以下の知見を得た。
The world's history of shrimp farming is also the process of relocation of production areas with the destruction of the natural environment. Black tiger shrimps are the mainstream of shrimp farming, and have been cultivated mainly by developing and creating ponds in the sedimentary soil of tropical and subtropical brackish waters. The disadvantage of this aquaculture is that it shows high productivity immediately after the cultivation pond is established, but the productivity decreases with continued use, eventually the shrimp can no longer be produced and the pond is abandoned as worn out, and the next sedimentary soil area As a result, the natural environment destruction has been expanded. The above-mentioned deterioration of the aquaculture pond has occurred in 2 years at the earliest and about 5 years at the latest, and has been regarded as a problem that cannot be solved as a continuous cropping disorder of unknown cause.
Thus, as a result of studying the cause of continuous cropping disorder, the present inventor has obtained the following knowledge.

海老養殖の中核をなすブラックタイガー海老の養殖においては池の地力が必須条件となる。地力の役割は微生物反応の培地であり、培地として作用しなくなくなったときに海老の養成は出来なくなる。すなわち、地力の微生物反応は、海老養成の飼料の残餌、海老の排泄物、池が生産した有機物等の堆積物を分解して生物環境を維持する作用と、該有機堆積物を消費して海老に有効貴重な餌への転換を行う作用とを併有している。この2つの池底土壌の作用が必要であり、その作用が喪失乃至低下した時には海老が原因不明の理由で出来なくなった(連作障害発生)ものとして池は廃棄されてきた。   In the cultivation of black tiger shrimp, which is the core of shrimp farming, the geological strength of the pond is an essential condition. The role of geopower is the culture medium of microbial reaction, and when it stops working as a culture medium, shrimp cannot be trained. In other words, the microbial reaction of the geological force has the effect of maintaining the biological environment by decomposing sediment such as residual food of shrimp training feed, excrement of shrimp, organic matter produced by the pond, and consuming the organic sediment. Combined with the action of converting to shrimp effective prey. The action of these two pond bottom soils is necessary, and when the action is lost or lowered, the pond has been discarded because shrimp can no longer be done for unknown reasons (occurrence of continuous cropping failure).

以上の海老養殖事業の問題に対し、海老の養成池において池に水流装置を設けることにより、池の水を循環させて養殖池の非水流域に堆積した有機物を汚泥として排出処理する事例や、堆積したまま固形塩素錠剤で分解する事例がある(特許文献1参照)。しかし、この方法の場合、堆積した底泥の酸素消費量の低減や、アンモニアの低減を図るものの、堆積有機物を積極的に飼料として活用するにはいたらず、不十分であった。また、浮遊又は沈殿する有機物の餌化のため、プランクトン繁殖の特定の溶液を散布してプランクトンを繁殖させる事例がある(特許文献2参照)。しかし、この方法では、発酵物から抽出した特定のエキスを使うものであり、本発明の技術分野である非晶質の含水酸化鉄による堆積有機物の飼料転換とは何ら関係ない。また、海底に潮流を阻止する部材を間隔をあけて設置し、間隔の全域を網体で塞ぎ、閉鎖空間を養殖区域とし、クロレラを散布して稚魚等を養殖する技術がある(特許文献3参照)。しかし、この技術は、潮流による稚魚やクロレラの流出を阻止するもので、糞や残餌による底泥の悪化を改質するものではない。また、海藻に特定の細菌を作用させて、餌料とする技術がある(特許文献4参照)。更に、二枚貝の解毒方法に特定の餌を供給する記載がある(特許文献5参照)。しかし、これらの技術は、底泥を微生物の培地として活用して堆積有機物を飼料転換するものではない。   In response to the above problems in shrimp aquaculture business, by installing a water flow device in the shrimp cultivation pond, organic matter accumulated in the non-water basin of the aquaculture pond is discharged as sludge by circulating the water in the pond, There is an example in which the solid chlorine tablet is decomposed while being deposited (see Patent Document 1). However, in the case of this method, although the oxygen consumption of the accumulated bottom mud is reduced and the ammonia is reduced, the accumulated organic matter is not actively used as a feed and is insufficient. In addition, there is an example in which plankton is propagated by spraying a specific solution of plankton breeding to feed floating or precipitated organic matter (see Patent Document 2). However, this method uses a specific extract extracted from the fermented product and has nothing to do with the feed conversion of the deposited organic matter by amorphous hydrous iron oxide, which is the technical field of the present invention. In addition, there is a technology for cultivating fry and the like by spraying chlorella by installing members that block tidal currents at intervals on the seabed, closing the entire space with a net, making the closed space a culture area, and spraying chlorella (Patent Document 3). reference). However, this technology prevents the outflow of fry and chlorella due to tidal currents, and does not improve the deterioration of bottom mud due to dung or residual food. Moreover, there exists a technique which makes a specific bacterium act on seaweed and uses it as a feed (refer patent document 4). Furthermore, there is a description of supplying a specific bait to the bivalve detoxification method (see Patent Document 5). However, these techniques do not use sediment as a microbial medium to convert sedimentary organic matter into feed.

水処理のため、エアレーションにより溶解した鉄分を非晶質含水酸化第二鉄に変え、鉄分除去する記載がある(特許文献6参照)。また、大気やガス中の硫黄酸化物、硫化水素又は窒素酸化物等の吸着剤又は脱臭剤等として、硫酸第一鉄とアルカリ金属の硫酸塩水溶液にエアーをふきこみ、非晶質の含水酸化第二鉄を得る記載がある(特許文献7参照)。また、第一塩鉄水溶液とアルカリ水溶液の混合液にエアレーションし、磁気記録用含水酸化第二鉄を得る記載がある(特許文献8参照)。しかし、これらの文献には、塩化第一鉄又は硫酸第一鉄を海水又は塩分添加水中に溶解し、エアレーションしてフロック化沈殿分離して非晶質の含水酸化鉄を製造することの記載はない。これらの文献の非晶質の含水酸化鉄は、水処理用、ガス処理用及び磁気記録用の含水酸化第二鉄であり、養殖池の底泥を改質するものではなく、技術分野・課題が相違する。   There is a description of changing the iron content dissolved by aeration to amorphous hydrous ferric oxide and removing the iron content for water treatment (see Patent Document 6). In addition, as an adsorbent or deodorant for sulfur oxides, hydrogen sulfide, nitrogen oxides, etc. in the atmosphere or gas, air is blown into a sulfate aqueous solution of ferrous sulfate and alkali metal to produce amorphous hydrous oxide. There is description which obtains ferric iron (refer to patent documents 7). In addition, there is a description of obtaining hydrous ferric oxide for magnetic recording by aeration of a mixed solution of a ferrous salt aqueous solution and an alkaline aqueous solution (see Patent Document 8). However, in these documents, there is a description that ferrous chloride or ferrous sulfate is dissolved in seawater or salt-added water, and aerated to separate flocked precipitates to produce amorphous hydrous iron oxide. Absent. The amorphous hydrous iron oxides in these documents are hydrous ferric oxides for water treatment, gas treatment and magnetic recording, and do not modify the bottom mud of aquaculture ponds. Is different.

