JP2009006340A - Dewatering device for excavated soil sand - Google Patents

Dewatering device for excavated soil sand Download PDF

Info

Publication number
JP2009006340A
JP2009006340A JP2007168573A JP2007168573A JP2009006340A JP 2009006340 A JP2009006340 A JP 2009006340A JP 2007168573 A JP2007168573 A JP 2007168573A JP 2007168573 A JP2007168573 A JP 2007168573A JP 2009006340 A JP2009006340 A JP 2009006340A
Authority
JP
Japan
Prior art keywords
belt
sand
pressure
dewatering device
excavated earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007168573A
Other languages
Japanese (ja)
Inventor
Tsutomu Yashiro
勉 屋代
Yoshihiro Tanaka
善広 田中
Keizo Miki
慶造 三木
Takashi Kitaoka
隆司 北岡
Katsuji Fukumoto
勝司 福本
Masaaki Sakamoto
公明 阪本
Makoto Toriihara
誠 鳥井原
Yuki Yamada
祐樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007168573A priority Critical patent/JP2009006340A/en
Publication of JP2009006340A publication Critical patent/JP2009006340A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dewatering device where, even if the amount of the excavated soil sand to be treated is varied, suitable pressurizing force according to the quantity to be treated is acted on the excavated soil sand. <P>SOLUTION: The dewatering device 1 for excavated soil sand is composed of: a dewatering mechanism 1a; and a pressurizing mechanism 1b. The pressurizing belt 32 composing the pressurizing mechanism 1b is provided with: an endless inner circumferential side belt body 37 arranged at the inner circumferential side; and a pressurizing body 38 arranged at the outside of the inner circumferential side belt body. In the pressurizing body, a plurality of bag bodies 60 sealed with air as a compressible fluid are arranged along the circulation direction of the inner circumferential side belt body 37. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、含水比の高い掘削土砂を脱水する掘削土砂の脱水装置に関する。   The present invention relates to an excavating earth and sand dewatering device for dehydrating excavated earth and sand having a high water content.

泥土圧シールド工法において、シールドマシンのチャンバー内に取り込まれた掘削土砂は、排泥ポンプ、スクリューコンベヤ、ベルトコンベヤ等によって地上に搬出され、土砂ピットに貯留される。   In the mud pressure shield method, excavated earth and sand taken into the chamber of the shield machine is carried to the ground by a mud pump, a screw conveyor, a belt conveyor, etc., and stored in an earth and sand pit.

ここで、泥土圧シールドは、泥土圧によって切羽の安定を図っている関係上、掘削土砂の含水比が高く、それゆえ産業廃棄物扱いとなって処分費用が高くなる。加えて、土粒子の間隙に多くの水を含むため、単位体積当たりの重量が大きく、運搬費用も高くなる。さらには、トンネル掘削であるため、掘削土砂の発生量は膨大である。   Here, the mud pressure shield has a high moisture content of the excavated earth and sand because of the stability of the face by the mud pressure, so it is handled as industrial waste and the disposal cost is high. In addition, since a large amount of water is contained in the gaps between the soil particles, the weight per unit volume is large and the transportation cost is high. Furthermore, because of tunnel excavation, the amount of excavated sediment is enormous.

ここで、天日干し等の方法で掘削土砂を乾燥させれば、含水比が低下し、一般残土としての利用も可能ではあるが、天日干しのための広大な敷地を都市部に確保することは現実的ではない。また、石灰等のセメント系材料を添加することで含水比の低下と強度の改善とを図れば、建設資材としての再利用も可能であるが、発生土が膨大であるため、セメント系材料の材料コストや添加のための作業コストが高くなり、処理用地の確保とも相まって、やはり経済性の面で適用が困難となる。また、セメント系材料の添加によってpHが大きくなるため、一般残土としての処分が困難になる場合がある。   Here, if the excavated sediment is dried by a method such as sun drying, the moisture content will decrease and it can be used as general residual soil, but securing a vast site for sun drying in urban areas is not possible. Not realistic. In addition, if the water content ratio is reduced and the strength is improved by adding cement-based materials such as lime, it can be reused as construction materials. The material cost and the work cost for the addition become high, and it is difficult to apply in terms of economy, coupled with securing the processing site. Moreover, since the pH increases due to the addition of cement-based materials, disposal as general residual soil may be difficult.

そのため、掘削土砂の減容化・軽量化を効率よく図ることができるさまざまな試みが従来からなされてきた。   For this reason, various attempts have been made in the past to efficiently reduce the volume and weight of excavated sediment.

特開平9−206759号公報JP-A-9-206759 特開平7−214094号公報Japanese Patent Laid-Open No. 7-214094 実開平6−66890号公報Japanese Utility Model Publication No. 6-66890

例えば、特許文献1には、メッシュベルトと該メッシュベルトの下側から強制的に真空吸引するバキュームユニットを備えた真空吸引式脱水コンベアが開示されており、かかる真空吸引式脱水コンベアによれば、脱水機のイニシャルコストを下げることができる旨、記載されている。   For example, Patent Document 1 discloses a vacuum suction-type dewatering conveyor that includes a mesh belt and a vacuum unit that forcibly vacuum-sucks from the lower side of the mesh belt. According to the vacuum suction-type dewatering conveyor, It is stated that the initial cost of the dehydrator can be reduced.

加えて、同文献記載の発明においては、メッシュベルトに載って移動する固形物を同期回転で回る押さえベルトの間に挟み、押さえローラで押さえベルトの上から加圧し押さえつけることによって、脱水の効率化が図られている。   In addition, in the invention described in the same document, the efficiency of dehydration is improved by sandwiching the solid material that moves on the mesh belt between the pressing belts that rotate by synchronous rotation, and pressing and pressing the pressing belt from above the pressing belt. Is planned.

しかしながら、このような押さえローラは、通常、架台に軸支されているため、メッシュベルトとの離間距離は常に一定である。そのため、脱水の対象となる掘削土砂の処理量が変動する場合には、掘削土砂を一定の大きさで加圧することができないという不都合を生じる。   However, since such a pressing roller is normally pivotally supported by the gantry, the separation distance from the mesh belt is always constant. Therefore, when the processing amount of the excavated earth and sand to be dewatered fluctuates, there arises a disadvantage that the excavated earth and sand cannot be pressurized with a certain size.

すなわち、脱水処理すべき掘削土砂の量が少ないと、メッシュベルトに載っている土砂の厚みが小さいため、押さえベルトからの加圧作用をほとんど期待できず、掘削土砂の量が多いと、場合によっては土砂の厚みが大きすぎて、メッシュベルトと押さえベルトの間に掘削土砂が閉塞してしまい、コンベアの正常な運転を妨げる懸念があるという問題を生じていた。   In other words, if the amount of excavated earth and sand to be dewatered is small, the thickness of the earth and sand on the mesh belt is small, so almost no pressure action from the holding belt can be expected. Has a problem that the thickness of the earth and sand is too large, and the excavated earth and sand is blocked between the mesh belt and the holding belt, thereby hindering the normal operation of the conveyor.

