JP2009002686A - Kind determination method for erythrocyte - Google Patents

Kind determination method for erythrocyte Download PDF

Info

Publication number
JP2009002686A
JP2009002686A JP2007161482A JP2007161482A JP2009002686A JP 2009002686 A JP2009002686 A JP 2009002686A JP 2007161482 A JP2007161482 A JP 2007161482A JP 2007161482 A JP2007161482 A JP 2007161482A JP 2009002686 A JP2009002686 A JP 2009002686A
Authority
JP
Japan
Prior art keywords
erythrocytes
blood cells
red blood
magnetic
magnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161482A
Other languages
Japanese (ja)
Other versions
JP5047702B2 (en
Inventor
Toyohiro Tamai
豊廣 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007161482A priority Critical patent/JP5047702B2/en
Publication of JP2009002686A publication Critical patent/JP2009002686A/en
Application granted granted Critical
Publication of JP5047702B2 publication Critical patent/JP5047702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply performing kind determination on erythrocytes in a shorter time. <P>SOLUTION: This method for determining the kind of erythrocytes is characterized in that erythrocytes are reacted with magnetic particles for turning the erythrocytes into magnetic labels in a reaction vessel with anti-erythrocyte antibodies solidified therein to sediment them by magnetic force, thereby forming a reaction image. In one mode thereof, the erythrocytes, the magnetic particles, and further, the anti-erythrocyte antibodies are reacted with each other in the reaction vessel. As a result, the erythrocytes are turned into the magnetic labels, making it possible to accelerate the sedimentation velocity of the erythrocytes by the magnetic force. Consequently, the reaction image can be formed in a short time, making it possible to shorten determination time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、赤血球の型判定方法に関する。   The present invention relates to an erythrocyte type determination method.

一般的な血液型判定では、抗血清試薬と検体である赤血球を試験管内或いは皿内で混合し、凝集の有無を観察する。また、ガラスビーズ、セファデックスゲル粒子のような不溶性担体をマイクロカラムに充填し、これに抗血清試薬と赤血球を添加して遠心する方法もある。この方法では、凝集塊をガラスビーズ、セファデックスゲル粒子表面に捕捉させることにより、判定を容易にしている(例えば、特許文献1及び2)。   In general blood type determination, an antiserum reagent and a red blood cell as a sample are mixed in a test tube or a dish, and the presence or absence of aggregation is observed. There is also a method in which an insoluble carrier such as glass beads or Sephadex gel particles is packed in a microcolumn, and an antiserum reagent and erythrocytes are added thereto and centrifuged. In this method, the determination is facilitated by capturing the aggregate on the surface of glass beads or Sephadex gel particles (for example, Patent Documents 1 and 2).

多数の検体を試験する場合には、マイクロプレートが用いられることもある。反応液をマイクロプレート中に自然放置し、凝集塊を沈殿させる方法(例えば、特許文献3及び4)や、マイクロプレートを遠心する方法がある。   When testing a large number of specimens, a microplate may be used. There are a method of allowing a reaction solution to stand naturally in a microplate and precipitating an aggregate (for example, Patent Documents 3 and 4) and a method of centrifuging the microplate.

しかしながら、凝集塊を自然沈降させる方法では、判定に時間がかかるという問題があった。遠心機を使用する方法では、自動化する場合に装置が大型化するという問題があり、また、遠心条件の均一化が難しいために判定結果の精度が低下する恐れがあった。また遠心操作に時間がかかるという問題もあった。   However, the method of spontaneously sedimenting aggregates has a problem that it takes time for the determination. In the method using a centrifuge, there is a problem that the size of the apparatus is increased when it is automated, and the accuracy of the determination result may be lowered because it is difficult to make the centrifugal conditions uniform. There is also a problem that it takes time to perform the centrifugation.

さらに、赤血球は天然成分であるために、人為的な加工を施すと赤血球表面の抗原等の反応性が著しく低下したり、失活したりし易い。このため、赤血球を直接加工することにより沈降特性を改変することは非常に困難である。
特公平8-7215号公報 EP 725276 特公昭61-44268号公報 特公昭63-60854号公報
Furthermore, since erythrocytes are natural components, when artificially processed, the reactivity of antigens on the erythrocyte surface is remarkably reduced or inactivated easily. For this reason, it is very difficult to modify the sedimentation characteristics by directly processing erythrocytes.
Japanese Patent Publication No.8-7215 EP 725276 Japanese Patent Publication No.61-44268 Japanese Patent Publication No. 63-60854

そこで本発明では、赤血球の型判定をより短時間で簡便に行う方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for easily and easily determining the type of erythrocytes in a shorter time.

