JP2009006494A - Method for producing fiber-reinforced resin composite structure - Google Patents

Method for producing fiber-reinforced resin composite structure Download PDF

Info

Publication number
JP2009006494A
JP2009006494A JP2007167504A JP2007167504A JP2009006494A JP 2009006494 A JP2009006494 A JP 2009006494A JP 2007167504 A JP2007167504 A JP 2007167504A JP 2007167504 A JP2007167504 A JP 2007167504A JP 2009006494 A JP2009006494 A JP 2009006494A
Authority
JP
Japan
Prior art keywords
reinforced resin
composite structure
fiber
fiber reinforced
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167504A
Other languages
Japanese (ja)
Inventor
Masahiro Mikami
雅弘 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007167504A priority Critical patent/JP2009006494A/en
Publication of JP2009006494A publication Critical patent/JP2009006494A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fiber-reinforced resin composite structure preventing occurrence of peeling in molding. <P>SOLUTION: The method for producing a fiber-reinforced resin composite structure where, into a fiber-reinforced resin layer using a thermosetting resin as a matrix, an insert material having a linear expansion coefficient higher than that of the fiber-reinforced resin layer is inserted, comprises: a stage where the insert material is arranged at the inside of a prepreg material forming the fiber-reinforced resin layer; a pre-warming stage where the fiber-reinforced resin composite structure is warmed to a temperature less than a temperature at which the thermosetting resin in the prepreg material is perfectly cured; and a main warming stage where, after the warming by the pre-warming stage, the fiber-reinforced resin composite structure is warmed to a temperature at which the thermosetting resin is perfectly cured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、繊維強化樹脂複合構造体の製造方法、特にカーボンファイバー強化プラスチックとグラスファイバー強化プラスチックからなる複合構造体の製造方法に関する。   The present invention relates to a method for producing a fiber reinforced resin composite structure, and more particularly to a method for producing a composite structure comprising a carbon fiber reinforced plastic and a glass fiber reinforced plastic.

特許文献1は、繊維強化プラスチック複合構造体の接続方法に関するものであり、外層部が強度の高い繊維強化プラスチック層よりなり内層部が強度の低い樹脂又は軽量材料よりなる繊維強化プラスチック複合構造体を他の構造体と接続するに当たり、該複合構造体における他の構造体との接続部に、金属、複合材料、プラスチック等の強靭な材料からなりかつ内部に締結用の孔が設けられているスリーブを1個又は2個以上挿入し、スリーブ中の孔に締結具を挿入し該締結具を介して他の構造体と接続することを特徴とする繊維強化プラスチック複合構造体が開示されている。   Patent Document 1 relates to a method for connecting a fiber reinforced plastic composite structure. A fiber reinforced plastic composite structure in which an outer layer portion is made of a high-strength fiber reinforced plastic layer and an inner layer portion is made of a low-strength resin or lightweight material. When connecting to another structure, a sleeve made of a tough material such as metal, composite material, plastic or the like and provided with a fastening hole in the connection portion with the other structure in the composite structure A fiber reinforced plastic composite structure is disclosed, in which one or two or more are inserted, a fastener is inserted into a hole in the sleeve, and is connected to another structure via the fastener.

特許文献2は、FRP構造体の発明に関するものであり、FRPスキン層とコア材とそれらの間に介装されたインサート金具とが一体的に形成されたFRP構造体を開示している。   Patent Document 2 relates to an invention of an FRP structure, and discloses an FRP structure in which an FRP skin layer, a core material, and an insert fitting interposed therebetween are integrally formed.

特許文献3は、CFRP積層品を成形する際にその所定部位のCFRP層の層間にFRP用インサートを設置したCFRP積層品が開示されている。   Patent Document 3 discloses a CFRP laminate in which FRP inserts are installed between CFRP layers at predetermined portions when a CFRP laminate is molded.

