JP2009004238A - Electrode, electrode assembly, and its manufacturing method - Google Patents

Electrode, electrode assembly, and its manufacturing method Download PDF

Info

Publication number
JP2009004238A
JP2009004238A JP2007164427A JP2007164427A JP2009004238A JP 2009004238 A JP2009004238 A JP 2009004238A JP 2007164427 A JP2007164427 A JP 2007164427A JP 2007164427 A JP2007164427 A JP 2007164427A JP 2009004238 A JP2009004238 A JP 2009004238A
Authority
JP
Japan
Prior art keywords
bottom wall
electrode
lead
center
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007164427A
Other languages
Japanese (ja)
Inventor
Masayoshi Kujirai
正義 鯨井
Kazuki Mitsui
一樹 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007164427A priority Critical patent/JP2009004238A/en
Priority to TW097115713A priority patent/TW200912993A/en
Priority to CNA2008100971113A priority patent/CN101329972A/en
Priority to KR1020080045580A priority patent/KR20080112930A/en
Publication of JP2009004238A publication Critical patent/JP2009004238A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/024Electron guns using thermionic emission of cathode heated by electron or ion bombardment or by irradiation by other energetic beams, e.g. by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/09Hollow cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light

Abstract

<P>PROBLEM TO BE SOLVED: To firmly weld a cup-shaped electrode of a cold-cathode discharge tube and a lead. <P>SOLUTION: The electrode (2) having an annular side wall (4) and the bottom wall (5) that closes one end of the side wall (4), and the lead (3) fixed in a recess (6) of the electrode (2) coaxially with the side wall (4) are installed at an electrode assembly. Since the bottom wall (5) can be formed in the thickness that approaches a shape complementary with the Gaussian distribution by installing a protrusion (7) having the maximum thickness at the center part on the bottom wall (5), the entire welded parts of the lead (3) and the bottom wall (5) can be welded by being heated at a more uniform temperature while preventing the welded parts of the lead (3) and the bottom wall (5) from being locally overheated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷陰極放電管の電極にリードを強固に溶接できる電極及び電極組立体及びその製造方法に関するものである。   The present invention relates to an electrode, an electrode assembly, and a method for manufacturing the same that can firmly weld a lead to an electrode of a cold cathode discharge tube.

希ガス及び水銀蒸気が充填されたガラス管の内部に一対の電極が対向して配置され且つガラス管の内壁に蛍光膜が被覆された冷陰極放電管は、従来から液晶ディスプレイのバックライト用光源等として広く使用されている。冷陰極放電管の一対の電極には導入線(リード)の一端が接続され、導入線の他端はガラス管の両端から外部に導出される。一対の電極間に電圧を印加すると、一方の電極から電子が放出され、ガラス管内の水銀原子に電子が衝突して紫外線を発生する。この紫外線は、ガラス管の内壁に形成された蛍光膜で可視光線に波長変換される。   A cold cathode discharge tube having a pair of electrodes facing each other inside a glass tube filled with a rare gas and mercury vapor and having an inner wall of the glass tube coated with a fluorescent film has been conventionally used as a light source for backlights of liquid crystal displays. Widely used as etc. One end of an introduction line (lead) is connected to the pair of electrodes of the cold cathode discharge tube, and the other end of the introduction line is led out from both ends of the glass tube. When a voltage is applied between the pair of electrodes, electrons are emitted from one electrode, and the electrons collide with mercury atoms in the glass tube to generate ultraviolet rays. This ultraviolet light is wavelength-converted into visible light by a fluorescent film formed on the inner wall of the glass tube.

下記特許文献1は、ガラスバルブの両端部に封入された導入金属体の先端に取り付けられた電極を製造する際に、導入金属体を嵌入可能な穴部を有するホロー金属体を用いて電極を構成し、穴部に前記導入金属体を嵌入した状態で、ホロー金属体の側方部からレーザ光の照射を行い、穴部内にホロー金属体と導入金属体との接合部を形成する。ホロー金属体の内表面に対して直接的にレーザ光を照射せずに、ホロー金属体の側方部からレーザ光を照射して、穴部内に形成される接合部を用いてホロー金属体と導入金属体とが接合されるため、ホロー金属体の内表面の温度上昇を適切に抑えることにより、ホロー金属体内表面上での酸化膜の形成を抑制することができる。   In the following Patent Document 1, when manufacturing an electrode attached to the tip of an introduction metal body sealed at both ends of a glass bulb, an electrode is formed using a hollow metal body having a hole into which the introduction metal body can be inserted. In the state where the introduction metal body is inserted into the hole, laser light is irradiated from the side of the hollow metal body to form a joint between the hollow metal body and the introduction metal body in the hole. Without directly irradiating the inner surface of the hollow metal body with the laser beam, the laser beam is irradiated from the side portion of the hollow metal body, and the hollow metal body is used with the joint formed in the hole. Since the introduced metal body is joined, the formation of an oxide film on the surface of the hollow metal body can be suppressed by appropriately suppressing the temperature rise of the inner surface of the hollow metal body.

特開2003−272520(図2)JP2003-272520 (FIG. 2)

一般的にレーザ溶接に使用するレーザ光を導くファイバには、GIファイバ(Graded Index Fiber)とSIファイバ(Step Index Fiber)とがある。GIファイバは、コアの中心軸から離れた外層に向かって徐々に屈折率を低下させて、モード分散を減少させる構造を有し、光は進行につれて中央に収斂するので、中央部分のエネルギ密度が外側より高い特性を有する。SIファイバは、コアとクラッドの屈折率が鋭いステップ状に分布する構造を有し、異なる入射角を有する入射光の場合、入射端から出口端までの通過距離が異なり出射光は分散するので、光のエネルギは分散してより均一化する。よって、入射角の異なるレーザ光を入射させて溶接する場合、SIファイバはGIファイバよりもエネルギ分布が均一となり、広い面積を浅く溶接する溶接法に適する。   Generally, there are GI fiber (Graded Index Fiber) and SI fiber (Step Index Fiber) as fibers for guiding laser light used for laser welding. The GI fiber has a structure in which the refractive index gradually decreases toward the outer layer away from the central axis of the core to reduce the mode dispersion, and light converges in the center as it travels. Has higher properties than the outside. The SI fiber has a structure in which the refractive indexes of the core and the clad are distributed in a sharp step shape, and in the case of incident light having different incident angles, the passing light from the incident end to the exit end is different and the emitted light is dispersed. The energy of light is dispersed and made more uniform. Therefore, when welding is performed by entering laser beams having different incident angles, the SI fiber has a more uniform energy distribution than the GI fiber, and is suitable for a welding method in which a wide area is welded shallowly.

しかしながら、GIファイバよりエネルギ分布が均一に近いSIファイバを用いても、レーザ光の焦点(中央)部分と外側(周辺)部分との断面上のエネルギ分布(到達深さ)に相違が発生する欠陥が生ずる。   However, even when an SI fiber having a more uniform energy distribution than a GI fiber is used, there is a difference in the difference in energy distribution (arrival depth) on the cross section between the focal (center) portion and the outer (peripheral) portion of the laser light. Will occur.