上記目的を達成するため、赤血球の型判定方法であって、抗赤血球抗体が固相化された反応容器内において、赤血球と、赤血球を磁性標識化するための磁性粒子を反応させ、磁力によって沈降させて反応像を形成させることを特徴とする方法を提供する。一つの態様において、前記反応容器内において、前記赤血球と磁性粒子と、さらに抗赤血球抗体とが反応される。   In order to achieve the above object, a method for determining the type of erythrocytes, in which a reaction vessel in which an anti-erythrocyte antibody is immobilized is reacted with erythrocytes and magnetic particles for magnetic labeling of erythrocytes, and precipitated by magnetic force. To form a reaction image. In one embodiment, the red blood cells, magnetic particles, and anti-red blood cell antibodies are reacted in the reaction vessel.

他の側面において、赤血球の型判定方法であって、赤血球と赤血球を磁性標識化するための磁性粒子とが予め反応液中で反応され、該反応液が、抗赤血球抗体が固相化された反応容器内に移され、磁力によって沈降させて反応像を形成させることを特徴とする方法が提供される。   In another aspect, a method for determining erythrocyte type, wherein erythrocytes and magnetic particles for magnetically labeling erythrocytes are reacted in advance in a reaction solution, and the reaction solution is solidified with an anti-erythrocyte antibody. A method is provided which is transferred into a reaction vessel and sedimented by magnetic force to form a reaction image.

前記赤血球を磁性標識化するための磁性粒子は、赤血球を凝集させるリガンドを表面に有しているのが好ましく、特に、抗赤血球抗体が結合されたコアセルベート粒子が好ましい。かかるコアセルベート粒子としては、磁性体封入ゼラチンアラビアゴムコアセルベートが好ましい。また、前記赤血球が0.5〜1.2%の濃度であり、前記磁性粒子が0.18〜0.69%の濃度であることが好ましい。さらに、前記赤血球が0.7〜0.9%の濃度であり、前記磁性粒子が0.18〜1.8%の濃度であることが好ましい。   The magnetic particles for magnetically labeling erythrocytes preferably have a ligand for agglutinating erythrocytes on the surface, and in particular, coacervate particles to which an anti-erythrocyte antibody is bound are preferred. Such coacervate particles are preferably magnetic substance-encapsulated gelatin gum arabic coacervates. Further, it is preferable that the red blood cells have a concentration of 0.5 to 1.2% and the magnetic particles have a concentration of 0.18 to 0.69%. Furthermore, it is preferable that the red blood cells have a concentration of 0.7 to 0.9% and the magnetic particles have a concentration of 0.18 to 1.8%.

本発明に従えば、赤血球を磁性標識化することによって、磁力により赤血球の沈降速度を速めることができる。よって、短時間で反応像を形成させることができ、判定時間を短縮することができる。   According to the present invention, the sedimentation rate of red blood cells can be increased by magnetic force by magnetic labeling of red blood cells. Therefore, a reaction image can be formed in a short time, and the determination time can be shortened.

本発明では、赤血球を磁性粒子でコーティングしたり赤血球中に磁性粒子を封入したりすることなく、赤血球と磁性粒子との結合体(凝集塊)を結合反応によって形成することにより、赤血球を直接加工する必要が無く、赤血球の磁性体化を簡便に行うことができる。本発明では、赤血球を磁性標識化するのに適した磁性粒子を用いることによって、赤血球の沈降速度を速めることを可能にした。   In the present invention, erythrocytes are directly processed by forming a conjugate (aggregate) of erythrocytes and magnetic particles by a binding reaction without coating erythrocytes with magnetic particles or encapsulating magnetic particles in erythrocytes. Therefore, it is possible to easily convert the red blood cells into a magnetic substance. In the present invention, it is possible to increase the sedimentation rate of red blood cells by using magnetic particles suitable for magnetic labeling of red blood cells.

磁性粒子として、ナノサイズの粒子を使用する方法は、医用磁性ナノビーズの新しい作成技術(応用物理74巻12;1580-2005)でも述べられている。小さな抗原や抗体を結合させる場合は、比表面積が大きいナノ粒子が好ましいが、赤血球のような大きい(8μm)粒子を磁力で迅速に動かすには、小さな粒子では、その表面を全て覆うほどに標識しなければならない可能性もあり、赤血球の抗原がマスクされてしまう恐れがある。   The method of using nano-sized particles as magnetic particles is also described in a new technique for producing medical magnetic nanobeads (Applied Physics 74, 12; 1580-2005). When binding small antigens and antibodies, nanoparticles with a large specific surface area are preferred. However, to quickly move large (8 μm) particles such as erythrocytes by magnetic force, small particles are labeled to cover the entire surface. There is a possibility that the antigen of red blood cells may be masked.

