JP2009004303A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009004303A
JP2009004303A JP2007166214A JP2007166214A JP2009004303A JP 2009004303 A JP2009004303 A JP 2009004303A JP 2007166214 A JP2007166214 A JP 2007166214A JP 2007166214 A JP2007166214 A JP 2007166214A JP 2009004303 A JP2009004303 A JP 2009004303A
Authority
JP
Japan
Prior art keywords
tape
layer
electrolyte secondary
secondary battery
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166214A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ariga
稔之 有賀
Masataka Atsugi
正孝 厚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007166214A priority Critical patent/JP2009004303A/en
Publication of JP2009004303A publication Critical patent/JP2009004303A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is strong against an external impact such as falling and vibration and is suppressed in variations in thickness and impedance. <P>SOLUTION: The nonaqueous electrolyte secondary battery has a battery element in which a positive electrode plate and a negative electrode plate are laminated and wound around through a separator housed in an outer package. The battery element is wound, fixed, and covered by a tape 1 including a thermosetting resin layer 1a on a substrate layer 1b, and then, the thermosetting resin is cured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は非水電解質二次電池に関し、特に耐衝撃性に優れた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery excellent in impact resistance.

近年、携帯電話やパーソナルコンピュータなどの小型電子機器の電源としてリチウムイオン電池などの非水電解質二次電池が用いられている。最近では非水電解質二次電池の用途が電動アシスト自転車、電動工具の電源などに拡大するのに伴い、衝撃、振動等に強い非水電解質二次電池が望まれてきている。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion batteries have been used as power sources for small electronic devices such as mobile phones and personal computers. Recently, as the use of non-aqueous electrolyte secondary batteries has expanded to power assist bicycles, power sources for electric tools, etc., non-aqueous electrolyte secondary batteries that are resistant to shock, vibration, and the like have been desired.

非水電解質二次電池は、一般にコバルト酸リチウム、スピネル型マンガン酸リチウム等の正極活物質を、それぞれ単独に、或いはこれらを混合して結着剤とともに正極集電体に形成された正極板と、一般に炭素材料等の負極活物質を結着剤とともに負極集電体に形成された負極板とをセパレータを介して積層し、捲回させた構造(ジェリーロール構造)の電池素子を粘着テープによって捲き止めして、電池缶あるいは、ラミネートフィルム等に入れて封止し、非水電解液を注入して非水電解質二次電池を作製していた。   A non-aqueous electrolyte secondary battery generally includes positive electrode active materials such as lithium cobaltate and spinel type lithium manganate, each of which is used alone or in combination, and formed into a positive electrode current collector together with a binder. In general, a negative electrode active material such as a carbon material and a negative electrode plate formed on a negative electrode current collector together with a binder are laminated via a separator, and a battery element having a wound structure (jelly roll structure) is bonded with an adhesive tape. The non-aqueous electrolyte secondary battery was manufactured by pouring, sealing in a battery can or a laminate film, and injecting a non-aqueous electrolyte.

また、電池の落下時においても最外周の電極に亀裂が生じないよう粘着テープの周縁部に粘着剤の未塗布部を形成した電池が特許文献1で提案されている。また、耐熱性の粘着テープを用いた電池が特許文献2で提案されている。さらに、正極板端部に粘着剤が熱硬化性である絶縁性粘着テープを貼付し、最外周の負極板に絶縁性粘着テープを捲回して固定した電池が特許文献3で提案されている。   Further, Patent Document 1 proposes a battery in which an adhesive-unapplied part is formed on the peripheral part of an adhesive tape so that the outermost electrode is not cracked even when the battery is dropped. In addition, Patent Document 2 proposes a battery using a heat-resistant adhesive tape. Further, Patent Document 3 proposes a battery in which an insulating adhesive tape whose adhesive is thermosetting is attached to the end of the positive electrode plate, and the insulating adhesive tape is wound and fixed to the outermost negative electrode plate.

特開2005−243336号公報JP 2005-243336 A 特開2007−73317号公報JP 2007-73317 A 特開2003−168470号公報JP 2003-168470 A

従来の非水電解質二次電池においては電池素子を捲回した後、粘着性のテープで捲き止めを行っているが、これは電池素子が解けることを防止するためのものであった。このような電池素子を粘着テープで捲き止めし電池缶に収納した、従来の非水電解質二次電池に対してより厳しい落下試験や振動試験を繰り返し行なった場合には電池素子の正極板、負極板、セパレータがずれてくる場合があり、極端な場合には内部短絡等の電気的不具合を生じることがあった。   In the conventional non-aqueous electrolyte secondary battery, the battery element is wound and then wound with an adhesive tape to prevent the battery element from being unwound. In the case where a more severe drop test or vibration test is repeatedly performed on a conventional non-aqueous electrolyte secondary battery in which such a battery element is wound with an adhesive tape and stored in a battery can, the positive electrode plate and the negative electrode of the battery element There are cases where the plate and the separator are displaced. In extreme cases, an electrical failure such as an internal short circuit may occur.

