JP2009008650A - Liquid level detecting apparatus and design method of same - Google Patents

Liquid level detecting apparatus and design method of same Download PDF

Info

Publication number
JP2009008650A
JP2009008650A JP2007281972A JP2007281972A JP2009008650A JP 2009008650 A JP2009008650 A JP 2009008650A JP 2007281972 A JP2007281972 A JP 2007281972A JP 2007281972 A JP2007281972 A JP 2007281972A JP 2009008650 A JP2009008650 A JP 2009008650A
Authority
JP
Japan
Prior art keywords
sensor
liquid level
voltage
power supply
supply circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007281972A
Other languages
Japanese (ja)
Other versions
JP5247118B2 (en
Inventor
Taisuke Kawaguchi
泰典 川口
Kenichi Tanaka
健一 田中
Toshio Oike
利雄 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007281972A priority Critical patent/JP5247118B2/en
Priority to US12/149,666 priority patent/US8024969B2/en
Priority to DE102008025478.9A priority patent/DE102008025478B4/en
Publication of JP2009008650A publication Critical patent/JP2009008650A/en
Application granted granted Critical
Publication of JP5247118B2 publication Critical patent/JP5247118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Level Indicators Using A Float (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid level detecting apparatus capable of highly accurately detecting liquid levels over a long period even in the case of exposure to electrolytic solutions. <P>SOLUTION: The liquid level detecting apparatus 1 includes both a sensor 2 arranged in a container which stores a liquid and an electric power circuit 4 for intermittently applying a voltage to the sensor 2 at a prescribed period. The sensor 2 has a variable resistor 3 for changing a resistance value by moving a contact in conjunction with displacements of a liquid level and outputs a voltage signal according to a resistance value of a variable resistor 3 when a prescribed voltage is applied. An energization time period during which the electric power circuit 4 applies a voltage to the sensor 2 is ≤40 ms for one period. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は液面レベル検出装置に関し、例えばエタノールやメタノールといったアルコールそのもの或いはそれらを含有するアルコール系燃料など、電解性の燃料を用いる自動車等の車両の燃料残量を検出するのに好適な液面レベル検出装置および液面レベル検出装置の設計方法に関する。   TECHNICAL FIELD The present invention relates to a liquid level detection device, for example, a liquid level suitable for detecting the remaining fuel level of a vehicle such as an automobile using an electrolytic fuel such as alcohol itself such as ethanol or methanol or an alcohol fuel containing them. The present invention relates to a design method for a level detection device and a liquid level detection device.

従来の液面レベル検出装置の一例を図9に示す。図9に示す液面レベル検出装置101は、液体を貯留した容器内に配置されるセンサ102を備えている。センサ102は、液面の変位に連動して接点を移動させて抵抗値を変化させる可変抵抗器103を有しており、所定の電圧を印加されて可変抵抗器103の抵抗値に応じた電圧信号を出力する。また、液面レベル検出装置101は、このセンサ102に電圧を印加する電源回路104を備えている(例えば特許文献1参照。)   An example of a conventional liquid level detecting device is shown in FIG. The liquid level detecting device 101 shown in FIG. 9 includes a sensor 102 disposed in a container that stores liquid. The sensor 102 has a variable resistor 103 that changes the resistance value by moving the contact in conjunction with the displacement of the liquid level, and a voltage corresponding to the resistance value of the variable resistor 103 when a predetermined voltage is applied. Output a signal. Further, the liquid level detection device 101 includes a power supply circuit 104 that applies a voltage to the sensor 102 (see, for example, Patent Document 1).

センサ102の構成の一例を図10に示す。図10に示すセンサ102は、液体に浮かぶフロート110が先端に取り付けられたアーム111と、アーム111の基端部を回動可能に支持するフレーム112と、フレーム112に取り付けられた基板113と、アーム111の基端部に設けられた接触子114と、を含んでいる。基板113の表面には、不図示の抵抗体が形成され、この抵抗体には電源回路104により所定の電圧が印加される。接触子114は、アーム111の回動に伴ってアーム111の回動軸まわりに旋回し、基板113の抵抗体上を摺動する(例えば特許文献4参照)。   An example of the configuration of the sensor 102 is shown in FIG. A sensor 102 shown in FIG. 10 includes an arm 111 with a float 110 that floats on a liquid attached to the tip, a frame 112 that rotatably supports the base end of the arm 111, a substrate 113 attached to the frame 112, And a contact 114 provided at the proximal end portion of the arm 111. A resistor (not shown) is formed on the surface of the substrate 113, and a predetermined voltage is applied to the resistor by the power supply circuit 104. As the arm 111 rotates, the contact 114 turns around the rotation axis of the arm 111 and slides on the resistor of the substrate 113 (see, for example, Patent Document 4).

基板113の抵抗体の一端および接触子114は、それぞれセンサ102の出力端子115,116に電気的に接続している。液面の変位に連動してフロート110が上下し、それに伴いアーム111が回動して接触子114が抵抗体上を摺動する。それにより、出力端子115に接続している抵抗体の一端から接触子114の間(以後、抵抗体の第1領域という)の抵抗値が変化する。すなわち、これら抵抗体と接触子114とで可変抵抗器103が構成されている。抵抗体に印加された電圧は、抵抗体の第1領域の抵抗値に応じて分圧され、この第1領域にかかる電圧が、センサ102の出力信号として出力端子115,116間に検出される。   One end of the resistor of the substrate 113 and the contact 114 are electrically connected to the output terminals 115 and 116 of the sensor 102, respectively. The float 110 moves up and down in conjunction with the displacement of the liquid level, and the arm 111 is rotated accordingly, and the contact 114 slides on the resistor. As a result, the resistance value between one end of the resistor connected to the output terminal 115 and the contact 114 (hereinafter referred to as the first region of the resistor) changes. That is, the variable resistor 103 is constituted by these resistors and the contact 114. The voltage applied to the resistor is divided according to the resistance value of the first region of the resistor, and the voltage applied to the first region is detected between the output terminals 115 and 116 as an output signal of the sensor 102. .