そこで、本発明では、本発明者らが開発した赤血球用の磁性粒子を用いる。該磁性粒子は、ゼラチンアラビアゴムコアセルベートを担体として用い、これに磁性体を封入し、磁性体封入ゼラチンアラビアゴムコアセルベートとした。これにさらに赤血球と結合する赤血球結合物質を固定化して磁性粒子として用いた。ゼラチンアラビアゴムコアセルベートは、ゼラチンと水溶性多糖類であるアラビアゴムを主成分として形成された複合コアセルベートである。これは例えば、「HG Bundenberg de Jong. In Colloid Science 1949 Vol.2, Amsterdam」によって紹介されている。ゼラチンアラビアゴムコアセルベートは天然成分に由来するため容易に分解され、環境に優しいという利点がある。また免疫学的な非特異反応が少ないという利点もある。さらに、簡単な設備があれば容易に安価で製造できるため好適に用いることができる。さらに、ゼラチンアラビアゴムコアセルベートは、任意の粒径を有するように調製することができるため、赤血球に適するように粒径を大きくすることができる。本発明で用いるゼラチンアラビアゴムコアセルベートは、赤血球を標識するために用いるので、その粒径が1〜20μmであることが好ましく、2〜10μmであることがより好ましく、3〜6μmであることが最も好ましい。ゼラチンアラビアゴムコアセルベートの製造方法は、公知であり、例えば、特開2004-157040号公報を参照することができる。   Therefore, in the present invention, magnetic particles for erythrocytes developed by the present inventors are used. For the magnetic particles, gelatin gum arabic coacervate was used as a carrier, and a magnetic material was encapsulated therein to form a magnetic material-encapsulated gelatin gum arabic coacervate. Further, an erythrocyte-binding substance that binds to erythrocytes was immobilized and used as magnetic particles. Gelatin gum arabic coacervate is a complex coacervate formed from gelatin and gum arabic, which is a water-soluble polysaccharide, as main components. This is introduced, for example, by “HG Bundenberg de Jong. In Colloid Science 1949 Vol. 2, Amsterdam”. Gelatin gum arabic coacervate has the advantage of being easily decomposed and environmentally friendly because it is derived from natural ingredients. There is also an advantage that there are few immunological non-specific reactions. Furthermore, since simple equipment can be easily manufactured at low cost, it can be suitably used. Furthermore, since gelatin gum arabic coacervate can be prepared to have an arbitrary particle size, the particle size can be increased to suit red blood cells. Since the gelatin gum arabic coacervate used in the present invention is used for labeling red blood cells, the particle size is preferably 1 to 20 μm, more preferably 2 to 10 μm, most preferably 3 to 6 μm. preferable. A method for producing gelatin gum arabic coacervate is known, and for example, JP-A-2004-157040 can be referred to.

ゼラチンアラビアゴムコアセルベートに封入される磁性体は、一個でも良いが複数個であってもよい。ゼラチンアラビアゴムコアセルベートは、粒子内に封入される磁性体の数を容易に調整することができる。従って、この磁性粒子で標識された赤血球の移動速度を磁力によって調整するために、封入される磁性体の数を増減させることも可能である。   The magnetic substance enclosed in the gelatin gum arabic coacervate may be one or more. Gelatin gum arabic coacervate can easily adjust the number of magnetic substances encapsulated in the particles. Therefore, in order to adjust the moving speed of the red blood cells labeled with the magnetic particles by magnetic force, it is possible to increase or decrease the number of magnetic bodies to be enclosed.

ここで述べたように、ゼラチンアラビアゴムコアセルベートは赤血球標識用の磁性粒子に都合よく用いることができるが、現在までにこれを使用して赤血球を磁性標識化した例は報告されていない。   As described herein, gelatin gum arabic coacervate can be conveniently used for magnetic particles for red blood cell labeling, but no examples of magnetic labeling of red blood cells using it have been reported so far.

上記のように製造された磁性体封入ゼラチンアラビアゴムコアセルベートには、赤血球結合物質を担持させる。ここで赤血球結合物質は、赤血球と抗原抗体反応をし、赤血球を凝集させるリガンドであることが好ましい。   The magnetic substance-encapsulated gelatin gum arabic coacervate produced as described above carries an erythrocyte-binding substance. Here, the red blood cell binding substance is preferably a ligand that causes an antigen-antibody reaction with red blood cells to aggregate the red blood cells.

赤血球を凝集させるリガンドは種々のものが知られており、赤血球を非特異的或いは特異的に凝集させるレクチンも数多く市販化されている(例えば、豊年コーポレーションのカタログを参照されたい)。例えば、ウサギ抗グリコフォリン抗体、ニシダレクチン(CSA)及びチョウセンアサガオレクチン(DSA)などのリガンドが好適に用いられる。   Various ligands for agglutinating erythrocytes are known, and many lectins that agglutinate erythrocytes non-specifically or specifically are commercially available (see, for example, the catalog of Toyotomi Corporation). For example, ligands such as rabbit anti-glycophorin antibody, Nishida lectin (CSA) and Datura morning glory lectin (DSA) are preferably used.

