JP2009004300A - High pressure discharge lamp lighting device - Google Patents

High pressure discharge lamp lighting device Download PDF

Info

Publication number
JP2009004300A
JP2009004300A JP2007166171A JP2007166171A JP2009004300A JP 2009004300 A JP2009004300 A JP 2009004300A JP 2007166171 A JP2007166171 A JP 2007166171A JP 2007166171 A JP2007166171 A JP 2007166171A JP 2009004300 A JP2009004300 A JP 2009004300A
Authority
JP
Japan
Prior art keywords
voltage
circuit
discharge lamp
pressure discharge
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166171A
Other languages
Japanese (ja)
Inventor
Hideki Fukuda
秀樹 福田
Tsutomu Takatsuki
努 高月
Yasuhiro Suzuki
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Osram Melco Ltd
Original Assignee
Mitsubishi Electric Corp
Osram Melco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Osram Melco Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2007166171A priority Critical patent/JP2009004300A/en
Publication of JP2009004300A publication Critical patent/JP2009004300A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure discharge lamp lighting device capable of satisfying (1) non-load voltage: 3.5-5.0 kVp, (2) integration pulse: 100 μs/s(2.7 kV) or more even if the output wiring length is 2 m or more. <P>SOLUTION: The high pressure discharge lamp lighting device has a step-up transformer 8 in which a secondary coil 8b is inserted in a load circuit, a two-terminal thyristor 13 which is connected to a primary coil 8a side of the step-up transformer 8, and a charge and discharge circuit provided between outputs of a DC power supply circuit, and is provided with an ignitor starting circuit which generates a high voltage pulse to the secondary coil 8b of the step-up transformer 8 when the two-terminal thyristor 13 is conducted. The ratio of winding (secondary coil/primary coil) of the step-up transformer 8 is established so that the secondary coil voltage may be nearly 4.3 kV. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高圧水銀ランプ、高圧ナトリウムランプ、メタルハライドランプ等の高圧放電灯を点灯制御する高圧放電灯点灯装置に関するものである。   The present invention relates to a high pressure discharge lamp lighting device that controls lighting of a high pressure discharge lamp such as a high pressure mercury lamp, a high pressure sodium lamp, or a metal halide lamp.

従来の高圧放電灯点灯装置は、高圧放電灯を始動点灯するパルス電圧を発生させるためのイグナイタ始動回路を備えている。このイグナイタ始動回路は、2次巻線が高圧放電灯及びインダクタの間に挿入された高圧トランスと、高圧トランスの1次巻線の一端側に設けられ、チョッパ回路からの電流により充電される一方の充放電回路と、一対のFETのうち一方のFETのオン時にインダクタを介して流れる電流により充電される他方の充放電回路と、高圧トランスの1次巻線の他端に接続された3端子サイリスタと、この3端子サイリスタのゲートと接続され、他方の充放電回路の充電電圧がブレークオーバ電圧に達したときに導通して3端子サイリスタをオンし、一方の充放電回路の充電電圧を高圧トランスの1次巻線に印加させる2端子サイリスタとを備えている(例えば、特許文献1参照)。   The conventional high pressure discharge lamp lighting device includes an igniter start circuit for generating a pulse voltage for starting and lighting the high pressure discharge lamp. This igniter starting circuit is provided with a high-voltage transformer whose secondary winding is inserted between the high-pressure discharge lamp and the inductor, and one end of the primary winding of the high-voltage transformer, and is charged by the current from the chopper circuit. Charge / discharge circuit, the other charge / discharge circuit charged by the current flowing through the inductor when one of the pair of FETs is turned on, and the three terminals connected to the other end of the primary winding of the high-voltage transformer The thyristor is connected to the gate of this three-terminal thyristor, and is turned on when the charging voltage of the other charging / discharging circuit reaches the breakover voltage, turning on the three-terminal thyristor, and increasing the charging voltage of one charging / discharging circuit. And a two-terminal thyristor to be applied to the primary winding of the transformer (see, for example, Patent Document 1).

セラミックメタルハライドランプ等の高圧放電灯を始動させるために、前記のようにイグナイタ始動回路が必要であるが、市場での高圧放電灯点灯装置の小型化要求から、イグナイタ始動回路の小型化も要求されている。
特開2005−203185公報(第6頁、図7)
In order to start a high pressure discharge lamp such as a ceramic metal halide lamp, an igniter starting circuit is required as described above. However, due to the demand for downsizing of a high pressure discharge lamp lighting device in the market, downsizing of the igniter starting circuit is also required. ing.
JP-A-2005-203185 (6th page, FIG. 7)

前述した従来の高圧放電灯点灯装置では、イグナイタ始動回路において、高圧放電灯を始動点灯するための高電圧パルスを発生又は停止させるために、2種のサイリスタと2つの充放電回路を用いており、回路構成が複雑になっていた。   In the conventional high pressure discharge lamp lighting device described above, two types of thyristors and two charge / discharge circuits are used in the igniter start circuit to generate or stop a high voltage pulse for starting and lighting the high pressure discharge lamp. The circuit configuration was complicated.

また、セラミックメタルハライドランプ等の高圧放電灯を点灯させる規格として、
(1)無負荷電圧:3.5〜5.0kVp
(2)積算パルス:100μs/s(2.7kV)以上
の2条件があり、
(3)屋内機種の場合、出力配線長が2m以上でも点灯できることが市場要求となっている。
In addition, as a standard for lighting high pressure discharge lamps such as ceramic metal halide lamps,
(1) No-load voltage: 3.5 to 5.0 kVp
(2) Integrated pulse: There are two conditions of 100 μs / s (2.7 kV) or more,
(3) In the case of indoor models, the market demand is that the output wiring length can be lit even if it is 2 m or longer.

本発明は、前記のような課題を解決するためになされたものであり、回路構成が簡単で、小型のイグナイタ始動回路を備えた高圧放電灯点灯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-pressure discharge lamp lighting device having a simple circuit configuration and a small igniter starting circuit.

また、出力配線長が2m以上でも、
(1)無負荷電圧:3.5〜5.0kVp
(2)積算パルス:100μs/s(2.7kV)以上
を満たすことができる高圧放電灯点灯装置を提供することを目的とする。
Also, even if the output wiring length is 2m or more,
(1) No-load voltage: 3.5 to 5.0 kVp
(2) An object of the present invention is to provide a high pressure discharge lamp lighting device capable of satisfying an accumulated pulse of 100 μs / s (2.7 kV) or more.

本発明に係る高圧放電灯点灯装置は、高圧放電灯が取り付けられる負荷回路と、商用電源を所望の直流電圧に変換するための直流電源回路と、直流電源回路からの直流電圧を交流電圧に変換し、負荷回路に供給するインバータ回路と、負荷回路に2次巻線が挿入された昇圧トランス、昇圧トランスの1次巻線側に接続された2端子サイリスタ、及び直流電源回路の出力間に設けられた充放電回路を有し、2端子サイリスタが導通したときに昇圧トランスの2次巻線に高電圧パルスを発生させるイグナイタ始動回路と、負荷回路の高圧放電灯を始動する際、充放電回路の充電電圧が2端子サイリスタを導通させる電圧値となるように、高圧放電灯が点灯した後は、充電電圧が2端子サイリスタを非導通させる電圧値となるように、直流電源回路を制御する制御部とを備え、昇圧トランスの巻数比(2次巻線/1次巻数)を、2次巻線電圧が略4.3kVになるように設定することを特徴とする。   A high pressure discharge lamp lighting device according to the present invention includes a load circuit to which a high pressure discharge lamp is attached, a DC power supply circuit for converting a commercial power supply into a desired DC voltage, and a DC voltage from the DC power supply circuit is converted into an AC voltage. Provided between the inverter circuit to be supplied to the load circuit, the step-up transformer in which the secondary winding is inserted in the load circuit, the two-terminal thyristor connected to the primary winding side of the step-up transformer, and the output of the DC power supply circuit An igniter starting circuit for generating a high voltage pulse in the secondary winding of the step-up transformer when the two-terminal thyristor is turned on, and a charging / discharging circuit for starting the high-pressure discharge lamp of the load circuit After the high-pressure discharge lamp is lit, the DC power supply circuit is set so that the charging voltage becomes a voltage value that makes the two-terminal thyristor non-conductive after the high-voltage discharge lamp is turned on. And a control unit for controlling, the winding ratio of the step-up transformer (2 windings / primary windings), secondary winding voltage and sets to be substantially 4.3KV.