熱帯又は亜熱帯地域で養成されるブラックタイガー海老の養殖は養成池の地力に依存しておりその地力を使い尽くした後に発生する連作障害についてはなんら有効な手立ては無かった。   The cultivation of black tiger shrimp cultivated in tropical or subtropical areas depends on the geological power of the cultivation pond, and there is no effective means for continuous cropping damage that occurs after exhausting the geological power.

特開平8−298894号公報JP-A-8-298894 特開平6−296444号公報JP-A-6-296444 特開平11−289903号公報JP 11-289903 A 特許第2772772号公報Japanese Patent No. 2772772 特開平11−46617号公報Japanese Patent Laid-Open No. 11-46617 特開平6−114385号公報JP-A-6-114385 特開平6−122519号公報JP-A-6-122519 特開平9−71422号公報JP-A-9-71422

本発明は、養殖池又は干潟の浅海の底泥の微生物反応の培地機能(地力)を形成し、維持し、回復させることができる方法に関するもので、生産性の低い海老養殖池を著しく改善し、連作障害を防止し、連作障害で海老が出来なくなった池を回復させること、及び有機物負荷で悪化した干潟環境を改善することを課題とする。   The present invention relates to a method capable of forming, maintaining, and recovering a culture function (geopower) of a microbial reaction in a shallow basin mud of a culture pond or tidal flat, which significantly improves a low productivity shrimp culture pond. The objectives of this project are to prevent continuous cropping failures, to recover ponds that are no longer able to shrimp due to continuous cropping failures, and to improve the tidal flat environment that has deteriorated due to organic load.

上記課題を解決するための手段は、次の通りである。
(1)養殖池又は干潟の浅海の底面に堆積した有機物及び土壌中に含まれる有機物の少なくともいずれかを底生生物の飼料に転換する方法であって、前記底面に対して非晶質の含水酸化鉄を混合又は散布することを特徴とする、底生生物の飼料転換方法である。
(2)養殖池又は干潟の浅海の底面に堆積した有機物及び土壌中に含まれる有機物の少なくともいずれかを底生生物の飼料に転換し、生物環境を改善することにより養殖池又は干潟の浅海を浄化する方法であって、前記底面に対して非晶質の含水酸化鉄を混合又は散布することを特徴とする、養殖池又は干潟の浅海の浄化方法である。
(3)養殖池又は干潟の浅海の底面からエアレーションする上記(1)に記載の、底生生物の飼料転換方法である。
(4)上記(1)記載の底生生物の飼料転換方法に使用され、非晶質の含水酸化鉄を含有することを特徴とする底生生物の飼料転換剤である。
(5)塩化第一鉄及び硫酸第一鉄の少なくともいずれかを、海水又は塩分添加水に溶解させて溶液とし、該溶液をエアレーションしてフロック化沈殿分離させて得られる上記(4)に記載の底生生物の飼料転換剤である。
Means for solving the above-described problems are as follows.
(1) A method of converting at least one of organic matter deposited in the bottom of a shallow basin of an aquaculture pond or tidal flat and organic matter contained in soil into feed for benthic organisms, which is amorphous with respect to the bottom. A feed conversion method for benthic organisms, characterized by mixing or spraying iron oxide.
(2) At least one of the organic matter deposited in the bottom of the shallow water of the culture pond or tidal flat and the organic matter contained in the soil is converted into benthic feed, and the shallow water of the culture pond or tidal flat is improved by improving the biological environment. A method for purification, comprising mixing or spraying amorphous hydrous iron oxide on the bottom surface, wherein the method is a method for purifying the shallow water of an aquaculture pond or tidal flat.
(3) The feed conversion method for benthic organisms according to (1) above, wherein the aeration is performed from the bottom of the shallow pond of the culture pond or tidal flat.
(4) A benthos feed conversion agent which is used in the benthos feed conversion method described in (1) above and contains amorphous hydrous iron oxide.
(5) Described in (4) above, wherein at least one of ferrous chloride and ferrous sulfate is dissolved in seawater or salt-added water to obtain a solution, and the solution is aerated to cause flocking and precipitation separation. It is a feed conversion agent for benthos.

養殖池底泥または干潟の浅海土壌の微生物反応の培地機能(地力)を形成し、維持し、回復する方法に関し、生産性の低い海老養殖池を著しく改善する他に、連作障害を防止し、連作障害で海老が出来なくなった池を回復する方法と有機物負荷で悪化した干潟環境を改善する方法を提供する。   In addition to significantly improving low-productivity shrimp ponds in relation to the method of forming, maintaining and recovering the culture function (geopower) of microbial reactions in cultured pond bottom mud or tidal flat shallow water soil, Provide a method to recover the pond where shrimp can no longer be produced due to continuous cropping failure, and a method to improve the tidal flat environment that has deteriorated due to organic load.

本発明は、以上の海老池の連作障害の原因を究明することによりなされたもので、該連作障害を防止するほか、もともと生産性の低い海老養殖池においても生産性を著しく改善する方法を提供するものである。とりもなおさず、現在進行している海老養殖にともなう自然環境破壊問題を解決する手段でもある。
海老池の問題は有機物負荷とそれに対する土壌と水質の管理の問題でもあり、現在問題となっている干潟環境の悪化と同根の問題である。本発明の技術は干潟環境の改善にも有効な手段である。
本発明の様に土壌に投与した非晶質の含水酸化鉄を使い、沈殿有機物を積極的に底生生物の飼料に転換するとともに養殖の進行にともなう水質と底泥の生物環境を維持改善する技術は無かった。前記の課題に応える技術は、本発明以外には無い。
The present invention was made by investigating the cause of the above-mentioned shrimp pond continuous cropping failure. In addition to preventing the continuous cropping failure, the present invention also provides a method for remarkably improving the productivity even in shrimp ponds that were originally low in productivity. To do. For the time being, it is also a means to solve the natural environment destruction problems associated with shrimp farming.
The problem of shrimp ponds is the problem of organic load and the management of soil and water quality. The technology of the present invention is an effective means for improving the tidal flat environment.
Using amorphous hydrous iron oxide administered to soil as in the present invention, precipitating organic matter is positively converted to benthic feed, and water quality and bottom mud biological environment with the progress of aquaculture are maintained and improved. There was no technology. There is no technology other than the present invention that meets the above-mentioned problems.