再び図9を参照して、液面レベル検出装置101は、センサ102の出力信号を処理回路105で取得し、取得した信号に基づいて液体の残量を表示するメータ106を駆動している。   Referring to FIG. 9 again, the liquid level detecting device 101 acquires the output signal of the sensor 102 by the processing circuit 105, and drives the meter 106 that displays the remaining amount of liquid based on the acquired signal.

ところで、自動車等の車両の燃料残量を検出する場合に、液面レベル検出装置101のセンサ102は燃料タンク内に配置されるが、近年では車両用燃料にバイオエタノールなどが使用され始めている。バイオエタノールなどのアルコール系燃料は電解液であり、センサ102の抵抗体や接触子114の摺接面が電解液に晒されると、通電に伴い、それらの摺接面に電食などの電気化学反応が生じて劣化し、接点部の接触抵抗が上昇して正確な測定の妨げとなる。このような不具合を回避するため、センサ102に所定の周期で間欠的に電圧を印加することが提案されている(例えば特許文献1〜3参照)。
特開2002−214023号公報 特開昭63−138215号公報 特開2006−214828号公報 特許第3898913号公報
By the way, when detecting the remaining amount of fuel in a vehicle such as an automobile, the sensor 102 of the liquid level detecting device 101 is disposed in the fuel tank. Recently, bioethanol or the like has begun to be used as a vehicle fuel. Alcohol-based fuels such as bioethanol are electrolytes, and when the resistor of the sensor 102 and the sliding contact surface of the contactor 114 are exposed to the electrolytic solution, electrolysis such as electrolytic corrosion occurs on the sliding contact surface with energization. The reaction occurs and deteriorates, and the contact resistance of the contact point rises, preventing accurate measurement. In order to avoid such problems, it has been proposed to intermittently apply a voltage to the sensor 102 at a predetermined cycle (see, for example, Patent Documents 1 to 3).
Japanese Patent Laid-Open No. 2002-214023 JP-A-63-138215 JP 2006-214828 A Japanese Patent No. 3898913

ここで、電食などの電気化学反応において通電時間は重要な要素となるが、上記特許文献1〜3では1周期あたりの好適な通電時間について言及されておらず、十分な対策とはなっていなかった。   Here, the energization time is an important factor in electrochemical reactions such as electrolytic corrosion. However, in Patent Documents 1 to 3 mentioned above, no suitable energization time per cycle is mentioned, which is a sufficient measure. There wasn't.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、電解液に晒された場合にも長期にわたり液面レベルを高精度に検出することができる液面レベル検出装置、および液面レベル検出装置の設計方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object thereof is a liquid level detecting device capable of detecting a liquid level with high accuracy over a long period of time even when exposed to an electrolytic solution, and An object of the present invention is to provide a method for designing a liquid level detecting device.

上記目的は、本発明に係る下記(1)〜(5)の液面レベル検出装置、および下記(6)の液面レベル検出装置の設計方法により達成される。
(1)液体を貯留した容器内に配置され、液面の変位に連動して接点を移動させて抵抗値を変化させる可変抵抗器を有し、所定の電圧を印加されて前記可変抵抗器の抵抗値に応じた電圧信号を出力するセンサと、前記センサに所定の周期で間欠的に前記電圧を印加する電源回路と、を備え、前記電源回路が前記センサに電圧を印加する通電時間が、1周期あたり40ms以下とされていることを特徴とする液面レベル検出装置。
(2)前記電源回路が前記センサに前記電圧を印加する通電時間が、1周期あたり15ms以下とされていることを特徴とする(1)に記載の液面レベル検出装置。
(3)前記電源回路が前記センサに前記電圧を印加する通電時間が、1周期あたり1ms超とされていることを特徴とする(2)に記載の液面レベル検出装置。
(4)前記電源回路が前記センサに前記電圧を印加する通電時間が、1周期あたり略5msとされていることを特徴とする(1)に記載の液面レベル検出装置。
(5)1周期における前記通電時間の割合が50%以下であることを特徴とする(1)〜(4)のいずれかに記載の液面レベル検出装置。
(6)液体を貯留した容器内に配置され、液面の変位に連動して抵抗値を変化させる可変抵抗器を有し、所定の電圧を印加されて前記可変抵抗器の抵抗値に応じた電圧信号を出力するセンサと、前記センサに所定の周期で間欠的に前記電圧を印加する電源回路と、を備える液面レベル検出装置において、前記可変抵抗器は、互いに並行して延びる第1および第2の導電パターンと、前記第1および第2の導電パターンに橋架され、液面の変位に連動して前記第1および第2の導電パターン上を摺動する接触子と、を有しており、前記第1および第2の導電パターンと前記接触子との接点部を絶縁した状態で前記センサに前記電圧を印加した際に、前記第1および第2の導電パターンに流れる電流が上昇傾向となるまでの時間が60s以上となるように、前記電源回路が前記センサに前記電圧を印加する1周期あたりの通電時間を選定することを特徴とする液面レベル検出装置の設計方法。
The above object is achieved by the following (1) to (5) liquid level detecting device and the following (6) designing method of the liquid level detecting device according to the present invention.
(1) It has a variable resistor which is arranged in a container storing liquid and moves a contact point in conjunction with displacement of the liquid level to change the resistance value, and a predetermined voltage is applied to the variable resistor. A sensor that outputs a voltage signal in accordance with a resistance value; and a power supply circuit that intermittently applies the voltage to the sensor at a predetermined cycle; and an energization time during which the power supply circuit applies a voltage to the sensor. A liquid level detection apparatus characterized by being 40 ms or less per cycle.
(2) The liquid level detecting device according to (1), wherein an energization time during which the power supply circuit applies the voltage to the sensor is 15 ms or less per cycle.
(3) The liquid level detecting device according to (2), wherein an energization time during which the power supply circuit applies the voltage to the sensor is longer than 1 ms per cycle.
(4) The liquid level detecting device according to (1), wherein an energization time during which the power supply circuit applies the voltage to the sensor is approximately 5 ms per cycle.
(5) The liquid level detecting device according to any one of (1) to (4), wherein a ratio of the energization time in one cycle is 50% or less.
(6) A variable resistor that is arranged in a container that stores liquid and changes a resistance value in conjunction with a displacement of the liquid level, and that is applied with a predetermined voltage according to the resistance value of the variable resistor. In a liquid level detecting device comprising: a sensor that outputs a voltage signal; and a power supply circuit that intermittently applies the voltage to the sensor at a predetermined cycle, the variable resistors are first and second extending in parallel with each other. A second conductive pattern; and a contactor bridged by the first and second conductive patterns and sliding on the first and second conductive patterns in conjunction with displacement of a liquid level. In addition, when the voltage is applied to the sensor in a state where the contact portion between the first and second conductive patterns and the contactor is insulated, the current flowing through the first and second conductive patterns tends to increase. The time to become over 60s Design method described above, liquid level detection device, wherein the power supply circuit selects the energization time per cycle for applying the voltage to the sensor.