本発明の課題は、非水電解質二次電池が組み込まれている携帯機器等に対し、落下や振動等の耐衝撃性を高め、且つ非水電解質二次電池の厚みやインピーダンスのバラツキを小さくした信頼性の高い非水電解質二次電池を提供することにある。   An object of the present invention is to improve impact resistance such as dropping or vibration with respect to a portable device or the like in which a nonaqueous electrolyte secondary battery is incorporated, and to reduce variations in thickness and impedance of the nonaqueous electrolyte secondary battery. The object is to provide a highly reliable non-aqueous electrolyte secondary battery.

本発明は、正極板、負極板、セパレータを捲回したジェリーロールからなる電池素子の捲き止めテープに熱硬化性樹脂層を含むテープを使用し、製造工程内で熱硬化性樹脂を硬化させることにより、テープ自身がプラスチック製のケースとなるインナーパックの働きを兼ね、外部衝撃強度が従来と比較して高く且つ、初期充電時等にて、電池内部でおこる電解液の分解等に由来するジェリーロールの歪みを制止することにより、従来に比べセルの厚みのバラツキを抑制し、さらに電極間距離を広がらせないためインピーダンスの上昇を抑え、インピーダンスのバラツキを抑制することを見出した結果なされたものである。   The present invention uses a tape including a thermosetting resin layer as a battery element winding tape composed of a positive electrode plate, a negative electrode plate, and a jelly roll wound with a separator, and cures the thermosetting resin within the manufacturing process. The jelly also serves as an inner pack in which the tape itself becomes a plastic case, has a higher external impact strength than the conventional one, and is derived from the decomposition of the electrolyte that occurs inside the battery during initial charging, etc. As a result of finding that by suppressing roll distortion, variation in cell thickness is suppressed compared to the conventional case, and further, the increase in impedance is suppressed because the distance between electrodes is not increased, thereby suppressing variation in impedance. It is.

本発明の非水電解質二次電池は、正極板と負極板とをセパレータを介して積層し捲回した電池素子を、外装体に収納した非水電解質二次電池において、前記電池素子を熱硬化性樹脂層を含むテープにより捲き止め、覆い、その後熱硬化性樹脂を硬化させたことを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery in which a battery element obtained by laminating and winding a positive electrode plate and a negative electrode plate via a separator is housed in an exterior body. It is characterized in that it is stopped and covered with a tape containing a curable resin layer, and then a thermosetting resin is cured.

また、前記テープが熱硬化性樹脂層からなる粘着層と基材層との2層構造を有していてもよいし、前記テープが基材層と熱硬化性樹脂層と粘着層との3層構造を有していてもよいし、前記テープが熱硬化性樹脂層からなる基材層と粘着層との2層構造を有していてもよいし、前記テープが熱硬化性樹脂層からなる基材層と熱硬化性樹脂層からなる粘着層との2層構造を有していてもよいし、前記テープが熱硬化性樹脂層からなっていてもよい。さらに前記熱硬化性樹脂層が、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、またはケイ素樹脂の少なくとも1種を含むことが好ましい。   Further, the tape may have a two-layer structure of an adhesive layer made of a thermosetting resin layer and a base material layer, or the tape may be composed of a base material layer, a thermosetting resin layer, and an adhesive layer. It may have a layer structure, the tape may have a two-layer structure of a base material layer made of a thermosetting resin layer and an adhesive layer, or the tape may be made of a thermosetting resin layer. It may have a two-layer structure of a base material layer and an adhesive layer made of a thermosetting resin layer, or the tape may be made of a thermosetting resin layer. Furthermore, it is preferable that the thermosetting resin layer contains at least one of urea resin, phenol resin, melamine resin, epoxy resin, or silicon resin.

本発明によれば、ジェリーロールの捲き止めテープに熱硬化性樹脂層を含むテープを使用し、電池素子を覆い、工程内で硬化させることにより非水電解質二次電池の耐衝撃性を高め、厚みやインピーダンスのバラツキを抑えることができる。   According to the present invention, a tape including a thermosetting resin layer is used as a jelly roll squeezing tape, covering a battery element, and enhancing the impact resistance of the nonaqueous electrolyte secondary battery by curing in the process, Variations in thickness and impedance can be suppressed.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

まず、本発明に使用する電池素子の捲き止め用のテープについて説明する。図1は本発明の第一の実施の形態の非水電解質二次電池に使用するテープの側面図である。電池素子の捲回構造(ジェリーロール構造)を保持するための捲き止めテープは図1に示すように熱硬化性樹脂層1aと基材層1bから構成される。基材層1bにはポリフェニレンサルファイド(以下PPSと表す)、ポリイミド、ポリプロピレン(PP)などが使用できる。熱硬化性樹脂層1aには尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びケイ素樹脂などが使用できる。本発明の第一の実施の形態の非水電解質二次電池に使用するテープにおいては基材層1bに熱硬化性樹脂層1aを塗布等により形成することができる。熱硬化性樹脂層1aはテープの粘着層として捲回後の電池素子を保持する。   First, a battery element tape for use in the present invention will be described. FIG. 1 is a side view of a tape used in the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention. As shown in FIG. 1, a wrapping tape for holding a wound structure (jelly roll structure) of a battery element is composed of a thermosetting resin layer 1a and a base material layer 1b. For the substrate layer 1b, polyphenylene sulfide (hereinafter referred to as PPS), polyimide, polypropylene (PP), or the like can be used. For the thermosetting resin layer 1a, urea resin, phenol resin, melamine resin, epoxy resin, silicon resin and the like can be used. In the tape used for the nonaqueous electrolyte secondary battery of the first embodiment of the present invention, the thermosetting resin layer 1a can be formed on the base material layer 1b by coating or the like. The thermosetting resin layer 1a holds the battery element after winding as an adhesive layer of the tape.