<養殖池又は干潟の底生生物の飼料転換>
本発明の第一は、養殖池又は干潟の浅海の底面に堆積した有機物及び土壌中に含まれる有機物の少なくともいずれかを底生生物の飼料に転換する方法であって、前記底面に対して非晶質の含水酸化鉄を混合又は散布することを特徴とする、底生生物の飼料転換方法である。
養殖池とは、えび、かに等の甲殻類、魚又は類似の魚貝類の養殖に使用される池をいう。当該養殖池は、人造、自然造を問わない。底生生物の飼料とは、底面近傍に生息するえび、かに等の甲殻類、魚又は類似の魚貝類の飼料をいう。非晶質の含水酸化鉄とは、非晶質であって、結晶水を含む第二酸化鉄をいう。ここで投与とは、底面に対して非晶質の含水酸化鉄を混合又は散布することをいう。投与の方法としては、例えば、脱水機で水分を低減したもの又は水中に懸濁した非晶質の含水酸化鉄を、池の底面又は上面に、パイプを通しポンプにより又は自然落下により投入する方法がある。
<Forage conversion of aquaculture ponds or tidal flats>
A first aspect of the present invention is a method of converting at least one of organic matter deposited on the bottom of a shallow basin of an aquaculture pond or tidal flat and organic matter contained in soil into feed for benthic organisms, A feed conversion method for benthic organisms, characterized by mixing or spraying crystalline hydrous iron oxide.
An aquaculture pond refers to a pond used for the cultivation of shrimp, crab shellfish, fish, or similar shellfish. The culture pond may be either artificial or natural. The benthic feed refers to the feed of crustaceans such as shrimp and crab, fish or similar fish and shellfish that live near the bottom. Amorphous hydrous iron oxide is ferrous oxide which is amorphous and contains crystal water. Here, administration refers to mixing or dispersing amorphous hydrous iron oxide on the bottom surface. As a method of administration, for example, a method in which water is reduced with a dehydrator or amorphous hydrous iron oxide suspended in water is poured into the bottom or top surface of a pond through a pipe by a pump or by natural fall There is.

本発明は、養成池の造成直後の初期、その後の中期、終期の各段階において非晶質の含水酸化鉄を投与することにより池底の底泥改善微生物が繁殖する知見に基づくもので、池底に堆積した有機物を分解することで、養殖池又は干潟の浅海の土壌表面に堆積した有機物又は土壌中に含まれる有機物を餌化する。
本発明者は、当初一定程度の生産性を示した後に疲弊した海老養殖池の初期、中期、終期の各段階において、非晶質の含水酸化鉄を投与して底泥表面3mm中の非晶質の含水酸化鉄の濃度を0.25%に保った結果、養殖池が疲弊する前より高い生産性と海老サイズを確保出来た上に、必要とする餌の量が減ったことの知見を得た。
非晶質の含水酸化鉄は微生物が容易に溶解性の鉄として利用できることから、その投与により微生物相が健全に維持されることとなり、海老養成の飼料の残餌、海老の排泄物、池が生産した有機物等の堆積物を分解して海老に有効な餌に転換し、結果として生物環境も改善されている。生産性の悪かった池でも非晶質の含水酸化鉄を投与して、土壌中のその濃度を管理することにより海老池の生産性を向上することができる。この原理は干潟でも同様であり適用は可能である。
餌化するプロセスは、明らかでないが、糞、残餌、プランクトンその他の有機物は、池底に沈降、堆積しているところ、池底土壌に非晶質の含水酸化鉄を混合又は散布することで、アンモニアの減少と酸化還元電位の上昇等が可能となる。バクテリアによる有機物の餌化を促す有機物の分解が促進されたものと考えられる。
The present invention is based on the knowledge that the bottom mud improving microorganisms of the pond bottom are propagated by administering amorphous hydrous iron oxide at each of the initial stage immediately after the formation of the training pond, the subsequent middle stage, and the final stage. By decomposing the organic matter deposited on the bottom, the organic matter deposited on the shallow soil surface of the culture pond or tidal flat or the organic matter contained in the soil is fed.
The present inventor initially administered amorphous hydrous iron oxide in the 3 mm of the bottom mud surface at each of the initial, middle and final stages of the shrimp aquaculture pond that was exhausted after showing a certain degree of productivity. As a result of keeping the concentration of high quality hydrous iron oxide to 0.25%, we were able to secure higher productivity and shrimp size than before the aquaculture pond was exhausted, and the knowledge that the amount of food required was reduced Obtained.
Since amorphous hydrous iron oxide can be easily used as soluble iron by microorganisms, its administration will maintain the microbial flora in a healthy manner, and the remaining feed of shrimp training feed, excrement of shrimp, ponds The organic matter and other sediments produced are decomposed and converted into prey that is effective for shrimp, resulting in an improved biological environment. Even in poorly productive ponds, the productivity of shrimp ponds can be improved by administering amorphous hydrous iron oxide and managing its concentration in the soil. This principle is the same in tidal flats and can be applied.
The process of feeding is not clear, but feces, residual food, plankton and other organic matter are settled and deposited on the pond bottom. Amorphous hydrous iron oxide is mixed or sprayed on the pond bottom soil. It is possible to reduce ammonia and increase the redox potential. It is thought that the decomposition of organic matter that promotes the feeding of organic matter by bacteria was promoted.

<養殖池又は干潟の浅海の浄化>
本発明の第二は、養殖池又は干潟の浅海の底面に堆積した有機物及び土壌中に含まれる有機物の少なくともいずれかを底生生物の飼料に転換し、生物環境を改善することにより養殖池又は干潟の浅海を浄化する方法であって、前記底面に対して非晶質の含水酸化鉄を混合又は散布することを特徴とする、養殖池又は干潟の浅海の浄化方法である。
浄化とは、養殖池又は干潟の底面土壌の酸化還元電位の向上と土壌アンモニア濃度の低下で、底面土壌と水質の改善を図り、よって、生物環境をよくすることをいう。
<Purification of shallow water in aquaculture pond or tidal flat>
The second aspect of the present invention is to convert at least one of organic matter deposited on the bottom of the shallow basin of the culture pond or tidal flat and organic matter contained in the soil into feed for benthic organisms, thereby improving the biological environment. A method for purifying the shallow sea of a tidal flat, wherein amorphous hydrous iron oxide is mixed or sprayed on the bottom surface.
Purification refers to improving the bottom soil and water quality by improving the redox potential of the bottom soil of the aquaculture pond or tidal flat and decreasing the soil ammonia concentration, thus improving the biological environment.

養殖池では底泥に糞や残餌が堆積することで、一方干潟では有機物負荷が増大することで水中及び底泥の酸素消費量が増加して酸素不足が頻発する。さらに還元環境の進行で、有機物酸化分解が停滞してアンモニア障害が発生して、養殖池または干潟等の土壌並びに水質の性状が悪化する。本発明では、非晶質の含水酸化鉄を投与することで、底泥の酸化還元電位の上昇と土壌アンモニア濃度の低下が可能となり、生物環境の改善と水質の浄化を確認した。   In aquaculture ponds, dung and residual food accumulate in the bottom mud, while in tidal flats, the increase in organic load increases oxygen consumption in the water and bottom mud, resulting in frequent oxygen shortages. Furthermore, with the progress of the reducing environment, the oxidative decomposition of organic matter stagnates, ammonia damage occurs, and the properties of soil and water quality such as aquaculture ponds and tidal flats deteriorate. In the present invention, by administering amorphous hydrous iron oxide, it was possible to increase the redox potential of the bottom mud and decrease the soil ammonia concentration, confirming the improvement of the biological environment and the purification of water quality.