一方、強固な機械的溶接強度を保持して、電極の底部とリードとを接するほぼ全面に溶着領域を設けることが好ましい。しかしながら、カップ形状の電極の内側からレーザ光を照射して、電極とリードとを溶接する際に、図7に示すようにレーザ光の出力が弱いと、電極(2)の底壁(5)を通じて吸収されるエネルギでは、リード(3)の端部(3a)の全面を電極(2)に溶接するのに十分な温度に加熱できない。特に、前記のように、レーザ光の焦点部分とレーザ光の外側部分とにエネルギの到達深さが相違するため、リード(3)の外周壁(3b)側は、溶接温度に達せず、リード(3)と電極(2)との溶接が不十分となる。逆に、図8に示すように、レーザ光の出力を強化して高融点金属(例えばタングステン)を燒結して作成したリード(3)を使用する場合、リード(3)の端部(3a)のほぼ全領域を溶接温度以上に上昇させると、レーザ光の径方向のエネルギ分布が不均一なため、リード(3)の中心部は、溶融温度を越えてタングステンの再結晶温度に達する。その結果、タングステンの再結晶が深部まで広がり、リード(3)の機械的強度が低下し、例えば、再結晶部分を起点としてリード(3)が破断する。つまり、レーザ光の強度が強いと、再結晶化によりリード(3)の機械的強度が低下する反面、レーザ光の強度が低いと溶接が不十分となり十分な溶接強度が得られない二律背反の問題が生ずる。また、深さ方向だけでなく幅(横幅)にもレーザ光のエネルギ分布が変化するため、特許文献1に示すように、電極の側方からレーザ光を照射しても、上記と同様の問題を生ずる。   On the other hand, it is preferable to provide a welding region on almost the entire surface where the bottom of the electrode and the lead are in contact with each other while maintaining a strong mechanical welding strength. However, when laser light is irradiated from the inside of the cup-shaped electrode and the electrode and the lead are welded, if the output of the laser light is weak as shown in FIG. 7, the bottom wall (5) of the electrode (2) With the energy absorbed through, the entire surface of the end (3a) of the lead (3) cannot be heated to a temperature sufficient to weld the electrode (2). In particular, as described above, since the energy reach depth is different between the focal portion of the laser beam and the outer portion of the laser beam, the outer peripheral wall (3b) side of the lead (3) does not reach the welding temperature, and the lead The welding between (3) and the electrode (2) becomes insufficient. On the contrary, as shown in FIG. 8, when the lead (3) made by strengthening the output of the laser beam and sintering a refractory metal (for example, tungsten) is used, the end (3a) of the lead (3) is used. When the entire region is raised to the welding temperature or higher, the energy distribution in the radial direction of the laser beam is non-uniform, so that the central portion of the lead (3) reaches the recrystallization temperature of tungsten exceeding the melting temperature. As a result, the recrystallization of tungsten spreads to the deep part, and the mechanical strength of the lead (3) is reduced. For example, the lead (3) is broken starting from the recrystallized part. In other words, if the intensity of the laser beam is high, the mechanical strength of the lead (3) decreases due to recrystallization, but if the intensity of the laser beam is low, welding is insufficient and sufficient welding strength cannot be obtained. Will occur. Further, since the energy distribution of the laser light changes not only in the depth direction but also in the width (horizontal width), as shown in Patent Document 1, even if the laser light is irradiated from the side of the electrode, the same problem as described above Is produced.

そこで、本発明は、電極にリードをより強固に溶着し、リードの機械的強度を比較的高く保つ事ができる電極及び電極組立体及びその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide an electrode, an electrode assembly, and a method for manufacturing the same, in which the lead can be more firmly welded to the electrode and the mechanical strength of the lead can be kept relatively high.

本発明による電極は、環状の側壁(4)及び側壁(4)の内面の一端(4b)を閉鎖する底壁(5)を有する電極(2)において、中心軸(A)が通過する底壁(5)の中心部(5c)を包囲する周辺部(5d)での底壁(5)の厚み(t1)より底壁(5)の中心部(5c)での厚み(t0)を大きく形成する突起(7)を底壁(5)に設ける。溶接時のレーザ光のエネルギは、電極(2)に吸収されて熱エネルギに変換されるが、本発明による電極では、中心軸(A)が通過する底壁(5)の中心部(5c)を包囲する周辺部(5d)での厚み(t1)より底壁(5)の中心部(5c)での厚み(t0)を大きく形成するので、リード(3)の端部(3a)の中心部(3c)には周辺部(3d)より熱エネルギが伝達され難い。このため、リード(3)の端部(3a)の中心部(3c)では、温度上昇が抑制され又は遅延され、リード(3)の周辺部(3d)では、中心部(3c)と比べて温度上昇が抑制されないので、リード(3)の端部(3a)の温度分布を径方向(リード(3)の幅方向)に均一化することができる。従って、リード(3)の端部(3a)の外周壁(3b)側の温度が再結晶化温度以上となるレベルにレーザ光の出力を上昇しても、リード(3)の中心部(3c)の温度は、従来と比べて外周壁(3b)の温度により等しいか又はそれ未満に緩和されるから、従来の電極組立体(1)とは異なり、リード(3)の中心部(3c)での端部(3a)から深部まで再結晶化し網目状組織化することを抑制して、粒界破断によるリード(3)の機械的強度の低下を抑制することができる。 The electrode according to the present invention comprises an annular side wall (4) and a bottom wall (5) that closes one end (4b) of the inner surface of the side wall (4), and the bottom wall through which the central axis (A) passes. The thickness (t 0 ) at the center part (5c) of the bottom wall (5) is larger than the thickness (t 1 ) of the bottom wall (5) at the peripheral part (5d) surrounding the center part (5c) of (5). A large protrusion (7) is provided on the bottom wall (5). The energy of the laser beam during welding is absorbed by the electrode (2) and converted into thermal energy, but in the electrode according to the present invention, the central portion (5c) of the bottom wall (5) through which the central axis (A) passes. Since the thickness (t 0 ) at the center portion (5c) of the bottom wall (5) is larger than the thickness (t 1 ) at the peripheral portion (5d) that surrounds the end portion (3a) of the lead (3) It is difficult for heat energy to be transmitted to the central part (3c) of the peripheral part from the peripheral part (3d). For this reason, the temperature rise is suppressed or delayed at the center portion (3c) of the end portion (3a) of the lead (3), and the peripheral portion (3d) of the lead (3) is compared with the center portion (3c). Since the temperature rise is not suppressed, the temperature distribution at the end (3a) of the lead (3) can be made uniform in the radial direction (the width direction of the lead (3)). Therefore, even if the output of the laser beam rises to a level at which the temperature on the outer peripheral wall (3b) side of the end (3a) of the lead (3) is equal to or higher than the recrystallization temperature, the center (3c Unlike the conventional electrode assembly (1), the central portion (3c) of the lead (3) differs from the conventional electrode assembly (1) because the temperature of the outer wall (3b) is less than or equal to that of the conventional one. It is possible to suppress recrystallization from the end portion (3a) to the deep portion and to form a network structure, and it is possible to suppress a decrease in mechanical strength of the lead (3) due to grain boundary fracture.

本発明の実施の形態による電極は、環状の側壁(4)及び側壁(4)の内面(4a)の一端(4b)を閉鎖する底壁(5)を有する。底壁(5)の外面(5b)に凹部(6)を形成し、凹部(6)の側壁(4)側に相対する底壁(5)の厚み(t1)より凹部(6)の中心に相対する底壁(5)の厚み(t0)を大きく形成した突起(7)を底壁(5)に設ける。 The electrode according to the embodiment of the present invention has an annular side wall (4) and a bottom wall (5) that closes one end (4b) of an inner surface (4a) of the side wall (4). The recess (6) is formed on the outer surface (5b) of the bottom wall (5), and the center of the recess (6) is determined from the thickness (t 1 ) of the bottom wall (5) facing the side wall (4) side of the recess (6). The bottom wall (5) is provided with a protrusion (7) having a large thickness (t 0 ) of the bottom wall (5) opposite to the bottom wall (5).