本発明は、上述した事情を考慮してなされたもので、掘削土砂の処理量が変動しても、処理量に応じた適切な加圧力を掘削土砂に作用させることが可能な掘削土砂の脱水装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and even when the processing amount of the excavated sediment varies, the dewatering of the excavated soil capable of applying an appropriate pressure according to the processing amount to the excavated sediment. An object is to provide an apparatus.

上記目的を達成するため、本発明に係る掘削土砂の脱水装置は請求項1に記載したように、第1のヘッドプーリと第1のテールプーリとに掛け渡された無端状をなす透水性ベルトと、該透水性ベルトの搬送区間においてその上に載置された掘削土砂中の水分を前記透水性ベルトを介して吸引除去する吸引機構とからなる脱水機構と、
前記脱水機構の上方に配置され循環経路が前記透水性ベルトの循環経路と逆回りとなるようにかつ循環速度が前記透水性ベルトの搬送速度と等しくなるように第2のヘッドプーリと第2のテールプーリとに掛け渡された無端状をなす加圧ベルトと、該加圧ベルトの裏面側に配置された加圧ローラとからなる加圧機構とを備え、
前記加圧ベルトを、内周側に配置される無端状の内周側ベルト本体と、該内周側ベルト本体の外側に配置された加圧体とで構成してなり、該加圧体は、圧縮性流体が封入された袋体を前記内周側ベルト本体の循環方向に沿って複数並設してなるものである。
In order to achieve the above object, an excavated earth and sand dewatering device according to the present invention comprises an endless water-permeable belt stretched between a first head pulley and a first tail pulley, as described in claim 1. A dewatering mechanism comprising a suction mechanism for sucking and removing moisture in the excavated earth and sand placed thereon in the conveyance section of the water permeable belt,
The second head pulley and the second pulley are arranged above the dewatering mechanism so that the circulation path is opposite to the circulation path of the water-permeable belt and the circulation speed is equal to the conveyance speed of the water-permeable belt. A pressure belt comprising an endless pressure belt stretched over a tail pulley, and a pressure roller disposed on the back side of the pressure belt;
The pressure belt is composed of an endless inner circumferential belt body disposed on the inner circumferential side and a pressure body disposed on the outer side of the inner circumferential belt body. A plurality of bags enclosing a compressible fluid are arranged in parallel along the circulation direction of the inner peripheral belt body.

また、本発明に係る掘削土砂の脱水装置は、一対の側方支圧部を前記各袋体が両端で挟み込まれるように前記内周側ベルト本体の両縁部に対向配置したものである。   In the excavating earth and sand dewatering device according to the present invention, a pair of side support pressure portions are arranged opposite to both edge portions of the inner peripheral belt body so that the bag bodies are sandwiched between both ends.

また、本発明に係る掘削土砂の脱水装置は、前記内周側ベルト本体の循環方向に沿ってかつ前記各袋体の長手方向と平行になるように複数の中間支圧部を所定ピッチで前記内周側ベルト本体に立設するとともに、前記複数の中間支圧部のうち、互いに対向する中間支圧部の間に前記各袋体をそれぞれ設置したものである。   Further, the excavating earth and sand dewatering device according to the present invention includes a plurality of intermediate support portions at a predetermined pitch so as to be parallel to the circulation direction of the inner peripheral belt body and parallel to the longitudinal direction of the bags. While standing up to an inner peripheral belt body, among the plurality of intermediate bearing parts, each bag is installed between intermediate bearing parts facing each other.

また、本発明に係る掘削土砂の脱水装置は、前記内周側ベルト本体との間に前記加圧体を挟み込む外周側ベルト本体を該加圧体の外側に配置したものである。   In the excavating earth and sand dewatering device according to the present invention, an outer peripheral belt body that sandwiches the pressurizing body between the inner peripheral belt body and the outer peripheral belt body is disposed outside the pressurizing body.

また、本発明に係る掘削土砂の脱水装置は、前記外周側ベルト本体の外側に吸水体を設けたものである。   Moreover, the dewatering device for excavated earth and sand according to the present invention has a water absorbing body provided outside the outer peripheral belt body.

また、本発明に係る掘削土砂の脱水装置は、前記透水性ベルトの裏側に該透水性ベルトの裏面と摺動自在になるように反力部材を配置したものである。   In the dewatering device for excavated earth and sand according to the present invention, a reaction force member is disposed on the back side of the water-permeable belt so as to be slidable with the back surface of the water-permeable belt.

本発明に係る掘削土砂の脱水装置においては、加圧機構を構成する加圧ベルトで脱水機構を構成する透水性ベルトの搬送面に載置された掘削土砂を加圧することにより、吸引機構による掘削土砂の脱水作用を促進できるように構成してあるが、本発明の加圧ベルトは、内周側に配置される無端状の内周側ベルト本体と、該内周側ベルト本体の外側に配置された加圧体とで構成してなり、該加圧体は、圧縮性流体が封入された袋体を内周側ベルト本体の循環方向に沿って複数並設してなる。   In the excavation earth and sand dewatering apparatus according to the present invention, excavation by the suction mechanism is performed by pressurizing the excavation earth and sand placed on the conveyance surface of the water-permeable belt that constitutes the dewatering mechanism with the pressurizing belt that constitutes the pressurizing mechanism. The pressure belt according to the present invention is configured to promote the dewatering action of earth and sand, but the endless inner peripheral belt body disposed on the inner peripheral side and the outer peripheral belt main body are disposed outside the inner peripheral belt main body. The pressurizing body is formed by arranging a plurality of bag bodies filled with a compressive fluid along the circulation direction of the inner peripheral belt body.

このようにすると、加圧ベルトの厚さが減少する強制変形、換言すれば袋体の高さが減少する強制変形が加圧ベルトに作用したとき、袋体内に封入された圧縮性流体は、圧縮されて内部圧力が高くなり、その内部圧力に応じた反力が強制変形の方向と逆方向に発生する。   In this way, when the forced deformation in which the thickness of the pressure belt decreases, in other words, the forced deformation in which the height of the bag body decreases acts on the pressure belt, the compressive fluid enclosed in the bag body is The internal pressure increases due to compression, and a reaction force corresponding to the internal pressure is generated in the direction opposite to the direction of forced deformation.

そのため、掘削土砂の処理量が増加して透水性ベルト上の厚みが大きくなり、加圧ベルトの厚さが減少する強制変形が該加圧ベルトに作用すると、その強制変形の大きさに応じた大きさの反力が掘削土砂に作用する。   Therefore, when the amount of excavated sediment increases, the thickness on the permeable belt increases, and when the forced deformation that reduces the thickness of the pressure belt acts on the pressure belt, the amount of the forced deformation depends on the size of the forced deformation. A large reaction force acts on the excavated soil.