リガンドは既知の方法によって磁性体封入ゼラチンアラビアゴムコアセルベートに担持させることができる。その方法は、例えば、特開2004-157040号公報に記載されたEDAC/NHS法であってよいが、これに限定されない。   The ligand can be supported on the magnetic substance-encapsulated gelatin gum arabic coacervate by a known method. The method may be, for example, the EDAC / NHS method described in JP-A-2004-157040, but is not limited thereto.

本発明では、上記リガンドが結合した磁性体封入ゼラチンアラビアゴムコアセルベートを磁性粒子とし、赤血球の型判定に用いる。以下に、本発明の方法の実施態様を説明する。   In the present invention, the magnetic substance-encapsulated gelatin gum arabic coacervate to which the ligand is bound is used as a magnetic particle and used for erythrocyte type determination. In the following, embodiments of the method of the present invention will be described.

第一の実施態様では、固相担体に抗赤血球抗体を予め固相化しておく。例えば反応容器の内壁に固相化してもよい。次いで、反応容器内に検体である赤血球と、磁性粒子を投入し、容器内で反応させる。反応が陽性であれば、赤血球は磁性粒子と結合して凝集する。これを容器の外側から磁石で吸引することによって迅速に沈降させ、予め固相化されていた抗体によって捕捉させる。よって、陽性の場合は、図1(a)に示したように容器中に広がった像が生じる。一方、陰性の場合、赤血球は凝集せず、図1(b)に示したように容器底面に沈降した像を生じる。   In the first embodiment, an anti-erythrocyte antibody is immobilized on a solid phase carrier in advance. For example, it may be solid-phased on the inner wall of the reaction vessel. Next, red blood cells, which are specimens, and magnetic particles are put into a reaction container, and reacted in the container. If the reaction is positive, red blood cells bind to the magnetic particles and aggregate. This is quickly settled by sucking with a magnet from the outside of the container, and captured by the antibody that has been immobilized in advance. Therefore, in the case of positive, an image spread in the container is generated as shown in FIG. On the other hand, in the case of negative, the red blood cells are not aggregated, and as shown in FIG.

第二の実施態様では、上記第一の実施態様と同様に抗赤血球抗体を固相化した反応容器に、赤血球、磁性粒子と共に、さらに抗赤血球抗体を同時に又は直後に投入する。これらを反応容器中で混合して反応させ、磁石によって吸引して反応を互いに凝集塊に結びつけるために用いる。この抗体には、誤った反応を防ぐために容器に固相化した抗体と同一の抗体を用いてもよく、非同一の抗体であっても特異性が同じ抗体であれば用いることができる。抗赤血球抗体を追加的に投入することにより、抗体価や赤血球量が患者ごとにばらついても、余すことなく特異的な反応を達成できる。像を形成させる。添加される抗体は、磁性粒子と結合していない二以上の赤血球
第三の実施態様では、反応容器とは別の容器において、赤血球と磁性粒子を予め反応させておく。次いで、上記第一の実施態様と同様に抗赤血球抗体を固相化した反応容器にこれを投入し、磁石によって吸引して反応像を形成させる。上記と同様に、陽性であれば凝集塊が固相化された抗体と結合して広がった陽性像を生じる。一方、陰性の場合は、赤血球は凝集せず、容器底面に沈降した像を生じる。予め反応させることによって、反応容器上の抗体と反応する前に十分な凝集量を得ることができる。
In the second embodiment, in the same manner as in the first embodiment, together with the red blood cells and magnetic particles, the anti-erythrocyte antibody is added simultaneously or immediately after to the reaction vessel in which the anti-erythrocyte antibody is immobilized. These are mixed and reacted in a reaction vessel, and are used to bind the reactions to agglomerates by suction with a magnet. For this antibody, the same antibody as the antibody immobilized on the container may be used in order to prevent an erroneous reaction, or a non-identical antibody can be used as long as it has the same specificity. By additionally introducing an anti-erythrocyte antibody, even if the antibody titer and the amount of erythrocytes vary from patient to patient, a specific reaction can be achieved without leaving a surplus. Form an image. Two or more red blood cells not bound to magnetic particles are added to the antibody. In the third embodiment, red blood cells and magnetic particles are reacted in advance in a container different from the reaction container. Next, in the same manner as in the first embodiment, the anti-erythrocyte antibody is put into a reaction vessel on which a solid phase is formed, and is attracted by a magnet to form a reaction image. Similarly to the above, if positive, the aggregate is bound to the solid-phased antibody to produce a positive image that spreads. On the other hand, in the case of negative, erythrocytes do not aggregate and an image that settles on the bottom of the container is generated. By reacting in advance, a sufficient amount of aggregation can be obtained before reacting with the antibody on the reaction vessel.