上記構成の液面レベル検出装置によれば、電解液に晒された場合にも可変抵抗器の接点部における電食などの電気化学反応が抑制される。その理由は以下のように考察される。化学反応に関与する分子は、それが生成物質の状態に移る前にエネルギー障壁を乗り越える必要がある。接点部の電食においては、図4に示すように、接点部の金属表面にあるポテンシャルエネルギーの障壁を乗り越える必要があり、通電によってそれを越えるエネルギーが与えられて活性化されることにより電子を放出してイオン化し、溶出する。1周期あたりの通電時間が40ms以下の場合には、接点部の金属分子は基底状態S1から活性化状態S2まで励起されることなく再び基底状態S1に戻る。1周期あたりの通電時間としては、好ましくは15ms以下、より好ましくは1ms超15ms以下、特に好ましくは略5msである。1周期あたりの通電時間が1ms以下であると、センサの出力信号をサンプリングする際にサンプリング時間が不足する虞がある。これは、A/Dコンバータに直流が流入することを阻止するためにセンサとA/Dコンバータとの間にコンデンサが介装される場合があるが、このコンデンサにより、A/Dコンバータに入力されるセンサの出力信号の立ち上がりが鈍るためである。また、基底状態S1に戻るための時間は、励起に要した時間以上に時間が必要となるので、1周期における通電時間の割合が50%以下であることが好ましい。   According to the liquid level detecting apparatus having the above configuration, electrochemical reaction such as electrolytic corrosion at the contact portion of the variable resistor is suppressed even when exposed to the electrolytic solution. The reason is considered as follows. A molecule involved in a chemical reaction needs to overcome the energy barrier before it can move into the product state. In the electrolytic corrosion of the contact portion, as shown in FIG. 4, it is necessary to overcome the potential energy barrier on the metal surface of the contact portion. Release, ionize and elute. When the energization time per cycle is 40 ms or less, the metal molecules in the contact portion return to the ground state S1 again without being excited from the ground state S1 to the activated state S2. The energization time per cycle is preferably 15 ms or less, more preferably more than 1 ms and 15 ms or less, and particularly preferably about 5 ms. If the energization time per cycle is 1 ms or less, the sampling time may be insufficient when the output signal of the sensor is sampled. This is because a capacitor may be interposed between the sensor and the A / D converter to prevent direct current from flowing into the A / D converter. This is because the rise of the output signal of the sensor is dull. Further, since the time for returning to the ground state S1 is longer than the time required for excitation, it is preferable that the ratio of the energization time in one cycle is 50% or less.

また、可変抵抗器の第1および第2の導電パターンと接触子との接点部を絶縁した状態でセンサに電圧を印加した際に、第1および第2の導電パターン間にはキャパシタが形成される。このキャパシタの両極となる第1および第2の導電パターンには、印加された電圧が耐電圧よりも高い場合に電気分解が生じて電流が流れる。上記構成の液面レベル検出装置の設計方法は、この電流値の上昇開始点までの時間が長ければ、第1および第2の導電パターンの金属が溶出しにくく、また、溶出した金属イオンも移動しにくいとの着想から、通電時間と電流値の上昇開始点までの時間特性とにより、より適切な通電時間を選定するものである。溶出した金属イオンは、通電時には主として泳動により陽極から陰極に向けて移動するが、非通電時には拡散、対流により移動する。拡散、対流によると、金属イオンは、第1および第2の導電パターン間で種々の方向に移動(分散)するため、両導電パターンのいずれか陰極側に向かう移動速度は遅くなる。即ち、電気化学反応が抑制される。そして、1周期あたりの通電時間が15ms以下では、電流値の上昇開始点までの時間が60s以上となり、金属イオンの溶出抑制傾向が格段と高くなる。   In addition, when a voltage is applied to the sensor with the contact portion between the first and second conductive patterns of the variable resistor and the contacts insulated, a capacitor is formed between the first and second conductive patterns. The When the applied voltage is higher than the withstand voltage, electrolysis occurs in the first and second conductive patterns serving as both electrodes of the capacitor, and a current flows. In the design method of the liquid level detecting device having the above configuration, if the time until the current value rise start point is long, the metal of the first and second conductive patterns is difficult to elute, and the eluted metal ions also move. From the idea that it is difficult to conduct, a more appropriate energization time is selected according to the energization time and the time characteristics up to the current value rise start point. The eluted metal ions move mainly from the anode to the cathode by migration when energized, but move by diffusion and convection when not energized. According to diffusion and convection, metal ions move (disperse) in various directions between the first and second conductive patterns, so that the moving speed toward either one of the two conductive patterns toward the cathode side is slow. That is, the electrochemical reaction is suppressed. When the energization time per cycle is 15 ms or less, the time until the current value starts to rise is 60 s or more, and the tendency to suppress elution of metal ions is remarkably increased.