すなわち、袋体の高さが減少すればするほど、圧縮性流体の圧縮の程度が大きくなって反力が増加するため、掘削土砂の処理量が増加するにつれて掘削土砂に作用する加圧力も増加し、かくして掘削土砂の処理量に見合った大きさの圧力が加圧されることとなる。   In other words, as the height of the bag decreases, the degree of compression of the compressible fluid increases and the reaction force increases, so the pressure applied to the excavated sediment increases as the amount of excavated sediment increases. Thus, a pressure corresponding to the amount of excavated earth and sand is increased.

また、袋体を内周側ベルト本体の循環方向に沿って複数並設してあるため、搬送位置によって掘削土砂の厚みが異なっても、該厚みに加圧力を追従させることが可能となる。すなわち、土砂供給量等の関係で、透水性ベルト上の掘削土砂の厚みが搬送方向に沿って不均一になる場合であっても、掘削土砂の厚みが大きい箇所ほど、より大きな加圧力を作用させることができる。   In addition, since a plurality of bags are arranged in parallel along the circulation direction of the inner peripheral belt body, even if the thickness of excavated soil differs depending on the transport position, it becomes possible to follow the applied pressure to the thickness. That is, even if the thickness of the excavated sediment on the permeable belt becomes non-uniform along the transport direction due to the amount of sediment supplied, etc., the larger the excavated sediment thickness, the greater the applied pressure. Can be made.

透水性ベルトは、脱水の対象となる掘削土砂の載荷荷重や搬送荷重を支持しつつ該掘削土砂から吸引された水分を通過させることができる限り、その構成は任意であり、例えば、メッシュベルトを採用することができる。   The structure of the water-permeable belt is arbitrary as long as it can pass the moisture sucked from the excavated earth and sand while supporting the load and transport load of the excavated earth and sand to be dehydrated. Can be adopted.

吸引機構は、透水性ベルトを介して搬送中の掘削土砂から水分を吸引除去できる限り、その構成は任意であり、例えば、吸引ポンプと、該吸引ポンプに接続された吸引管と、該吸引管に連通接続され内部に減圧空間が形成された吸引部材とで構成することができる。   The structure of the suction mechanism is arbitrary as long as moisture can be sucked and removed from the excavated earth and sand being conveyed via the water-permeable belt. For example, the suction pump, a suction pipe connected to the suction pump, and the suction pipe And a suction member having a reduced pressure space formed therein.

加圧体は、圧縮性流体が封入された袋体を内周側ベルト本体の循環方向に沿って複数並設して構成する限り、袋体の個々の構成や配列の仕方に関する具体的構成は任意であり、例えば、各袋体を外形が筒状になるように構成するとともに、その長さが内周側ベルト本体の幅とほぼ等しくなるようにすることが考えられる。さらに、このような筒状袋体をそれらの長手方向が内周側ベルト本体の循環方向と直交するようにかつ互いに隣り合わせとなるように並べて構成することが考えられる。   As long as the pressurizing body is configured by arranging a plurality of bag bodies enclosing a compressible fluid along the circulation direction of the inner peripheral belt body, the specific configuration regarding the individual configuration and arrangement method of the bag bodies is as follows. For example, it is conceivable that each bag body is configured such that the outer shape is cylindrical, and the length thereof is approximately equal to the width of the inner peripheral belt body. Furthermore, it is conceivable that such cylindrical bag bodies are arranged side by side so that their longitudinal directions are perpendicular to the circulation direction of the inner peripheral belt body and are adjacent to each other.

ここで、上述した各袋体が両端で挟み込まれるように、内周側ベルト本体の両縁部に一対の側方支圧部を対向配置したならば、加圧ベルトの厚さが減少する強制変形が作用したとき、各袋体の側方への膨らみが制限されることとなり、掘削土砂に作用する加圧力が大きくなる。   Here, if a pair of side support pressure portions are arranged opposite to both edge portions of the inner peripheral belt body so that each of the bag bodies described above is sandwiched at both ends, the thickness of the pressure belt is reduced. When the deformation is applied, the lateral expansion of each bag is restricted, and the applied pressure acting on the excavated soil is increased.

また、各袋体を互いに当接させながら連続配置するようにしてもかまわないが、前記内周側ベルト本体の循環方向に沿ってかつ前記各袋体の長手方向と平行になるように複数の中間支圧部を所定ピッチで前記内周側ベルト本体に立設するとともに、前記複数の中間支圧部のうち、互いに対向する中間支圧部の間に前記各袋体をそれぞれ設置したならば、加圧ベルトの厚さが減少する強制変形が作用したとき、内周側ベルト本体の循環方向に沿った各袋体の膨らみが制限されることとなり、掘削土砂に作用する加圧力は大きくなる。   Further, the respective bag bodies may be arranged continuously while being in contact with each other, but a plurality of bag bodies are arranged along the circulation direction of the inner peripheral belt body and parallel to the longitudinal direction of the respective bag bodies. If the intermediate bearing portions are erected on the inner peripheral belt body at a predetermined pitch, and each bag body is installed between the intermediate bearing portions facing each other among the plurality of intermediate bearing portions When the forced deformation that reduces the thickness of the pressure belt is applied, the swelling of each bag body along the circulation direction of the inner peripheral belt body is limited, and the applied pressure acting on the excavated sediment increases. .

掘削土砂への加圧は、袋体と掘削土砂との直接的な接触によって行ってもかまわないが、内周側ベルト本体との間に加圧体を挟み込む外周側ベルト本体を該加圧体の外側に配置したならば、袋体と袋体との間に掘削土砂が入り込んで加圧作用に悪影響を与えたり、袋体を損傷させたりするのを未然に防止することが可能となる。   Pressurization to the excavated earth and sand may be performed by direct contact between the bag body and the excavated earth and sand, but the outer peripheral side belt body in which the pressurized body is sandwiched between the inner peripheral side belt main body and the pressurized body If it is arranged on the outer side, it is possible to prevent the excavated earth and sand from entering between the bag body and adversely affect the pressurizing action or damage the bag body.

ここで、外周側ベルト本体の外側に吸水体を設けたならば、加圧機構側においても、掘削土砂の脱水を行うことが可能となる。   Here, if a water absorbing body is provided outside the outer peripheral belt body, the excavated soil can be dewatered also on the pressurizing mechanism side.

掘削土砂を介して透水性ベルトに作用する加圧ベルトからの圧力をどのように支持するかは任意であるが、例えば透水性ベルトの裏側に該透水性ベルトの裏面と摺動自在になるように反力部材を配置するようにしたならば、透水ベルトの動きを妨げることなく、加圧ベルトからの圧力を掘削土砂に作用させることが可能となり、加圧による脱水効率の向上をさらに高めることが可能となる。   How to support the pressure from the pressure belt acting on the water permeable belt through the excavated earth and sand is arbitrary. For example, the back surface of the water permeable belt can slide on the back surface of the water permeable belt. If the reaction force member is arranged on the surface, the pressure from the pressure belt can be applied to the excavated earth and sand without hindering the movement of the permeable belt, and the improvement of the dewatering efficiency due to the pressure can be further enhanced. Is possible.