次に、本発明の第二の実施の形態の非水電解質二次電池に使用するテープについて説明する。捲き止めのためのテープは基材層と熱硬化性樹脂層と粘着層との3層構造を有する。基材層、および熱硬化性樹脂層には第一の実施の形態と同様にそれぞれPPS、ポリイミド、PPおよび尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びケイ素樹脂などが使用できる。さらに熱硬化性樹脂層上に粘着層としてはアクリル系、熱硬化型ゴム系などの粘着剤が使用できる。第二の実施の形態においては、粘着力の弱い熱硬化性樹脂層を用いた場合にも捲き止めすることができる。   Next, the tape used for the nonaqueous electrolyte secondary battery according to the second embodiment of the present invention will be described. A tape for scratching has a three-layer structure of a base material layer, a thermosetting resin layer, and an adhesive layer. As in the first embodiment, PPS, polyimide, PP and urea resin, phenol resin, melamine resin, epoxy resin, and silicon resin can be used for the base material layer and the thermosetting resin layer, respectively. Further, an acrylic or thermosetting rubber adhesive can be used as the adhesive layer on the thermosetting resin layer. In the second embodiment, even when a thermosetting resin layer having a weak adhesive force is used, it can be scratched.

次に、本発明の第三の実施の形態の非水電解質二次電池に使用するテープについて説明する。捲き止めのためのテープは熱硬化性樹脂層からなる基材層と粘着層との2層構造を有する。基材層には尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びケイ素樹脂などが、粘着層にはアクリル系、熱硬化型ゴム系などの粘着剤が使用できる。第三の実施の形態においては、熱硬化性樹脂層がテープとしての引っ張り強度等を持つ場合には基材層として使用でき粘着層を熱硬化性樹脂層上に形成することにより捲き止めテープとすることができる。第三の実施の形態においては熱硬化性樹脂層が基材層となるので熱硬化性樹脂層をより厚くして捲き止めすることができる。   Next, the tape used for the nonaqueous electrolyte secondary battery according to the third embodiment of the present invention will be described. The tape for squeezing has a two-layer structure of a base material layer made of a thermosetting resin layer and an adhesive layer. A urea resin, a phenol resin, a melamine resin, an epoxy resin, a silicon resin, or the like can be used for the base material layer, and an acrylic or thermosetting rubber adhesive can be used for the adhesive layer. In the third embodiment, when the thermosetting resin layer has a tensile strength as a tape, it can be used as a base material layer, and by forming an adhesive layer on the thermosetting resin layer, can do. In the third embodiment, since the thermosetting resin layer becomes the base material layer, the thermosetting resin layer can be made thicker and stopped.

次に、本発明の第四の実施の形態の非水電解質二次電池に使用するテープについて説明する。捲き止めのためのテープは熱硬化性樹脂層からなる基材層と熱硬化性樹脂層からなる粘着層との2層構造を有する。基材層、および粘着層にはそれぞれ尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びケイ素樹脂などが使用できる。第四の実施の形態においては、テープとしての引っ張り強度等を持つ熱硬化性樹脂層を基材層とし、粘着性を持つ熱硬化性樹脂層を粘着層とした2層構造に形成することにより捲き止めテープとすることができ、基材層および粘着層が熱硬化性樹脂層からなるので熱硬化性樹脂層をさらに厚くして捲き止めすることができる。   Next, the tape used for the nonaqueous electrolyte secondary battery according to the fourth embodiment of the present invention will be described. The tape for scratching has a two-layer structure of a base material layer made of a thermosetting resin layer and an adhesive layer made of a thermosetting resin layer. For the base material layer and the adhesive layer, urea resin, phenol resin, melamine resin, epoxy resin, silicon resin and the like can be used, respectively. In the fourth embodiment, by forming a two-layer structure using a thermosetting resin layer having a tensile strength as a tape as a base material layer and an adhesive thermosetting resin layer as an adhesive layer. It can be set as a whip-stopping tape, and since the base material layer and the adhesive layer are made of a thermosetting resin layer, the thermosetting resin layer can be further thickened to be whispered.