本発明による電極組立体は、環状の側壁(4)及び側壁(4)の内面(4a)の一端(4b)を閉鎖する底壁(5)を有する電極(2)と、電極(2)の底壁(5)に固定されたリード(3)とを備える電極組立体において、中心軸(A)が通過する底壁(5)の中心部(5c)を包囲する周辺部(5d)での厚み(t1)より底壁(5)の中心部(5c)での厚み(t0)を大きく形成する突起(7)を底壁(5)に設ける。 An electrode assembly according to the present invention includes an electrode (2) having an annular side wall (4) and a bottom wall (5) that closes one end (4b) of an inner surface (4a) of the side wall (4), and an electrode (2). In an electrode assembly comprising a lead (3) fixed to the bottom wall (5), a peripheral portion (5d) surrounding the central portion (5c) of the bottom wall (5) through which the central axis (A) passes. The bottom wall (5) is provided with a protrusion (7) that forms a thickness (t 0 ) at the center (5c) of the bottom wall (5) larger than the thickness (t 1 ).

本発明による電極組立体の製造方法は、環状の側壁(4)と側壁(4)の内面(4a)の一端(4b)を閉鎖する底壁(5)とを有し且つ中心軸(A)が通過する底壁(5)の中心部(5c)を包囲する周辺部(5d)での厚み(t1)より底壁(5)の中心部(5c)での厚み(t0)の大きい突起(7)を形成した電極(2)と、リード(3)とを準備する工程と、リード(3)の端部(3a)を底壁(5)の外面(5b)に当接する工程と、側壁(4)の内面(4a)の他端(4c)側の開口部(8)から底壁(5)の内面(5a)に向かってレーザ光を照射し、リード(3)の端部(3a)を電極(2)の底壁(5)の外面(5b)に溶接する工程とを含む。 An electrode assembly manufacturing method according to the present invention includes an annular side wall (4) and a bottom wall (5) that closes one end (4b) of an inner surface (4a) of the side wall (4) and a central axis (A). The thickness (t 0 ) at the center part (5c) of the bottom wall (5) is larger than the thickness (t 1 ) at the peripheral part (5d) surrounding the center part (5c) of the bottom wall (5) through which the Preparing the electrode (2) formed with the protrusion (7) and the lead (3), and contacting the end (3a) of the lead (3) with the outer surface (5b) of the bottom wall (5); The end of the lead (3) is irradiated with laser light from the opening (8) on the other end (4c) side of the inner surface (4a) of the side wall (4) toward the inner surface (5a) of the bottom wall (5). Welding (3a) to the outer surface (5b) of the bottom wall (5) of the electrode (2).

本発明の実施の形態による電極組立体の製造方法は、環状の側壁(4)及び側壁(4)の内面(4a)の一端(4b)を閉鎖する底壁(5)と、底壁(5)の外面(5b)に形成された凹部(6)とを有し、凹部(6)の側壁(4)側に相対する底壁(5)の厚み(t1)より凹部(6)の中心に相対する底壁(5)の厚み(t0)を大きく形成した突起(7)を底壁(5)に設けた電極(2)と、リード(3)とを準備する工程と、リード(3)の端部(3a)を底壁(5)の外面(5b)に当接する工程と、側壁(4)の内面(4a)の他端(4c)側の開口部(8)から底壁(5)の内面(5a)に向かってレーザ光を照射し、リード(3)の端部(3a)を電極(2)の底壁(5)の外面(5b)に溶接する工程とを含む。 An electrode assembly manufacturing method according to an embodiment of the present invention includes an annular side wall (4) and a bottom wall (5) for closing one end (4b) of an inner surface (4a) of the side wall (4), and a bottom wall (5 ) Formed on the outer surface (5b) of the concave portion (6), and the center of the concave portion (6) from the thickness (t 1 ) of the bottom wall (5) facing the side wall (4) side of the concave portion (6). A step of preparing an electrode (2) provided on the bottom wall (5) with a protrusion (7) having a large thickness (t 0 ) of the bottom wall (5) opposite to the lead (3), and a lead ( 3) contacting the end (3a) of the bottom wall (5) to the outer surface (5b) and the opening (8) on the other end (4c) side of the inner surface (4a) of the side wall (4) from the bottom wall Irradiating a laser beam toward the inner surface (5a) of (5) and welding the end (3a) of the lead (3) to the outer surface (5b) of the bottom wall (5) of the electrode (2). .

本発明によれば、電極にリードをより強固に溶着し、リードの機械的強度を比較的高く保つ事ができる。   According to the present invention, the lead can be more firmly welded to the electrode, and the mechanical strength of the lead can be kept relatively high.

以下、本発明による電極及び電極組立体及びその製造方法の実施の形態を図1〜図6について説明する。
[第1の実施の形態]
Embodiments of an electrode and an electrode assembly and a method for manufacturing the same according to the present invention will be described below with reference to FIGS.
[First Embodiment]

本発明の電極は、環状の側壁(4)及び側壁(4)の内面の一端(4b)を閉鎖する底壁(5)を有する。中心軸(A)が通過する底壁(5)の中心部(5c)を包囲する周辺部(5d)での厚み(t1)より底壁(5)の中心部(5c)での厚み(t0)が大きく形成される突起(7)が設けられる。底壁(5)に突起(7)を設けることにより、凹部(6)の側壁(4)側に相対する底壁(5)の厚み(t1)より大きい厚み(t0)が凹部(6)の中心に相対する底壁(5)に形成される。図1〜図5に示すように、中心部(5c)を最大高さとする緩慢な曲線状又は図6に示すように、階段状の突起(7)が底壁(5)の内面(5a)又は外面(5b)に形成される。電極(2)の中心軸(A)に中心が整合する凹部(6)が底壁(5)の外面(5b)に形成される。 The electrode of the present invention has an annular side wall (4) and a bottom wall (5) that closes one end (4b) of the inner surface of the side wall (4). The thickness at the center portion (5c) of the bottom wall (5) from the thickness (t 1 ) at the peripheral portion (5d) surrounding the center portion (5c) of the bottom wall (5) through which the central axis (A) passes ( Protrusions (7) having a large t 0 ) are provided. By providing the protrusion (7) on the bottom wall (5), a thickness (t 0 ) larger than the thickness (t 1 ) of the bottom wall (5) facing the side wall (4) of the recess (6) is larger than the recess (6 ) Formed on the bottom wall (5) opposite the center. As shown in FIGS. 1 to 5, a slow curved shape with the center portion (5c) as the maximum height, or as shown in FIG. 6, a stepped protrusion (7) is formed on the inner surface (5a) of the bottom wall (5). Alternatively, it is formed on the outer surface (5b). A recess (6) whose center is aligned with the central axis (A) of the electrode (2) is formed on the outer surface (5b) of the bottom wall (5).