以下、本発明に係る掘削土砂の脱水装置の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a dewatering apparatus for excavated earth and sand according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係る掘削土砂の脱水装置を示した正面図である。同図に示すように、本実施形態に係る掘削土砂の脱水装置1は、脱水機構1aと加圧機構1bとから構成してあり、脱水機構1aは、無端状の透水性ベルト2と、該透水性ベルトの搬送区間においてその上に載置された掘削土砂中の水分を透水性ベルト2を介して吸引除去する吸引機構12とを備える。   FIG. 1 is a front view showing a dewatering device for excavated earth and sand according to the present embodiment. As shown in the figure, the excavated earth and sand dewatering device 1 according to the present embodiment includes a dewatering mechanism 1a and a pressurizing mechanism 1b. The dewatering mechanism 1a includes an endless water-permeable belt 2, A suction mechanism 12 that sucks and removes moisture in excavated earth and sand placed thereon in the conveyance section of the water permeable belt through the water permeable belt 2 is provided.

透水性ベルト2は、第1のヘッドプーリであるヘッドプーリ4と第1のテールプーリであるテールプーリ5とに掛け渡し、架台54に据え付けられた駆動モータ31によって両プーリの間を循環するようになっている。   The water-permeable belt 2 is passed between a head pulley 4 as a first head pulley and a tail pulley 5 as a first tail pulley, and circulates between both pulleys by a drive motor 31 installed on a mount 54. ing.

吸引機構12は、吸引ポンプ10と、該吸引ポンプに接続された吸引管9と、該吸引管に連通接続され内部に減圧空間が形成された吸引部材8とで構成してある。   The suction mechanism 12 includes a suction pump 10, a suction pipe 9 connected to the suction pump, and a suction member 8 that is connected to the suction pipe and has a reduced pressure space formed therein.

透水性ベルト2は図2(a)及び図3に示すように、メッシュベルト本体3とその両縁に立設された波桟23,23とからなり、該波桟は、脱水の対象となる掘削土砂が搬送中にこぼれ落ちるのを防止するサイドガードの役目を果たしている。   As shown in FIG. 2 (a) and FIG. 3, the water-permeable belt 2 includes a mesh belt body 3 and wave bars 23 and 23 erected on both edges of the mesh belt body 3, and the wave bars are to be dewatered. It plays the role of a side guard that prevents the excavated soil from spilling during transportation.

吸引部材8は、これらの図でわかるようにボックス断面状をなし、その開口縁部がメッシュベルト本体3の裏面と摺動自在になるように透水性ベルト2の搬送方向に沿って配置してあるとともに、透水性ベルト2の下方には、その裏面と摺動自在になるように反力部材21を複数本並設してある。   As can be seen in these drawings, the suction member 8 has a box cross-sectional shape, and is arranged along the conveyance direction of the water-permeable belt 2 so that the opening edge thereof is slidable with the back surface of the mesh belt body 3. In addition, a plurality of reaction force members 21 are arranged below the water-permeable belt 2 so as to be slidable on the back surface thereof.

反力部材21は、吸引部材8が配置されている箇所を除いた位置に透水性ベルト2の搬送軸線と平行に配置してあり、キャリアローラ22の動作に支障なきよう、その長さを、例えばキャリアローラ22,22のピッチよりも若干短く設定してある。かかる反力部材21は、吸引部材8と同様、架台54に適宜固定すればよい。反力部材21は、摩擦係数の小さい超高分子ポリエチレンで形成することができる。   The reaction member 21 is arranged in parallel to the conveyance axis of the water-permeable belt 2 at a position excluding the place where the suction member 8 is arranged, and its length is set so as not to hinder the operation of the carrier roller 22. For example, it is set slightly shorter than the pitch of the carrier rollers 22 and 22. The reaction member 21 may be appropriately fixed to the gantry 54 like the suction member 8. The reaction force member 21 can be formed of ultra high molecular polyethylene having a small friction coefficient.

加圧機構1bは図1でわかるように、脱水機構1aの上方に配置してあり、第2のヘッドプーリであるヘッドプーリ33と第2のテールプーリであるテールプーリ34とに掛け渡された無端状をなす加圧ベルト32と、該加圧ベルトの走行角度を調整する一対の走行角度調整ローラ35,35と、該一対の走行角度調整ローラの間に配置された加圧ローラ36とを備える。   As shown in FIG. 1, the pressurizing mechanism 1b is disposed above the dehydrating mechanism 1a, and is endlessly stretched between a head pulley 33 that is a second head pulley and a tail pulley 34 that is a second tail pulley. , A pair of travel angle adjustment rollers 35 and 35 for adjusting the travel angle of the pressure belt, and a pressure roller 36 disposed between the pair of travel angle adjustment rollers.

加圧ベルト32は、循環経路が透水性ベルト2と逆回り(図1では時計回り)となるように、かつ循環速度が透水性ベルト2の搬送速度と等しくなるようにヘッドプーリ33とテールプーリ34とに掛け渡してある。   The pressure belt 32 has a head pulley 33 and a tail pulley 34 so that the circulation path is reverse to the water permeable belt 2 (clockwise in FIG. 1) and the circulation speed is equal to the conveyance speed of the water permeable belt 2. It is hung over.

一対の走行角度調整ローラ35,35は、透水性ベルト2の搬送区間において該透水性ベルトの搬送面から加圧ベルト32が所定距離だけ離間するように該加圧ベルトの走行角度を調整するようになっている。   The pair of travel angle adjusting rollers 35 and 35 adjust the travel angle of the pressure belt so that the pressure belt 32 is separated from the transport surface of the water permeable belt by a predetermined distance in the transport section of the water permeable belt 2. It has become.

加圧ベルト32は図2に示すように、内周側に配置される無端状の内周側ベルト本体37と、該内周側ベルト本体の外側に配置された加圧体38とを備えており、該加圧体は、圧縮性流体としての空気が封入された袋体60を内周側ベルト本体37の循環方向に沿って複数並設してなる。   As shown in FIG. 2, the pressure belt 32 includes an endless inner peripheral belt body 37 disposed on the inner peripheral side, and a pressurizing body 38 disposed on the outer side of the inner peripheral belt main body. The pressurizing body is formed by arranging a plurality of bag bodies 60 enclosing air as a compressive fluid along the circulation direction of the inner peripheral belt body 37.

走行角度調整ローラ35は図4に示すように、ローラ本体51をローラ取付体52に取り付け、該ローラ取付体を調整ネジ53を介して架台54に取り付けて構成してあり、かかる構成により、ローラ本体51で加圧ベルト32をその裏面から押さえて該加圧ベルトの走行角度を決定するようになっているとともに、調整ネジ53でローラ本体51の据付け高さを調整し、ひいては加圧ベルト32の押さえ位置を調整できるようになっている。   As shown in FIG. 4, the travel angle adjusting roller 35 is configured by attaching a roller body 51 to a roller attachment body 52 and attaching the roller attachment body to a mount 54 via an adjustment screw 53. The pressure belt 32 is pressed from the back surface by the main body 51 to determine the traveling angle of the pressure belt, and the installation height of the roller main body 51 is adjusted by the adjusting screw 53, and consequently the pressure belt 32. The holding position of can be adjusted.