本発明においては、負荷回路の高圧放電灯を始動する際、充放電回路の充電電圧が2端子サイリスタを導通させる電圧値となるように、高圧放電灯が点灯した後は、その充電電圧が2端子サイリスタを非導通させる電圧値となるように直流電源回路を制御するようにしたので、充放電回路と2端子サイリスタをそれぞれ一部品で済み、このため、イグナイタ始動回路の構成が簡単になり、小型化を図れるという効果がある。また、昇圧トランス8の巻数比を、2次巻線電圧VL2が略4.3kVpになるように選択することにより、出力配線長が2m以上でも、2次巻線電圧VL2の減衰量を少なくすることができる。   In the present invention, when starting the high-pressure discharge lamp of the load circuit, after the high-pressure discharge lamp is lit so that the charging voltage of the charging / discharging circuit becomes a voltage value for conducting the two-terminal thyristor, the charging voltage is 2 Since the DC power supply circuit is controlled so that the voltage value that makes the terminal thyristor non-conductive, the charge / discharge circuit and the two-terminal thyristor are each one component, which makes the configuration of the igniter start circuit simple. There is an effect that the size can be reduced. Further, by selecting the turn ratio of the step-up transformer 8 so that the secondary winding voltage VL2 is approximately 4.3 kVp, the attenuation amount of the secondary winding voltage VL2 is reduced even when the output wiring length is 2 m or more. be able to.

実施の形態1.
図1は本発明の実施の形態1に係る高圧放電灯点灯装置の構成を示す回路図である。
図中に示す本実施の形態の高圧放電灯点灯装置は、直流電源回路1と、ハーフブリッジ型のインバータ回路と、負荷回路と、イグナイタ始動回路と、制御回路14とを備えている。直流電源回路1は、例えば、交流電源の電力を直流電力に整流する整流回路と、この整流回路の出力間に接続された昇圧型PFC(Power Factor Contorol)回路とで構成されている。この昇圧型PFC回路には、インダクタ、制御回路14のオン・オフ制御に基づいて整流回路の出力を昇圧するスイッチング素子等が設けられている。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a configuration of a high pressure discharge lamp lighting device according to Embodiment 1 of the present invention.
The high pressure discharge lamp lighting device of the present embodiment shown in the figure includes a DC power supply circuit 1, a half-bridge type inverter circuit, a load circuit, an igniter starting circuit, and a control circuit 14. The DC power supply circuit 1 includes, for example, a rectifier circuit that rectifies the power of the AC power supply into DC power, and a step-up PFC (Power Factor Control) circuit connected between outputs of the rectifier circuit. This step-up PFC circuit is provided with an inductor, a switching element for stepping up the output of the rectifier circuit based on on / off control of the control circuit 14 and the like.

前記のインバータ回路は、直流電源回路1の出力間に直列に接続された第1のスイッチング素子2及び第2のスイッチング素子3と、これら第1のスイッチング素子2、第2のスイッチング素子3に並列に接続され、第1の電解コンデンサ4及び第2の電解コンデンサ5の直列回路とから構成されている。負荷回路は、第1のスイッチング素子2及び第2のスイッチング素子3の接続点と第1の電解コンデンサ4及び第2の電解コンデンサ5の接続点との間に、後述する昇圧トランス8の2次巻線8bを介在して直列に接続されたインダクタ6及び高圧放電灯9と、この高圧放電灯9及び2次巻線8bに並列に接続されたコンデンサ7とで構成されている。前述した高圧放電灯9として、HIDランプ(高圧水銀ランプ)、高圧ナトリウムランプ、メタルハライドランプ等が用いられている。   The inverter circuit includes a first switching element 2 and a second switching element 3 connected in series between outputs of the DC power supply circuit 1, and the first switching element 2 and the second switching element 3 in parallel. And a series circuit of a first electrolytic capacitor 4 and a second electrolytic capacitor 5. The load circuit includes a secondary of a step-up transformer 8 described later between a connection point of the first switching element 2 and the second switching element 3 and a connection point of the first electrolytic capacitor 4 and the second electrolytic capacitor 5. The inductor 6 and the high-pressure discharge lamp 9 are connected in series via the winding 8b, and the capacitor 7 is connected in parallel to the high-pressure discharge lamp 9 and the secondary winding 8b. As the high-pressure discharge lamp 9 described above, an HID lamp (high-pressure mercury lamp), a high-pressure sodium lamp, a metal halide lamp, or the like is used.

イグナイタ始動回路は、直流電源回路1の出力間に直列に接続された抵抗10、ダイオード11及び充放電コンデンサ12と、2次巻線8bが前述の如くインダクタ6及び高圧放電灯9の間に挿入され、1次巻線8aの一端がダイオード11及び充放電コンデンサ12の接続点に接続された昇圧トランス8と、昇圧トランス8の1次巻線の他端及び充放電コンデンサ12の負極側の間に挿入された2端子サイリスタ13とから構成されている。なお、前述した抵抗10、ダイオード11及び充放電コンデンサ12により充放電回路が構成されている。   In the igniter starting circuit, the resistor 10, the diode 11 and the charge / discharge capacitor 12 connected in series between the outputs of the DC power supply circuit 1 and the secondary winding 8b are inserted between the inductor 6 and the high pressure discharge lamp 9 as described above. And between the other end of the primary winding of the step-up transformer 8 and the negative electrode side of the charge / discharge capacitor 12. One end of the primary winding 8 a is connected to the connection point of the diode 11 and the charge / discharge capacitor 12. And a two-terminal thyristor 13 inserted into the. A charge / discharge circuit is configured by the resistor 10, the diode 11, and the charge / discharge capacitor 12 described above.

制御回路14は、動作説明時に詳述するが、負荷回路の高圧放電灯9を始動する際、充放電回路の充電電圧が2端子サイリスタ13を導通させる電圧値、即ち2端子サイリスタ13のブレークオーバー電圧に達する電圧値となるように直流電源回路1を制御し、高圧放電灯9が点灯した後は、その充電電圧が2端子サイリスタ13を非導通させる電圧値(ブレークオーバー電圧より低い電圧値)となるように直流電源回路1を制御する。高圧放電灯9が点灯したか否かの判別は、図1には図示していないが、例えば電圧検出回路により検出された高圧放電灯9の電圧が予め設定された電圧値より低くなったときに、高圧放電灯9が点灯したと判別する。なお、これに代えて、電流検出回路の検出電流から高圧放電灯9が点灯したか否かを判別するようにしても良い。この場合、その検出電流が予め設定された電流値よりも高くなったときに、高圧放電灯9が点灯したと判別する。   The control circuit 14 will be described in detail when explaining the operation. When starting the high-pressure discharge lamp 9 of the load circuit, the control circuit 14 sets the voltage value at which the charging voltage of the charging / discharging circuit makes the two-terminal thyristor 13 conductive, that is, the breakover of the two-terminal thyristor 13. After the DC power supply circuit 1 is controlled to reach a voltage value that reaches the voltage and the high-pressure discharge lamp 9 is lit, the charging voltage is a voltage value that makes the two-terminal thyristor 13 non-conductive (a voltage value lower than the breakover voltage). The DC power supply circuit 1 is controlled so that The determination as to whether or not the high-pressure discharge lamp 9 is lit is not shown in FIG. 1, but for example, when the voltage of the high-pressure discharge lamp 9 detected by the voltage detection circuit becomes lower than a preset voltage value. Then, it is determined that the high pressure discharge lamp 9 has been turned on. Instead of this, it may be determined whether or not the high-pressure discharge lamp 9 has been lit based on the current detected by the current detection circuit. In this case, when the detected current becomes higher than a preset current value, it is determined that the high pressure discharge lamp 9 has been turned on.