上記のように積層体構造の強度を上げるために、CFRP積層体中にGFRPやアルミ等のブロックをインサートして成形すると、通常、成形温度は130〜150℃となるが、成形品を成形体から取り出す際には、製品を常温付近まで冷却する。この冷却の際に、両材料の界面で剥離が生じ、締結の温度が低下するという問題が発生する。
この剥離が発生する原因は、両材料の線膨張率に大きな差があるためである。通常、CFRPの線膨張係数は、1〜2×10−6/℃であるのに対し、GFRPの線膨張係数は、20〜50×10−6/℃であるが、積層間の剥離には積層方法の線膨張係数が問題となるが、インサート構造により、GFRPの積層方法の線膨張係数は、CFRPの線膨張係数の数百倍になってしまい、この線膨張係数の大きな差により、製品が成形温度から常温に冷却する際に、GFRPとCFRPの境界とCFRPの層間の弱い方に、剥離が発生するのである。
In order to increase the strength of the laminate structure as described above, when molding is performed by inserting a block such as GFRP or aluminum into the CFRP laminate, the molding temperature is usually 130 to 150 ° C. When removing from the product, cool the product to near room temperature. During this cooling, peeling occurs at the interface between the two materials, which causes a problem that the fastening temperature is lowered.
The cause of this peeling is that there is a large difference in the linear expansion coefficients of both materials. Normally, the linear expansion coefficient of CFRP is 1-2 × 10 −6 / ° C., whereas the linear expansion coefficient of GFRP is 20-50 × 10 −6 / ° C. The linear expansion coefficient of the lamination method becomes a problem, but due to the insert structure, the linear expansion coefficient of the GFRP lamination method is several hundred times that of CFRP. When cooling from the molding temperature to room temperature, peeling occurs on the weaker side between the boundary between GFRP and CFRP and the CFRP layer.

特開平4−1029号公報Japanese Patent Laid-Open No. 4-1029 特開2002−59498号公報JP 2002-59498 A 特開2006−175606号公報JP 2006-175606 A

本発明は、このような事情を鑑みなされたもので、成形時に剥離が発生しない繊維強化樹脂複合構造体の製造方法を提供することを目的とするものである。   This invention is made | formed in view of such a situation, and it aims at providing the manufacturing method of the fiber reinforced resin composite structure which peeling does not generate | occur | produce at the time of shaping | molding.

上記の課題を解決するために、本発明の繊維強化樹脂複合構造体の製造方法は、熱硬化性樹脂をマトリックスとした繊維強化樹脂層の内部に、該繊維強化樹脂層よりも大きな線膨張係数を有するインサート材をインサートしてなる繊維強化樹脂複合構造体の製造方法であって、前記繊維強化樹脂層を形成するプリプレグ材の内部にインサート材を配置する工程と、前記プリプレグ材中の熱硬化性樹脂が完全硬化する温度に満たない温度まで前記繊維強化樹脂複合構造体を加温する予備加温工程と、前記予備加温工程による加温の後に、前記熱硬化性樹脂が完全硬化する温度まで前記繊維強化樹脂複合構造体を加温する本加温工程と、を含むことを特徴とするものである。   In order to solve the above problems, the method for producing a fiber-reinforced resin composite structure according to the present invention has a linear expansion coefficient larger than that of the fiber-reinforced resin layer inside the fiber-reinforced resin layer using a thermosetting resin as a matrix. A method for producing a fiber-reinforced resin composite structure formed by inserting an insert material comprising: a step of arranging an insert material inside a prepreg material forming the fiber-reinforced resin layer; and thermosetting in the prepreg material A preliminary heating step of heating the fiber-reinforced resin composite structure to a temperature less than a temperature at which the thermosetting resin is completely cured, and a temperature at which the thermosetting resin is completely cured after the heating by the preliminary heating step And a main heating step for heating the fiber-reinforced resin composite structure.

また、本発明の繊維強化樹脂複合構造体の製造方法は、上記の特徴に加えて、前記インサート部材は、前記マトリックスの前記繊維強化樹脂層よりも大きい線膨張係数を有する繊維強化樹脂であることを特徴とするものである。   In addition to the above characteristics, in the method for producing a fiber-reinforced resin composite structure of the present invention, the insert member is a fiber-reinforced resin having a larger linear expansion coefficient than the fiber-reinforced resin layer of the matrix. It is characterized by.

また、本発明の繊維強化樹脂複合構造体の製造方法は、上記の特徴に加えて、前記予備加温工程が、前記インサート材のガラス転移温度付近の温度まで前記繊維強化樹脂複合構造体を加温する工程であることを特徴とするものである。   In addition to the above features, the method for producing a fiber reinforced resin composite structure of the present invention may further include adding the fiber reinforced resin composite structure to a temperature near the glass transition temperature of the insert material in the preliminary heating step. It is a process of heating.