電極組立体(1)を製造する際に、まず、図1及び図2に示すように、環状の側壁(4)及び側壁(4)の内面(4a)の一端(4b)を閉鎖する底壁(5)を有し且つ底壁(5)の内面(5a)と側壁(4)で囲まれた第1の空間(10)と第1の空間(10)とは反対側に開口して底壁(5)の外面(5b)に形成された凹部(6)によって形成された第2の空間(11)を有する電極(2)と、リード(3)とを準備する。底壁(5)の大きい厚み(t0)の突起(7)の中心部(5c)の直径は、リード(3)の直径と同一であり又はこれより小さい。 When manufacturing the electrode assembly (1), first, as shown in FIGS. 1 and 2, the bottom wall that closes the annular side wall (4) and one end (4b) of the inner surface (4a) of the side wall (4). The first space (10) having the (5) and surrounded by the inner surface (5a) and the side wall (4) of the bottom wall (5) is open to the opposite side of the first space (10) and the bottom. An electrode (2) having a second space (11) formed by a recess (6) formed on the outer surface (5b) of the wall (5) and a lead (3) are prepared. The diameter of the central portion (5c) of the protrusion (7) having a large thickness (t 0 ) of the bottom wall (5) is equal to or smaller than the diameter of the lead (3).

電極(2)は、例えばニッケル、ニオブ、モリブデン、タングステン、タンタルから選択される金属又はこれらの金属の少なくとも1つを含む合金によって構成される。しかしながら、例えば、ニオブ、モリブデン、タングステン、タンタルから選択される耐スパッタ性の金属粒子で電極(2)を形成することが望ましい。また、耐スパッタ性の金属粒子の担体を担持する結着材としてニッケル等の低融点金属により基材を形成して、基材中に耐スパッタ性の多数の金属粒子を分散させる金属材料組織でも良い。   The electrode (2) is made of, for example, a metal selected from nickel, niobium, molybdenum, tungsten, and tantalum or an alloy containing at least one of these metals. However, it is desirable to form the electrode (2) with sputter-resistant metal particles selected from, for example, niobium, molybdenum, tungsten, and tantalum. Also, a metal material structure in which a base material is formed of a low melting point metal such as nickel as a binder for supporting a carrier of spatter-resistant metal particles, and a large number of sputter-resistant metal particles are dispersed in the base material. good.

図2に示すように、電極(2)の凹部(6)は、リード(3)の直径より大きい直径の円形断面に形成され、第2の空間(11)を形成する電極(2)の凹部(6)の長さ方向(縦方向)の中心軸は、第1の空間(10)を形成する電極(2)の環状の側壁(4)の中心軸(A)に重なり整合する。これにより、リード(3)の端部(3a)を電極(2)の凹部(6)に嵌合して、電極(2)の中心軸とリード(3)の端部(3a)の中心軸とを同一直線上に整合させて、電極(2)の底壁(5)の中心部(5c)とリード(3)の端部(3a)の中心部(3c)とを同一直線上に配置できる。   As shown in FIG. 2, the recess (6) of the electrode (2) is formed in a circular cross section having a diameter larger than the diameter of the lead (3), and the recess of the electrode (2) forming the second space (11). The central axis in the length direction (longitudinal direction) of (6) overlaps and aligns with the central axis (A) of the annular side wall (4) of the electrode (2) forming the first space (10). As a result, the end (3a) of the lead (3) is fitted into the recess (6) of the electrode (2), and the central axis of the electrode (2) and the central axis of the end (3a) of the lead (3) Are aligned on the same straight line, and the central part (5c) of the bottom wall (5) of the electrode (2) and the central part (3c) of the end part (3a) of the lead (3) are arranged on the same straight line. it can.

中心軸(A)が通過する底壁(5)の中心部(5c)を包囲する周辺部(5d)での厚み(t1)より底壁(5)の中心部(5c)での厚み(t0)が大きいため、電極(2)の底壁(5)は、溶接によってリード(3)の端部(3a)の中心部(3c)に接する(又は対向する)部分の厚み(t0)は、リード(3)の外周壁(3b)に接する(又は対向する)部分の厚み(t1)よりも大きい。電極(2)の底壁(5)では、第2の空間(11)を形成する凹部(6)の底面は、平坦であり、第1の空間(10)を形成する底壁(5)の内面(5a)では、リード(3)の端部(3a)に対応する中心部(5c)を包囲する周辺部(5d)からリード(3)の端部(3a)の中心部(3c)に対応する中心部(5c)に向かい徐々に厚く形成される。従って、電極(2)の底壁(5)の中心部(5c)とリード(3)の端部(3a)の中心部(3c)とを同一直線上に配置すると、電極(2)の底壁(5)の内面(5a)では、中心部(5c)に最も高く厚い突起(7)が形成される。 The thickness at the center portion (5c) of the bottom wall (5) from the thickness (t 1 ) at the peripheral portion (5d) surrounding the center portion (5c) of the bottom wall (5) through which the central axis (A) passes ( Since t 0 ) is large, the thickness (t 0 ) of the bottom wall (5) of the electrode (2) is in contact with (or faces) the center (3c) of the end (3a) of the lead (3) by welding. ) Is larger than the thickness (t 1 ) of the portion in contact (or facing) the outer peripheral wall (3b) of the lead (3). In the bottom wall (5) of the electrode (2), the bottom surface of the recess (6) forming the second space (11) is flat, and the bottom wall (5) forming the first space (10) is flat. On the inner surface (5a), from the peripheral part (5d) surrounding the central part (5c) corresponding to the end part (3a) of the lead (3), to the central part (3c) of the end part (3a) of the lead (3) It gradually becomes thicker toward the corresponding central part (5c). Therefore, if the center part (5c) of the bottom wall (5) of the electrode (2) and the center part (3c) of the end part (3a) of the lead (3) are arranged on the same straight line, the bottom of the electrode (2) On the inner surface (5a) of the wall (5), the highest and thickest protrusion (7) is formed at the central portion (5c).

また、電極(2)の側壁(4)の直径を2.7mm、電極(2)の側壁(4)の厚みを0.2mm、電極(2)の凹部(6)の直径を0.9〜1.0mmとし、レーザ光による電極(2)の内面(4a)で発生する熱エネルギをリード(3)の端部(3a)に伝達し易くするため凹部(6)より小さい、例えば0.4〜0.6mmの直径で電極(2)の突起(7)を形成することが望ましい。また、底壁(5)の凹部(6)より外側の厚み(t2)を2.0mm、底壁(5)の凹部(6)及び突起(7)を有する底壁(5)の箇所の厚みを1.5mm(t1:側壁側)〜1.8mm(t0:中央部)とし、図2のように緩慢な正規分布曲線的に厚みを変化させるとよい。 The diameter of the side wall (4) of the electrode (2) is 2.7 mm, the thickness of the side wall (4) of the electrode (2) is 0.2 mm, and the diameter of the recess (6) of the electrode (2) is 0.9 to It is set to 1.0 mm, and is smaller than the recess (6), for example, 0.4 so that the heat energy generated by the laser beam on the inner surface (4a) of the electrode (2) is easily transmitted to the end (3a) of the lead (3). It is desirable to form the protrusion (7) of the electrode (2) with a diameter of ˜0.6 mm. Further, the thickness (t 2 ) of the bottom wall (5) outside the recess (6) is 2.0 mm, and the bottom wall (5) having the recess (6) and the protrusion (7) on the bottom wall (5) is provided. The thickness may be 1.5 mm (t 1 : side wall side) to 1.8 mm (t 0 : center), and the thickness may be varied in a slow normal distribution curve as shown in FIG.