次に、本実施の形態の高圧放電灯点灯装置の動作について説明する。
制御回路14は、高圧放電灯9を始動する際、第1のスイッチング素子2及び第2のスイッチング素子3を交互にオン・オフすると共に、直流電源回路1を制御し、かつ、電圧検出回路の検出電圧を通じて高圧放電灯9が点灯したか否かを判別する。第1のスイッチング素子2及び第2のスイッチング素子3の制御は、予め設定された第1の期間、第1のスイッチング素子2のみを高周波でオン・オフし、次いで、第2の期間、第2のスイッチング素子3のみを高周波でオン・オフし、この第1及び第2の期間の切り替えを低周波で繰り返し行っている。また、直流電源回路1側の制御は、抵抗10及びダイオード11を介して充放電コンデンサ12に充電される電圧が2端子サイリスタ13のブレークオーバー電圧に達する電圧値となるように行っている。
Next, the operation of the high pressure discharge lamp lighting device of the present embodiment will be described.
When starting the high-pressure discharge lamp 9, the control circuit 14 alternately turns on and off the first switching element 2 and the second switching element 3, controls the DC power supply circuit 1, and the voltage detection circuit. It is determined whether or not the high pressure discharge lamp 9 has been turned on through the detection voltage. The first switching element 2 and the second switching element 3 are controlled by turning on / off only the first switching element 2 at a high frequency for a preset first period, and then for a second period, Only the switching element 3 is turned on / off at a high frequency, and the switching between the first and second periods is repeated at a low frequency. The control on the DC power supply circuit 1 side is performed so that the voltage charged to the charge / discharge capacitor 12 via the resistor 10 and the diode 11 reaches a voltage value that reaches the breakover voltage of the two-terminal thyristor 13.

この制御により、充放電コンデンサ12の充電電圧が2端子サイリスタ13のブレークオーバー電圧に達する毎に放電され、その電圧が昇圧トランス8の1次巻線8aに間欠的に印加され、2次巻線8bに高電圧パルスが発生し、第1のスイッチング素子2及び第2のスイッチング素子3の動作による点灯周波数の矩形波電圧に重畳し、高圧放電灯9に繰り返し印加される。一方、制御回路14は、昇圧トランス8の2次巻線8bに高電圧パルスを発生させているときに、電圧検出回路の検出電圧が予め設定された電圧値より低くなったことを検知すると、高圧放電灯9が点灯したと判別して、充放電コンデンサ12の充電電圧が2端子サイリスタ13のブレークオーバー電圧より低くなるように直流電源回路1を制御し、昇圧トランス8の2次巻線8bに発生する高電圧パルスを停止させる。   By this control, the charging voltage of the charging / discharging capacitor 12 is discharged every time it reaches the breakover voltage of the two-terminal thyristor 13, and the voltage is intermittently applied to the primary winding 8 a of the step-up transformer 8. A high voltage pulse is generated in 8 b, superimposed on a rectangular wave voltage having a lighting frequency by the operation of the first switching element 2 and the second switching element 3, and repeatedly applied to the high-pressure discharge lamp 9. On the other hand, when the control circuit 14 generates a high voltage pulse in the secondary winding 8b of the step-up transformer 8, and detects that the detection voltage of the voltage detection circuit is lower than a preset voltage value, It is determined that the high-pressure discharge lamp 9 has been turned on, and the DC power supply circuit 1 is controlled so that the charging voltage of the charging / discharging capacitor 12 is lower than the breakover voltage of the two-terminal thyristor 13, and the secondary winding 8 b of the step-up transformer 8. The high-voltage pulse generated in is stopped.

以上のように実施の形態1によれば、負荷回路の高圧放電灯9を始動する際、充放電コンデンサ12の充電電圧が2端子サイリスタ13のブレークオーバー電圧に達する電圧値となるように直流電源回路1を制御し、高圧放電灯9が点灯した後は、その充電電圧が2端子サイリスタ13のブレークオーバー電圧より低い電圧値となるように直流電源回路1を制御するようにしたので、充放電回路と2端子サイリスタ13をそれぞれ一部品で済み、このため、イグナイタ始動回路の構成が簡単になり、小型化を図れるという効果がある。   As described above, according to the first embodiment, when starting the high-pressure discharge lamp 9 of the load circuit, the DC power supply is set so that the charging voltage of the charging / discharging capacitor 12 reaches a voltage value that reaches the breakover voltage of the two-terminal thyristor 13. After the circuit 1 is controlled and the high-pressure discharge lamp 9 is lit, the DC power supply circuit 1 is controlled so that the charging voltage is lower than the breakover voltage of the two-terminal thyristor 13. Since the circuit and the two-terminal thyristor 13 are each one component, the configuration of the igniter starting circuit is simplified and the size can be reduced.

実施の形態2.
図2は本発明の実施の形態2に係る高圧放電灯点灯装置の構成を示す回路図である。なお、図1で説明した実施の形態1と同一又は相当部分には同じ符号を付し説明を省略する。
実施の形態1では、直流電源回路1の出力間に、抵抗10、ダイオード11及び充放電コンデンサ12を直列に接続してなる充放電回路を設けているが、本実施の形態は、インダクタ6及び昇圧トランス8の2次巻線8bの接続点と直流電源回路1の負極側(アース側)との間に、抵抗10、ダイオード11及び充放電コンデンサ12を直列に接続してなる充放電回路を設けたものである。
Embodiment 2. FIG.
FIG. 2 is a circuit diagram showing a configuration of a high pressure discharge lamp lighting device according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the same or equivalent part as Embodiment 1 demonstrated in FIG. 1, and description is abbreviate | omitted.
In the first embodiment, a charging / discharging circuit in which a resistor 10, a diode 11, and a charging / discharging capacitor 12 are connected in series is provided between the outputs of the DC power supply circuit 1. However, in the present embodiment, the inductor 6 and the A charging / discharging circuit in which a resistor 10, a diode 11, and a charging / discharging capacitor 12 are connected in series between a connection point of the secondary winding 8b of the step-up transformer 8 and the negative electrode side (ground side) of the DC power supply circuit 1. It is provided.

本実施の形態におけるイグナイタ始動回路の2端子サイリスタ13は、実施の形態1と同様に、充放電コンデンサ12に昇圧トランス8の1次巻線8aを介して接続されており、始動時に高圧放電灯9に印加される電圧よりブレークオーバー電圧が低く、高圧放電灯9が点灯した後の電圧よりもブレークオーバー電圧が高い特性を有するものが選定されている。また、制御回路14は、高圧放電灯9を始動する際、実施の形態1と同様に、まず、第1の期間、第1のスイッチング素子2のみを高周波でオン・オフし、次いで、第2の期間、第2のスイッチング素子3のみを高周波でオン・オフし、この切り替えを低周波で繰り返し行う。   Similarly to the first embodiment, the two-terminal thyristor 13 of the igniter starting circuit in the present embodiment is connected to the charge / discharge capacitor 12 via the primary winding 8a of the step-up transformer 8, and at the time of starting the high-pressure discharge lamp 9 having a characteristic that the breakover voltage is lower than the voltage applied to 9 and the breakover voltage is higher than the voltage after the high-pressure discharge lamp 9 is lit. When starting the high-pressure discharge lamp 9, the control circuit 14 first turns on and off only the first switching element 2 at a high frequency for the first period, and then the second During this period, only the second switching element 3 is turned on / off at a high frequency, and this switching is repeated at a low frequency.