<底面からのエアレーションによる養殖池又は干潟の浅海の底生生物の飼料転換>
本願発明の第三は、前記第一の発明において、養殖池又は干潟の浅海の底面からエアレーションする底生生物の飼料転換方法である。
エアレーションとは、養殖池又は干潟の浅海の溶液に空気を導くことをいう。空気を導く方法としては、例えば、ブロアーにより昇圧した空気を、パイプを通して池底に導き、池底に敷設した気泡化ノズルを上向きにつけた配管パイプの吐出口より、空気を溶液に吹き込む方法がある。
本発明は前記第一の発明の効果をさらに改善することが出来るものである。養殖池水中への酸素供給においてエアレーション方式が従来の水車方式に比べて省エネでかつ効率よく溶存酸素を海水中に供給するのはもちろんのことであるが、空気の気泡が水中を上昇する垂直循環流の効果が大きい事を発見した。日中にエアレーションすることで垂直循環流を形成し、海水中の光合成は立体的に促進され日照時の3時間程度のエアレーションで溶存酸素濃度は200%の過飽和を示した。垂直循環流の無い養殖池ではプランクトン濃度の高いことも相まって光の透過率支配で有効な光合成深さは表面から50cm程度であり、一般に養成池が1.2m程度の深さであることも相まって溶存酸素濃度は最大で池水平均120%程度の過飽和しか示さない。しかも池底部の酸素濃度は低くなり生物環境としては既に好ましくなかった。
本方法は、底の池水まで均一高濃度の酸素濃度を維持できることから底泥に対して大量の酸素を供給することが出来て、第一の発明の方法とあいまって健全な微生物相を効率よく形成することが出来る。
<Forage conversion of aquatic ponds or tidal flat shallow benthic organisms by aeration from the bottom>
A third aspect of the present invention is a benthos feed conversion method according to the first aspect of the present invention, wherein the aeration is performed from the bottom of the shallow sea of the culture pond or the tidal flat.
Aeration refers to directing air into a shallow water solution in an aquaculture pond or tidal flat. As a method for introducing air, for example, there is a method in which air pressurized by a blower is guided to a pond bottom through a pipe, and air is blown into a solution from an outlet of a pipe pipe with an aeration nozzle laid on the pond bottom facing upward. .
The present invention can further improve the effects of the first invention. In the supply of oxygen to the aquaculture pond water, the aeration method is more efficient and energy-efficient than the conventional water wheel method, but it also supplies dissolved oxygen into seawater. I found that the effect of the flow was great. By aeration during the day, a vertical circulation flow was formed, and photosynthesis in seawater was promoted sterically, and the dissolved oxygen concentration showed a supersaturation of 200% by aeration for about 3 hours during sunshine. In aquaculture ponds without vertical circulation flow, combined with high plankton concentration, effective photosynthesis depth is about 50cm from the surface, and in general the cultivation pond is about 1.2m deep. Dissolved oxygen concentration shows only supersaturation of pond water average 120% at maximum. Moreover, the oxygen concentration at the bottom of the pond is low, which is no longer desirable as a biological environment.
Since this method can maintain a uniform and high concentration of oxygen up to the bottom pond water, it can supply a large amount of oxygen to the bottom mud, and in combination with the method of the first invention, a healthy microflora can be efficiently produced. Can be formed.

さらに、エアレーションにより高酸素濃度に於ける均一攪拌効果が大きく、懸濁有機物の分解が促進されることから水質は浄化され、分解無機物により新しいプランクトンが大量に生産されることとなる。攪拌凝集効果により該プランクトン類と浮遊懸濁物は凝集沈降することから、海老の餌の原料を池底の微生物培地へ供給することが出来る。該供給物が底泥微生物培地において底生生物の飼となったものを通常デトリタスと呼んでいる。この攪拌凝集沈殿効果は水平循環流を作る水車を組み合わせることでよりさらに効果的となる。   In addition, the effect of uniform agitation at high oxygen concentration is great due to aeration, and the decomposition of suspended organic matter is promoted, so that the water quality is purified, and new plankton is produced in large quantities by the decomposed inorganic matter. Since the planktons and suspended suspensions coagulate and settle due to the agglomeration effect, the raw material for shrimp feed can be supplied to the microbial medium at the bottom of the pond. What the feed has become a benthic organism in the bottom mud microbial medium is usually called detritus. This stirring and coagulating sedimentation effect becomes even more effective by combining a water wheel that creates a horizontal circulation flow.

<非晶質の含水酸化鉄を含有することを特徴とする底生生物の飼料転換剤>
本願発明の第四は、本願発明の第一に記載の底生生物の飼料転換方法に使用され、非晶質の含水酸化鉄を含有することを特徴とする底生生物の飼料転換剤である。
本願発明の第五は、塩化第一鉄及び硫酸第一鉄の少なくともいずれかを、海水又は塩分添加水に溶解させて溶液とし、該溶液をエアレーションしてフロック化沈殿分離させて得られる上記第四の発明に記載の底生生物の飼料転換剤である。
ここで、底生生物の飼料転換剤は、非晶質の含水酸化鉄を含有するものであり、例えば、脱水機で水分を低減したもの又は水中に懸濁したものを問わない。
非晶質の含水酸化鉄は、塩化第一鉄(FeCl)及び/又は硫酸第一鉄(FeSO)を原料として非晶質の含水酸化鉄を製造するのが経済的に優れた方法である。塩化第二鉄又は硫酸第二鉄で製造することも可能であるが材料が高価であり適切ではない。
以下に本発明である非晶質の含水酸化鉄の製造方法の一例を説明する。すなわち、塩化第一鉄又は硫酸第一鉄を海水又はNaCl溶解水に投与して溶解し、それにエアレーションを加えて非晶質の含水酸化鉄(水酸化第二鉄)を製造する。製造した非晶質の含水酸化鉄は正に帯電しているために通常の淡水中で製造した場合は電荷反発により凝集が進まず沈殿しないが、海水又はNaCl溶解水は電気伝導度が高いことから容易に電気中和が進行して凝集沈殿分離を出来ることを見出した。通常、海老養成の為に必要な非晶質の含水酸化鉄は少量であることから、投与すべき塩化第一鉄又は硫酸第一鉄は少なく、池のpHが海老養成に影響を与える程に酸性にはならない事から直接海老養殖池に投与して、生成した非晶質の含水酸化鉄を池底土壌に沈殿投与するも可能であるが、この場合は浮遊する微小水酸化第二鉄が養成中の海老のエラに詰まることから海老飼育上好ましくない。発明者は一端フロックとして沈殿した非晶質の含水酸化鉄を投与すればこの問題の発生がなく円滑に投与できることを確認した。
<Feed conversion agent of benthic organisms characterized by containing amorphous hydrous iron oxide>
A fourth aspect of the present invention is a benthos feed conversion agent which is used in the benthos feed conversion method described in the first aspect of the present invention and contains amorphous hydrous iron oxide. .
According to a fifth aspect of the present invention, at least one of ferrous chloride and ferrous sulfate is dissolved in seawater or salt-added water to obtain a solution, and the solution is aerated to obtain a flocked precipitate. A feed conversion agent for benthic organisms according to the fourth invention.
Here, the feed conversion agent for benthic organisms contains amorphous hydrous iron oxide, and may be, for example, one that has been dehydrated or suspended in water.
Amorphous hydrous iron oxide is an economically superior method for producing amorphous hydrous iron oxide using ferrous chloride (FeCl 2 ) and / or ferrous sulfate (FeSO 4 ) as a raw material. is there. It is possible to manufacture with ferric chloride or ferric sulfate, but the material is expensive and not suitable.
An example of the method for producing amorphous hydrous iron oxide according to the present invention will be described below. That is, ferrous chloride or ferrous sulfate is administered and dissolved in seawater or NaCl-dissolved water, and aeration is added thereto to produce amorphous hydrous iron oxide (ferric hydroxide). Since the produced amorphous hydrous iron oxide is positively charged, it does not settle due to charge repulsion when it is produced in normal fresh water, but seawater or NaCl-dissolved water has high electrical conductivity. From the above, it was found that electroneutralization can easily proceed to achieve coagulation precipitation separation. Usually, the amount of amorphous hydrous iron oxide required for shrimp training is small, so there is little ferrous chloride or ferrous sulfate to be administered, so that the pH of the pond affects shrimp training. Since it does not become acidic, it is possible to administer it directly to a shrimp pond and precipitate the amorphous hydrous iron oxide produced on the pond bottom soil. It is not preferable for shrimp breeding because it is clogged with the shrimp of the shrimp being trained. The inventor has confirmed that administration of amorphous hydrous iron oxide precipitated as a floc at one end does not cause this problem and can be smoothly administered.