本発明によれば、電解液に晒された場合にもセンサの可変抵抗器の接点部における電食などの電気化学反応を抑制することができ、それにより、長期にわたり液面レベルを高精度に検出することができる。   According to the present invention, even when exposed to an electrolytic solution, it is possible to suppress an electrochemical reaction such as electrolytic corrosion at the contact portion of the variable resistor of the sensor. Can be detected.

以下、図を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る液面レベル検出装置の一実施形態の概略構成を説明する図、図2は図1の液面レベル検出装置に用いられるセンサを説明する図、図3は図2に示すセンサの要部を説明する図である。   1 is a diagram illustrating a schematic configuration of an embodiment of a liquid level detecting device according to the present invention, FIG. 2 is a diagram illustrating a sensor used in the liquid level detecting device of FIG. 1, and FIG. It is a figure explaining the principal part of the sensor shown.

図1に示すように、本実施形態の液面レベル検出装置1は、液体を貯留した容器内に配置されるセンサ2を備えている。センサ2は、液面の変位に連動して接点を移動させて抵抗値を変化させる可変抵抗器3を有しており、所定の電圧を印加されて可変抵抗器3の抵抗値に応じた信号を出力する。また、液面レベル検出装置1は、このセンサ2に所定の電圧を印加する電源回路4を備えている(例えば特許文献1参照。)   As shown in FIG. 1, the liquid level detection device 1 of the present embodiment includes a sensor 2 arranged in a container that stores a liquid. The sensor 2 has a variable resistor 3 that changes the resistance value by moving the contact in conjunction with the displacement of the liquid level, and a signal corresponding to the resistance value of the variable resistor 3 when a predetermined voltage is applied. Is output. Further, the liquid level detection device 1 includes a power supply circuit 4 that applies a predetermined voltage to the sensor 2 (see, for example, Patent Document 1).

図2を参照して、センサ2は、液体に浮かぶフロート10が先端に取り付けられたアーム11と、アーム11の基端部を回動可能に支持するフレーム12と、フレーム12に取り付けられた基板13と、アーム11の基端部に設けられた接触子14と、を含んでいる。   Referring to FIG. 2, sensor 2 includes an arm 11 having a float 10 that floats on a liquid attached to the tip, a frame 12 that rotatably supports a base end of arm 11, and a substrate attached to frame 12. 13 and a contact 14 provided at the base end of the arm 11.

図3に示すように、基板13の表面には、第1導電パターン15および第2導電パターン16が設けられており、これら第1導電パターン15および第2導電パターン16は、アーム11の回動軸O(図2参照)を中心として円弧状に互いに並行して延びている。第1導電パターン15の一端には入出力用導電部17が連設されており、また、第2導電パターン16の一端には入出力用導電部18が連設されている。   As shown in FIG. 3, a first conductive pattern 15 and a second conductive pattern 16 are provided on the surface of the substrate 13, and the first conductive pattern 15 and the second conductive pattern 16 rotate the arm 11. The axes O (see FIG. 2) extend in parallel with each other in a circular arc shape. An input / output conductive portion 17 is connected to one end of the first conductive pattern 15, and an input / output conductive portion 18 is connected to one end of the second conductive pattern 16.

外径側に位置する第1導電パターン15は、その周方向に所定の間隔をおいて配置された複数の導電セグメント15aと、これら複数の導電セグメント15aを互いに電気的に接続している抵抗体15bとで構成されている。また、第2導電パターン16は、その周方向に所定の間隔をおいて配置された複数の導電セグメント16aと、これら複数の導電セグメント16aを互いに電気的に接続している連結体16bとで構成されている。   The first conductive pattern 15 located on the outer diameter side includes a plurality of conductive segments 15a arranged at predetermined intervals in the circumferential direction, and a resistor that electrically connects the plurality of conductive segments 15a to each other. 15b. The second conductive pattern 16 includes a plurality of conductive segments 16a arranged at predetermined intervals in the circumferential direction, and a connecting body 16b that electrically connects the plurality of conductive segments 16a to each other. Has been.

第1導電パターン15の導電セグメント15aおよび第2導電パターン16の導電セグメント16aは、例えば耐食性に優れる銀パラジウムで形成され、また、抵抗体15bは例えば耐食性に優れる酸化ルテニウムで形成されている。   The conductive segment 15a of the first conductive pattern 15 and the conductive segment 16a of the second conductive pattern 16 are made of, for example, silver palladium having excellent corrosion resistance, and the resistor 15b is made of, for example, ruthenium oxide having excellent corrosion resistance.