次に、本実施の形態の高圧放電灯点灯装置の動作について説明する。
制御回路14は、負荷回路の高圧放電灯9を始動する際、前述したように、第1の期間、第1のスイッチング素子2のみを高周波でオン・オフし、次いで、第2の期間、第2のスイッチング素子3のみを高周波でオン・オフし、この切り替えを低周波で繰り返し行う。第1のスイッチング素子がオン・オフ動作しているときにインダクタ6を介して流れる電流が充放電コンデンサ12に充電され、その充電電圧が2端子サイリスタ13のブレークオーバー電圧に達したときに、その充電電圧が放電されて昇圧トランス8の1次巻線8aに印加し、その2次巻線8bに高電圧パルスが発生し、第1及び第2のスイッチング素子2,3の動作による点灯周波数の矩形波電圧に重畳して、高圧放電灯9に印加される。
Next, the operation of the high pressure discharge lamp lighting device of the present embodiment will be described.
When starting the high pressure discharge lamp 9 of the load circuit, the control circuit 14 turns on and off only the first switching element 2 at a high frequency in the first period, and then in the second period, Only the second switching element 3 is turned on / off at a high frequency, and this switching is repeated at a low frequency. When the first switching element is on / off, the current flowing through the inductor 6 is charged into the charge / discharge capacitor 12, and when the charge voltage reaches the breakover voltage of the two-terminal thyristor 13, The charging voltage is discharged and applied to the primary winding 8a of the step-up transformer 8, a high voltage pulse is generated in the secondary winding 8b, and the lighting frequency due to the operation of the first and second switching elements 2 and 3 is increased. The voltage is applied to the high-pressure discharge lamp 9 while being superimposed on the rectangular wave voltage.

一方、制御回路14は、高電圧パルスの印加により高圧放電灯9が点灯すると、第1及び第2のスイッチング素子2,3を高周波で交互にオン・オフし、高圧放電灯9の点灯を継続する。この時、高圧放電灯9に印加される電圧が低下するので、充放電コンデンサ12の充電電圧が2端子サイリスタ13のブレークオーバー電圧より低くなり、昇圧トランス8の2次巻線8bに発生する高電圧パルスを停止する。なお、制御回路14による高圧放電灯9の点灯判別は、電圧検出回路の検出電圧が予め設定された電圧値より低くなったことを検知したときである。   On the other hand, when the high-pressure discharge lamp 9 is lit by application of a high voltage pulse, the control circuit 14 alternately turns on and off the first and second switching elements 2 and 3 at a high frequency, and continues lighting the high-pressure discharge lamp 9. To do. At this time, since the voltage applied to the high-pressure discharge lamp 9 decreases, the charging voltage of the charging / discharging capacitor 12 becomes lower than the breakover voltage of the two-terminal thyristor 13, and the high voltage generated in the secondary winding 8 b of the step-up transformer 8. Stop the voltage pulse. Note that the lighting determination of the high-pressure discharge lamp 9 by the control circuit 14 is when it is detected that the detection voltage of the voltage detection circuit has become lower than a preset voltage value.

以上のように実施の形態2によれば、高圧放電灯9の始動時には、充放電コンデンサ12への充電電圧が2端子サイリスタ13のブレークオーバー電圧に達する毎に昇圧トランス8の2次巻線8bに高電圧パルスが発生し、高圧放電灯9が点灯した際には、充放電コンデンサ12への充電電圧が2端子サイリスタ13のブレークオーバー電圧より低くなって昇圧トランス8の2次巻線8bに発生する高電圧パルスが停止するので、高圧放電灯9の点灯時の直流電源回路1の出力電圧の変更に対する制御が不要になり、このため、イグナイタ始動回路を簡素化及び小型化できるという効果に加え、制御回路14の構成を実施の形態1と比べ簡素化できる。   As described above, according to the second embodiment, when the high-pressure discharge lamp 9 is started, the secondary winding 8b of the step-up transformer 8 every time the charging voltage to the charge / discharge capacitor 12 reaches the breakover voltage of the two-terminal thyristor 13. When a high voltage pulse is generated and the high pressure discharge lamp 9 is turned on, the charge voltage to the charge / discharge capacitor 12 becomes lower than the breakover voltage of the two-terminal thyristor 13 and is applied to the secondary winding 8b of the step-up transformer 8. Since the generated high voltage pulse stops, it becomes unnecessary to control the change of the output voltage of the DC power supply circuit 1 when the high pressure discharge lamp 9 is turned on. For this reason, the igniter start circuit can be simplified and miniaturized. In addition, the configuration of the control circuit 14 can be simplified as compared with the first embodiment.

実施の形態3.
既に述べたように、セラミックメタルハライドランプ等の高圧放電灯を点灯させる規格として、
(1)無負荷電圧:3.5〜5.0kVp
(2)積算パルス:100μs/s(2.7kV)以上
の2条件があり、
(3)屋内機種の場合、出力配線長が2m以上でも点灯できることが市場要求となっている。
実施の形態3以降は、この課題を解決するためのイグナイタ始動回路の各定数の最適値を検討した。
Embodiment 3 FIG.
As already mentioned, as a standard for lighting high pressure discharge lamps such as ceramic metal halide lamps,
(1) No-load voltage: 3.5 to 5.0 kVp
(2) Integrated pulse: There are two conditions of 100 μs / s (2.7 kV) or more,
(3) In the case of indoor models, the market demand is that the output wiring length can be lit even if it is 2 m or longer.
In the third and subsequent embodiments, the optimum values of the constants of the igniter starting circuit for solving this problem have been studied.

先ず、本実施の形態では、昇圧トランス8の巻数比について検討する。昇圧トランス8の巻数比を変えるとともに、出力配線長による浮遊容量としての負荷容量Ccを変化させて2次巻線電圧VL2を測定した。   First, in the present embodiment, the turn ratio of the step-up transformer 8 is examined. The secondary winding voltage VL2 was measured by changing the turn ratio of the step-up transformer 8 and changing the load capacitance Cc as the stray capacitance depending on the output wiring length.

図3、図4は実施の形態3を示す図で、図3はイグナイタ始動回路を示す回路図、図4は昇圧トランス8の巻数比と負荷容量Ccとを変化させた場合の2次巻線電圧VL2の測定結果を示す図である。   3 and 4 are diagrams showing the third embodiment. FIG. 3 is a circuit diagram showing an igniter starting circuit. FIG. 4 is a secondary winding when the turn ratio of the step-up transformer 8 and the load capacitance Cc are changed. It is a figure which shows the measurement result of voltage VL2.

図3に示すように、昇圧トランス8の2次巻線8bとコンデンサ7に並列に負荷容量Ccを接続して、例えば電源電圧Vi=470VDCにおける、2次巻線電圧VL2(負荷容量Ccの端子間電圧)を測定した。このときの、充放電コンデンサ12の電圧は、430VDCである。   As shown in FIG. 3, a load capacitance Cc is connected in parallel to the secondary winding 8b and the capacitor 7 of the step-up transformer 8, and the secondary winding voltage VL2 (the terminal of the load capacitance Cc, for example, at a power supply voltage Vi = 470 VDC). Voltage). At this time, the voltage of the charge / discharge capacitor 12 is 430 VDC.