以下、実施例を示すが、本発明は、これらの実施例に何ら限定されるものではない。   Hereinafter, examples will be shown, but the present invention is not limited to these examples.

<養殖池への含水酸化鉄投与と海老のFCR>
養殖池への含水酸化鉄投与と海老のFCRの関係を図1に示す。条件Aは、養殖池へ含水酸化鉄を投与していない実施例、条件Bは含水酸化鉄を投与している実施例で120日から135日の期間の養殖を行った。条件Aはn数が15、条件Bはn数が8の各平均値である。図1の横軸は、地底泥中の非晶質の含水酸化鉄濃度を示すが、投与をしない条件Aの平均値0.04%に対し、投与をした条件Bの平均値は0.25%に上昇した。縦軸のFCR(Feed Conversion Ratio)とは、海老の体重1Kgを作るのに所用した餌の重量で、日本では、一般に増肉係数とよばれている。FCR=使用した餌重量/養成海老重量である。A期間のFCRは1.75であるのに対し、B期間のFCRは1.50に低下しており、餌の必要量が低下している。プランクトン、残餌その他の地底泥中の有機物が、有効に池内生態系で餌化していることを示している。
<Hydrogenated iron administration to aquaculture pond and shrimp FCR>
The relationship between the administration of hydrous iron oxide to the aquaculture pond and the FCR of shrimp is shown in FIG. Condition A was an example in which no hydrous iron oxide was administered to the culture pond, and condition B was an example in which the hydrous iron oxide was administered, and the culture was performed for a period of 120 to 135 days. Condition A is the average value of n = 15 and condition B is the average value of n = 8. The horizontal axis of FIG. 1 shows the concentration of amorphous hydrous iron oxide in the ground mud. The average value of the condition B in which the administration was performed was 0.04%, whereas the average value of the condition B in which the administration was not performed was 0.25. Rose to%. The FCR (Feed Conversion Ratio) on the vertical axis is the weight of bait used to make 1 kg of shrimp body weight, and is generally called the increase coefficient in Japan. FCR = used feed weight / trained shrimp weight. The FCR during the period A is 1.75, while the FCR during the period B is reduced to 1.50, and the required amount of food is decreased. It shows that plankton, residual food and other organic matter in the ground mud are effectively fed into the pond ecosystem.

<非晶質含水酸化鉄投与と海老生産量>
前記調査した条件Aと条件Bのエビ重量の比較を図2に示す。一尾あたりの重量の向上は、経済的効果が大きい。非晶質の含水酸化鉄の投与により、大型のエビの養成が可能となった。
図3に本願試験で使用した養殖池の海老生産性の長期の経時変化を示す。本願試験で使用した養殖池は、当初は、生産性が高かったが(グループA)、その後、本池は疲弊が進み生産性が低下した(グループBの□印)。非晶質含水酸化鉄の投与により海老生産性が向上した(グループCの■印)。
非晶質水酸化鉄濃度は、EDTAによる鉄抽出を利用した。抽出された鉄をフェナントロリン比色定量法(土壌養分分析法 養賢堂(2002年) 15版 p301−p302)により定量することで、池底土壌中の非晶質の含水酸化鉄濃度を求めた。発色させた鉄標準液から検量線を求め、510nm(吸光光度計:日立製作所製 Spectrophotmeter U−1500)にて比色定量して、EDTA抽出液の鉄濃度(mg/L)を決定した。
<Amorphous hydrous iron oxide administration and shrimp production>
FIG. 2 shows a comparison of the shrimp weights of the investigated conditions A and B. An increase in the weight per fish has a great economic effect. Large amounts of shrimp can be trained by administration of amorphous hydrous iron oxide.
FIG. 3 shows long-term changes in shrimp productivity of the culture pond used in the present application test. The aquaculture pond used in the test of the present application was initially highly productive (Group A), but then the main pond was exhausted and the productivity decreased (□ in Group B). Shrimp productivity was improved by administration of amorphous hydrous iron oxide (group C ■ mark).
As the amorphous iron hydroxide concentration, iron extraction by EDTA was used. The amount of amorphous hydrous iron oxide in the pond bottom soil was determined by quantifying the extracted iron by phenanthroline colorimetric method (Soil Nutrient Analysis, Yokendo (2002) 15th edition, p301-p302). . A calibration curve was obtained from the developed iron standard solution and colorimetrically determined with 510 nm (absorptiometer: Spectrophotometer U-1500 manufactured by Hitachi, Ltd.) to determine the iron concentration (mg / L) of the EDTA extract.

<池底土壌の採取>
円筒形透明容器(直径5.5cm、高さ12cm)をエビ養成池底土壌(5地点/ha)に挿入した。容器に蓋をし、容器をゆっくりと、土壌が抜けないように引き上げた。この手法により池底の状態を崩すことなく土壌を採取できる。採取土壌は土壌色彩別に表層、下層に分離し、表層部土壌を小型容器(直径1.5cm、高さ9.5cm)に空気が入らないように充填する。この土壌を各分析に用いた。
<Collecting pond bottom soil>
A cylindrical transparent container (diameter 5.5 cm, height 12 cm) was inserted into the shrimp cultivation pond bottom soil (5 spots / ha). The container was covered, and the container was slowly pulled up so that the soil did not come off. By this method, soil can be collected without destroying the state of the pond bottom. The collected soil is separated into a surface layer and a lower layer according to soil color, and the surface layer soil is filled in a small container (diameter 1.5 cm, height 9.5 cm) so that air does not enter. This soil was used for each analysis.