次に、本発明の第五の実施の形態の非水電解質二次電池に使用するテープについて説明する。捲き止めのためのテープは熱硬化性樹脂層からなる。熱硬化性樹脂層には尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、及びケイ素樹脂などが使用できる。第四の実施の形態においては、熱硬化性樹脂層のみで粘着性を持つテープとすることができ、熱硬化性樹脂層のみで捲き止めすることができる。例えばエポキシ樹脂からなるテープとしては住友スリーエム社のスーパーエポキシテープ1520、タイコエレクトロニクスレイケム社のテープ状接着剤S−1255−02などがある。   Next, the tape used for the nonaqueous electrolyte secondary battery according to the fifth embodiment of the present invention will be described. The tape for scratching consists of a thermosetting resin layer. For the thermosetting resin layer, urea resin, phenol resin, melamine resin, epoxy resin, silicon resin and the like can be used. In the fourth embodiment, it is possible to obtain a tape having adhesiveness only by the thermosetting resin layer, and it is possible to stop by only the thermosetting resin layer. For example, as a tape made of an epoxy resin, there are SUPER-EPOXY TAPE 1520 manufactured by Sumitomo 3M Co., and tape-shaped adhesive S-1255-02 manufactured by Tyco Electronics Raychem Co.

次に、本発明の非水電解質二次電池について説明する。本発明の非水電解質二次電池に使用する正極板、負極板、セパレータは従来と同様のものが使用できる。すなわち、正極板はLiCoO2等からなる正極活物質、導電助剤、PVdF等からなるバインダーを混合しNMP(N−メチル−2−ピロリドン)に分散させてスラリー状にしたものをアルミ箔からなる正極集電体の両面上に塗布し乾燥させて作製したものであり、負極板はLiイオンが層間に挿入、脱離(インターカレート・デインターカレート)できる炭素等からなる負極活物質、導電助剤、バインダーを混合しNMPに分散させてスラリー状にしたものを銅箔からなる負極集電体上の両面に塗布し乾燥させて作製したものである。この正極板と負極板にそれぞれ電極端子を接続し、イオン透過性のあるセパレータを介して積層し捲回して電池素子を作製する。 Next, the nonaqueous electrolyte secondary battery of the present invention will be described. The positive electrode plate, the negative electrode plate, and the separator used in the nonaqueous electrolyte secondary battery of the present invention can be the same as conventional ones. That is, the positive electrode plate is made of an aluminum foil by mixing a positive electrode active material made of LiCoO 2 or the like, a conductive aid, a binder made of PVdF or the like and dispersing it in NMP (N-methyl-2-pyrrolidone) to form a slurry. The negative electrode plate is produced by applying and drying on both surfaces of the positive electrode current collector, and the negative electrode plate is made of carbon or the like that can insert and desorb (intercalate / deintercalate) Li ions between layers, A conductive auxiliary agent and a binder mixed together and dispersed in NMP to form a slurry were applied to both surfaces of a negative electrode current collector made of copper foil and dried. An electrode terminal is connected to each of the positive electrode plate and the negative electrode plate, stacked via a separator having ion permeability, and wound to produce a battery element.

図2は、本発明の非水電解質二次電池の途中工程を示す正面図である。上記のようにして電極端子4が引き出されて捲回された電池素子2の電極板終端部5をテープ1により捲き止めを行う。ここでテープ1は捲き止めを行うとともにテープ自体が硬化後に電池素子2を固定するために捲き止め部のみならず電池素子2の側面の少なくとも2/3以上、好ましくは3/4以上の大部分を覆うことが望ましい。この時、電極板終端部5と、テープ1の捲き止めによる端部は重ならずにテープ1により確実に電極板終端部5を覆っておく必要がある。また熱硬化性樹脂層の厚さについて、層を厚くすればより強度の高い電池素子が作製できるが、逆にその分体積エネルギー密度が下がる。従って、基材層、粘着層を含めたテープの厚さについては従来と同等程度であることが好ましい。さらに、電池缶に挿入する場合等に電池素子2の電極端子4の引出し部と反対側の電池素子の底部を保護するために底部保護用テープ3で底部を覆うこともできる。   FIG. 2 is a front view showing an intermediate step of the nonaqueous electrolyte secondary battery of the present invention. The electrode plate terminal portion 5 of the battery element 2 in which the electrode terminal 4 is drawn out and wound as described above is wound with the tape 1. Here, the tape 1 is not only scratched but also fixed at least 2/3, preferably not less than 3/4 of the side surface of the battery element 2 as well as the scratching portion in order to fix the battery element 2 after the tape is cured. It is desirable to cover. At this time, it is necessary to cover the electrode plate end portion 5 with the tape 1 without overlapping the electrode plate end portion 5 and the end portion of the tape 1 due to squeezing. Further, regarding the thickness of the thermosetting resin layer, a thicker battery element can be produced, but conversely, the volume energy density is lowered accordingly. Therefore, it is preferable that the thickness of the tape including the base material layer and the adhesive layer is about the same as that of the conventional tape. Furthermore, the bottom portion can be covered with a bottom protective tape 3 in order to protect the bottom portion of the battery element opposite to the lead-out portion of the electrode terminal 4 of the battery element 2 when inserted into the battery can.