また、本発明の繊維強化樹脂複合構造体の製造方法は、上記の特徴に加えて、前記マトリックスの前記繊維強化樹脂層がカーボンファイバー強化プラスチックからなる層であり、前記インサート材がグラスファイバー強化プラスチックから成るものであることを特徴とするものである。   In addition to the above features, the method for producing a fiber-reinforced resin composite structure of the present invention is characterized in that the fiber-reinforced resin layer of the matrix is a layer made of carbon fiber-reinforced plastic, and the insert material is glass fiber-reinforced plastic. It is characterized by comprising.

本発明は、熱硬化性樹脂を用いたものであって、内部にインサート材を含む繊維強化樹脂複合体の成形時に、層間や両部材の界面に剥離が発生しないという優れた効果を奏するものである。   The present invention uses a thermosetting resin, and has an excellent effect that peeling does not occur at an interface between layers or between members when molding a fiber reinforced resin composite including an insert material inside. is there.

また、CFRPとGFRPという熱膨張係数の異なる二つの部材をサンドイッチ構造とする複合体の成形時に、CFRP層間やCFRPとGFRPの界面に剥離が発生しないという優れた効果を奏するものである。   In addition, when molding a composite having a sandwich structure of two members having different thermal expansion coefficients such as CFRP and GFRP, there is an excellent effect that peeling does not occur at the CFRP layer or at the interface between CFRP and GFRP.

本発明を実施するための最良の形態は、熱硬化性樹脂を含むプリプレグ材をマトリックスとし、その内部にインサート材を組み込む複合構造体において、まず第1段階で、マトリックス樹脂の本来の硬化温度より約10〜50℃程度低い温度で該樹脂を約80〜95%程度の硬化度に硬化させ、次に第2段階で本来の硬化温度で完全硬化させるものであり、第1段階の硬化によりある程度硬化しているので、第2段階において本来の硬化温度に加熱される時、インサート材が熱膨張しようとするが、その周囲のマトリックス材の硬化がかなりの程度まで進行しているので、インサート材の熱膨張が抑制され、そのため、第2段階の終了後に、前記複合構造体が常温にまで冷却される際に、インサート材の収縮量が小さくなり、その結果、マトリックス材の層間やマトリックスとインサートの境界での剥離の発生を防止する。   The best mode for carrying out the present invention is a composite structure in which a prepreg material containing a thermosetting resin is used as a matrix and an insert material is incorporated therein. The resin is cured to a degree of curing of about 80 to 95% at a temperature as low as about 10 to 50 ° C., and then completely cured at the original curing temperature in the second stage. Since it is cured, when it is heated to the original curing temperature in the second stage, the insert material tends to thermally expand, but since the surrounding matrix material has been cured to a considerable extent, the insert material Therefore, when the composite structure is cooled to room temperature after the end of the second stage, the amount of shrinkage of the insert material is reduced, and as a result, To prevent the occurrence of peeling between layers and the matrix and the boundary of the insert box material.

本発明の実施例を、以下、添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、CFRP(カーボンファイバー強化プラスチック)のマトリックス1と、GFRP(グラスファイバー強化プラスチック)のインサート材2と、コア材3からなる複合構造体の締結部断面を示す図である。この複合構造体に対し、第1段階として、120℃の温度で120分加熱する工程を行い、次に第2段階として、150℃の温度で60分加熱する工程を行う。   FIG. 1 is a view showing a cross section of a fastening portion of a composite structure including a matrix 1 of CFRP (carbon fiber reinforced plastic), an insert material 2 of GFRP (glass fiber reinforced plastic), and a core material 3. As a first step, the composite structure is heated at 120 ° C. for 120 minutes, and then as a second step, a heat treatment is performed at 150 ° C. for 60 minutes.

図2は、上記第1段階の工程中と第2段階の工程中における、GFRPインサート材の時間に対する温度と歪の測定結果を示すグラフである。図2によれば、温度が120℃に達したときの歪は約2000μεであるが、樹脂硬化が始まると歪が徐々に小さくなる。そして、温度が150℃に上昇しても、歪は約2050μεであって、上記の120℃における約2000μεの歪と比較して、かなり低い程度の歪の上昇に抑えることができていることが示されている。   FIG. 2 is a graph showing the measurement results of temperature and strain with respect to time of the GFRP insert material during the first stage process and the second stage process. According to FIG. 2, the strain when the temperature reaches 120 ° C. is about 2000 με, but the strain gradually decreases as the resin cures. Even when the temperature rises to 150 ° C., the strain is about 2050 με, and the strain can be suppressed to a considerably low level of increase compared to the strain of about 2000 με at 120 ° C. It is shown.