以上に説明したように、本発明の方法に従って、赤血球を磁性粒子と結合させることで磁性標識することによって、実質的に自重が増加するだけでなく磁力により強引に移動させることができ、高い反応性を保ちながら赤血球の凝集塊の沈降速度を速めることができる。しかも、赤血球自身を磁性体で加工しないので、表面抗原の反応性が高いまま、高速で、例えばわずか3分間で反応像を判定することができる。凝集塊の自然沈降では、通常30〜60分要するため、本発明の方法によって大幅に判定時間を短縮することができる。また、容器などの固相担体の表面に固定化された抗体により凝集塊を捕捉するので、陽性、陰性の判定が容易である。   As explained above, according to the method of the present invention, by labeling red blood cells with magnetic particles and magnetically labeling, not only the self-weight increases but also it can be forcibly moved by magnetic force, resulting in high reaction. The sedimentation rate of the erythrocyte aggregate can be increased while maintaining the property. Moreover, since the erythrocytes themselves are not processed with a magnetic material, the reaction image can be determined at a high speed, for example, in only 3 minutes while the reactivity of the surface antigen remains high. The natural sedimentation of the agglomerates usually takes 30 to 60 minutes, so the determination time can be greatly shortened by the method of the present invention. In addition, since the aggregate is captured by an antibody immobilized on the surface of a solid phase carrier such as a container, it is easy to make a positive or negative determination.

さらに、他の態様において、赤血球を磁性標識化することによって、B/F分離が容易になる。そのため蛍光検出などの測定方法を適用することもできる。例えば、磁性標識化赤血球を抗体と反応させて凝集させ、凝集塊を磁石によって反応容器の壁面(底面や側面)に磁気的に捕捉し、未反応抗体を含む液をノズル等で吸引除去する。次いで、蛍光や化学発光などの光マーカーによって標識した抗体を添加して反応させ、再び洗浄した後検出することもできる。   Furthermore, in other embodiments, B / F separation is facilitated by magnetic labeling of red blood cells. Therefore, a measurement method such as fluorescence detection can be applied. For example, magnetically labeled erythrocytes are allowed to react with antibodies to aggregate them, the aggregates are magnetically captured on the wall surface (bottom surface or side surface) of the reaction vessel by a magnet, and the liquid containing unreacted antibodies is sucked and removed with a nozzle or the like. Subsequently, an antibody labeled with a light marker such as fluorescence or chemiluminescence can be added and reacted, washed again, and then detected.

以下、本発明の各実施態様の実施例を記載する。   Examples of each embodiment of the present invention will be described below.

1.磁性体封入ゼラチンアラビアゴムコアセルベートの作成
特開2002-324015号公報、特開2003-291402号公報に記載された方法に従って、ゼラチンとアラビアゴムのコアセルベートを作成し、磁性体を取り込ませ、粒径2-12μmの磁性体封入ゼラチンアラビアゴムコアセルベートを製造した。
1. Preparation of magnetic substance-encapsulated gelatin gum arabic coacervate According to the method described in JP-A-2002-324015, JP-A-2003-291402, gelatin and gum arabic coacervate were prepared, the magnetic substance was incorporated, and the particle size 2 A gelatin encapsulated gum arabic coacervate with a magnetic material of -12 μm was produced.

2.磁性体封入ゼラチンアラビアゴムコアセルベートへのリガンドの結合
特開2002-324015号公報に記載された方法に従って、上記磁性体封入ゼラチンアラビアゴムコアセルベートに、赤血球に対するリガンドであるチョウセンアサガオレクチン(DSA)を結合させた。DSAの濃度は10μh/mlとした。結合反応後、BSA(ウシアルブミン)でブロッキングを行い、0.1% BSA/PBS pH7.2に、5%濃度で懸濁した。
2. Ligand binding to magnetic substance-encapsulated gelatin gum arabic coacervate According to the method described in Japanese Patent Application Laid-Open No. 2002-324015, the above-mentioned magnetic substance-encapsulated gelatin gum arabic coacervate is bound to erythrocyte ligand, datura asagarectin (DSA). It was. The concentration of DSA was 10 μh / ml. After the binding reaction, it was blocked with BSA (bovine albumin) and suspended in 0.1% BSA / PBS pH 7.2 at a concentration of 5%.

3.抗B抗体のマイクロプレートへの固相化
市販の抗血清には、BSA等共存タンパクが存在するので、そのままでは使用できない。そこで、プロテインAカラム(BioRad製)を使用して、Ortho社のバイオクローン抗Bから抗Bモノクローナル抗体を単離した。この抗体をNuncMaxisorp U底プレートにPBSバッファーを用いて固相化した。その後、BSAでブロッキングを行った。
3. Immobilization of anti-B antibody on microplate Commercially available antiserum contains coexisting proteins such as BSA and cannot be used as it is. Therefore, an anti-B monoclonal antibody was isolated from the Bioclone anti-B of Ortho using a protein A column (manufactured by BioRad). This antibody was immobilized on a NuncMaxisorp U bottom plate using PBS buffer. Thereafter, blocking was performed with BSA.