テープにより捲き止めを行った電池素子を電池缶に挿入したり、ラミネートフィルムに収納することにより外装した後、加熱等により熱硬化性樹脂を硬化させる。加熱の温度については、電池性能を低下させることの無い温度、例えば、セパレータに影響を及ぼすことの無い温度で加熱し、時間はその温度において樹脂が熱硬化するに十分な時間であればよい。その後電解液を注入し、注入口を封口して非水電解質二次電池の組み立てを完成させる。その後充放電を行い非水電解質二次電池を完成させる。   The battery element that has been squeezed with tape is inserted into a battery can or packaged by being housed in a laminate film, and then the thermosetting resin is cured by heating or the like. As for the heating temperature, heating is performed at a temperature that does not deteriorate the battery performance, for example, a temperature that does not affect the separator, and the time may be a time sufficient for the resin to thermoset at that temperature. Thereafter, an electrolytic solution is injected, and the inlet is sealed to complete the assembly of the nonaqueous electrolyte secondary battery. Thereafter, charge and discharge are performed to complete the nonaqueous electrolyte secondary battery.

以下、本発明を実施例に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

(実施例1)
アルミ箔上にLiCoO2を正極活物質として形成した正極板と、銅箔上に黒鉛を負極活物質として形成した負極板をセパレータを介して積層し捲回して縦:39mm、横:33mm、厚さ:3.7mmの電池素子を作製した。
(Example 1)
A positive electrode plate formed with LiCoO 2 as a positive electrode active material on an aluminum foil, and a negative electrode plate formed with graphite as a negative electrode active material on a copper foil were laminated via a separator and wound, and length: 39 mm, width: 33 mm, thickness S: A 3.7 mm battery element was produced.

次に、テープについて説明する。縦:36mm、横:68mm、厚さ:12μmのPPS基材層上に1液型熱硬化性エポキシ樹脂からなる粘着層を28μm塗布し(仕上がりのテープ厚40μm)、粘着力が180度引き剥がし法にて0.078以上(N/25mm)のものを作製し捲き止めのためのテープとした。また、同様に縦:8mm、横:約37mm、厚さ12μmのPPS基材層上に1液型熱硬化性エポキシ樹脂からなる粘着層を塗布して底部保護用テープを作製した。   Next, the tape will be described. 28μm of adhesive layer made of one-component thermosetting epoxy resin is applied on the PPS base material layer of length: 36mm, width: 68mm, thickness: 12μm (finished tape thickness is 40μm), and the adhesive strength is peeled off 180 degrees A tape having a thickness of 0.078 or more (N / 25 mm) was prepared by a method and used as a tape for squeezing. Similarly, an adhesive layer made of a one-component thermosetting epoxy resin was applied on a PPS substrate layer having a length of 8 mm, a width of about 37 mm, and a thickness of 12 μm to prepare a bottom protective tape.

次に、図2を参照してテープの捲き止めについて説明する。捲き止め用テープ1により電池素子2の電極板終端部5を捲き止めしさらに電池素子の側面部を中央部を除いてほぼ1周に亘り覆った。また、電池素子2の底面部に底部保護用テープ3を貼り付けた。その後、電池素子を成形し、乾燥すると同時にエポキシ樹脂層を硬化させるために110℃−5時間一定の厚さにして乾燥させた。その後ラミネートフィルムに収納し、電解液を注液して非水電解質二次電池とした。   Next, referring to FIG. 2, the tape stoppage will be described. The electrode plate terminal portion 5 of the battery element 2 was wound with the squeezing tape 1 and the side surface of the battery element was covered over almost one turn except for the central part. Further, a bottom protective tape 3 was attached to the bottom surface of the battery element 2. Thereafter, the battery element was molded and dried, and at the same time, the epoxy resin layer was dried at a constant thickness of 110 ° C. for 5 hours in order to cure. Then, it was housed in a laminate film, and an electrolyte solution was poured into a nonaqueous electrolyte secondary battery.

(比較例1)
テープとしてそれぞれ縦:36mm、横:68mm、厚さ:12μm、縦:8mm、横:37mm、厚さ:12μmのPPS基材層上にアクリル系樹脂からなる粘着層を28μm塗布し、粘着力が180度引き剥がし法にて0.078以上(N/25mm)のものを作製し捲き止めのためのテープおよび底部保護用テープとした。実施例1と同様に作製した電池素子に捲き止めのためのテープおよび底部保護用テープを貼り付けた後、電池素子を成形し、乾燥するため110℃−5時間一定の厚さにして乾燥させた。その後、ラミネートフィルムに収納し、電解液を注液して非水電解質二次電池とした。
(Comparative Example 1)
Each tape was coated with 28 μm of an adhesive layer made of an acrylic resin on a PPS substrate layer of length: 36 mm, width: 68 mm, thickness: 12 μm, length: 8 mm, width: 37 mm, thickness: 12 μm. A tape of 0.078 or more (N / 25 mm) was produced by a 180-degree peeling method, and used as a tape for scratching and a tape for protecting the bottom. After affixing a tape for scratching and a tape for protecting the bottom to the battery element produced in the same manner as in Example 1, the battery element was molded and dried at a constant thickness of 110 ° C. for 5 hours for drying. It was. Then, it accommodated in the laminate film and inject | poured electrolyte solution, it was set as the nonaqueous electrolyte secondary battery.