2次巻線電圧VL2の測定結果を図4に示す。尚、負荷容量Cc=100pFが出力配線長1mに、負荷容量Cc=200pFが出力配線長2mに相当する。   The measurement result of the secondary winding voltage VL2 is shown in FIG. The load capacitance Cc = 100 pF corresponds to the output wiring length 1 m, and the load capacitance Cc = 200 pF corresponds to the output wiring length 2 m.

図4に示すように、負荷容量Cc=0pFでは、昇圧トランス8の巻数比(N2/N1)が小さくなると、2次巻線電圧VL2が下がる傾向にある。しかし、負荷容量Ccが100pF、200pFと増えても2次巻線電圧VL2の減衰量が少なくなる。この結果から、出力配線長が2m以上でも、無負荷電圧及び積算パルスの条件を満たす昇圧トランス8の巻数比は、Vi=470VDC(充放電コンデンサ12の電圧は430VDC)のとき、8〜10が好ましい。昇圧トランス8の巻数比は、12以下とする。   As shown in FIG. 4, at the load capacitance Cc = 0 pF, when the turn ratio (N2 / N1) of the step-up transformer 8 decreases, the secondary winding voltage VL2 tends to decrease. However, even if the load capacitance Cc increases to 100 pF and 200 pF, the attenuation amount of the secondary winding voltage VL2 decreases. From this result, even when the output wiring length is 2 m or more, the turn ratio of the step-up transformer 8 that satisfies the conditions of the no-load voltage and the integrated pulse is 8-10 when Vi = 470 VDC (the voltage of the charge / discharge capacitor 12 is 430 VDC). preferable. The turn ratio of the step-up transformer 8 is 12 or less.

昇圧トランス8の巻数比(N2/N1)は、2次巻線電圧VL2が規格(3.5〜5kVp)の中心値である4.3kVp前後になるように、選択することにより、負荷容量Ccが100pF、200pFと増えても2次巻線電圧VL2の減衰量を少なくすることができる。   The winding ratio (N2 / N1) of the step-up transformer 8 is selected so that the secondary winding voltage VL2 is about 4.3 kVp, which is the center value of the standard (3.5 to 5 kVp), thereby making the load capacitance Cc Even if the current increases to 100 pF and 200 pF, the attenuation amount of the secondary winding voltage VL2 can be reduced.

実施の形態4.
次に、昇圧トランス8の1次巻線8aと2端子サイリスタ13との間にインダクタンスL3を追加する効果を調べた。
Embodiment 4 FIG.
Next, the effect of adding an inductance L3 between the primary winding 8a of the step-up transformer 8 and the two-terminal thyristor 13 was examined.

図5、図6は実施の形態4を示す図で、図5はイグナイタ始動回路を示す回路図、図6はインダクタンスL3を追加した場合の負荷容量Ccと2次巻線電圧VL2及び2.7kV積算パルスとの関係を示す図である。   5 and 6 are diagrams showing the fourth embodiment. FIG. 5 is a circuit diagram showing an igniter starting circuit. FIG. 6 is a diagram showing a load capacitance Cc and a secondary winding voltage VL2 and 2.7 kV when an inductance L3 is added. It is a figure which shows the relationship with an integration pulse.

図5に示すように、インダクタンスL3を昇圧トランス8の1次巻線8aと2端子サイリスタ13との間に追加し、電源電圧Vi=470VDCにおける、2次巻線電圧VL2(負荷容量Ccの端子間電圧)、2.7kVパルス幅、2.7kV積算パルスを測定した。   As shown in FIG. 5, an inductance L3 is added between the primary winding 8a of the step-up transformer 8 and the two-terminal thyristor 13, and the secondary winding voltage VL2 (the terminal of the load capacitance Cc) at the power supply voltage Vi = 470 VDC. Voltage), a 2.7 kV pulse width, and a 2.7 kV integrated pulse were measured.

インダクタンスL3は、47μH、39μH、33μH、0μHについて測定した。そして、負荷容量Ccは、0pF、200pF(出力配線長2m相当)、470pF(出力配線長4.7m相当)、1000pF(出力配線長10m相当)について測定した。   The inductance L3 was measured for 47 μH, 39 μH, 33 μH, and 0 μH. The load capacitance Cc was measured for 0 pF, 200 pF (corresponding to an output wiring length of 2 m), 470 pF (corresponding to an output wiring length of 4.7 m), and 1000 pF (corresponding to an output wiring length of 10 m).

その結果を、図6に示す。インダクタンスL3を付けると2次巻線電圧VL2パルスが細かく振動する。インダクタンスL3が増えると、2次巻線電圧VL2の高さが減衰する。実験では、1次巻線を増減させ、インダクタンスL3が増えても2次巻線電圧VL2の高さが一定になるようにした。その結果、1次巻線8aの巻数N1=13[T]、2次巻線8bの巻数N2=140[T]、巻数比N2/N1=10.7、インダクタンスL3=47[μH]のものは、負荷容量Cc=200[pF]が付いても、2.7kV積算パルスが規格の100[μs/s]を他のものより大きく上回ったので、最適値に選ばれる。   The result is shown in FIG. When the inductance L3 is added, the secondary winding voltage VL2 pulse vibrates finely. When the inductance L3 increases, the height of the secondary winding voltage VL2 attenuates. In the experiment, the primary winding was increased / decreased so that the height of the secondary winding voltage VL2 became constant even when the inductance L3 increased. As a result, the number of turns of the primary winding 8a is N1 = 13 [T], the number of turns of the secondary winding 8b is N2 = 140 [T], the turn ratio is N2 / N1 = 10.7, and the inductance is L3 = 47 [μH]. Even when the load capacitance Cc = 200 [pF] is attached, the 2.7 kV integrated pulse greatly exceeds the standard 100 [μs / s], so that it is selected as the optimum value.

インダクタンスL3有りのものは、負荷容量Cc=200[pF]が付いても、2次巻線電圧VL2が4kVp程度で規格を満足し、且つ2.7kV積算パルスが低くても100[μs/s]前後になる。インダクタンスL3有りのものは、インダクタンスL3なしのものに比べ、負荷容量Cc=200[pF]が付いた場合の、2.7kV積算パルスが改善される。   The one with the inductance L3 satisfies the standard with the secondary winding voltage VL2 of about 4 kVp even if the load capacitance Cc = 200 [pF] is attached, and 100 [μs / s even if the 2.7 kV integrated pulse is low. ] Before and after. With the inductance L3, the 2.7 kV integrated pulse is improved when the load capacitance Cc = 200 [pF] is attached, compared with the one without the inductance L3.

そして、特にL3=47μHのものは(昇圧トランス8の巻数比=10.7)、負荷容量Cc=200[pF]が付いた場合の2.7kV積算パルスが改善される。   In particular, when L3 = 47 μH (the turn ratio of the step-up transformer 8 = 10.7), the 2.7 kV integrated pulse when the load capacitance Cc = 200 [pF] is added is improved.

インダクタンスL3を47μHより大きくすることにより、2.7kV積算パルスが改善されるが、100μHを超えると2次巻線電圧VL2の高さが4kVp以下に低下する。従って、インダクタンスL3は、47〜100μHが好ましい範囲となる。   Increasing the inductance L3 from 47 μH improves the 2.7 kV integrated pulse. However, when the inductance L3 exceeds 100 μH, the height of the secondary winding voltage VL2 decreases to 4 kVp or less. Accordingly, the inductance L3 is preferably in a range of 47 to 100 μH.

このように、インダクタンスL3を、昇圧トランス8の1次巻線8aと2端子サイリスタ13との間に追加することにより、負荷容量Ccが付いた場合の2.7kV積算パルスを向上させることができる。   In this way, by adding the inductance L3 between the primary winding 8a of the step-up transformer 8 and the two-terminal thyristor 13, the 2.7 kV integrated pulse with the load capacitance Cc can be improved. .