略円柱形のリード(3)の直径は、凹部(6)の直径以下、例えば0.9mmである。リード(3)は、電極(2)と同一の又は異なる金属材料で形成される。但し、電極組立体(1)を使用中に電極(2)の底壁(5)にスパッタで穴が開き、リード(3)の端部(3a)が露出しても、電極組立体(1)のスパッタ性を高く保持するように、ニオブ、モリブデン、タングステン又はこれらの合金の粉末によりリード(3)を形成することが望ましい。融点の高い前記粉末金属は、粉末金属を加圧下で加熱して燒結して形成される。しかしながら、燒結したリード(3)を溶接等により再結晶化すると、結晶構造が網目状組織になり、粒界破断してリード(3)が破断する恐れがあった。   The diameter of the substantially cylindrical lead (3) is equal to or less than the diameter of the recess (6), for example, 0.9 mm. The lead (3) is made of the same or different metal material as the electrode (2). However, even when the electrode assembly (1) is in use, the bottom wall (5) of the electrode (2) is sputtered and the end (3a) of the lead (3) is exposed. It is desirable to form the lead (3) from a powder of niobium, molybdenum, tungsten or an alloy thereof so as to keep the sputtering property of The powder metal having a high melting point is formed by heating and sintering the powder metal under pressure. However, if the sintered lead (3) is recrystallized by welding or the like, the crystal structure becomes a network structure, and there is a possibility that the lead (3) breaks due to grain boundary fracture.

そこで、本発明の第1の実施の形態の電極(2)とリード(3)とをレーザ溶接して電極組立体(1)を形成する製造方法について説明する。   Therefore, a manufacturing method for forming the electrode assembly (1) by laser welding the electrode (2) and the lead (3) according to the first embodiment of the present invention will be described.

リード(3)の端部(3a)を電極(2)の凹部(6)に嵌合して、リード(3)の端部(3a)を底壁(5)の外面(5b)に当接させて、電極(2)に対しリード(3)を押圧する。次に、開口部(8)を通じて第1の空間(10)から電極(2)の底壁(5)の内面(5a)に向かってレーザ光を照射してリード(3)が電極(2)の底壁(5)に溶接される。この場合、レーザ溶接にはSIファイバを通じたレーザ光を導入することが望ましい。この場合に、SIファイバを用いても、出射光のエネルギ分布は、中心部が尖るガウシアン分布となるので、本発明の第1の実施の形態の電極(2)では、レーザ溶接によってリード(3)の端部(3a)の中心部(3c)と対向する部分の厚み(t0)、つまり、凹部(16)の中心に相対する底壁(5)の厚みをレーザ溶接によってリード(3)の端部(3a)の外周壁(3b)側と対向する部分の厚み(t1)、つまり凹部(6)の側壁に相対する厚みより厚い突起(7)を形成する。突起(7)を形成するため、電極(2)の底壁(5)の中心部(5c)ほど電極(3)の底壁(5)が厚くなり、底壁(5)の中心部(5c)は、リード(3)の端部ほど熱エネルギが伝達され難い。従って、電極(2)の底壁(5)の中心部(5c)に向かって電極(3)の底壁(5)の厚みを増加するガウシアン分布のエネルギ分布を反転した形状に相似する形状で突起(7)を形成して、リード(3)の端部(3a)側の温度上昇を抑制し又は遅延させて、リード(3)の端部(3a)の温度上昇(加熱)を径方向に均一化することができる。このため、リード(3)の外周壁(3b)側のリード(3)の端部(3a)の温度が再結晶化温度以上のレベルにレーザ光の出力を上昇しても、リード(3)の端部(3a)の中心部(3c)は、従来の電極組立体(1)のように、リード(3)の端部(3a)からリード(3)のより深部まで再結晶化されない。このように、リード(3)の端部(3a)の深部まで再結晶して、組織が網目状化することを抑制し、粒界破断によるリード(3)の部分的機械強度の低下を抑制することができる。従って、本発明では、カップ形状の電極にリードをより強固に溶着し、リードの機械的強度を比較的保つ事ができる電極組立体(1)を提供することができる。 Fit the end (3a) of the lead (3) into the recess (6) of the electrode (2) and abut the end (3a) of the lead (3) against the outer surface (5b) of the bottom wall (5) The lead (3) is pressed against the electrode (2). Next, a laser beam is irradiated from the first space (10) through the opening (8) toward the inner surface (5a) of the bottom wall (5) of the electrode (2), and the lead (3) becomes the electrode (2). Welded to the bottom wall (5). In this case, it is desirable to introduce laser light through an SI fiber for laser welding. In this case, even if the SI fiber is used, the energy distribution of the emitted light is a Gaussian distribution with a sharp central portion. Therefore, in the electrode (2) of the first embodiment of the present invention, the lead (3 The thickness (t 0 ) of the portion facing the center portion (3c) of the end portion (3a) of the end portion (3a), that is, the thickness of the bottom wall (5) facing the center of the recess (16) is determined by laser welding. A protrusion (7) thicker than the thickness (t 1 ) of the end portion (3a) of the end portion (3a) facing the outer peripheral wall (3b), that is, the thickness facing the side wall of the recess (6) is formed. In order to form the projection (7), the bottom wall (5) of the electrode (3) becomes thicker at the center (5c) of the bottom wall (5) of the electrode (2), and the center (5c) of the bottom wall (5) ) Is less likely to transfer thermal energy to the end of the lead (3). Therefore, the shape is similar to the shape obtained by inverting the energy distribution of the Gaussian distribution that increases the thickness of the bottom wall (5) of the electrode (3) toward the center (5c) of the bottom wall (5) of the electrode (2). Protrusions (7) are formed to suppress or delay the temperature rise on the end (3a) side of the lead (3), and the temperature rise (heating) at the end (3a) of the lead (3) is radial. Can be made uniform. For this reason, even if the temperature of the end (3a) of the lead (3) on the outer peripheral wall (3b) side of the lead (3) rises to a level above the recrystallization temperature, the lead (3) The central portion (3c) of the end portion (3a) is not recrystallized from the end portion (3a) of the lead (3) to the deeper portion of the lead (3) as in the conventional electrode assembly (1). In this way, recrystallization up to the deep part of the end (3a) of the lead (3) suppresses the network from forming a network, and suppresses a decrease in the partial mechanical strength of the lead (3) due to grain boundary fracture. can do. Therefore, according to the present invention, it is possible to provide an electrode assembly (1) in which a lead can be more firmly welded to a cup-shaped electrode and the mechanical strength of the lead can be relatively maintained.