加圧ローラ36は、コの字状フレーム55及び調整ネジ56,56を介して架台54に取り付けてあり、かかる構成により、加圧ベルト32にその裏面から圧力を載荷できるようになっているとともに、調整ネジ56,56でコの字状フレーム55の据付け高さを調整し、ひいては加圧ベルト32の圧力作用位置を調整できるようになっている。   The pressure roller 36 is attached to the gantry 54 via a U-shaped frame 55 and adjustment screws 56, 56. With this configuration, pressure can be loaded on the pressure belt 32 from the back surface thereof. The installation height of the U-shaped frame 55 is adjusted by the adjusting screws 56, 56, and the pressure acting position of the pressure belt 32 can be adjusted.

なお、本実施形態に係る掘削土砂の脱水装置1は、掘削土砂を投入するホッパー14を備えるとともに、その下方に供給フィーダとして機能するベルトコンベヤ15を配置してあり、ホッパー14に投入された掘削土砂をベルトコンベヤ15によって脱水機構1aを構成する透水性ベルト2の搬送開始位置に供給できるようになっている。   The dewatering device 1 for excavating earth and sand according to the present embodiment includes a hopper 14 that inputs the excavating earth and sand, and a belt conveyor 15 that functions as a supply feeder is disposed below the excavated earth and sand. The earth and sand can be supplied to the conveyance start position of the water-permeable belt 2 constituting the dewatering mechanism 1a by the belt conveyor 15.

本実施形態に係る掘削土砂の脱水装置1を用いて掘削土砂を脱水するには、まず、脱水の対象となる掘削土砂をホッパー14に投入する。掘削土砂は、土木建築工事において発生する含水比の高いすべての掘削土砂が対象となり、例えば泥土圧シールド工事で発生する掘削土砂が対象となる。かかる掘削土砂は、例えば上流側に設置されたベルトコンベヤから搬送されてきたものをホッパー14に投入するようにすればよい。   In order to dewater the excavated earth and sand using the excavated earth and sand dewatering apparatus 1 according to the present embodiment, first, the excavated earth and sand to be dewatered are put into the hopper 14. Excavation sediments include all excavation sediments having a high water content ratio generated in civil engineering construction work, for example, excavation sediments generated in mud pressure shield construction. As such excavated earth and sand, for example, what has been conveyed from a belt conveyor installed on the upstream side may be put into the hopper 14.

次に、ホッパー14に投入された掘削土砂をベルトコンベヤ15で移送し、搬送開始位置で透水性ベルト2に載せ替える。   Next, the excavated earth and sand thrown into the hopper 14 is transferred by the belt conveyor 15, and placed on the permeable belt 2 at the transfer start position.

次に、吸引ポンプ10を駆動して吸引部材8に形成された減圧空間の空気を引き抜く。   Next, the suction pump 10 is driven to extract the air in the decompression space formed in the suction member 8.

このようにすると、掘削土砂中の水分は、土粒子から分離して外側に排出される。そして、かかる水分は、透水性ベルト2を通過し、さらに吸引管9内を流れて排水される。   If it does in this way, the water | moisture content in excavated earth and sand will be isolate | separated from a soil particle, and will be discharged | emitted outside. Such moisture passes through the water-permeable belt 2 and further flows through the suction pipe 9 and is drained.

一方、加圧機構1bを構成する加圧ベルト32は、透水性ベルト2と同じ搬送速度で循環するとともに、搬送区間における透水性ベルト2の表面から所定距離だけ離間するように、一対の走行角度調整ローラ35,35によって走行角度を調整してある。   On the other hand, the pressure belt 32 constituting the pressure mechanism 1b circulates at the same conveyance speed as the water permeable belt 2 and a pair of traveling angles so as to be separated from the surface of the water permeable belt 2 in the conveyance section by a predetermined distance. The running angle is adjusted by the adjustment rollers 35 and 35.

そのため、図4に示すように掘削土砂57は、加圧ベルト32と透水性ベルト2との間に挟み込まれながら搬送されるとともに、搬送中、一対の走行角度調整ローラ35,35の間に配置された加圧ローラ36で加圧される。そして、掘削土砂57は、加圧機構1bによる加圧作用によって脱水が促進され、水分が除去され含水比が低下した掘削土砂は、搬送区間の終点において、図1で言えばその左側に搬出される。   Therefore, as shown in FIG. 4, the excavated earth and sand 57 is conveyed while being sandwiched between the pressure belt 32 and the water-permeable belt 2 and is disposed between the pair of travel angle adjusting rollers 35 and 35 during the conveyance. The pressure roller 36 is pressed. Then, the excavated sediment 57 is dewatered by the pressurizing action of the pressurizing mechanism 1b, and the excavated sediment with the moisture removed and the water content ratio lowered is carried out to the left side in FIG. The

ここで、加圧ベルト32は、内周側に配置される無端状の内周側ベルト本体37と、該内周側ベルト本体の外側に配置された加圧体38とで構成してなり、該加圧体は、空気が封入された袋体60を内周側ベルト本体37の循環方向に沿って複数並設してなる。   Here, the pressure belt 32 is composed of an endless inner circumferential belt body 37 disposed on the inner circumferential side, and a pressure body 38 disposed outside the inner circumferential belt body. The pressurizing body is formed by arranging a plurality of bag bodies 60 filled with air along the circulation direction of the inner peripheral belt body 37.

このようにすると、加圧ベルト32の厚さが減少する強制変形、換言すれば袋体60の高さが減少する強制変形が加圧ベルト32に作用したとき、袋体60内に封入された空気は、圧縮されて内部圧力が高くなり、その内部圧力に応じた反力が強制変形の方向と逆方向に発生する。   In this way, when forced deformation in which the thickness of the pressure belt 32 decreases, in other words, forced deformation in which the height of the bag body 60 decreases acts on the pressure belt 32, the pressure belt 32 is enclosed in the bag body 60. Air is compressed to increase the internal pressure, and a reaction force corresponding to the internal pressure is generated in the direction opposite to the direction of forced deformation.

そのため、掘削土砂の処理量が増加して透水性ベルト2上の厚みが大きくなり、加圧ベルト32の厚さが減少する強制変形が該加圧ベルトに作用すると、その強制変形の大きさに応じた大きさの反力が掘削土砂に作用する。   Therefore, when the amount of excavated sediment increases, the thickness on the water permeable belt 2 increases, and the forced deformation in which the thickness of the pressure belt 32 decreases acts on the pressure belt, the magnitude of the forced deformation is increased. A reaction force of a corresponding magnitude acts on the excavated soil.