(評価1)厚み測定
実施例1並びに比較例1で得られた非水電解質二次電池の初期充放電後50%充電時の電池中央の最厚部の厚みの測定を行った。図3に、実施例1並びに比較例1の各275個の最厚部測定結果を電池の厚みの上限規格からの差分として示した。図3から非水電解質二次電池の初期充電後の最厚部は実施例1の方が比較例1よりバラツキが少なくなったことが分かる。なお実施例1ではCp(工程能力)=3.481、σ(標準偏差)=0.010、比較例1ではCp=1.726、σ=0.017であった。これは初期充電に主におこる電解液の分解などにより内部でガス化し、ジェリーロールが歪むことによって電極間距離が広がる。その結果、電池が膨らむと考えられるが、熱硬化性樹脂層を有するテープを使用した場合は電極間距離の広がりを抑制できるので、実施例1の方が比較例1よりもバラツキを減らすことができたと考えられる。
(Evaluation 1) Thickness Measurement The thickness of the thickest part at the center of the battery at the time of 50% charge after the initial charge / discharge of the nonaqueous electrolyte secondary battery obtained in Example 1 and Comparative Example 1 was measured. FIG. 3 shows the measurement results of the 275 thickest portions in Example 1 and Comparative Example 1 as differences from the upper limit specification of the battery thickness. As can be seen from FIG. 3, the thickness of the thickest portion of the nonaqueous electrolyte secondary battery after the initial charge is less varied in Example 1 than in Comparative Example 1. In Example 1, Cp (process capability) = 3.481 and σ (standard deviation) = 0.010, and in Comparative Example 1, Cp = 1.726 and σ = 0.177. This is gasified internally by the decomposition of the electrolyte mainly occurring in the initial charging, and the distance between the electrodes is widened by distorting the jelly roll. As a result, it is considered that the battery swells. However, when a tape having a thermosetting resin layer is used, the spread of the distance between the electrodes can be suppressed, so that the variation in Example 1 is less than that in Comparative Example 1. It is thought that it was made.

(評価2)インピーダンス測定
次に、実施例1並びに比較例1で得られた非水電解質二次電池の初期充電後の1kHzにおける交流インピーダンス測定を行った。図4に、実施例1並びに比較例1の各275個のインピーダンス測定結果を上限規格からの差分として示した。図4から非水電解質二次電池の初期充電後のインピーダンスは実施例1の方が比較例1よりバラツキが少なくなったことが分かる。なお実施例1ではCp=3.761、σ=0.0842、比較例1ではCp=2.165、σ=1.105であった。これは初期充電に主におこる電解液の分解などにより内部でガス化し、ジェリーロールが歪むことによって電極間距離が広がり、その結果電池内部の抵抗が上昇することにより、インピーダンスが上昇するが、熱硬化性樹脂層を有するテープを使用した場合は電極間距離の広がりを抑制できるので、実施例1の方が比較例よりもインピーダンスのバラツキを減らすことができたと考えられる。
(Evaluation 2) Impedance Measurement Next, an AC impedance measurement at 1 kHz after the initial charging of the nonaqueous electrolyte secondary battery obtained in Example 1 and Comparative Example 1 was performed. FIG. 4 shows 275 impedance measurement results of Example 1 and Comparative Example 1 as differences from the upper limit standard. From FIG. 4, it can be seen that the impedance after the initial charging of the nonaqueous electrolyte secondary battery was less varied in Example 1 than in Comparative Example 1. In Example 1, Cp = 3.761 and σ = 0.0842, and in Comparative Example 1, Cp = 2.165 and σ = 1.105. This is due to gasification inside due to the decomposition of the electrolyte that occurs mainly during initial charging, and the distance between the electrodes increases due to distortion of the jelly roll, resulting in an increase in resistance inside the battery, resulting in an increase in impedance. When a tape having a curable resin layer is used, the spread of the distance between the electrodes can be suppressed. Therefore, it is considered that Example 1 was able to reduce impedance variation more than the comparative example.

(評価 3)落下試験
次に、実施例1並びに比較例1で得られた非水電解質二次電池を初期充電後に1.9mの高さからコンクリート上に落下させ、各回数毎に電圧及びインピーダンス(AC 1kHz)を測定した。落下試験の終了条件は初期の電圧から0.1V低下した場合もしくはインピーダンスが10mΩ増加した場合とした。すなわち電圧の低下は電池内部の短絡等による不良がないかを確認し、インピーダンスの増加は落下によりジェリーロールが歪む事により電極間距離が広がる為に生ずると考えられる。また衝撃などによって電極板に溶接されている電極端子が切れた場合インピーダンスが上昇すると考えられる。
(Evaluation 3) Drop test Next, the nonaqueous electrolyte secondary battery obtained in Example 1 and Comparative Example 1 was dropped on the concrete from a height of 1.9 m after the initial charge, and the voltage and impedance were measured each time. (AC 1 kHz) was measured. The end condition of the drop test was when the voltage dropped by 0.1 V from the initial voltage or when the impedance increased by 10 mΩ. That is, it is considered that a decrease in voltage confirms that there is no defect due to a short circuit inside the battery, and an increase in impedance occurs because the distance between the electrodes increases due to distortion of the jelly roll caused by dropping. Further, it is considered that the impedance rises when the electrode terminal welded to the electrode plate is cut by an impact or the like.