4.血液型判定
(1)B型ドナー血球(赤血球)をPBSで0.1〜1.2%に希釈した。また、DSA感作磁性体封入ゼラチンアラビアゴムコアセルベート(以下DSA粒子と称する)を0.18〜2.75%に希釈した。これらを各25μLずつマイクロプレートに分注し撹拌した。その後、磁石で3分間吸引した。同様にA型ドナー血球(赤血球)についても実施した。
4). Blood type determination (1) Type B donor blood cells (erythrocytes) were diluted to 0.1-1.2% with PBS. Further, DSA-sensitized magnetic substance-encapsulated gelatin gum arabic coacervate (hereinafter referred to as DSA particles) was diluted to 0.18 to 2.75%. 25 μL of each was dispensed into a microplate and stirred. Then, it attracted | sucked with the magnet for 3 minutes. Similarly, it was carried out for type A donor blood cells (erythrocytes).

その結果を図2に示した。B型赤血球はDSA粒子と凝集塊を生じ、マイクロプレート内面に固相した抗B抗体に捕捉されて広がった陽性像を示した。磁石で吸引したために、3分間で判定が可能であった。A型血球は底面に沈降した陰性像を呈し、抗体によって捕捉されなかったことを示した。   The results are shown in FIG. Type B erythrocytes produced DSA particles and aggregates, and showed a positive image that was captured and spread by anti-B antibody solid-phased on the inner surface of the microplate. Since it was attracted by a magnet, it could be judged in 3 minutes. Type A blood cells showed a negative image that settled on the bottom surface, indicating that they were not captured by the antibody.

表1に、血球濃度と磁性粒子の濃度を変化させた結果を示した。表1に示されたように、反応像を形成させるためには、血球濃度と磁性粒子濃度の割合が重要であることがわかった。赤血球の濃度が0.5〜1.2%であり、磁性粒子の濃度が0.18〜0.69%である割合で反応に供することが好ましい。また、赤血球濃度が0.7〜0.9%であり、磁性粒子濃度が0.18〜1.8%、好ましくは0.34〜1.8%の範囲の割合で用いることが好ましい。

Figure 2009002686
Table 1 shows the results of changing the blood cell concentration and the magnetic particle concentration. As shown in Table 1, it was found that the ratio between the blood cell concentration and the magnetic particle concentration is important for forming a reaction image. It is preferable that the red blood cell concentration is 0.5 to 1.2% and the magnetic particle concentration is 0.18 to 0.69%. The red blood cell concentration is 0.7 to 0.9%, and the magnetic particle concentration is preferably 0.18 to 1.8%, preferably 0.34 to 1.8%.
Figure 2009002686

(2)B型ドナー血球をPBSで0.8%に希釈した。また、DSA粒子を0.6%に希釈した。これらを各25μLずつマイクロプレートに分注し、同時に、抗B抗体を添加した。撹拌後、磁石で3分間吸引した。同様にドナーA血球についても実施した。   (2) Type B donor blood cells were diluted to 0.8% with PBS. In addition, DSA particles were diluted to 0.6%. 25 μL of each was dispensed into a microplate, and anti-B antibody was added simultaneously. After stirring, it was sucked with a magnet for 3 minutes. Similarly, it was performed on donor A blood cells.

その結果を図2に示した。B赤血球はDSA粒子と凝集塊を生じ、さらに抗B抗体と凝集を生じ、凝集塊は磁石で吸引することで沈降し、マイクロプレート内面に固相化した抗B抗体に捕捉されて広がった陽性像を示した。一方、A血球では底面に沈降した陰性像を呈し、捕捉されなかったことを示した。   The results are shown in FIG. B erythrocytes produce DSA particles and aggregates, and further aggregate with anti-B antibodies. The aggregates settle by suction with a magnet, and are captured by the anti-B antibody immobilized on the inner surface of the microplate and spread. I showed the statue. On the other hand, A blood cells exhibited a negative image that settled on the bottom surface, indicating that they were not captured.

(3)市販の抗B抗抗体とA型或いはB型ドナー血球(0.7%)を予め別容器で5分間混合した。該混合物をDSA粒子(0.69%)と共に抗B抗体を固相化したマイクロプレートウェルに移して、磁石で3分間吸引した。   (3) A commercially available anti-B anti-antibody and type A or type B donor blood cells (0.7%) were mixed in a separate container in advance for 5 minutes. The mixture was transferred to a microplate well on which anti-B antibody was immobilized together with DSA particles (0.69%), and aspirated with a magnet for 3 minutes.

その結果、B型ドナー血球では、広がった陽性像を形成せずに崩れてしまった。一方、A型ドナー血球は底面に集まった。結果として、陽性/陰性像の判定はできなかった。これは、凝集塊に磁性粒子が結合できなかったためか、或いは磁性粒子が結合して赤血球の結合サイトが埋まり、固相化抗体と反応できなかったためかと考えられる。   As a result, type B donor blood cells collapsed without forming a widened positive image. On the other hand, type A donor blood cells gathered on the bottom surface. As a result, a positive / negative image could not be determined. This is probably because the magnetic particles could not bind to the aggregate, or because the binding sites of the erythrocytes were buried due to the binding of the magnetic particles and could not react with the immobilized antibody.