図3は、GFRPブロック材のTMA(Thermo-mechanical Analyzer)測定結果を示す。横軸はセル温度を、縦軸はTMA測定結果を示し、グラフの傾きが線膨張係数を表す。図3におけるグラフの変曲点は、GFRPの転位点を示しており、100℃を超えた付近で材料に転位が起きること、この転位の前後で材料の線膨張係数が大きく変化することを表わしている。上記第1段階では、加熱温度をこのガラス転位温度の近傍までとすることにより、線膨張係数が急激に増大することを避けつつ、GFRPの周囲のCFRPの硬化を進行させるようにするのである。   FIG. 3 shows the TMA (Thermo-mechanical Analyzer) measurement result of the GFRP block material. The horizontal axis represents the cell temperature, the vertical axis represents the TMA measurement result, and the slope of the graph represents the linear expansion coefficient. The inflection point in the graph in FIG. 3 indicates the dislocation point of GFRP, which means that dislocation occurs in the material near 100 ° C., and that the linear expansion coefficient of the material greatly changes before and after this dislocation. ing. In the first stage, by setting the heating temperature to the vicinity of the glass transition temperature, curing of CFRP around the GFRP proceeds while avoiding a rapid increase in the linear expansion coefficient.

図1は、CFRPのマトリックスとGFRPのインサート材とコア材からなる複合構造体の締結部断面を示す図である。FIG. 1 is a view showing a cross section of a fastening portion of a composite structure including a CFRP matrix, a GFRP insert material, and a core material. 図2は、CFRPのマトリックスとGFRPのインサート材と使用して二段階成形を行なった際のGFRPのインサート材の時間に対する温度と歪の測定結果を示す。FIG. 2 shows measurement results of temperature and strain with respect to time of the GFRP insert material when two-stage molding is performed using a CFRP matrix and a GFRP insert material. 図3は、GFRPブロック材のTMA(Thermo-mechanical Analyzer)測定結果を示す。FIG. 3 shows the TMA (Thermo-mechanical Analyzer) measurement result of the GFRP block material.

符号の説明Explanation of symbols

1 CFRP(カーボンファイバー強化プラスチック)のマトリックス
2 GFRP(グラスファイバー強化プラスチック)のインサート材
3 コア材
1 CFRP (carbon fiber reinforced plastic) matrix 2 GFRP (glass fiber reinforced plastic) insert material 3 Core material

Claims (4)