<非晶質の含水酸化鉄投与による酸化還元電位、アンモニア濃度及び底泥酸素消費量の測定>
非晶質含水酸化鉄を投与した時の酸化還元電位の向上と土壌アンモニア濃度の低下を図4に、底泥の酸素消費量の低減効果を図5に示す。いずれも海老の養成中において後述する方法で製造した非晶質の含水酸化鉄を投与し、投与し、池底表層の土壌厚さ3mmに対して重量比で0.2%の基準で投与して得られた生物環境の改善を示すデーターである。
図4の養成120日の時点で投与前はほとんど池の生物環境は養成限界寸前であったが、投与により該環境は回復し所定の養成期間を経て収穫することが出来た。図5は池底土壌の酸素消費が激しく、夜間において酸素濃度が養成限界の0.3ppmとなっていたものを改善した実施例である。
ここで、酸化還元電位、アンモニア濃度及び底泥酸素消費量の測定方法は、以下による。
<Measurement of oxidation-reduction potential, ammonia concentration and bottom mud oxygen consumption by administration of amorphous hydrous iron oxide>
FIG. 4 shows the improvement in redox potential and the decrease in soil ammonia concentration when amorphous hydrous iron oxide is administered, and FIG. 5 shows the effect of reducing the oxygen consumption of the bottom mud. In both cases, during the training of shrimp, the amorphous hydrous iron oxide produced by the method described later is administered, administered, and administered on a basis of 0.2% by weight relative to the soil thickness of 3 mm on the surface of the pond bottom. It is the data which shows the improvement of the biological environment obtained.
As shown in FIG. 4, the biological environment of the pond was almost before the cultivation limit before the administration at the 120th day of the cultivation, but the environment was recovered by the administration, and it was able to be harvested after a predetermined cultivation period. FIG. 5 shows an example in which the oxygen consumption of the pond bottom soil is intense and the oxygen concentration at night is 0.3 ppm which is the training limit.
Here, the measuring method of oxidation-reduction potential, ammonia concentration and bottom mud oxygen consumption is as follows.

酸化還元電位の測定は、土壌採取法による方法にて採取した表層土壌のORPを測定した。土壌を詰めた小型容器に無酸素水を注いで満たし、ORP電極(METTLER TOLEDO製 型番:INLAB501 REDOX(PLATINUM))を土壌に2cm挿入する。挿入5時間後にORPメーター(WTW製 型番:MultiLine P4)でORP値を測定した(土壌養分分析法 養賢堂(2002年) 15版 p53−p69)。   The redox potential was measured by measuring the ORP of the surface soil sampled by the soil sampling method. A small container filled with soil is filled with oxygen-free water, and an ORP electrode (Model number: INLAB501 REDOX (PLATINUM) manufactured by METLER TOLEDO) is inserted 2 cm into the soil. Five hours after the insertion, the ORP value was measured with an ORP meter (model number: MultiLine P4 manufactured by WTW) (Soil Nutrient Analysis Method Yokendo (2002), 15th edition, p53-p69).

土壌アンモニア濃度の測定は塩化カリウム液浸出―インドフェノール青吸光光度法によりおこなった(土壌環境分析法 博友社(2000年) 第2版 p241−p245)土壌採取法による方法にて採取した表層2cmの土壌(湿土)から塩化カリウム液浸出法によりアンモニウムイオンを溶出。このアンモニウムイオン量をインドフェノール青吸光光度法にて定量し、土壌アンモニア量として測定した。 The soil ammonia concentration was measured by potassium chloride solution leaching-indophenol blue absorptiometry (Soil environmental analysis method Hirotomo (2000) 2nd edition p241-p245) Surface layer collected by the soil sampling method Ammonium ions are eluted from 2cm soil (wet soil) by leaching potassium chloride solution. The amount of ammonium ions was quantified by indophenol blue spectrophotometry and measured as the amount of soil ammonia.

底泥酸素消費量の測定は、採取した池底泥を褐色ガラス瓶内で養殖池海水と一緒に培養し、消費される海水中溶存酸素量を測定することで、底泥酸素消費量を測定する方法とした。即ち、採取した表層1mmの土壌4g(湿土)を530ml容の褐色ガラス瓶にとり、この瓶に海水をみたし、マグネチックスターラーを入れ、溶存酸素濃度計電極(WTW製 型番:CellOx 325)を挿入した。褐色ガラス瓶内の溶存酸素濃度(mgO2/L)を溶存酸素メーター(WTW製 型番:Oxi330i)で測定する。褐色ガラス瓶内海水を緩く攪拌(60rpm)しながら28℃に調整した保温機(暗所)に放置した。初期、放置2時間後、4時間後、6時間後の褐色ガラス瓶内溶存酸素濃度を測定する。別途土壌を添加しない海水のみのブランク褐色ガラス瓶を準備、同様に溶存酸素濃度を測定した。 測定した各時間の褐色ガラス瓶内溶存酸素濃度および海水のみのブランク褐色ガラス瓶の溶存酸素濃度から1時間当たりの添加土壌による溶存酸素消費量を算出(mgO2/h)した。得られた値から、土壌表層1mm、使用土壌量4gより1mm層×1mの土壌量(比重1.5、湿土1,500g相当)に換算することで底泥酸素消費量(mgO2/m・mm・h)とした。 The bottom mud oxygen consumption is measured by culturing the collected pond bottom mud together with the aquaculture pond seawater in a brown glass bottle and measuring the amount of dissolved oxygen in the seawater consumed to measure the bottom mud oxygen consumption. It was a method. That is, 4 g (wet earth) of the collected 1 mm surface layer of soil is placed in a 530 ml brown glass bottle, seawater is poured into this bottle, a magnetic stirrer is placed, and a dissolved oxygen concentration meter electrode (model number: CellOx 325 manufactured by WTW) is inserted. did. The dissolved oxygen concentration (mgO2 / L) in the brown glass bottle is measured with a dissolved oxygen meter (manufactured by WTW, model number: Oxi330i). The seawater in the brown glass bottle was left in a warmer (dark place) adjusted to 28 ° C. while gently stirring (60 rpm). Initially, the dissolved oxygen concentration in the brown glass bottle after 2 hours, 4 hours, and 6 hours is measured. Separately, a blank brown glass bottle containing only seawater to which no soil was added was prepared, and the dissolved oxygen concentration was measured in the same manner. From the measured dissolved oxygen concentration in the brown glass bottle at each time and the dissolved oxygen concentration in the blank brown glass bottle containing only seawater, the dissolved oxygen consumption by the added soil per hour was calculated (mgO2 / h). From the obtained value, the soil surface 1mm, soil of 1mm layer × 1 m 2 than using the soil weight 4g (specific gravity 1.5, Shimedo 1,500g equivalent) sediment oxygen consumption by converting the (MgO2 / m 2 mm · h).