さらに、インダクタンスL3を47〜100μHにすることにより、負荷容量Cc=200[pF]が付いた場合の2.7kV積算パルスを大幅に向上させることができる。   Furthermore, by setting the inductance L3 to 47 to 100 μH, the 2.7 kV integrated pulse when the load capacitance Cc = 200 [pF] is attached can be significantly improved.

実施の形態5.
次に、イグナイタ始動回路の抵抗10について検討した。
Embodiment 5. FIG.
Next, the resistance 10 of the igniter starting circuit was examined.

図7乃至図10は実施の形態5を示す図で、図7はイグナイタ始動回路を示す回路図、図8は抵抗10の抵抗値を変化させた場合の、2次巻線電圧VL2、2.7kV積算パルス等の測定結果を示す図、図9はインダクタンスL3を追加したイグナイタ始動回路を示す回路図、図10は図9の回路で抵抗10の抵抗値を変化させた場合の、2次巻線電圧VL2、2.7kV積算パルス等の測定結果を示す図である。   7 to 10 are diagrams showing the fifth embodiment, FIG. 7 is a circuit diagram showing an igniter starting circuit, and FIG. 8 is a diagram showing the secondary winding voltage VL2, 2. when the resistance value of the resistor 10 is changed. FIG. 9 is a circuit diagram showing an igniter starting circuit to which an inductance L3 is added, FIG. 10 is a secondary winding when the resistance value of the resistor 10 is changed in the circuit of FIG. It is a figure which shows the measurement results, such as line voltage VL2, 2.7 kV integration pulse.

図7に示すように、例えば電源電圧Vi=470VDC(充放電コンデンサ12の電圧は430VDC)において、抵抗10を変化させたときの昇圧トランス8の1次巻線電圧VL1、2次巻線電圧VL2、2.7kV積算パルス等を測定した。   As shown in FIG. 7, for example, at the power supply voltage Vi = 470 VDC (the voltage of the charge / discharge capacitor 12 is 430 VDC), the primary winding voltage VL1 and the secondary winding voltage VL2 of the step-up transformer 8 when the resistor 10 is changed. A 2.7 kV integrated pulse or the like was measured.

その結果を、図8に示す。   The result is shown in FIG.

抵抗10が13.6kΩでは、抵抗10の温度が約100℃まで上昇する。抵抗10を実装する基板がこの温度(約100℃)に耐えられないため、抵抗10が13.6kΩのものは不可である。   When the resistance 10 is 13.6 kΩ, the temperature of the resistance 10 rises to about 100 ° C. Since the substrate on which the resistor 10 is mounted cannot withstand this temperature (about 100 ° C.), it is impossible for the resistor 10 to have 13.6 kΩ.

また、抵抗10が20kΩでは、抵抗10の温度は約70℃に下がり、基板もこの温度には耐える。そして、2次巻線電圧VL2は規格を満足する。2.7kV積算パルスが規格を若干下回る程度である。   When the resistance 10 is 20 kΩ, the temperature of the resistance 10 drops to about 70 ° C., and the substrate can withstand this temperature. The secondary winding voltage VL2 satisfies the standard. The 2.7 kV integrated pulse is just below the standard.

また、抵抗10が36kΩでは、抵抗10の温度は約52℃に下がる。そして、2次巻線電圧VL2は規格を満足するが、2.7kV積算パルスが規格を大幅に下回り、抵抗10が36kΩのものは不可である。   Further, when the resistance 10 is 36 kΩ, the temperature of the resistance 10 falls to about 52 ° C. The secondary winding voltage VL2 satisfies the standard, but the 2.7 kV integrated pulse is significantly lower than the standard and the resistance 10 is 36 kΩ, which is not possible.

このように、イグナイタ始動回路の抵抗10は、図7の回路の場合、20kΩ程度が好ましいと言えるが、2.7kV積算パルスが規格を若干下回る。   Thus, it can be said that the resistance 10 of the igniter starting circuit is preferably about 20 kΩ in the case of the circuit of FIG. 7, but the 2.7 kV integrated pulse is slightly below the standard.

そこで、図9に示すように、インダクタンスL3を昇圧トランス8の1次巻線8aと2端子サイリスタ13との間に追加し、電源電圧Vi=514VDCにおける、抵抗10の抵抗値を変化させた場合の、2次巻線電圧VL2(負荷容量Ccの端子間電圧)、2.7kVパルス幅、2.7kV積算パルス等を測定した。結果を図10に示す。   Therefore, as shown in FIG. 9, when the inductance L3 is added between the primary winding 8a of the step-up transformer 8 and the two-terminal thyristor 13, and the resistance value of the resistor 10 is changed at the power supply voltage Vi = 514 VDC. The secondary winding voltage VL2 (voltage between terminals of the load capacitance Cc), 2.7 kV pulse width, 2.7 kV integrated pulse, and the like were measured. The results are shown in FIG.

図10に示すように、抵抗10の抵抗値が13.6kΩでは、抵抗10の表面温度(イグナイタ発射90秒後)が約122℃まで上昇する。抵抗10を実装する基板がこの温度(約122℃)に耐えられないため、抵抗10が13.6kΩのものは不可である。   As shown in FIG. 10, when the resistance value of the resistor 10 is 13.6 kΩ, the surface temperature of the resistor 10 (90 seconds after igniter firing) rises to about 122 ° C. Since the substrate on which the resistor 10 is mounted cannot withstand this temperature (about 122 ° C.), the resistor 10 with 13.6 kΩ is not possible.

抵抗10の抵抗値が20kΩでは、抵抗10の表面温度(イグナイタ発射90秒後)は約95℃であり、許容範囲内である。負荷容量が200pF、470pFに増加しても、2次巻線電圧VL2、2.7kV積算パルスは規格を満足する。   When the resistance value of the resistor 10 is 20 kΩ, the surface temperature of the resistor 10 (after igniter firing 90 seconds) is about 95 ° C., which is within the allowable range. Even if the load capacitance is increased to 200 pF and 470 pF, the secondary winding voltage VL2 and the 2.7 kV integrated pulse satisfy the standard.

抵抗10の抵抗値が36kΩでは、抵抗10の表面温度(イグナイタ発射90秒後)は約59℃で、さらに低下する。しかし、2.7kV積算パルスが、負荷容量が0pFでも規格を満足しない。   When the resistance value of the resistor 10 is 36 kΩ, the surface temperature of the resistor 10 (after 90 seconds of igniter firing) is about 59 ° C. and further decreases. However, the 2.7 kV integrated pulse does not satisfy the standard even when the load capacity is 0 pF.

以上のように、インダクタンスL3を昇圧トランス8の1次巻線8aと2端子サイリスタ13との間に追加し、抵抗10の抵抗値を20kΩ程度にすれば、負荷容量が200pF以上になっても、2次巻線電圧VL2、2.7kV積算パルスは規格を満足する。   As described above, if the inductance L3 is added between the primary winding 8a of the step-up transformer 8 and the two-terminal thyristor 13 and the resistance value of the resistor 10 is set to about 20 kΩ, the load capacitance becomes 200 pF or more. The secondary winding voltage VL2, 2.7 kV integrated pulse satisfies the standard.

実施の形態6.
次に、イグナイタ始動回路の充放電コンデンサ12の最適値を、インダクタンスL3を追加した回路で検討した。
Embodiment 6 FIG.
Next, the optimum value of the charge / discharge capacitor 12 of the igniter starting circuit was examined with a circuit to which an inductance L3 was added.