接触子14には、互いに電気的に接続されている2つの接点19、20が設けられている。接触子14は、アーム11の回動に伴ってアーム11の回動軸Oまわりに旋回し、接点19において第1導電パターン15の導電セグメント15a上を摺動し、いずれかの導電セグメント15aに接続する。同時に、接触子14は、接点20において第2導電パターン16の導電セグメント16a上を摺動し、いずれかの導電セグメント16aに接続する。それにより、入出力用導電部17から入出力用導電部18の間の回路に介在する抵抗体15bの長さが変化し、該回路の抵抗値が変化する。すなわち、第1導電パターン15および第2導電パターン16ならびに接触子14により可変抵抗器3が構成されている。   The contact 14 is provided with two contacts 19 and 20 that are electrically connected to each other. The contact 14 rotates around the rotation axis O of the arm 11 as the arm 11 rotates, and slides on the conductive segment 15 a of the first conductive pattern 15 at the contact point 19, and moves to any one of the conductive segments 15 a. Connecting. At the same time, the contact 14 slides on the conductive segment 16a of the second conductive pattern 16 at the contact point 20 and is connected to one of the conductive segments 16a. Thereby, the length of the resistor 15b interposed in the circuit between the input / output conductive portion 17 and the input / output conductive portion 18 changes, and the resistance value of the circuit changes. That is, the variable resistor 3 is configured by the first conductive pattern 15, the second conductive pattern 16, and the contact 14.

センサ2は、一端を入出力用導電部17に接続して可変抵抗器3に直列につながれる固定抵抗器7をさらに含んでいる。これら可変抵抗器3および固定抵抗器7には電源回路4により所定の電圧が印加される。   The sensor 2 further includes a fixed resistor 7 having one end connected to the input / output conductive portion 17 and connected in series to the variable resistor 3. A predetermined voltage is applied to the variable resistor 3 and the fixed resistor 7 by the power supply circuit 4.

液面の変位に連動してフロート10が上下し、それに伴いアーム11が回動する。アーム11の回動に伴い接触子14が旋回し、それにより、可変抵抗器3の抵抗値が変化する。可変抵抗器3および固定抵抗器7に印加された電圧は、可変抵抗器3の抵抗値と固定抵抗器7の抵抗値との比に応じて分圧され、可変抵抗器3にかかる電圧が、センサ2の出力信号として入出力用導電部17,18間に検出される。   The float 10 moves up and down in conjunction with the displacement of the liquid level, and the arm 11 rotates accordingly. As the arm 11 rotates, the contact 14 rotates, whereby the resistance value of the variable resistor 3 changes. The voltage applied to the variable resistor 3 and the fixed resistor 7 is divided according to the ratio between the resistance value of the variable resistor 3 and the resistance value of the fixed resistor 7, and the voltage applied to the variable resistor 3 is An output signal of the sensor 2 is detected between the input / output conductive portions 17 and 18.

ここで、第1導電パターン15の導電セグメント15aおよび第2導電パターン16の導電セグメント16aや接触子14の接点19,20の摺接面、すなわち接点部が電解液に晒される場合に、センサ2に常時継続して電圧が印加されていると、例えば、陽極側の第1導電パターン15の導体が電食により劣化し、他方、負極側の第2導電パターン16には、第1導電パターン15から溶出した金属イオンが析出する。析出した金属は不活性な絶縁体となり易く、第2導電パターン16の導電セグメント16aの摺接面が絶縁物で覆われると、接点部の接触抵抗が上昇し、正確な測定の妨げとなる。   Here, when the slidable contact surfaces of the conductive segments 15a of the first conductive pattern 15 and the conductive segments 16a of the second conductive pattern 16 and the contacts 19, 20 of the contactor 14, that is, the contact portions, are exposed to the electrolyte, the sensor 2 When the voltage is continuously applied to the first conductive pattern 15, for example, the conductor of the first conductive pattern 15 on the anode side deteriorates due to electrolytic corrosion, while the second conductive pattern 16 on the negative electrode side has the first conductive pattern 15. Metal ions eluted from the precipitate. The deposited metal tends to be an inactive insulator, and when the slidable contact surface of the conductive segment 16a of the second conductive pattern 16 is covered with an insulator, the contact resistance of the contact portion increases, which hinders accurate measurement.

そこで、本実施形態の液面レベル検出装置1において、電源回路4は、所定の周期で間欠的にセンサ2に電圧を印加するようになっており、センサ2に電圧を印加する通電時間は、1周期あたり40ms以下に設定されている。これにより、接点部が電解液に晒された場合にも、接点部における電食などの電気化学反応が抑制される。好ましくは、1周期における通電時間の割合、すなわちデューティー比が50%以下とされる。   Therefore, in the liquid level detection device 1 of the present embodiment, the power supply circuit 4 is configured to intermittently apply a voltage to the sensor 2 at a predetermined cycle, and the energization time for applying the voltage to the sensor 2 is: It is set to 40 ms or less per cycle. Thereby, even when the contact portion is exposed to the electrolytic solution, electrochemical reaction such as electrolytic corrosion at the contact portion is suppressed. Preferably, the ratio of energization time in one cycle, that is, the duty ratio is 50% or less.

再び図1を参照して、液面レベル検出装置1は、センサ2の入出力用導電部17、18間の電圧をセンサ2の出力信号として処理回路5で取得する。尚、処理回路5は、電源回路4がセンサ2に電圧を印加する周期に同期してセンサ2の出力信号を取得する。そして、処理回路5は、取得したセンサ2の出力信号に基づいて、液体の残量を表示する表示手段としてのメータ6を駆動する。   Referring to FIG. 1 again, the liquid level detection device 1 acquires the voltage between the input / output conductive portions 17 and 18 of the sensor 2 by the processing circuit 5 as an output signal of the sensor 2. The processing circuit 5 acquires the output signal of the sensor 2 in synchronization with the cycle in which the power supply circuit 4 applies a voltage to the sensor 2. Then, the processing circuit 5 drives a meter 6 as display means for displaying the remaining amount of liquid based on the acquired output signal of the sensor 2.