実施例1並びに比較例1各5個を落下試験したときの落下試験終了までの回数を表1に示す。   Example 1 and Comparative Example 1 Table 1 shows the number of times until the drop test was completed when 5 pieces each were subjected to a drop test.

Figure 2009004303
Figure 2009004303

表1に示すように実施例1で比較例1より落下試験終了までの回数が多いことが確認できる。これは熱硬化性樹脂層を含むテープがインナーパックの様な働きをし、落下による衝撃強度が実施例1で比較例1より向上し、且つ落下によるジェリーロールの歪みを抑制したことにより、インピーダンスの上昇が抑制されたものと考えられる。また、ジェリーロールの歪みが抑制されたことにより電極板同士がより密着していることにより、電極板に溶接されている電極端子の溶接部位が動きにくくなっている為、落下衝撃による電極端子の溶接部位の脱落がより遅くなり落下耐性が向上されたと推測される。   As shown in Table 1, in Example 1, it can be confirmed that the number of times until the end of the drop test is larger than that in Comparative Example 1. This is because the tape including the thermosetting resin layer functions like an inner pack, the impact strength due to dropping is improved from that in Comparative Example 1 in Example 1, and the distortion of the jelly roll due to dropping is suppressed. It is thought that the rise in In addition, since the electrode plates are more closely adhered to each other because distortion of the jelly roll is suppressed, the welded portion of the electrode terminal welded to the electrode plate is difficult to move. It is presumed that the dropout of the welded part was delayed and the drop resistance was improved.

(実施例2)
次に、実施例1と同様に作製した電池素子を以下のようなテープを用いて捲き止めした。即ち、縦:36mm、横:68mm、厚さ:12μmのPPS基材層上に1液型熱硬化性エポキシ樹脂からなる熱硬化層を12μm塗布し、さらにアクリル系樹脂からなる粘着層を28μm塗布し(仕上がりのテープ厚52μm)、粘着力が180度引き剥がし法にて0.078以上(N/25mm)のものを作製し捲き止めのためのテープとした。また、同様に縦:8mm、横:37mm、厚さ:12μmのPPS基材層上に1液型熱硬化性エポキシ樹脂からなる熱硬化層を12μm塗布し、さらにアクリル系樹脂からなる粘着層を28μm塗布して底部保護用テープを作製した。
(Example 2)
Next, the battery element produced in the same manner as in Example 1 was scratched using the following tape. That is, 12 μm of a thermosetting layer made of a one-component thermosetting epoxy resin is applied on a PPS base material layer having a length of 36 mm, a width of 68 mm, and a thickness of 12 μm, and an adhesive layer made of an acrylic resin is further applied by 28 μm. (Finished tape thickness: 52 μm), and having an adhesive strength of 0.078 or more (N / 25 mm) by a 180-degree peeling method, was used as a tape for scratching prevention. Similarly, 12 μm of a thermosetting layer made of a one-component thermosetting epoxy resin is applied on a PPS base material layer having a length of 8 mm, a width of 37 mm, and a thickness of 12 μm, and an adhesive layer made of an acrylic resin is further applied. 28 μm was applied to produce a bottom protective tape.

その後の工程は実施例1同様に熱硬化層を加熱により乾燥及び硬化させ、その後ラミネートフィルムに収納し、電解液を注液して、その後従来同様の工程を行い非水電解質二次電池とした。   In the subsequent steps, the thermosetting layer was dried and cured by heating in the same manner as in Example 1, and then accommodated in a laminate film, injected with an electrolytic solution, and then subjected to the same steps as in the prior art to obtain a nonaqueous electrolyte secondary battery. .

次に実施例1、比較例1と同様に評価1〜3を行った。結果として比較例1よりもバラツキという点では良好な結果は示したものの、実施例1と比較してバラツキは大きくなった。   Next, evaluations 1 to 3 were performed in the same manner as in Example 1 and Comparative Example 1. As a result, although a better result was shown in terms of variation than Comparative Example 1, the variation was larger than Example 1.

これは、熱硬化層が実施例1に比べ薄いことから、インナーパックとしての強度が落ちた為であると考える。また、本実験ではテープ自身の厚みが増えている為、電池素子の積み上げ厚みが実施例1よりも厚くなり、より薄い実施例1の方が効果的である。   This is considered to be because the strength as the inner pack was lowered because the thermosetting layer was thinner than in Example 1. In this experiment, since the thickness of the tape itself is increased, the stacked thickness of the battery element is thicker than that of the first embodiment, and the thinner first embodiment is more effective.