更に、第2の空間(11)では、溶融する電極(2)を構成する十分量の金属材料がリード(3)と凹部(6)によって薄くなった底壁(5)とを従来より低いエネルギで溶接し且つ凹部(6)を形成する円筒壁面とリード(3)の外周壁(3b)との間に充填されて、底壁(5)の凹部(6)が形成された箇所の底壁(5)の厚みをレーザ溶接前に比べてレーザ溶接後に厚くする事ができ、電極組立体(1)の耐スパッタ性を向上することができる。なお、レーザ溶接前に電極(2)に形成される突起(7)の高さが、レーザ溶接後に減少し、平坦にゼロとなり又は逆に窪んで凹状となっても良い。
[第2の実施の形態]
Further, in the second space (11), a sufficient amount of the metal material constituting the melting electrode (2) is provided with a lower energy than in the case of the bottom wall (5) thinned by the lead (3) and the recess (6). The bottom wall of the portion where the recess (6) of the bottom wall (5) is formed by being filled between the cylindrical wall surface welded with and forming the recess (6) and the outer peripheral wall (3b) of the lead (3) The thickness of (5) can be increased after laser welding compared to before laser welding, and the sputtering resistance of the electrode assembly (1) can be improved. Note that the height of the protrusion (7) formed on the electrode (2) before laser welding may decrease after laser welding and become flat zero or conversely concave and concave.
[Second Embodiment]

図4は、第2の実施の形態による電極組立体を示す。なお、図4〜図6では、図1と実質的に同一の部分には同一の参照符号を付してその説明を省略する。   FIG. 4 shows an electrode assembly according to a second embodiment. 4 to 6, the substantially same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

図4に示す実施の形態の電極(2)は、突起(7)の代わりに変形された突起(7)を設けるが、他の構成は、図1と同一である。図3の電極(2)は、第2の空間(11)を形成する電極(2)の底壁(5)の外面(5b)の凹部(6a)に突起(7)を形成し、第1の空間(10)を形成する電極(2)の底壁(5)の内面(5a)を平坦面とする。図3の電極(2)は、図1に示す本発明の第1の実施の形態の電極と同様に、リード(3)の端部(3a)の中心部(3c)と対向する部分の厚み(t0)がリード(3)の端部(3a)の外周壁(3b)側と対向する部分の厚み(t1)よりも厚いので、図1の本発明の第1の実施の形態の電極(2)と同様な効果を有する。同様に、図5の第2の実施の形態に示す電極(2)とリード(3)を組合わせる電極組立体(1a)も図1の本発明の第1の実施の形態の電極組立体(1)と同様な効果を有する。電極(2)の底壁(5)の凹部(6a)の側方から中心部(5c)に向かって周辺部(5d)の厚み(t1)から徐々に増加する厚みで突起(7)を形成し、中心部(5c)を最大厚さ(t0)とすることができる。
[第3の実施の形態]
The electrode (2) of the embodiment shown in FIG. 4 is provided with a modified projection (7) instead of the projection (7), but the other configuration is the same as that of FIG. The electrode (2) in FIG. 3 has a projection (7) formed in a recess (6a) on the outer surface (5b) of the bottom wall (5) of the electrode (2) forming the second space (11), The inner surface (5a) of the bottom wall (5) of the electrode (2) forming the space (10) is a flat surface. The electrode (2) in FIG. 3 is the thickness of the portion facing the center portion (3c) of the end portion (3a) of the lead (3) in the same manner as the electrode of the first embodiment of the present invention shown in FIG. Since (t 0 ) is thicker than the thickness (t 1 ) of the portion facing the outer peripheral wall (3b) side of the end (3a) of the lead (3), the first embodiment of the present invention shown in FIG. It has the same effect as the electrode (2). Similarly, the electrode assembly (1a) combining the electrode (2) and the lead (3) shown in the second embodiment of FIG. 5 is also the electrode assembly (1a) of the first embodiment of the present invention shown in FIG. Has the same effect as 1). The protrusion (7) is gradually increased from the thickness (t 1 ) of the peripheral part (5d) from the side of the concave part (6a) of the bottom wall (5) of the electrode (2) toward the central part (5c). The center portion (5c) can be formed to have a maximum thickness (t 0 ).
[Third Embodiment]

図5に示す実施の形態の電極(2)では、底壁(5)の内面(5a)と外面(5b)からそれぞれ突起(7)を突出させるが、他の構成は、図1と同一である。図5の電極(2)は、第1の空間(10)を形成する電極(2)の底壁(5)の内面(5a)に突出する突起(7)と、第2の空間(11)を形成する電極(2)の底壁(5)の外面(5b)の凹部(6a)に突出する突起(7)が形成される。図1に示す本発明の第1の実施の形態の電極(2)と同様に、図5の電極(2)は、リード(3)の中心部(3c)と対向する中心部(5c)の電極(2)の底壁(5)の厚み(t0)は、リード(3)の外周壁(3b)側と対向する周辺部(5d)の電極(2)の底壁(5)の厚み(t1)より大きいので、図1の本発明の第1の実施の形態の電極(2)と同様の効果を生ずる。同様に、図5の第3の実施の形態に示す電極(2)とリード(3)を溶接した電極組立体(1b)も、図1の本発明の第1の実施の形態の電極組立体(1)と同様な効果を有する。電極(2)の底壁(5)の側方の周辺部(5d)の厚さ(t1)から中心部(5c)に向かって徐々に増加する厚みで突起(7)を形成し、中心部(5c)に最大厚さ(t0)を設けることができる。
[第4の実施の形態]
In the electrode (2) of the embodiment shown in FIG. 5, the protrusion (7) is protruded from the inner surface (5a) and the outer surface (5b) of the bottom wall (5), respectively, but the other configuration is the same as FIG. is there. The electrode (2) in FIG. 5 includes a protrusion (7) protruding from the inner surface (5a) of the bottom wall (5) of the electrode (2) forming the first space (10) and the second space (11). A projection (7) is formed that protrudes into the recess (6a) on the outer surface (5b) of the bottom wall (5) of the electrode (2) that forms the electrode. Similar to the electrode (2) of the first embodiment of the present invention shown in FIG. 1, the electrode (2) in FIG. 5 is formed at the center (5c) opposite to the center (3c) of the lead (3). The thickness (t0) of the bottom wall (5) of the electrode (2) is the thickness of the bottom wall (5) of the electrode (2) in the peripheral portion (5d) facing the outer peripheral wall (3b) side of the lead (3) ( Since it is larger than t1), an effect similar to that of the electrode (2) of the first embodiment of the present invention shown in FIG. 1 is produced. Similarly, the electrode assembly (1b) in which the electrode (2) and the lead (3) shown in the third embodiment of FIG. 5 are welded is also the electrode assembly of the first embodiment of the present invention of FIG. Has the same effect as (1). Protrusions (7) are formed with a thickness that gradually increases from the thickness (t 1 ) of the peripheral portion (5d) on the side of the bottom wall (5) of the electrode (2) toward the central portion (5c), and the center The portion (5c) can be provided with a maximum thickness (t 0 ).
[Fourth Embodiment]

図6に示す第4の実施の形態の電極(2)では、変形された突起(7)を設け、他の構成を図1と同一にしたものである。図6の電極(2)は、図1〜図5に示すように、緩慢な曲線状ではなく、階段状の突起(7)に形成される。図6の電極(2)は、図1に示す本発明の第1の実施の形態の電極(2)と同様にリード(3)の中心部(3c)と対向する部分での電極(2)の底壁(5)の厚み(t0)がリード(3)の外周壁(3b)側と対向する部分での電極(2)の底壁(5)の厚み(t1)より厚いので、図1に示す本発明の第1の実施の形態の電極(2)と同様な効果を有する。同様に、図6の第4の実施の形態に示す電極(2)とリード(3)を溶接した電極組立体(1c)も図1の本発明の第1の実施の形態の電極組立体(1)と同様な効果を有する。電極(2)の底壁(5)の側方の厚さ(t1)から中心部(5c)に向かって徐々に増加する厚みで突起(7)を形成し、中心部(5c)に最大厚さ(t0)が付与される。 In the electrode (2) of the fourth embodiment shown in FIG. 6, a deformed protrusion (7) is provided, and the other configuration is the same as that of FIG. As shown in FIGS. 1 to 5, the electrode (2) in FIG. 6 is not formed in a slow curved shape but is formed in a stepped protrusion (7). The electrode (2) in FIG. 6 is similar to the electrode (2) in the first embodiment of the present invention shown in FIG. 1, and the electrode (2) at the portion facing the central portion (3c) of the lead (3). The thickness (t 0 ) of the bottom wall (5) of the lead (3) is thicker than the thickness (t 1 ) of the bottom wall (5) of the electrode (2) at the portion facing the outer peripheral wall (3b) side of the lead (3), This has the same effect as the electrode (2) of the first embodiment of the present invention shown in FIG. Similarly, the electrode assembly (1c) in which the electrode (2) and the lead (3) shown in the fourth embodiment of FIG. 6 are welded is also the electrode assembly (1c) of the first embodiment of the present invention of FIG. Has the same effect as 1). A protrusion (7) is formed with a thickness that gradually increases from the side thickness (t 1 ) of the bottom wall (5) of the electrode (2) toward the center (5c), and the maximum is formed at the center (5c). Thickness (t 0 ) is given.