本発明の効果を確認するため、上述した液面レベル検出装置1について、1周期あたりのセンサ2への通電時間を種々に変えたものを用意し、エタノール混合ガソリンに浸漬して500時間経過した後の各センサ2の出力を測定した。測定条件を以下に示す。尚、容器内の液体の変位が最低位のときに接触子14が回動される位置に、接触子14を固定して、測定を行っている。また、基板13全体が、液体に浸漬された状態で、測定を行っている。
[測定条件]
導電セグメント15a,16aの材料:銀パラジウム
抵抗体15bの材料:酸化ルテニウム
センサ2への印加電圧:16V
エタノール混合ガソリンのエタノールの濃度30%
エタノール混合ガソリンの温度:60℃
1周期:100ms
In order to confirm the effect of the present invention, the liquid level detection device 1 described above was prepared by changing the energization time to the sensor 2 per cycle in various ways, and was immersed in ethanol-mixed gasoline for 500 hours. The output of each subsequent sensor 2 was measured. The measurement conditions are shown below. Note that the contactor 14 is fixed at a position where the contactor 14 is rotated when the displacement of the liquid in the container is at the lowest position, and measurement is performed. Moreover, the measurement is performed in a state where the entire substrate 13 is immersed in the liquid.
[Measurement condition]
Material of conductive segments 15a and 16a: Silver palladium Material of resistor 15b: Ruthenium oxide Applied voltage to sensor 2: 16V
Ethanol concentration of ethanol mixed gasoline 30%
Ethanol mixed gasoline temperature: 60 ℃
1 cycle: 100 ms

測定結果を図5に示す。尚、図5に示すグラフにおいて、浸漬前のセンサの出力を基準として、これに対する割合で各センサの出力を示している。図5に示す測定結果より、センサ2への通電時間が40ms以下の場合には、センサ出力の上昇率は0.4%以下であり、液面レベル検出の障害とならない範囲に収まっている。これは、接点部における接触抵抗が上昇していないためであり、すなわち、接点部における電食などの電気化学反応が抑制されていることがわかる。   The measurement results are shown in FIG. In the graph shown in FIG. 5, the output of each sensor is shown at a ratio relative to the output of the sensor before immersion. From the measurement results shown in FIG. 5, when the energization time to the sensor 2 is 40 ms or less, the sensor output increase rate is 0.4% or less, which is within the range that does not hinder the liquid level detection. This is because the contact resistance at the contact portion is not increased, that is, it is understood that an electrochemical reaction such as electrolytic corrosion at the contact portion is suppressed.

また、上記測定条件で、センサ2への1周期あたりの通電時間を10ms、20ms、40ms、60ms、常時通電とし、それぞれの可変抵抗器3の抵抗値の時間軸での変化量を測定した結果を図6に示す。また、上記測定条件で、センサ2への1周期あたりの通電時間を5msとし、可変抵抗器3の抵抗値の時間軸での変化量を測定した結果を図7に示す。   Moreover, the energization time per cycle to the sensor 2 was 10 ms, 20 ms, 40 ms, 60 ms, and constant energization under the above measurement conditions, and the results of measuring the amount of change in the resistance value of each variable resistor 3 on the time axis Is shown in FIG. Further, FIG. 7 shows the result of measuring the amount of change of the resistance value of the variable resistor 3 on the time axis under the above measurement conditions, with the energization time per cycle of the sensor 2 being 5 ms.

図6に示す測定結果より、センサ2への通電時間が40ms以下の場合には、可変抵抗器3の抵抗値の変化量(増加量)は2Ω未満であり、液面レベル検出の障害とならない範囲に収まっている。さらに、図7に示す測定結果より、センサ2への1周期あたりの通電時間が5msでは可変抵抗器3の抵抗値にほとんど変化が認められず、1周期あたりの通電時間として5msが特に好ましいことがわかる。   From the measurement results shown in FIG. 6, when the energization time to the sensor 2 is 40 ms or less, the amount of change (increase) in the resistance value of the variable resistor 3 is less than 2Ω, and does not hinder the liquid level detection. It is in range. Furthermore, from the measurement results shown in FIG. 7, when the energization time per cycle to the sensor 2 is 5 ms, there is almost no change in the resistance value of the variable resistor 3, and 5 ms is particularly preferable as the energization time per cycle. I understand.

次に、上述した液面レベル検出装置1のセンサ2の第1導電パターン15と、第2導電パターン16とを、センサ2における位置関係を保ち、それら単独でエタノール混合ガソリンに浸漬してキャパシタを形成した。そして、第1導電パターン15と、第2導電パターン16とに、1周期あたりの通電時間を種々に変えて電圧を印加し、両パターン15、16に流れる電流を測定した。測定条件を以下に示す。
[測定条件]
導電セグメント15a,16aの材料:銀パラジウム
抵抗体15bの材料:酸化ルテニウム
センサ2への印加電圧:16V
エタノール混合ガソリンのエタノールの濃度30%
エタノール混合ガソリンの温度:18℃
1周期:100ms
Next, the first conductive pattern 15 and the second conductive pattern 16 of the sensor 2 of the liquid level detection device 1 described above are maintained in the positional relationship in the sensor 2, and they are immersed in ethanol-mixed gasoline alone to assemble the capacitor. Formed. Then, a voltage was applied to the first conductive pattern 15 and the second conductive pattern 16 with various energization times per cycle varied, and currents flowing through the patterns 15 and 16 were measured. The measurement conditions are shown below.
[Measurement condition]
Material of conductive segments 15a and 16a: Silver palladium Material of resistor 15b: Ruthenium oxide Applied voltage to sensor 2: 16V
Ethanol concentration of ethanol mixed gasoline 30%
Temperature of ethanol mixed gasoline: 18 ℃
1 cycle: 100 ms

通電時間毎の測定結果ならびに電流値が上昇傾向となる時間を図8に示す。図8に示す測定結果より、1周期あたりの通電時間が15ms以下では、電流値の上昇開始点までの時間が60s以上となり、金属イオンの溶出抑制傾向が格段と高くなることがわかる。   The measurement results for each energization time and the time during which the current value tends to increase are shown in FIG. From the measurement results shown in FIG. 8, it can be seen that when the energization time per cycle is 15 ms or less, the time to the current value rise start point is 60 s or more, and the elution suppression tendency of metal ions is remarkably increased.