<エアレーションによる光合成効率>
図6にエアレーション有無の溶存酸素濃度推移の実施例を示す。エアレーションにはルーツブロワーを使用し、池底に気泡化ノズルを上向きにつけた配管を敷設して養殖池に対して0.5L/m・minで実施した。エアレーションの配置を図9に示す。エアレーションをしない場合、池表面の溶存酸素濃度は、光合成効果により比較的に高い値を示すが、池底は、光透過が進まず、溶存酸素濃度は小さい。エアレーションを施した場合は、池水全体の溶存酸素濃度が大きくなり、光合成効果が大きいことを示している。エアレーションにより池底にも酸素が供給され、底泥の環境改善の効果が出ている。
ここで、溶存酸素濃度の測定は、前記溶存酸素メーター(WTW製 型番:Oxi330i)で測定した。
<Photosynthesis efficiency by aeration>
FIG. 6 shows an example of dissolved oxygen concentration transition with and without aeration. For aeration, a roots blower was used, and a pipe with an aeration nozzle facing upward was laid on the bottom of the pond, and the culture was performed at 0.5 L / m 2 · min. The aeration arrangement is shown in FIG. When aeration is not performed, the dissolved oxygen concentration on the pond surface shows a relatively high value due to the photosynthetic effect, but the pond bottom does not advance light transmission and the dissolved oxygen concentration is small. When aeration is applied, the concentration of dissolved oxygen in the entire pond water increases, indicating that the photosynthetic effect is large. Aeration supplies oxygen to the bottom of the pond, which is effective in improving the environment of the bottom mud.
Here, the dissolved oxygen concentration was measured with the dissolved oxygen meter (manufactured by WTW, model number: Oxi330i).

<エアレーションによるデトリタス生成量の測定>
図7にエアレーションによるデトリタス生成量を示す。エアレーションにより、海老の飼料となるデトリタスの生成が、大きくなっている。
ここで、デトリタスの測定は、池底に捕集ビンを設置して沈降凝集物を捕集したものをデトリタス生成量とした。
<Measurement of the amount of detritus produced by aeration>
FIG. 7 shows the amount of detritus generated by aeration. Due to aeration, the production of detritus, which is a feed for shrimp, is increasing.
Here, for the measurement of detritus, the amount of detritus produced was determined by installing a collection bottle at the bottom of the pond and collecting the precipitated aggregate.

<硫酸第一鉄七水和物を海水又は塩分添加水中に溶解し、エアレーションしてフロック化沈殿分離して製造する非晶質の含水酸化鉄>
3.5%NaCl海水500mLを500mLビーカーに入れ、硫酸第一鉄七水和物を鉄500ppmまで添加し、空気を吹き込み、エアレーションし、生成する水酸化第二鉄フロックの沈降速度を測定した。3.5%NaCl海水に替えて、1.0%NaCl希釈海水、3.5%NaCl食塩水 1.0%NaCl食塩水及び淡水について同様にエアレーションし、生成する水酸化第二鉄フロックの沈降速度を測定した。結果を図8に示す。
硫酸第一鉄七水和物を海水又は塩分添加水中に溶解し、エアレーションすることで、沈殿分離する非晶質の含水酸化鉄フロックが、容易且つ効率よく沈降することができる。得られた非晶質の含水酸化鉄フロックが、池底に沈降することで、底泥の環境が改善される。
<Amorphous hydrous iron oxide produced by dissolving ferrous sulfate heptahydrate in seawater or salt-added water, aerated and separated into flocs and precipitates>
500 mL of 3.5% NaCl seawater was placed in a 500 mL beaker, ferrous sulfate heptahydrate was added to 500 ppm of iron, air was blown in, aerated, and the sedimentation rate of the ferric hydroxide floc produced was measured. Instead of 3.5% NaCl water, 1.0% NaCl diluted seawater, 3.5% NaCl salt water, 1.0% NaCl salt water and fresh water are aerated in the same manner, and the ferric hydroxide flock that is generated is settled. The speed was measured. The results are shown in FIG.
By dissolving ferrous sulfate heptahydrate in seawater or salt-added water and aeration, amorphous hydrous iron oxide flock that precipitates can be precipitated easily and efficiently. The obtained amorphous hydrous iron oxide floc settles on the bottom of the pond, thereby improving the environment of the bottom mud.

ここで、非晶質の含水酸化鉄の沈降速度の測定方法は、エアレーション停止後の水面下5cm溶媒を採取し、採取した溶媒の720nmにおける吸光度(吸光光度計:日立製作所製 Spectrophotmeter U−1500)を測定し、吸光値0.1となるまでの時間を計測し、測定した時間から1時間当たりの生成非晶質の含水酸化鉄沈降速度(cm/h)を算定した。   Here, the method for measuring the sedimentation rate of amorphous hydrous iron oxide was to collect a 5 cm solvent below the surface after aeration, and the absorbance of the collected solvent at 720 nm (Absorptiometer: Spectrophotometer U-1500 manufactured by Hitachi, Ltd.) Was measured, and the time until the absorbance value reached 0.1 was measured, and the hydrous iron oxide precipitation rate (cm / h) of the produced amorphous per hour was calculated from the measured time.

本発明は、養殖池又は干潟の浅海の底泥の微生物反応の培地機能(地力)を形成し、維持し、回復し、生産性の低い養殖池を著しく改善する他に、連作障害を防止し、連作障害で養殖が出来なくなった池を回復させること、及び有機物負荷で悪化した干潟環境を改善することができる。   The present invention forms, maintains and restores the culture function (geopower) of the microbial reaction of the shallow mud in the shallow pond of the aquaculture pond or tidal flat, and prevents the continuous cropping failure in addition to remarkably improving the low productivity aquaculture pond. It is possible to restore ponds that cannot be cultivated due to continuous cropping failure, and to improve the tidal flat environment that has deteriorated due to organic load.

図1は、非晶質の含水酸化鉄投与によるFCRの改善を示す図である。FIG. 1 is a diagram showing improvement of FCR by administration of amorphous hydrous iron oxide. 図2は、非晶質の含水酸化鉄投与によるエビサイズの改善を示す図である。FIG. 2 is a diagram showing improvement in shrimp size by administration of amorphous hydrous iron oxide. 図3は、非晶質の含水酸化鉄の濃度変化と海老生産性を示す図である。FIG. 3 is a graph showing changes in amorphous hydrous iron oxide concentration and shrimp productivity. 図4は、非晶質の含水酸化鉄投与による酸化還元電位の向上とアンモニア濃度の低下を示す図である。FIG. 4 is a diagram showing an improvement in redox potential and a decrease in ammonia concentration by administration of amorphous hydrous iron oxide. 図5は、非晶質の含水酸化鉄投与による養殖池底泥の酸素消費量の低減効果を示す図である。FIG. 5 is a diagram showing the effect of reducing the oxygen consumption of cultured pond bottom mud by administration of amorphous hydrous iron oxide. 図6は、エアレーションによる光合成率向上を示す図である。FIG. 6 is a diagram showing an improvement in the photosynthesis rate by aeration. 図7は、エアレーションによるデトリタス生産性の向上を示す図である。FIG. 7 is a diagram illustrating an improvement in detritus productivity by aeration. 図8は、海水、食塩水及び淡水中の水酸化第二鉄の沈降速度を示す図である。FIG. 8 is a diagram showing the sedimentation rate of ferric hydroxide in seawater, saline and fresh water. 図9は、エアレーションの配置図である。FIG. 9 is a layout diagram of aeration.