本発明は、前記実施の形態に限定されず、更に変更が可能である。例えば、例えば、高さ0.01mm〜2.00mm、直径0.20mm〜2.00mmの範囲で突起(7)を形成することができる。また、電極組立体(1)を製造する際に、側壁(4)に同軸上に底壁(5)の外面(5b)に凹部(6)を形成せずに電極(2)を準備し、底壁(5)の凹部(6)にリード(3)を嵌合せず、リード(3)を電極(2)の底壁(5)に溶接してもよい。レーザ溶接法を適用する例を説明したが、レーザ溶接法の代わりに、抵抗溶接法により電極(2)とリード(3)とを溶接しても本発明の効果を得る事ができる。   The present invention is not limited to the above-described embodiment, and further modifications are possible. For example, the protrusion (7) can be formed in a range of height 0.01 mm to 2.00 mm and diameter 0.20 mm to 2.00 mm, for example. Further, when manufacturing the electrode assembly (1), prepare the electrode (2) without forming the recess (6) on the outer surface (5b) of the bottom wall (5) coaxially with the side wall (4), The lead (3) may be welded to the bottom wall (5) of the electrode (2) without fitting the lead (3) into the recess (6) of the bottom wall (5). Although an example in which the laser welding method is applied has been described, the effect of the present invention can be obtained by welding the electrode (2) and the lead (3) by a resistance welding method instead of the laser welding method.

本発明は、冷陰極放電管の電極にリードを強固に溶接する電極組立体に適用できる。   The present invention can be applied to an electrode assembly in which a lead is firmly welded to an electrode of a cold cathode discharge tube.

本発明による第1の実施の形態を示す電極組立体の断面図Sectional drawing of the electrode assembly which shows 1st Embodiment by this invention 図1に示す電極組立体の底壁の一部を示す部分拡大断面図Partial expanded sectional view which shows a part of bottom wall of the electrode assembly shown in FIG. 図1に示す電極組立体の分解断面図1 is an exploded sectional view of the electrode assembly shown in FIG. 本発明による第2の実施の形態を示す電極組立体の分解断面図The exploded sectional view of the electrode assembly showing the 2nd embodiment by the present invention. 本発明による第3の実施の形態を示す電極組立体の分解断面図The exploded sectional view of the electrode assembly showing a 3rd embodiment by the present invention. 本発明による第4の実施の形態を示す電極組立体の分解断面図Exploded sectional view of an electrode assembly showing a fourth embodiment of the present invention レーザ光により電極にリードを溶接する従来の一方法を示す電極組立体の断面図Sectional drawing of the electrode assembly which shows one conventional method of welding a lead to an electrode with a laser beam レーザ光により電極にリードを溶接する従来の他の方法を示す電極組立体の断面図Sectional drawing of the electrode assembly which shows the other conventional method of welding a lead to an electrode with a laser beam

符号の説明Explanation of symbols

(1)・・電極組立体、 (2)・・電極、 (3)・・リード、 (4)・・側壁、 (4b)・・一端、 (5)・・底壁、 (5a)・・内面、 (5b)・・外面、 (5c)・・中心部、 (5d)・・周辺部、 (6)・・凹部、 (7)・・突起、 (8)・・開口部、   (1) ・ ・ Electrode assembly, (2) ・ ・ Electrode, (3) ・ Lead, (4) ・ ・ Sidewall, (4b) ・ ・ One end, (5) ・ ・ Bottom wall, (5a) ・ ・Inner surface, (5b) ・ ・ Outer surface, (5c) ・ ・ Center part, (5d) ・ ・ Peripheral part, (6) ・ ・ Recess, (7) ・ ・ Protrusion, (8) ・ ・ Opening part,

Claims (12)