図5は、掘削土砂57による強制変形によって加圧ベルト32に反力が生じる様子を示した図であり、同図(a)は、掘削土砂57の処理量が比較的少ないために、加圧ベルト32の反力が小さくなる場合を示し、同図(b)は、掘削土砂57の処理量が比較的多いために、加圧ベルト32の反力が大きくなる場合を示したものである。   FIG. 5 is a view showing a state in which a reaction force is generated in the pressure belt 32 due to forced deformation by the excavated earth and sand 57. FIG. 5 (a) shows the pressurization because the processing amount of the excavated earth and sand 57 is relatively small. The case where the reaction force of the belt 32 becomes small is shown, and FIG. 5B shows the case where the reaction force of the pressure belt 32 becomes large because the processing amount of the excavated earth and sand 57 is relatively large.

以上説明したように、本実施形態に係る掘削土砂の脱水装置1によれば、加圧ベルト32を内周側ベルト本体37と該内周側ベルト本体の外側に配置された加圧体38とで構成するとともに、該加圧体を、内周側ベルト本体37の循環方向に沿って該内周側ベルト本体の外側に空気が封入された袋体60を複数並設することで構成したので、加圧ベルト32の厚さが減少すればするほど、袋体60内で生じる空気圧縮の程度が大きくなって反力が増加し、かくして、掘削土砂57の処理量が増加するにつれて、該掘削土砂に作用する加圧力を増加させることが可能となる。   As described above, according to the excavated earth and sand dewatering device 1 according to the present embodiment, the pressure belt 32 includes the inner circumferential belt body 37 and the pressure body 38 disposed outside the inner circumferential belt body. Since the pressurizing body is configured by arranging a plurality of bag bodies 60 in which air is sealed outside the inner peripheral belt body along the circulation direction of the inner peripheral belt body 37. As the thickness of the pressure belt 32 decreases, the degree of air compression generated in the bag body 60 increases and the reaction force increases. Thus, as the processing amount of the excavated soil 57 increases, It is possible to increase the pressure applied to the earth and sand.

そのため、シールド工事等で掘削土砂57の処理量が日々変動し、あるいは時々刻々変動したとしても、掘削土砂57の処理量が少ない場合には(図5(a))、比較的小さな圧力が加圧ベルト32から掘削土砂57に作用し、掘削土砂57の処理量が多い場合には(図5(b))、比較的大きな圧力が加圧ベルト32から掘削土砂57に作用することとなり、掘削土砂の処理量にかかわらず、均一な脱水が可能となる。   Therefore, even if the processing amount of the excavated earth and sand 57 varies every day or changes every moment due to shield construction or the like, if the amount of the excavated earth and sand 57 is small (FIG. 5 (a)), a relatively small pressure is applied. When the pressure belt 32 acts on the excavated sediment 57 and the amount of the excavated sediment 57 is large (FIG. 5 (b)), a relatively large pressure acts on the excavated sediment 57 from the pressure belt 32. Regardless of the amount of earth and sand treated, uniform dehydration is possible.

また、本実施形態に係る掘削土砂の脱水装置1によれば、袋体60を内周側ベルト本体37の循環方向に沿って複数並設してあるため、搬送位置によって掘削土砂57の厚みが異なっても、該厚みに加圧力を追従させることが可能となり、かくして、土砂供給量等の関係で、透水性ベルト2上の掘削土砂の厚みが搬送方向に沿って不均一になる場合であっても、掘削土砂の厚みが大きい箇所ほど、より大きな加圧力を作用させることが可能となる。   Further, according to the dewatering device 1 for excavated earth and sand according to the present embodiment, since a plurality of bags 60 are arranged in parallel along the circulation direction of the inner peripheral belt body 37, the thickness of the excavated earth and sand 57 varies depending on the transport position. Even if different, it is possible to follow the applied pressure to the thickness, and thus, the thickness of the excavated sediment on the water-permeable belt 2 becomes non-uniform along the transport direction due to the supply amount of sediment. However, a greater applied pressure can be applied to the portion where the thickness of the excavated soil is larger.

本実施形態では特に言及しなかったが、図6に示すように、各袋体60がそれらの両端で挟み込まれるように、内周側ベルト本体37の両縁部に板状をなす一対の側方支圧部71,71を対向配置してなる加圧ベルト32aとしてもよい。   Although not particularly mentioned in the present embodiment, as shown in FIG. 6, a pair of sides forming a plate shape on both edges of the inner peripheral belt body 37 so that each bag 60 is sandwiched between both ends thereof. It is good also as the pressurization belt 32a formed by opposingly arranging the direction support pressure parts 71 and 71. FIG.

かかる構成によれば、加圧ベルト32aの厚さが減少する強制変形が作用したとき、各袋体60の側方への膨らみが制限されることとなり、かくして掘削土砂57に作用する加圧力を大きくすることが可能となる。   According to such a configuration, when forced deformation that reduces the thickness of the pressure belt 32a is applied, the lateral expansion of each bag 60 is limited, and thus the pressure acting on the excavated earth and sand 57 is reduced. It becomes possible to enlarge.

また、本実施形態では、各袋体60を互いに当接させながら連続配置するようにしたが、これに代えて図7に示す変形例としてもよい。   In the present embodiment, the bag bodies 60 are continuously arranged while being in contact with each other. However, instead of this, a modification example shown in FIG.

同図に示す加圧ベルト32bは、図6で説明した一対の側方支圧部71,71に加えて、内周側ベルト本体37の循環方向に沿ってかつ各袋体60の長手方向と平行になるように、板状をなす複数の中間支圧部72を内周側ベルト本体37に立設するとともに、複数の中間支圧部72のうち、互いに対向する中間支圧部72,72の間に各袋体60をそれぞれ設置してある。   The pressurizing belt 32b shown in the figure includes the pair of side support portions 71 and 71 described with reference to FIG. 6 and a longitudinal direction of each bag 60 along the circulation direction of the inner peripheral belt body 37. A plurality of intermediate bearing portions 72 having a plate shape are erected on the inner peripheral belt body 37 so as to be parallel, and among the plurality of intermediate bearing portions 72, intermediate bearing portions 72, 72 facing each other. Each bag body 60 is installed between the two.

かかる構成によれば、加圧ベルト32bの厚さが減少する強制変形が作用したとき、内周側ベルト本体37の循環方向に沿った各袋体60の膨らみが制限されることとなり、掘削土砂57に作用する加圧力は、図6に示す変形例よりもさらに大きくなる。   According to such a configuration, when forced deformation in which the thickness of the pressure belt 32b is reduced acts, the swelling of each bag body 60 along the circulation direction of the inner peripheral belt body 37 is limited, and the excavated earth and sand The pressurizing force acting on 57 becomes larger than that of the modification shown in FIG.