図11、図12は実施の形態6を示す図で、図11はイグナイタ始動回路を示す回路図、図12は充放電コンデンサ12の容量を変化させ、各容量値において負荷容量を付けたときの2次巻線電圧VL2、2.7kV積算パルス等を測定した結果を示す図である。   FIGS. 11 and 12 are diagrams showing the sixth embodiment. FIG. 11 is a circuit diagram showing an igniter starting circuit. FIG. 12 shows a case where the capacitance of the charge / discharge capacitor 12 is changed and load capacitance is added at each capacitance value. It is a figure which shows the result of having measured secondary winding voltage VL2, 2.7 kV integrated pulse, etc. FIG.

図11に示すイグナイタ始動回路において、抵抗10は24kΩ、昇圧トランス8の巻数比は10.7、インダクタンスL3は82μHで測定を行った。   In the igniter starting circuit shown in FIG. 11, measurement was performed with the resistor 10 of 24 kΩ, the step-up transformer 8 turns ratio of 10.7, and the inductance L3 of 82 μH.

充放電コンデンサ12の容量は、0.056μF、0.1μF、0.22μF、0.47μF、1μFについて測定を行った。図12に示すように、充放電コンデンサ12の容量が0.22μF以上では、2.7kV積算パルスが規格を満たさない。また、充放電コンデンサ12の容量が0.056μFでは、VL2が特に負荷容量が付いた場合に低くなる傾向があるが、負荷容量が200pFまでは許容範囲内である。充放電コンデンサ12の容量0.1μFが、最も良好な特性を示している。   The capacity of the charge / discharge capacitor 12 was measured for 0.056 μF, 0.1 μF, 0.22 μF, 0.47 μF, and 1 μF. As shown in FIG. 12, when the capacitance of the charge / discharge capacitor 12 is 0.22 μF or more, the 2.7 kV integrated pulse does not satisfy the standard. Further, when the capacity of the charge / discharge capacitor 12 is 0.056 μF, VL2 tends to decrease particularly when a load capacity is added, but the load capacity is within an allowable range up to 200 pF. A capacitance of 0.1 μF of the charge / discharge capacitor 12 shows the best characteristics.

このように、インダクタンスL3を追加したイグナイタ始動回路の充放電コンデンサ12の最適値は0.1μFであるが、0.1±0.05μFの範囲であれば、実用上問題ない。   As described above, the optimum value of the charge / discharge capacitor 12 of the igniter starting circuit to which the inductance L3 is added is 0.1 μF, but there is no practical problem if it is in the range of 0.1 ± 0.05 μF.

本発明の実施の形態1に係る高圧放電灯点灯装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the high pressure discharge lamp lighting device which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る高圧放電灯点灯装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the high pressure discharge lamp lighting device which concerns on Embodiment 2 of this invention. 実施の形態3を示す図で、イグナイタ始動回路を示す回路図。FIG. 6 is a diagram illustrating the third embodiment and is a circuit diagram illustrating an igniter starting circuit. 実施の形態3を示す図で、昇圧トランス8の巻数比と負荷容量Ccとを変化させた場合の2次巻線電圧VL2の測定結果を示す図。FIG. 10 is a diagram illustrating the third embodiment, and is a diagram illustrating measurement results of the secondary winding voltage VL2 when the turn ratio of the step-up transformer 8 and the load capacitance Cc are changed. 実施の形態4を示す図で、イグナイタ始動回路を示す回路図。FIG. 10 is a diagram illustrating the fourth embodiment and is a circuit diagram illustrating an igniter starting circuit. 実施の形態4を示す図で、インダクタンスL3を追加した場合の負荷容量Ccと2次巻線電圧VL2及び2.7kV積算パルスとの関係を示す図。The figure which shows Embodiment 4 and shows the relationship between the load capacity Cc at the time of adding the inductance L3, the secondary winding voltage VL2, and a 2.7 kV integrated pulse. 実施の形態5を示す図で、イグナイタ始動回路を示す回路図。FIG. 10 is a diagram illustrating the fifth embodiment and is a circuit diagram illustrating an igniter starting circuit. 実施の形態5を示す図で、抵抗10の抵抗値を変化させた場合の、2次巻線電圧VL2、2.7kV積算パルス等の測定結果を示す図。FIG. 10 is a diagram illustrating the fifth embodiment, and illustrates measurement results of the secondary winding voltage VL2, 2.7 kV integrated pulse, and the like when the resistance value of the resistor 10 is changed. 実施の形態5を示す図で、インダクタンスL3を追加したイグナイタ始動回路を示す回路図。FIG. 10 is a diagram illustrating the fifth embodiment and is a circuit diagram illustrating an igniter starting circuit to which an inductance L3 is added. 実施の形態5を示す図で、図9の回路で抵抗10の抵抗値を変化させた場合の、2次巻線電圧VL2、2.7kV積算パルス等の測定結果を示す図。FIG. 10 is a diagram illustrating the fifth embodiment, and illustrates measurement results of the secondary winding voltage VL2, 2.7 kV integrated pulse, and the like when the resistance value of the resistor 10 is changed in the circuit of FIG. 9; 実施の形態6を示す図で、イグナイタ始動回路を示す回路図。FIG. 17 is a circuit diagram showing an igniter starting circuit according to the sixth embodiment. 実施の形態6を示す図で、充放電コンデンサ12の容量を変化させ、各容量値において負荷容量を付けたときの2次巻線電圧VL2、2.7kV積算パルス等を測定した結果を示す図。The figure which shows Embodiment 6 is a figure which shows the result of having measured the secondary winding voltage VL2, 2.7 kV integrated pulse, etc. when changing the capacity | capacitance of the charging / discharging capacitor | condenser 12 and attaching load capacity in each capacity | capacitance value. .

符号の説明Explanation of symbols

1 直流電源回路、2 第1のスイッチング素子、3 第2のスイッチング素子、4 第1の電解コンデンサ、5 第2の電解コンデンサ、6 インダクタ、7 コンデンサ、8 昇圧トランス、8a 1次巻線、8b 2次巻線、9 高圧放電灯、10 抵抗、11 ダイオード、12 充放電コンデンサ、13 2端子サイリスタ、14 制御回路。   DESCRIPTION OF SYMBOLS 1 DC power supply circuit, 2 1st switching element, 2nd switching element, 4 1st electrolytic capacitor, 5 2nd electrolytic capacitor, 6 Inductor, 7 Capacitor, 8 Step-up transformer, 8a Primary winding, 8b Secondary winding, 9 high-pressure discharge lamp, 10 resistor, 11 diode, 12 charge / discharge capacitor, 13 2-terminal thyristor, 14 control circuit.

Claims (6)