(4)A型或いはB型ドナー血球(0.7%)とDSA粒子(0.69%)を予め別容器で5分間混合し、その混合物を抗B抗体を固相化したマイクロプレートウェルに移して、磁石で3分間吸引した。   (4) Type A or type B donor blood cells (0.7%) and DSA particles (0.69%) are mixed in advance in a separate container for 5 minutes, and the mixture is transferred to a microplate well on which an anti-B antibody is immobilized. Aspirate for 3 minutes.

その結果、B型赤血球はウェルに広がり陽性像を形成した。A型赤血球は底面に沈降し陰性像を形成した。よって、陽性陰性が正しく判定できた。   As a result, type B erythrocytes spread into the well and formed a positive image. Type A red blood cells settled on the bottom surface to form a negative image. Therefore, positive / negative was correctly determined.

(5)A型或いはB型ドナー血球(0.7%)とDSA粒子(0.69%)を予め別容器で5分間混合し、その混合物を、抗B血清(抗赤血球抗体)25μLと共に、抗B抗体(抗赤血球抗体)を固相化したマイクロプレートウェルに移して、磁石で3分間吸引した。   (5) A or B donor blood cells (0.7%) and DSA particles (0.69%) are mixed in advance in a separate container for 5 minutes, and the mixture is mixed with 25 μL of anti-B serum (anti-erythrocyte antibody) together with anti-B antibody ( (Anti-erythrocyte antibody) was transferred to a solid-phased microplate well and aspirated with a magnet for 3 minutes.

その結果、 B型赤血球はウェルに広がり陽性像を形成した。A型赤血球は底面に沈降し陰性像を形成した。よって、陽性陰性が正しく判定できた。   As a result, type B erythrocytes spread into the well and formed a positive image. Type A red blood cells settled on the bottom surface to form a negative image. Therefore, positive / negative was correctly determined.

凝集塊の沈降の様子を示す模式図。The schematic diagram which shows the mode of sedimentation of an aggregate.

Claims (8)

赤血球の型判定方法であって、抗赤血球抗体が固相化された反応容器内において、赤血球と、赤血球を前記抗赤血球抗体とは結合しない磁性粒子と結合反応させることにより、前記赤血球を磁性標識化し、磁性標識化された前記赤血球を、磁力によって沈降させて反応像を形成させることを特徴とする方法。   A method for determining the type of erythrocytes, wherein the erythrocytes are magnetically labeled by reacting the erythrocytes with magnetic particles that do not bind to the anti-erythrocyte antibodies in a reaction vessel in which an anti-erythrocyte antibody is immobilized. And the magnetically labeled red blood cells are precipitated by magnetic force to form a reaction image. 前記反応容器内において、前記赤血球と磁性粒子と、さらに抗赤血球抗体とが反応されることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the red blood cells, magnetic particles, and anti-red blood cell antibodies are reacted in the reaction vessel. 赤血球の型判定方法であって、赤血球と前記抗赤血球抗体とは結合しない磁性粒子とを予め反応液中で反応させることにより、前記赤血球を磁性標識化し、該反応液が、抗赤血球抗体が固相化された反応容器内に移され、磁力によって沈降させて反応像を形成させることを特徴とする方法。   A method for determining the type of erythrocytes, wherein erythrocytes and magnetic particles that do not bind to the anti-erythrocyte antibodies are reacted in advance in a reaction solution to magnetically label the erythrocytes. A method characterized in that it is transferred into a phased reaction vessel and precipitated by magnetic force to form a reaction image. 前記赤血球を磁性標識化するための磁性粒子が、赤血球を凝集させるリガンドを表面に有していることを特徴とする、請求項1〜3の何れか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the magnetic particles for magnetically labeling red blood cells have a ligand for aggregating red blood cells on the surface. 前記赤血球を磁性標識化するための磁性粒子が、抗赤血球抗体が結合された磁性体封入コアセルベートである、請求項4に記載の方法。   The method according to claim 4, wherein the magnetic particles for magnetically labeling red blood cells are magnetic substance-encapsulated coacervates to which anti-erythrocyte antibodies are bound. 前記コアセルベートがゼラチンアラビアゴムコアセルベートである、請求項5に記載の方法。   6. The method of claim 5, wherein the coacervate is a gelatin gum arabic coacervate. 前記赤血球が0.5〜1.2%の濃度であり、前記磁性粒子が0.18〜0.69%の濃度であることを特徴とする、請求項1〜6の何れか一項に記載の方法。   The method according to any one of claims 1 to 6, wherein the red blood cells have a concentration of 0.5 to 1.2% and the magnetic particles have a concentration of 0.18 to 0.69%. 前記赤血球が0.7〜0.9%の濃度であり、前記磁性粒子が0.18〜1.8%の濃度であることを特徴とする、請求項1〜6の何れか一項に記載の方法。   The method according to claim 1, wherein the red blood cells have a concentration of 0.7 to 0.9% and the magnetic particles have a concentration of 0.18 to 1.8%.
JP2007161482A 2007-06-19 2007-06-19 Red blood cell type determination method Expired - Fee Related JP5047702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161482A JP5047702B2 (en) 2007-06-19 2007-06-19 Red blood cell type determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161482A JP5047702B2 (en) 2007-06-19 2007-06-19 Red blood cell type determination method