なお、中間支圧部72は、内周側ベルト本体37の循環方向に沿った各袋体60の膨らみを抑えることができるよう、その両端を側方支圧部71,71にそれぞれ接合することで、循環方向の曲げ剛性を高めておくのが望ましい。   The intermediate bearing portions 72 are joined to the lateral bearing portions 71 and 71 at both ends so that the bulge of each bag body 60 along the circulation direction of the inner peripheral belt body 37 can be suppressed. Therefore, it is desirable to increase the bending rigidity in the circulation direction.

一方、中間支圧部72は、側方支圧部71,71と必ずしも併用する必要はなく、該側方支圧部とは独立して設けることが可能であり、側方支圧部71,71を省略し中間支圧部72のみを設けるようにしてもかまわない。   On the other hand, the intermediate bearing part 72 is not necessarily used together with the side bearing parts 71, 71, and can be provided independently from the side bearing parts 71, 71. 71 may be omitted and only the intermediate bearing portion 72 may be provided.

また、本実施形態では、袋体60と掘削土砂57との直接的な接触によって掘削土砂への加圧を行うようにしたが、これに代えて図8に示す変形例としてもよい。   In the present embodiment, the pressure is applied to the excavated earth and sand by direct contact between the bag body 60 and the excavated earth and sand 57, but a modification shown in FIG. 8 may be used instead.

同図に示す加圧ベルト32cは、図6,7でそれぞれ説明した一対の側方支圧部71,71及び中間支圧部72に加えて、内周側ベルト本体37との間に加圧体38を挟み込む外周側ベルト本体73を該加圧体の外側に配置してなる。   The pressurizing belt 32c shown in the figure is pressed between the inner peripheral belt body 37 in addition to the pair of side support pressure portions 71 and 71 and the intermediate support pressure portion 72 described with reference to FIGS. An outer peripheral belt body 73 sandwiching the body 38 is disposed outside the pressure body.

かかる構成によれば、袋体60,60の間に掘削土砂57が入り込んで加圧作用に悪影響を与えたり、袋体60を損傷させたりするのを未然に防止することが可能となる。   According to such a configuration, it is possible to prevent the excavated earth and sand 57 from entering between the bag bodies 60 and 60 to adversely affect the pressurizing action or damage the bag body 60 in advance.

ここで、図9に示すように外周側ベルト本体73の外側に吸水体74を設けるようにしてもよい。かかる構成によれば、脱水機構1aのみならず、加圧機構1b側においても、掘削土砂の脱水を行うことが可能となる。   Here, as shown in FIG. 9, a water absorbent 74 may be provided outside the outer peripheral belt body 73. According to such a configuration, the excavated soil can be dewatered not only on the dewatering mechanism 1a but also on the pressurizing mechanism 1b side.

また、本実施形態では特に言及しなかったが、本発明に係る掘削土砂の脱水装置をベルトコンベヤとして用いてもかまわない。この場合、要求される搬送距離に応じて透水性ベルト2及び加圧ベルト32の長さを適宜調整すればよい。   Although not particularly mentioned in the present embodiment, the excavated earth and sand dewatering device according to the present invention may be used as a belt conveyor. In this case, the lengths of the water-permeable belt 2 and the pressure belt 32 may be appropriately adjusted according to the required transport distance.

これに関連して、本発明に係る掘削土砂の脱水装置の使用の形態としては、ベルトコンベヤとして、他のベルトコンベヤとともに連続ベルコンを構成する、掘削土砂の脱水装置として、ベルトコンベヤ間に適宜配置する、据置型の掘削土砂の脱水装置としてプラント内に設置するといった使用形態が考えられる。   In this connection, as a form of use of the excavation earth and sand dewatering device according to the present invention, as a belt conveyor, as a dewatering device for excavated earth and sand that constitutes a continuous bellcon with other belt conveyors, it is appropriately disposed between the belt conveyors. In other words, it is conceivable to use it as a stationary type dewatering device for excavated soil.

本実施形態に係る脱水装置1の全体図。1 is an overall view of a dehydrating apparatus 1 according to the present embodiment. 詳細図であり、(a)は搬送方向(循環方向)に直交する透水性ベルト2及び加圧ベルト32の断面図、(b)はA−A線に沿う断面図。It is detail drawing, (a) is sectional drawing of the water-permeable belt 2 and the pressure belt 32 orthogonal to a conveyance direction (circulation direction), (b) is sectional drawing which follows an AA line. 図2のB−B線に沿う断面図。Sectional drawing which follows the BB line of FIG. 走行角度調整ローラ35及び加圧ローラ36を示した詳細図。FIG. 3 is a detailed view showing a running angle adjustment roller 35 and a pressure roller 36. 本実施形態に係る脱水装置1の作用を示した図。The figure which showed the effect | action of the dehydration apparatus 1 which concerns on this embodiment. 変形例に係る加圧ベルト32aを示した詳細断面図。The detailed sectional view showing pressure belt 32a concerning a modification. 変形例に係る加圧体ベルト32bを示した詳細断面図。The detailed sectional view showing pressurization belt 32b concerning a modification. 変形例に係る加圧体ベルト32cを示した詳細断面図。The detailed sectional view showing pressurization belt 32c concerning a modification. 吸水体74を示した詳細断面図。FIG. 7 is a detailed cross-sectional view showing a water absorbing body 74.

符号の説明Explanation of symbols

1 掘削土砂の脱水装置
1a 脱水機構
1b 加圧機構
2 透水性ベルト
4 ヘッドプーリ(第1のヘッドプーリ)
5 テールプーリ(第1のテールプーリ)
8 吸引部材
9 吸引管
10 吸引ポンプ
12 吸引機構
32,32a,32b,32c 加圧ベルト
33 ヘッドプーリ(第2のヘッドプーリ)
34 テールプーリ(第2のテールプーリ)
35 走行角度調整ローラ
36 加圧ローラ
37 内周側ベルト本体
38 加圧体
52 反力部材
60 袋体
71 側方支圧部
72 中間支圧部
73 外周側ベルト本体
74 吸水体
DESCRIPTION OF SYMBOLS 1 Excavating earth and sand dewatering device 1a Dewatering mechanism 1b Pressurizing mechanism 2 Permeable belt 4 Head pulley (first head pulley)
5 Tail pulley (first tail pulley)
8 Suction member 9 Suction tube 10 Suction pump 12 Suction mechanism 32, 32a, 32b, 32c Pressure belt 33 Head pulley (second head pulley)
34 Tail pulley (second tail pulley)
35 Traveling angle adjustment roller 36 Pressure roller 37 Inner circumference side belt main body 38 Pressure body 52 Reaction force member 60 Bag body 71 Side support part 72 Intermediate support part 73 Outer side belt body 74 Water absorbing body

Claims (6)