高圧放電灯が取り付けられる負荷回路と、
商用電源を所望の直流電圧に変換するための直流電源回路と、
該直流電源回路からの直流電圧を交流電圧に変換し、前記負荷回路に供給するインバータ回路と、
前記負荷回路に2次巻線が挿入された昇圧トランス、該昇圧トランスの1次巻線側に接続された2端子サイリスタ、及び前記直流電源回路の出力間に設けられた充放電回路を有し、前記2端子サイリスタが導通したときに前記昇圧トランスの2次巻線に高電圧パルスを発生させるイグナイタ始動回路と、
前記負荷回路の高圧放電灯を始動する際、前記充放電回路の充電電圧が前記2端子サイリスタを導通させる電圧値となるように、前記高圧放電灯が点灯した後は、前記充電電圧が前記2端子サイリスタを非導通させる電圧値となるように、前記直流電源回路を制御する制御部とを備え、
前記昇圧トランスの巻数比(2次巻線/1次巻数)を、2次巻線電圧が略4.3kVになるように設定することを特徴とする高圧放電灯点灯装置。
A load circuit to which a high-pressure discharge lamp is attached;
A DC power supply circuit for converting commercial power into a desired DC voltage;
An inverter circuit that converts a DC voltage from the DC power supply circuit into an AC voltage and supplies the AC voltage to the load circuit;
A step-up transformer having a secondary winding inserted in the load circuit; a two-terminal thyristor connected to the primary winding side of the step-up transformer; and a charge / discharge circuit provided between outputs of the DC power supply circuit An igniter starting circuit for generating a high voltage pulse in the secondary winding of the step-up transformer when the two-terminal thyristor is turned on;
When starting the high pressure discharge lamp of the load circuit, after the high pressure discharge lamp is lit, the charge voltage of the charge / discharge circuit becomes the voltage value for conducting the two-terminal thyristor. A control unit that controls the DC power supply circuit so as to have a voltage value that makes the terminal thyristor non-conductive,
A high pressure discharge lamp lighting device, characterized in that the winding ratio (secondary winding / primary winding) of the step-up transformer is set so that the secondary winding voltage is approximately 4.3 kV.
前記昇圧トランスの巻数比(2次巻線/1次巻数)を、12以下とすることを特徴とする請求項1記載の高圧放電灯点灯装置。   2. The high pressure discharge lamp lighting device according to claim 1, wherein the step-up transformer has a turns ratio (secondary winding / primary winding number) of 12 or less. 高圧放電灯が取り付けられる負荷回路と、
商用電源を所望の直流電圧に変換するための直流電源回路と、
該直流電源回路からの直流電圧を交流電圧に変換し、前記負荷回路に供給するインバータ回路と、
前記負荷回路に2次巻線が挿入された昇圧トランス、該昇圧トランスの1次巻線側に接続された2端子サイリスタ、前記昇圧トランスの1次巻線と前記2端子サイリスタとの間に接続されたインダクタンス、及び前記直流電源回路の出力間に設けられた充放電回路を有し、前記2端子サイリスタが導通したときに前記昇圧トランスの2次巻線に高電圧パルスを発生させるイグナイタ始動回路と、
前記負荷回路の高圧放電灯を始動する際、前記充放電回路の充電電圧が前記2端子サイリスタを導通させる電圧値となるように、前記高圧放電灯が点灯した後は、前記充電電圧が前記2端子サイリスタを非導通させる電圧値となるように、前記直流電源回路を制御する制御部とを備えたことを特徴とする高圧放電灯点灯装置。
A load circuit to which a high-pressure discharge lamp is attached;
A DC power supply circuit for converting commercial power into a desired DC voltage;
An inverter circuit that converts a DC voltage from the DC power supply circuit into an AC voltage and supplies the AC voltage to the load circuit;
A step-up transformer having a secondary winding inserted into the load circuit, a two-terminal thyristor connected to the primary winding side of the step-up transformer, and a connection between the primary winding of the step-up transformer and the two-terminal thyristor And an igniter start circuit for generating a high-voltage pulse in the secondary winding of the step-up transformer when the two-terminal thyristor is turned on, having a charge / discharge circuit provided between the output inductance and the output of the DC power supply circuit When,
When starting the high pressure discharge lamp of the load circuit, after the high pressure discharge lamp is lit, the charge voltage of the charge / discharge circuit becomes the voltage value for conducting the two-terminal thyristor. A high-pressure discharge lamp lighting device comprising: a control unit that controls the DC power supply circuit so as to have a voltage value that makes the terminal thyristor non-conductive.
前記インダクタンスを、47〜100μHとしたことを特徴とする請求項3記載の高圧放電灯点灯装置。   4. The high pressure discharge lamp lighting device according to claim 3, wherein the inductance is 47 to 100 [mu] H. 前記充放電回路は抵抗を備え、前記抵抗の抵抗値を20kΩ程度としたことを特徴とする請求項3記載の高圧放電灯点灯装置。   4. The high pressure discharge lamp lighting device according to claim 3, wherein the charge / discharge circuit includes a resistor, and a resistance value of the resistor is about 20 kΩ. 前記充放電回路は充放電コンデンサを有し、該充放電コンデンサの容量を0.1±0.05μFとしたことを特徴とする請求項3記載の高圧放電灯点灯装置。   4. The high pressure discharge lamp lighting device according to claim 3, wherein the charge / discharge circuit includes a charge / discharge capacitor, and a capacity of the charge / discharge capacitor is 0.1 ± 0.05 μF.
JP2007166171A 2007-06-25 2007-06-25 High pressure discharge lamp lighting device Pending JP2009004300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166171A JP2009004300A (en) 2007-06-25 2007-06-25 High pressure discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166171A JP2009004300A (en) 2007-06-25 2007-06-25 High pressure discharge lamp lighting device

Publications (1)

Publication Number Publication Date
JP2009004300A true JP2009004300A (en) 2009-01-08

Family

ID=40320446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166171A Pending JP2009004300A (en) 2007-06-25 2007-06-25 High pressure discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP2009004300A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132181A (en) * 1976-04-24 1977-11-05 Toray Industries Continuous rapid dyeing method
JP2002093590A (en) * 2000-09-13 2002-03-29 Mitsubishi Electric Corp Electric discharge lamp lighting equipment
JP2003347075A (en) * 2002-05-29 2003-12-05 Plus Vision Corp Lamp lighting device and projector using same
JP2006019042A (en) * 2004-06-30 2006-01-19 Toshiba Lighting & Technology Corp High pressure discharge lamp lighting device and lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132181A (en) * 1976-04-24 1977-11-05 Toray Industries Continuous rapid dyeing method
JP2002093590A (en) * 2000-09-13 2002-03-29 Mitsubishi Electric Corp Electric discharge lamp lighting equipment
JP2003347075A (en) * 2002-05-29 2003-12-05 Plus Vision Corp Lamp lighting device and projector using same
JP2006019042A (en) * 2004-06-30 2006-01-19 Toshiba Lighting & Technology Corp High pressure discharge lamp lighting device and lighting device

Similar Documents

Publication Publication Date Title
US7880399B2 (en) Ballast for at least one fluorescent high pressure discharge lamp, method for operating said lamp and lighting system comprising said lamp
US8207680B2 (en) Discharge lamp ballast having an auto-transformer for high voltage detection
US6104147A (en) Pulse generator and discharge lamp lighting device using same
JPH06113534A (en) Power supply
JP2010165546A (en) Lighting device and illumination apparatus
JP4836587B2 (en) High pressure discharge lamp lighting device
JP5069573B2 (en) High pressure discharge lamp lighting device, lighting fixture
JP2009004300A (en) High pressure discharge lamp lighting device
JP5103641B2 (en) High pressure discharge lamp lighting device
JP4970898B2 (en) Discharge lamp lighting device
JP4721937B2 (en) Discharge lamp lighting device
JP4239355B2 (en) Discharge lamp lighting device
JP4280116B2 (en) Current detection circuit
JP2013110002A (en) Discharge lamp lighting device and vehicle head light unit using the same
JP4832533B2 (en) Discharge lamp lighting device and lighting fixture
JP4984062B2 (en) Discharge lamp lighting device
JP4832534B2 (en) Discharge lamp lighting device and lighting fixture
JP4989688B2 (en) Discharge lamp lighting device and lighting apparatus equipped with the same
JP2012029526A (en) Switching power supply device and led lighting device
JPWO2008123274A1 (en) High-intensity discharge lamp lighting device
JP5381137B2 (en) Discharge lamp lighting device, light source device and igniter
JP2009176641A (en) High-pressure discharge lamp lighting device, illumination device
JP2009176640A (en) High pressure discharge lamp lighting device, and illumination apparatus
JPH0697637B2 (en) Discharge lamp lighting device
JP2009176635A (en) High-pressure discharge lamp lighting device, and luminaire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531