以上説明したように、所定の周期で間欠的にセンサ2に電圧を印加し、センサ2に電圧を印加する通電時間を1周期あたり40ms以下に設定することにより、電解液に晒された場合にもセンサ2の可変抵抗器の接点部における電食などの電気化学反応を抑制することができ、それにより、長期にわたり液面レベルを高精度に検出することができる。   As described above, when a voltage is applied to the sensor 2 intermittently at a predetermined cycle, and the energization time for applying the voltage to the sensor 2 is set to 40 ms or less per cycle, when exposed to the electrolyte, In addition, an electrochemical reaction such as electrolytic corrosion at the contact portion of the variable resistor of the sensor 2 can be suppressed, and thereby the liquid level can be detected with high accuracy over a long period of time.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

本発明に係る液面レベル検出装置の一実施形態の概略構成を説明する図である。It is a figure explaining the schematic structure of one Embodiment of the liquid level detection apparatus which concerns on this invention. 図1の液面レベル検出装置に用いられるセンサを説明する図である。It is a figure explaining the sensor used for the liquid level detection apparatus of FIG. 図2に示すセンサの要部を説明する図である。It is a figure explaining the principal part of the sensor shown in FIG. 電食の反応過程におけるエネルギー状態を説明する図である。It is a figure explaining the energy state in the reaction process of electrolytic corrosion. 実施例および比較例について、センサ出力の測定結果を示すグラフである。It is a graph which shows the measurement result of a sensor output about an example and a comparative example. 実施例および比較例について、センサ抵抗値の測定結果を示すグラフである。It is a graph which shows the measurement result of a sensor resistance value about an example and a comparative example. 実施例について、センサ抵抗値の測定結果を示すグラフである。It is a graph which shows the measurement result of a sensor resistance value about an example. 実施例および比較例について、電流値の測定結果を示すグラフである。It is a graph which shows the measurement result of an electric current value about an example and a comparative example. 従来の液面レベル検出装置の一例を説明する図である。It is a figure explaining an example of the conventional liquid level detection apparatus. 従来の液面レベル検出装置に用いられるセンサの一例を説明する図である。It is a figure explaining an example of the sensor used for the conventional liquid level detection apparatus.

符号の説明Explanation of symbols

1 液面レベル検出装置
2 センサ
3 可変抵抗器
4 電源回路
5 処理回路
6 メータ
10 フロート
11 アーム
12 フレーム
13 基板
14 接触子
15 第1導電パターン
15a 導電セグメント
15b 抵抗体
16 第2導電パターン
16a 導電セグメント
16b 連結体
17 入出力用導電部
18 入出力用導電部
19 接点
20 接点
O アームの回動軸
DESCRIPTION OF SYMBOLS 1 Liquid level detection apparatus 2 Sensor 3 Variable resistor 4 Power supply circuit 5 Processing circuit 6 Meter 10 Float 11 Arm 12 Frame 13 Substrate 14 Contact 15 First conductive pattern 15a Conductive segment 15b Resistor 16 Second conductive pattern 16a Conductive segment 16b Linkage 17 Conductive part for input / output 18 Conductive part for input / output 19 Contact 20 Contact O Rotating shaft of arm

Claims (6)

液体を貯留した容器内に配置され、液面の変位に連動して接点を移動させて抵抗値を変化させる可変抵抗器を有し、所定の電圧を印加されて前記可変抵抗器の抵抗値に応じた電圧信号を出力するセンサと、
前記センサに所定の周期で間欠的に前記電圧を印加する電源回路と、
を備え、
前記電源回路が前記センサに電圧を印加する通電時間が、1周期あたり40ms以下とされていることを特徴とする液面レベル検出装置。
A variable resistor that is disposed in a container that stores liquid and that changes the resistance value by moving the contact point in conjunction with the displacement of the liquid level, and a predetermined voltage is applied to the resistance value of the variable resistor. A sensor that outputs a voltage signal according to the
A power supply circuit that intermittently applies the voltage to the sensor at a predetermined period;
With
An energization time for applying a voltage to the sensor by the power supply circuit is set to 40 ms or less per cycle.
前記電源回路が前記センサに前記電圧を印加する通電時間が、1周期あたり15ms以下とされていることを特徴とする請求項1に記載の液面レベル検出装置。   2. The liquid level detection apparatus according to claim 1, wherein an energization time during which the power supply circuit applies the voltage to the sensor is 15 ms or less per cycle. 前記電源回路が前記センサに前記電圧を印加する通電時間が、1周期あたり1ms超とされていることを特徴とする請求項2に記載の液面レベル検出装置。   3. The liquid level detection device according to claim 2, wherein an energization time during which the power supply circuit applies the voltage to the sensor is more than 1 ms per cycle. 4. 前記電源回路が前記センサに前記電圧を印加する通電時間が、1周期あたり略5msとされていることを特徴とする請求項1に記載の液面レベル検出装置。   2. The liquid level detection apparatus according to claim 1, wherein an energization time during which the power supply circuit applies the voltage to the sensor is approximately 5 ms per cycle. 1周期における前記通電時間の割合が50%以下であることを特徴とする請求項1〜請求項4のいずれか一項に記載の液面レベル検出装置。   The liquid level detecting device according to any one of claims 1 to 4, wherein a ratio of the energization time in one cycle is 50% or less. 液体を貯留した容器内に配置され、液面の変位に連動して抵抗値を変化させる可変抵抗器を有し、所定の電圧を印加されて前記可変抵抗器の抵抗値に応じた電圧信号を出力するセンサと、前記センサに所定の周期で間欠的に前記電圧を印加する電源回路と、を備える液面レベル検出装置において、
前記可変抵抗器は、互いに並行して延びる第1および第2の導電パターンと、前記第1および第2の導電パターンに橋架され、液面の変位に連動して前記第1および第2の導電パターン上を摺動する接触子と、を有しており、
前記第1および第2の導電パターンと前記接触子との接点部を絶縁した状態で前記センサに前記電圧を印加した際に、前記第1および第2の導電パターンに流れる電流が上昇傾向となるまでの時間が60s以上となるように、前記電源回路が前記センサに前記電圧を印加する1周期あたりの通電時間を選定することを特徴とする液面レベル検出装置の設計方法。
A variable resistor is disposed in a container storing liquid and changes a resistance value in conjunction with the displacement of the liquid level, and a voltage signal corresponding to the resistance value of the variable resistor is applied by applying a predetermined voltage. In a liquid level detection apparatus comprising: a sensor for outputting; and a power supply circuit that intermittently applies the voltage to the sensor at a predetermined cycle.
The variable resistor is bridged by the first and second conductive patterns extending in parallel with each other and the first and second conductive patterns, and the first and second conductive patterns are interlocked with the displacement of the liquid level. A contact that slides on the pattern, and
When the voltage is applied to the sensor in a state where the contact portion between the first and second conductive patterns and the contactor is insulated, the current flowing through the first and second conductive patterns tends to increase. A design method of a liquid level detecting device, wherein the power supply circuit selects a current-carrying time per cycle during which the power supply circuit applies the voltage to the sensor so that the time until the time is 60 seconds or more.
JP2007281972A 2007-05-31 2007-10-30 Liquid level detection device and method for designing liquid level detection device Active JP5247118B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007281972A JP5247118B2 (en) 2007-05-31 2007-10-30 Liquid level detection device and method for designing liquid level detection device
US12/149,666 US8024969B2 (en) 2007-05-31 2008-05-06 Liquid level detection device
DE102008025478.9A DE102008025478B4 (en) 2007-05-31 2008-05-28 Device for measuring the liquid level