熱硬化性樹脂をマトリックスとした繊維強化樹脂層の内部に、該繊維強化樹脂層よりも大きな線膨張係数を有するインサート材をインサートしてなる繊維強化樹脂複合構造体の製造方法であって、
前記繊維強化樹脂層を形成するプリプレグ材の内部にインサート材を配置する工程と、
前記プリプレグ材中の熱硬化性樹脂が完全硬化する温度に満たない温度まで前記繊維強化樹脂複合構造体を加温する予備加温工程と、
前記予備加温工程による加温の後に、前記熱硬化性樹脂が完全硬化する温度まで前記繊維強化樹脂複合構造体を加温する本加温工程と、
を含むことを特徴とする繊維強化樹脂複合構造体の製造方法。
A method for producing a fiber reinforced resin composite structure, wherein an insert material having a linear expansion coefficient larger than that of the fiber reinforced resin layer is inserted into a fiber reinforced resin layer having a thermosetting resin as a matrix,
A step of arranging an insert material inside the prepreg material forming the fiber reinforced resin layer;
A preliminary heating step of heating the fiber reinforced resin composite structure to a temperature less than a temperature at which the thermosetting resin in the prepreg material is completely cured;
A main heating step of heating the fiber reinforced resin composite structure to a temperature at which the thermosetting resin is completely cured after the heating by the preliminary heating step;
The manufacturing method of the fiber reinforced resin composite structure characterized by including this.
請求項1に記載された製造方法において、
前記インサート部材は、前記マトリックスの前記繊維強化樹脂層よりも大きい線膨張係数を有する繊維強化樹脂であることを特徴とする繊維強化樹脂複合構造体の製造方法。
The manufacturing method according to claim 1,
The method for producing a fiber-reinforced resin composite structure, wherein the insert member is a fiber-reinforced resin having a larger linear expansion coefficient than the fiber-reinforced resin layer of the matrix.
請求項1又は2に記載された製造方法において、
前記予備加温工程が、前記インサート材のガラス転移温度付近の温度まで前記繊維強化樹脂複合構造体を加温する工程であることを特徴とする繊維強化樹脂複合構造体の製造方法。
In the manufacturing method described in Claim 1 or 2,
The method for producing a fiber reinforced resin composite structure, wherein the preliminary heating step is a step of heating the fiber reinforced resin composite structure to a temperature near a glass transition temperature of the insert material.
請求項1から3のいずれかの請求項に記載された製造方法において、
前記マトリックスの前記繊維強化樹脂層がカーボンファイバー強化プラスチックからなる層であり、前記インサート材がグラスファイバー強化プラスチックからなるものであることを特徴とする繊維強化樹脂複合構造体の製造方法。
In the manufacturing method according to any one of claims 1 to 3,
The method for producing a fiber reinforced resin composite structure, wherein the fiber reinforced resin layer of the matrix is a layer made of carbon fiber reinforced plastic, and the insert material is made of glass fiber reinforced plastic.
JP2007167504A 2007-06-26 2007-06-26 Method for producing fiber-reinforced resin composite structure Pending JP2009006494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167504A JP2009006494A (en) 2007-06-26 2007-06-26 Method for producing fiber-reinforced resin composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167504A JP2009006494A (en) 2007-06-26 2007-06-26 Method for producing fiber-reinforced resin composite structure

Publications (1)

Publication Number Publication Date
JP2009006494A true JP2009006494A (en) 2009-01-15

Family

ID=40322106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167504A Pending JP2009006494A (en) 2007-06-26 2007-06-26 Method for producing fiber-reinforced resin composite structure

Country Status (1)

Country Link
JP (1) JP2009006494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172376A (en) * 2013-03-12 2014-09-22 Jx Nippon Oil & Energy Corp Manufacturing method of composite container and manufacturing system of composite container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172376A (en) * 2013-03-12 2014-09-22 Jx Nippon Oil & Energy Corp Manufacturing method of composite container and manufacturing system of composite container

Similar Documents

Publication Publication Date Title
US20090309268A1 (en) Method for producing structures of complex shapes of composite materials
US7866109B2 (en) Structural device for improving the thermal expansion resistance of a structure
JP2011110796A (en) Carbon fiber-reinforced plastic molded body and method of producing the same
JP5959558B2 (en) Composite structure and method for producing the same
US20160347029A1 (en) Material composite
US8703033B2 (en) Methods and apparatus for forming a composite component
CN109397724B (en) High-temperature-resistant composite material and high-temperature thermal expansion forming method thereof
JP2008500232A (en) Aircraft window frame
US8501073B2 (en) Device for injecting a resin into at least one fibre layer of a fibre-reinforced product to be manufactured
JP2009006494A (en) Method for producing fiber-reinforced resin composite structure
JPH06509292A (en) Method for forming and strengthening fiber reinforced resin structure
US9724870B2 (en) Integrated shape memory polymer and caul tool
US5472653A (en) Method for producing carbon fiber-reinforced plastic molding
JP2006334831A (en) Device for and method of molding thermosetting resin
JP2019025870A (en) Flexible mandrel, and method for manufacturing composite material component
Taylor et al. One‐Step Process for Press Hardened Steel–Carbon Fiber Reinforced Thermoset Polymer Hybrid Parts
CN111805938B (en) Heat-proof bearing integrated structure for aircraft and forming method thereof
KR20130105873A (en) Molding die
JP5373321B2 (en) Fiber reinforced plastic molded article and stress relaxation method for fiber reinforced plastic molded article
US10786942B2 (en) Process for the production of a tubular hybrid molding and tubular hybrid molding
JP2018153950A (en) Method of manufacturing composite structure of CFRP member and metal member
JP5099469B2 (en) Rubber mold manufacturing method and rubber molding method using the rubber mold
JPH0788968A (en) Forming method of frp hollow body
JPH06190956A (en) Production of honeycomb sandwich panel
JP2013052527A (en) Resin member and composite member as well as method for manufacturing composite member