Claims (5)

養殖池又は干潟の浅海の底面に堆積した有機物及び土壌中に含まれる有機物の少なくともいずれかを底生生物の飼料に転換する方法であって、前記底面に対して非晶質の含水酸化鉄を混合又は散布することを特徴とする、底生生物の飼料転換方法。   A method of converting at least one of organic matter deposited in the bottom of a shallow basin of an aquaculture pond or tidal flat and organic matter contained in soil into feed for benthic organisms, wherein amorphous hydrous iron oxide is added to the bottom. A feed conversion method for benthic organisms, comprising mixing or spraying. 養殖池又は干潟の浅海の底面に堆積した有機物及び土壌中に含まれる有機物の少なくともいずれかを底生生物の飼料に転換し、生物環境を改善することにより養殖池又は干潟の浅海を浄化する方法であって、前記底面に対して非晶質の含水酸化鉄を混合又は散布することを特徴とする、養殖池又は干潟の浅海の浄化方法。   A method of purifying the shallow water of a culture pond or tidal flat by converting the organic matter accumulated in the bottom of the shallow water of the culture pond or tidal flat and the organic matter contained in the soil into feed for benthic organisms and improving the biological environment A method for purifying a shallow basin of an aquaculture pond or tidal flat, wherein amorphous hydrous iron oxide is mixed or dispersed on the bottom surface. 養殖池又は干潟の浅海の底面からエアレーションする請求項1に記載の、底生生物の飼料転換方法。   The feed conversion method for benthic organisms according to claim 1, wherein the aeration is performed from the bottom of the shallow water of the culture pond or tidal flat. 請求項1記載の底生生物の飼料転換方法に使用され、非晶質の含水酸化鉄を含有することを特徴とする底生生物の飼料転換剤。   A benthos feed conversion agent, which is used in the benthos feed conversion method according to claim 1 and contains amorphous hydrous iron oxide. 塩化第一鉄及び硫酸第一鉄の少なくともいずれかを、海水又は塩分添加水に溶解させて溶液とし、該溶液をエアレーションしてフロック化沈殿分離させて得られる請求項4に記載の底生生物の飼料転換剤。   The benthic organism according to claim 4, which is obtained by dissolving at least one of ferrous chloride and ferrous sulfate in seawater or salt-added water to obtain a solution, and aeration of the solution to cause flocking and precipitation separation. Feed conversion agent.
JP2007179044A 2007-07-06 2007-07-06 Feed conversion method for benthic organism, method for cleaning culture pond of tiger shrimp, and feed conversion agent for benthic organism Pending JP2009011271A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007179044A JP2009011271A (en) 2007-07-06 2007-07-06 Feed conversion method for benthic organism, method for cleaning culture pond of tiger shrimp, and feed conversion agent for benthic organism
PCT/JP2007/067359 WO2009008094A1 (en) 2007-07-06 2007-08-30 Feedstuff conversion method for benthos, cleaning method for cultivation pond or shallow ocean water on tideland, and feedstuff conversion agent for benthos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179044A JP2009011271A (en) 2007-07-06 2007-07-06 Feed conversion method for benthic organism, method for cleaning culture pond of tiger shrimp, and feed conversion agent for benthic organism

Publications (1)

Publication Number Publication Date
JP2009011271A true JP2009011271A (en) 2009-01-22

Family

ID=40228290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179044A Pending JP2009011271A (en) 2007-07-06 2007-07-06 Feed conversion method for benthic organism, method for cleaning culture pond of tiger shrimp, and feed conversion agent for benthic organism

Country Status (2)

Country Link
JP (1) JP2009011271A (en)
WO (1) WO2009008094A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116504A (en) * 2015-07-23 2016-06-30 アサヒビール株式会社 Method for inhibiting generation of degradation odor, method for inhibiting deterioration of fragrance, perfume composition and citrus flavor-containing product
JP2016116476A (en) * 2014-12-19 2016-06-30 アサヒビール株式会社 Method for inhibiting deterioration of fragrance and deterioration inhibitor for fragrance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669229A (en) * 1979-11-13 1981-06-10 Tdk Corp Preparation of hydrous iron oxide
JPH0286888A (en) * 1988-09-22 1990-03-27 Y K F:Kk Method for precipitating red tide
JPH091157A (en) * 1995-06-16 1997-01-07 Nkk Corp Method for oxidation ferrous ion contained in underground water
JP2004350627A (en) * 2003-05-30 2004-12-16 Tetsugen Corp Method for producing agent for proliferation of alga and phytoplankton and use thereof
JP4945742B2 (en) * 2004-08-06 2012-06-06 国立大学法人広島大学 Bottom quality improving material and bottom quality improving method using the same
JP4126399B2 (en) * 2005-02-16 2008-07-30 独立行政法人科学技術振興機構 Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
JP3961558B1 (en) * 2006-06-29 2007-08-22 友隆 柳田 Anion adsorbent, water quality or soil purification agent and method for producing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116476A (en) * 2014-12-19 2016-06-30 アサヒビール株式会社 Method for inhibiting deterioration of fragrance and deterioration inhibitor for fragrance
JP2016116504A (en) * 2015-07-23 2016-06-30 アサヒビール株式会社 Method for inhibiting generation of degradation odor, method for inhibiting deterioration of fragrance, perfume composition and citrus flavor-containing product

Also Published As

Publication number Publication date
WO2009008094A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
Milhazes-Cunha et al. Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept
CN107082536B (en) Breeding wastewater treatment process
JP4927687B2 (en) The process of obtaining (realizing and maintaining) a water body of greater than 15,000 m3 for recreational use at low cost with swimming pools or similar colors, transparency and cleanliness characteristics as tropical seas
Mulbry et al. Growth of benthic freshwater algae on dairy manures
CN105152346A (en) Large deep lake water ecosystem restoration method
CN101461337A (en) Pond culture method of grouper
Zhang et al. Influence of eco-substrate addition on organic carbon, nitrogen and phosphorus budgets of intensive aquaculture ponds of the Pearl River, China
CN214962042U (en) Ecological treatment system for tail water of seawater continuous pond culture
CN107986517A (en) The processing method of resistant gene in a kind of marine culture wastewater
CN109851163A (en) A kind of unhurried current small watershed removes algae algae control method
WO2020009073A1 (en) Method for modifying aquaculture tank, and aquaculture method
CN108002605A (en) The processing method of antibiotic in a kind of marine culture wastewater
CN107651754B (en) Composite ecological system construction method for restoring eutrophic water body and artificial reef
CN206033389U (en) Pollute normal position ecological restoration system in river course
JP2009011271A (en) Feed conversion method for benthic organism, method for cleaning culture pond of tiger shrimp, and feed conversion agent for benthic organism
Cheng et al. Effect of copper on the growth of shrimps Litopenaeus vannamei: water parameters and copper budget in a recirculating system
CN103241816A (en) Cleaning method of aquatic weeds in river crab aquaculture pond
CN114717149B (en) South-sea deep-sea fish-source heterologous alkane-eating bacterium AXMZ1 and application thereof
CN102224112B (en) System for water purification and method of increasing dissolved-oxygen concentration in water to be purified
JP4904791B2 (en) Artificial submarine base for aquatic animal settlement / growth or farmland bottom purification
CN205035164U (en) Step pool water purification system
Cho et al. Effect of calcium peroxide on the growth and proliferation of Microcystis aerusinosa, a water-blooming cyanobacterium
CN211813993U (en) System for harnessing aquaculture tail water by using water dynamics
CN113307459A (en) Method for spongy transformation of protected river
CN102939928B (en) Cultivation method capable of effectively preventing early mortality syndrome (EMS)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127