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007145704 2007-05-31
JP2007145704 2007-05-31
JP2007281972A JP5247118B2 (en) 2007-05-31 2007-10-30 Liquid level detection device and method for designing liquid level detection device

Publications (2)

Publication Number Publication Date
JP2009008650A true JP2009008650A (en) 2009-01-15
JP5247118B2 JP5247118B2 (en) 2013-07-24

Family

ID=40323862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281972A Active JP5247118B2 (en) 2007-05-31 2007-10-30 Liquid level detection device and method for designing liquid level detection device

Country Status (1)

Country Link
JP (1) JP5247118B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210258A (en) * 2009-03-06 2010-09-24 Yazaki Corp Liquid level detector
CN108775858A (en) * 2018-05-12 2018-11-09 中国科学院南京地理与湖泊研究所 A kind of sensor and its application method of monitoring water depth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138215A (en) * 1986-12-01 1988-06-10 Nissan Motor Co Ltd Fuel gauge
US4782699A (en) * 1986-11-17 1988-11-08 General Motors Corporation Pulsed fuel level indicating system
JP2000329592A (en) * 1999-05-21 2000-11-30 Calsonic Kansei Corp Device for measuring physical quantity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782699A (en) * 1986-11-17 1988-11-08 General Motors Corporation Pulsed fuel level indicating system
JPS63138215A (en) * 1986-12-01 1988-06-10 Nissan Motor Co Ltd Fuel gauge
JP2000329592A (en) * 1999-05-21 2000-11-30 Calsonic Kansei Corp Device for measuring physical quantity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210258A (en) * 2009-03-06 2010-09-24 Yazaki Corp Liquid level detector
CN108775858A (en) * 2018-05-12 2018-11-09 中国科学院南京地理与湖泊研究所 A kind of sensor and its application method of monitoring water depth

Also Published As

Publication number Publication date
JP5247118B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5669291B2 (en) Liquid level detector
Izquierdo et al. Development of Mg2+ ion-selective microelectrodes for potentiometric scanning electrochemical microscopy monitoring of galvanic corrosion processes
JP5647021B2 (en) Liquid level detector
CN109997034B (en) Method and apparatus for electrolyte concentration measurement in electrochemical sensors
US8024969B2 (en) Liquid level detection device
CN102607657B (en) Liquid level detection device
US3343083A (en) Nonself-destructive reversible electro-chemical coulometer
JP2014528590A (en) Sensor and sensor manufacturing method
JP5213343B2 (en) Resistive plate and liquid level detecting device provided with the resistive plate
JP5247118B2 (en) Liquid level detection device and method for designing liquid level detection device
JP5078461B2 (en) Liquid level detector
JP4959419B2 (en) Liquid level detector
JP5078452B2 (en) Liquid level detector
JP2000266715A (en) Electrochemical sensor
KR101849033B1 (en) Variable-resistor plate for liquid level detector, variable-resistor plate production method, and liquid level detector
Bixler et al. Efficiency of Plating and Anodic Stripping of Silver from Platinum Electrodes.
JP4961272B2 (en) Liquid level detector
US20130025366A1 (en) Method for producing conductive segment, and conductive segment
JP2013026574A (en) Method for manufacturing conductive segment and conductive segment
JP4024097B2 (en) Reference electrode and electrolytic cell including the same
JP5961356B2 (en) Liquid level detection device and manufacturing method thereof
CN101581695B (en) Insoluble anode coating coat integrity detection method
Reid et al. Potential dependence of capacitance at a liquid/liquid interface: Part II. Unblocked interface
US8181517B2 (en) Sender card contamination reduction due to current application to sender card
JP6678415B2 (en) Contact combustion type gas sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

R150 Certificate of patent or registration of utility model

Ref document number: 5247118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250