第1のヘッドプーリと第1のテールプーリとに掛け渡された無端状をなす透水性ベルトと、該透水性ベルトの搬送区間においてその上に載置された掘削土砂中の水分を前記透水性ベルトを介して吸引除去する吸引機構とからなる脱水機構と、
前記脱水機構の上方に配置され循環経路が前記透水性ベルトの循環経路と逆回りとなるようにかつ循環速度が前記透水性ベルトの搬送速度と等しくなるように第2のヘッドプーリと第2のテールプーリとに掛け渡された無端状をなす加圧ベルトと、該加圧ベルトの裏面側に配置された加圧ローラとからなる加圧機構とを備え、
前記加圧ベルトを、内周側に配置される無端状の内周側ベルト本体と、該内周側ベルト本体の外側に配置された加圧体とで構成してなり、該加圧体は、圧縮性流体が封入された袋体を前記内周側ベルト本体の循環方向に沿って複数並設してなることを特徴とする掘削土砂の脱水装置。
An endless permeable belt stretched between a first head pulley and a first tail pulley, and moisture in excavated earth and sand placed thereon in a conveyance section of the permeable belt. A dehydration mechanism comprising a suction mechanism for suction and removal via
The second head pulley and the second pulley are arranged above the dewatering mechanism so that the circulation path is opposite to the circulation path of the water-permeable belt and the circulation speed is equal to the conveyance speed of the water-permeable belt. A pressure belt comprising an endless pressure belt stretched over a tail pulley, and a pressure roller disposed on the back side of the pressure belt;
The pressure belt is composed of an endless inner circumferential belt body disposed on the inner circumferential side and a pressure body disposed on the outer side of the inner circumferential belt body. A dewatering device for excavated earth and sand, comprising a plurality of bags enclosing a compressive fluid arranged side by side along the circulation direction of the inner peripheral belt body.
一対の側方支圧部を前記各袋体が両端で挟み込まれるように前記内周側ベルト本体の両縁部に対向配置した請求項1記載の掘削土砂の脱水装置。 The dewatering device for excavated earth and sand according to claim 1, wherein a pair of side support portions are disposed opposite to both edge portions of the inner peripheral belt body so that each bag is sandwiched between both ends. 前記内周側ベルト本体の循環方向に沿ってかつ前記各袋体の長手方向と平行になるように複数の中間支圧部を所定ピッチで前記内周側ベルト本体に立設するとともに、前記複数の中間支圧部のうち、互いに対向する中間支圧部の間に前記各袋体をそれぞれ設置した請求項1記載の掘削土砂の脱水装置。 A plurality of intermediate bearing portions are erected at a predetermined pitch along the circulation direction of the inner peripheral belt main body and parallel to the longitudinal direction of the bags, and the plural The dewatering device for excavated earth and sand according to claim 1, wherein each of the bags is installed between the intermediate bearing portions facing each other. 前記内周側ベルト本体との間に前記加圧体を挟み込む外周側ベルト本体を該加圧体の外側に配置した請求項1乃至請求項3のいずれか一記載の掘削土砂の脱水装置。 The dewatering device for excavated earth and sand according to any one of claims 1 to 3, wherein an outer peripheral side belt main body sandwiching the pressurizing body between the inner peripheral side belt main body and the outer peripheral side pressurizing body is disposed. 前記外周側ベルト本体の外側に吸水体を設けた請求項4記載の掘削土砂の脱水装置。 The excavation earth and sand dewatering device according to claim 4, wherein a water absorbing body is provided outside the outer peripheral belt body. 前記透水性ベルトの裏側に該透水性ベルトの裏面と摺動自在になるように反力部材を配置した請求項1乃至請求項5のいずれか一記載の掘削土砂の脱水装置。 The dewatering device for excavated earth and sand according to any one of claims 1 to 5, wherein a reaction force member is disposed on the back side of the water-permeable belt so as to be slidable with the back surface of the water-permeable belt.
JP2007168573A 2007-06-27 2007-06-27 Dewatering device for excavated soil sand Withdrawn JP2009006340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168573A JP2009006340A (en) 2007-06-27 2007-06-27 Dewatering device for excavated soil sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168573A JP2009006340A (en) 2007-06-27 2007-06-27 Dewatering device for excavated soil sand

Publications (1)

Publication Number Publication Date
JP2009006340A true JP2009006340A (en) 2009-01-15

Family

ID=40321982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168573A Withdrawn JP2009006340A (en) 2007-06-27 2007-06-27 Dewatering device for excavated soil sand

Country Status (1)

Country Link
JP (1) JP2009006340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106121672A (en) * 2016-08-31 2016-11-16 中国铁建重工集团有限公司 Dregs conveyer device and tunneler for tunneler
JP6210259B1 (en) * 2017-04-18 2017-10-11 公信 山▲崎▼ Soil purification system and soil purification method
JP6222536B1 (en) * 2017-04-18 2017-11-01 公信 山▲崎▼ Soil purification system and soil purification method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106121672A (en) * 2016-08-31 2016-11-16 中国铁建重工集团有限公司 Dregs conveyer device and tunneler for tunneler
JP6210259B1 (en) * 2017-04-18 2017-10-11 公信 山▲崎▼ Soil purification system and soil purification method
JP6222536B1 (en) * 2017-04-18 2017-11-01 公信 山▲崎▼ Soil purification system and soil purification method
JP2018176152A (en) * 2017-04-18 2018-11-15 公信 山▲崎▼ Soil remediation system and soil remediation method
JP2018176149A (en) * 2017-04-18 2018-11-15 公信 山▲崎▼ Soil remediation system and soil remediation method

Similar Documents

Publication Publication Date Title
US4655916A (en) Mobile sludge handling apparatus
JP2009006340A (en) Dewatering device for excavated soil sand
US20120061212A1 (en) Pipe conveyors
JP2010104892A (en) Solid-liquid separator, filter equipment and solid-liquid separation method
CN205241482U (en) Belt filter press
CN103101714A (en) Belt type conveyor
JP2008296193A (en) Apparatus for dehydrating excavated earth and sand
EP2656969B1 (en) Grinding station for machining at least one concrete block to be glued.
KR20070081993A (en) Electroosmotic dehydrator
CN102556586B (en) Balance chain link for dry coal extrusion pump
JP5223324B2 (en) Drilling earth and sand dewatering equipment
KR101194931B1 (en) Dehydrating apparatus of contaminated soil using horizontal vacuum belt filter
KR100358860B1 (en) A dehydrator for sludge
JPH02138007A (en) Dehydrating and pressurizing vertical belt conveyer
JP2008200638A (en) Dewatering apparatus
JP3123688U (en) Belt conveyor device for high water content mud.
JP2006334524A (en) Belt-type deliquoring apparatus
JP4919351B2 (en) Dehydrator
KR950001025Y1 (en) Sullage dehydration apparatus
JPH0322361Y2 (en)
CN217774771U (en) Drier material advancing device for innocent treatment
KR100461982B1 (en) The conveyor system which uses link chain
JPH0769412A (en) Dehydration-type belt conveyer
EA038231B1 (en) Magnetic seal for conveyor belt assembly
KR101167132B1 (en) Apparatus for removing water of belt conveyor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907