環状の側壁及び該側壁の内面の一端を閉鎖する底壁を有する電極において、
中心軸が通過する前記底壁の中心部を包囲する周辺部での前記底壁の厚みより前記底壁の中心部での厚みを大きく形成した突起を前記底壁に設けたことを特徴とする電極。
In an electrode having an annular side wall and a bottom wall closing one end of the inner surface of the side wall,
The bottom wall is provided with a protrusion having a thickness larger at the center of the bottom wall than a thickness of the bottom wall at a peripheral portion surrounding the center of the bottom wall through which a central axis passes. electrode.
中心部を最大高さとする緩慢な曲線状又は階段状の前記突起を前記底壁の内面に形成した請求項1に記載の電極。   The electrode according to claim 1, wherein the slow curved or stepped protrusion having a maximum height at the center is formed on the inner surface of the bottom wall. 環状の側壁及び該側壁の内面の一端を閉鎖する底壁を有する電極において、
前記底壁の外面に凹部を形成し、
該凹部の側壁側に相対する前記底壁の厚みより前記凹部の中心に相対する前記底壁の厚みを大きく形成した突起を前記底壁に設けたことを特徴とする電極。
In an electrode having an annular side wall and a bottom wall closing one end of the inner surface of the side wall,
Forming a recess in the outer surface of the bottom wall;
An electrode, wherein a protrusion is formed on the bottom wall, the protrusion having a thickness larger than the thickness of the bottom wall facing the side wall of the recess, the thickness of the bottom wall facing the center of the recess.
前記電極の中心軸に中心が整合する前記凹部を前記底壁の外面に形成した請求項1〜3の何れか1項に記載の電極。   The electrode according to any one of claims 1 to 3, wherein the concave portion whose center is aligned with a central axis of the electrode is formed on an outer surface of the bottom wall. 環状の側壁及び該側壁の内面の一端を閉鎖する底壁を有する電極と、該電極の底壁に固定されたリードとを備える電極組立体において、
中心軸が通過する前記底壁の中心部を包囲する周辺部での厚みより前記底壁の中心部での厚みを大きく形成した突起を前記底壁に設けたことを特徴とする電極組立体。
An electrode assembly comprising an electrode having an annular side wall and a bottom wall closing one end of the inner surface of the side wall, and a lead fixed to the bottom wall of the electrode,
An electrode assembly, wherein a protrusion is formed on the bottom wall that has a thickness greater at the center of the bottom wall than a thickness at a periphery surrounding the center of the bottom wall through which a central axis passes.
前記リードの中心部の中心は、前記電極の中心軸上に整合し、前記突起の直径は、前記リードの直径と同一であり又はこれより小さい請求項5に記載の電極組立体。   The electrode assembly according to claim 5, wherein a center of a center portion of the lead is aligned on a center axis of the electrode, and a diameter of the protrusion is equal to or smaller than a diameter of the lead. 中心部を最大高さとする緩慢な曲線状又は階段状の前記突起を前記底壁の内面に形成した請求項5又は6に記載の電極組立体。   The electrode assembly according to claim 5, wherein the slow curved or stepped protrusion having a maximum height at the center is formed on the inner surface of the bottom wall. 環状の側壁と該側壁の内面の一端を閉鎖する底壁とを有し且つ中心軸が通過する前記底壁の中心部を包囲する周辺部での厚みより前記底壁の中心部での厚みの大きい突起を形成した電極と、リードとを準備する工程と、
該リードの端部を前記底壁の外面に当接する工程と、
前記側壁の内面の他端側の開口部から前記底壁の内面に向かってレーザ光を照射し、前記リードの端部を前記電極の底壁の外面に溶接する工程とを含むことを特徴とする電極組立体の製造方法。
It has an annular side wall and a bottom wall that closes one end of the inner surface of the side wall, and the thickness at the center of the bottom wall is greater than the thickness at the periphery that surrounds the center of the bottom wall through which the central axis passes. Preparing an electrode having a large protrusion and a lead;
Abutting the end of the lead against the outer surface of the bottom wall;
Irradiating a laser beam from the opening on the other end side of the inner surface of the side wall toward the inner surface of the bottom wall, and welding the end of the lead to the outer surface of the bottom wall of the electrode. A method of manufacturing an electrode assembly.
前記底壁の中心部から側方に向かって緩慢な曲線状又は階段状の前記突起を前記底壁の内面又は外面の少なくとも一方に形成することにより、前記周辺部での厚みより前記底壁の中心部での厚みを大きく形成した請求項8に記載の電極組立体の製造方法。   By forming the curved or stepwise projections that are slow from the center of the bottom wall to the side, at least one of the inner surface or the outer surface of the bottom wall, the thickness of the bottom wall is more than the thickness at the peripheral portion. The method for manufacturing an electrode assembly according to claim 8, wherein the thickness at the center is large. 前記電極の中心軸に中心が整合する凹部を前記底壁の外面に形成し、
前記リードの端部を前記凹部内に嵌合して、前記リードの端部を前記底壁の外面に当接する請求項8又は9に記載の電極組立体の製造方法。
Forming a recess in the outer surface of the bottom wall whose center is aligned with the central axis of the electrode;
10. The method of manufacturing an electrode assembly according to claim 8, wherein an end portion of the lead is fitted into the recess, and the end portion of the lead is brought into contact with an outer surface of the bottom wall.
環状の側壁及び該側壁の内面の一端を閉鎖する底壁と、該底壁の外面に形成された凹部とを有し、該凹部の側壁側に相対する前記底壁の厚みより前記凹部の中心に相対する前記底壁の厚みを大きく形成した突起を前記底壁に設けた電極と、リードとを準備する工程と、
該リードの端部を前記底壁の外面に当接する工程と、
前記側壁の内面の他端側の開口部から前記底壁の内面に向かってレーザ光を照射し、前記リードの端部を前記電極の底壁の外面に溶接する工程とを含むことを特徴とする電極組立体の製造方法。
An annular side wall and a bottom wall that closes one end of the inner surface of the side wall, and a recess formed on the outer surface of the bottom wall, and the center of the recess is determined by the thickness of the bottom wall facing the side wall of the recess A step of preparing an electrode provided with a protrusion formed on the bottom wall, the lead having a large thickness of the bottom wall opposite to the lead, and a lead;
Abutting the end of the lead against the outer surface of the bottom wall;
Irradiating a laser beam from the opening on the other end side of the inner surface of the side wall toward the inner surface of the bottom wall, and welding the end of the lead to the outer surface of the bottom wall of the electrode. A method of manufacturing an electrode assembly.
前記リードの端部の中心部を通る直線上に焦点を置いて前記レーザ光を照射する請求項8〜11の何れか1項に記載の電極組立体の製造方法。   The method of manufacturing an electrode assembly according to any one of claims 8 to 11, wherein the laser beam is irradiated with a focus on a straight line passing through a central portion of an end portion of the lead.
JP2007164427A 2007-06-21 2007-06-21 Electrode, electrode assembly, and its manufacturing method Pending JP2009004238A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007164427A JP2009004238A (en) 2007-06-21 2007-06-21 Electrode, electrode assembly, and its manufacturing method
TW097115713A TW200912993A (en) 2007-06-21 2008-04-29 Electrode, electrode assembly and manufacture thereof
CNA2008100971113A CN101329972A (en) 2007-06-21 2008-05-14 Electrode, electrode assembly and manufacturing method thereof
KR1020080045580A KR20080112930A (en) 2007-06-21 2008-05-16 Electrode, electrode assembly and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164427A JP2009004238A (en) 2007-06-21 2007-06-21 Electrode, electrode assembly, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009004238A true JP2009004238A (en) 2009-01-08

Family

ID=40205710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164427A Pending JP2009004238A (en) 2007-06-21 2007-06-21 Electrode, electrode assembly, and its manufacturing method

Country Status (4)

Country Link
JP (1) JP2009004238A (en)
KR (1) KR20080112930A (en)
CN (1) CN101329972A (en)
TW (1) TW200912993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110154A1 (en) * 2011-02-15 2012-08-23 Robert Bosch Gmbh Method for connecting two joining partners by means of laser radiation and mechanical pressure, use of the method and joining partners

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110154A1 (en) * 2011-02-15 2012-08-23 Robert Bosch Gmbh Method for connecting two joining partners by means of laser radiation and mechanical pressure, use of the method and joining partners

Also Published As

Publication number Publication date
KR20080112930A (en) 2008-12-26
CN101329972A (en) 2008-12-24
TW200912993A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
JP4548290B2 (en) Discharge lamp
JP4681668B2 (en) Foil seal lamp
CN102034672A (en) Discharge lamp
JP2802683B2 (en) Metal halide discharge lamp
JP2009004238A (en) Electrode, electrode assembly, and its manufacturing method
JP7032859B2 (en) Discharge lamp and manufacturing method of discharge lamp
JP2009016314A (en) Electrode, electrode assembly, and manufacturing method of electrode assembly
JP4671036B2 (en) Cold cathode fluorescent discharge tube and surface light source device
JP4301892B2 (en) Metal vapor discharge lamp and lighting device
JP2005327723A (en) Dielectric barrier discharge lamp and its manufacturing method
JP3137604U (en) Cold cathode discharge tube and electrode assembly for cold cathode discharge tube
JP2010003437A (en) Excimer lamp
US8115389B2 (en) High pressure discharge lamp
JP3137602U (en) Cold cathode discharge tube and electrode assembly for cold cathode discharge tube
KR20200024712A (en) Discharge lamp and method for producing electrode for discharge lamp
JP2009217983A (en) Electrode assembly
JP3137605U (en) Cold cathode discharge tube and electrode assembly for cold cathode discharge tube
JP7082498B2 (en) Discharge lamp
JP2017216158A (en) Long arc type discharge lamp
JP4830459B2 (en) Cold cathode fluorescent discharge tube
CN113451106A (en) Discharge lamp and method for manufacturing electrode for discharge lamp
JP2007080777A (en) Electrode, electrode unit, and cold cathode lamp
KR20230045534A (en) Discharge lamp, and method for producing electrode for discharge lamp
JP2008277150A (en) Electrode structure, cold-cathode discharge lamp, and lighting system
JP2009230868A (en) Excimer lamp