本発明の第一の実施の形態の非水電解質二次電池に使用するテープの側面図。The side view of the tape used for the nonaqueous electrolyte secondary battery of 1st embodiment of this invention. 本発明の非水電解質二次電池の途中工程を示す正面図。The front view which shows the middle process of the non-aqueous electrolyte secondary battery of this invention. 実施例1並びに比較例1の最厚部測定結果。The thickest part measurement result of Example 1 and Comparative Example 1. 実施例1並びに比較例1のインピーダンス測定結果。The impedance measurement result of Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1 (捲き止め用)テープ
1a 熱硬化性樹脂層
1b 基材層
2 電池素子
3 (底部保護用)テープ
4 電極端子
5 電極板終端部
DESCRIPTION OF SYMBOLS 1 (For tearing prevention) Tape 1a Thermosetting resin layer 1b Base material layer 2 Battery element 3 (For bottom part protection) Tape 4 Electrode terminal 5 Electrode board terminal part

Claims (7)

正極板と負極板とをセパレータを介して積層し捲回した電池素子を、外装体に収納した非水電解質二次電池において、前記電池素子を熱硬化性樹脂層を含むテープにより捲き止め、覆い、その後熱硬化性樹脂を硬化させたことを特徴とする非水電解質二次電池。   In a non-aqueous electrolyte secondary battery in which a battery element in which a positive electrode plate and a negative electrode plate are stacked and wound via a separator is housed in an exterior body, the battery element is wound and covered with a tape including a thermosetting resin layer. Then, a non-aqueous electrolyte secondary battery characterized by curing a thermosetting resin. 前記テープが熱硬化性樹脂層からなる粘着層と基材層との2層構造を有することを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the tape has a two-layer structure of an adhesive layer made of a thermosetting resin layer and a base material layer. 前記テープが基材層と熱硬化性樹脂層と粘着層との3層構造を有することを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the tape has a three-layer structure including a base material layer, a thermosetting resin layer, and an adhesive layer. 前記テープが熱硬化性樹脂層からなる基材層と粘着層との2層構造を有することを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the tape has a two-layer structure of a base material layer made of a thermosetting resin layer and an adhesive layer. 前記テープが熱硬化性樹脂層からなる基材層と熱硬化性樹脂層からなる粘着層との2層構造を有することを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the tape has a two-layer structure of a base material layer made of a thermosetting resin layer and an adhesive layer made of a thermosetting resin layer. 前記テープが熱硬化性樹脂層からなることを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the tape is made of a thermosetting resin layer. 前記熱硬化性樹脂層が、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、またはケイ素樹脂の少なくとも1種を含むことを特徴とする請求項1〜6のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte according to any one of claims 1 to 6, wherein the thermosetting resin layer contains at least one of urea resin, phenol resin, melamine resin, epoxy resin, and silicon resin. Secondary battery.
JP2007166214A 2007-06-25 2007-06-25 Nonaqueous electrolyte secondary battery Pending JP2009004303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166214A JP2009004303A (en) 2007-06-25 2007-06-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166214A JP2009004303A (en) 2007-06-25 2007-06-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2009004303A true JP2009004303A (en) 2009-01-08

Family

ID=40320449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166214A Pending JP2009004303A (en) 2007-06-25 2007-06-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2009004303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125675A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Method for manufacturing electrode for nonaqueous electrolyte secondary battery
JP2015159086A (en) * 2014-02-25 2015-09-03 株式会社豊田自動織機 power storage device
JPWO2019176422A1 (en) * 2018-03-13 2021-02-25 三洋電機株式会社 Rechargeable battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125675A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Method for manufacturing electrode for nonaqueous electrolyte secondary battery
JP2015159086A (en) * 2014-02-25 2015-09-03 株式会社豊田自動織機 power storage device
JPWO2019176422A1 (en) * 2018-03-13 2021-02-25 三洋電機株式会社 Rechargeable battery
US11695162B2 (en) 2018-03-13 2023-07-04 Sanyo Electric Co., Ltd. Secondary battery
JP7332580B2 (en) 2018-03-13 2023-08-23 パナソニックエナジー株式会社 secondary battery

Similar Documents

Publication Publication Date Title
KR100948848B1 (en) Battery unit and lithium secondary battery applying the same
EP1717879B1 (en) Battery
JP4565810B2 (en) Laminated battery
US7132194B2 (en) Non-aqueous electrolytic battery and its manufacturing method
EP2863449B1 (en) Secondary battery
KR100947982B1 (en) Electrode assembly body and Pouch type lithium rechargeable battery having the same
US7887948B2 (en) Pack type battery
US8999559B2 (en) Secondary battery
US20060046137A1 (en) Battery
US20100173193A1 (en) Pouch-type lithium secondary battery
JP2010192462A (en) Lithium secondary battery
US9450217B2 (en) Pouch battery and manufacturing method thereof
JP2013048054A (en) Nonaqueous secondary battery and manufacturing method therefor
JP2010056090A (en) Secondary battery
KR20110059096A (en) Secondary battery and method for packing the same
JP2009004303A (en) Nonaqueous electrolyte secondary battery
KR100731436B1 (en) Pouch type Lithium Secondary Battery
KR100670438B1 (en) Pouch type lithium secondary battery
JP2007154135A (en) Tape and battery
KR101825007B1 (en) Pouch type secondary battery and method of fabricating the same
JP4639818B2 (en) Battery pack
JP2004022524A (en) Battery and battery pack
JP2004247159A (en) Battery pack and its manufacturing method
KR100898069B1 (en) Electorde assembly for lithium ion cell and pouched-type battery applying the same
CN220400721U (en) Battery packaging film, battery and electronic equipment