Publications (2)

Publication Number Publication Date
JP2009002686A true JP2009002686A (en) 2009-01-08
JP5047702B2 JP5047702B2 (en) 2012-10-10

Family

ID=40319249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161482A Expired - Fee Related JP5047702B2 (en) 2007-06-19 2007-06-19 Red blood cell type determination method

Country Status (1)

Country Link
JP (1) JP5047702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084626A1 (en) * 2009-01-20 2010-07-29 ベックマン コールター,インコーポレイテッド Method for detection of presence of anti-platelet antibody

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189560A (en) * 1989-12-20 1991-08-19 Olympus Optical Co Ltd Immunological measurement method using magnetic marker particle
JPH08201391A (en) * 1995-01-20 1996-08-09 Olympus Optical Co Ltd Immunological measuring method with marker grain
JP2001330614A (en) * 2000-05-24 2001-11-30 Olympus Optical Co Ltd Solid phase to which biological activity is imparted, and method for manufacturing the same
JP2006308572A (en) * 2005-03-31 2006-11-09 Hitachi Maxell Ltd Method of detecting examined substance using noble metal coated magnetic particle
WO2007051844A1 (en) * 2005-11-03 2007-05-10 Diagast Magnetic immunodiagnostic method for the demonstration of antibody/antigen complexes especially of blood groups

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189560A (en) * 1989-12-20 1991-08-19 Olympus Optical Co Ltd Immunological measurement method using magnetic marker particle
JPH08201391A (en) * 1995-01-20 1996-08-09 Olympus Optical Co Ltd Immunological measuring method with marker grain
JP2001330614A (en) * 2000-05-24 2001-11-30 Olympus Optical Co Ltd Solid phase to which biological activity is imparted, and method for manufacturing the same
JP2006308572A (en) * 2005-03-31 2006-11-09 Hitachi Maxell Ltd Method of detecting examined substance using noble metal coated magnetic particle
WO2007051844A1 (en) * 2005-11-03 2007-05-10 Diagast Magnetic immunodiagnostic method for the demonstration of antibody/antigen complexes especially of blood groups

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084626A1 (en) * 2009-01-20 2010-07-29 ベックマン コールター,インコーポレイテッド Method for detection of presence of anti-platelet antibody

Also Published As

Publication number Publication date
JP5047702B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP6720138B2 (en) Method for detecting test substance and reagent kit used in the method
JP5223676B2 (en) Magnetic immunodiagnostic method, especially for the demonstration of the presence of blood group antibody / antigen complexes
JP2013531259A (en) Magnetic immunodiagnostic methods and kits for demonstration of antibody / antigen complexes in erythrocyte blood typing and phenotyping
JP5401724B2 (en) Biosensing method using coated magnetic fine particles and biosensing device used in the method
JP2009098138A (en) Method of high sensitive immunoassay
US20090311800A1 (en) Ultrasound method
EP0070527B1 (en) Method of assaying biologically active substances and labelling agents therefor
JP4167491B2 (en) Whole blood measurement method
US20100009383A1 (en) Method for the simple and rapid detection of cells and biomolecules by means of paramagnetic particles
JP2006162466A (en) Method for measuring substance to be measured and measurement reagent
TW201209413A (en) Immunomagnetic complex and its use in red blood cell grouping/phenotyping
JP2004510161A (en) Method and kit for reducing interference of serum or plasma containing assay samples in a specific binding assay by using a high molecular weight polycation
JP5047702B2 (en) Red blood cell type determination method
JP2013205408A (en) Immunity analysis method and reagent
JPH08201391A (en) Immunological measuring method with marker grain
US4792527A (en) Method of assaying biologically active substances and labelling agents therefor
JP3216452B2 (en) Immunoassay method and device
JPWO2007126051A1 (en) Reagent for anti-phospholipid antibody measurement
JP5017596B2 (en) Aggregation inspection method
JP2009030997A (en) Blood group determining kit for type and screening and blood group determining device using the same
JP2010078374A (en) Method of detecting anti-erythrocyte antibody
JP2008241251A (en) Immunological inspection carrier and inspection method using carrier thereof
JPH02210262A (en) Method for indirectly measuring flocculation reaction
JP2015184125A (en) Immunoassay suppressing non-specific reaction
JPH10239317A (en) Method and reagent for restrainedly measuring zone phenomenon suppression and measuring reagent

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees