JP2009002685A - Magnetic particle for labeling erythrocyte - Google Patents

Magnetic particle for labeling erythrocyte Download PDF

Info

Publication number
JP2009002685A
JP2009002685A JP2007161481A JP2007161481A JP2009002685A JP 2009002685 A JP2009002685 A JP 2009002685A JP 2007161481 A JP2007161481 A JP 2007161481A JP 2007161481 A JP2007161481 A JP 2007161481A JP 2009002685 A JP2009002685 A JP 2009002685A
Authority
JP
Japan
Prior art keywords
magnetic
erythrocyte
red blood
coacervate
labeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161481A
Other languages
Japanese (ja)
Other versions
JP5210551B2 (en
Inventor
Toyohiro Tamai
豊廣 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007161481A priority Critical patent/JP5210551B2/en
Publication of JP2009002685A publication Critical patent/JP2009002685A/en
Application granted granted Critical
Publication of JP5210551B2 publication Critical patent/JP5210551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnetic particles for turning erythrocytes into magnetic labels. <P>SOLUTION: Magnetic particles for labeling erythrocytes are provided wherein an erythrocyte bonding substance is carried by a carrier containing magnetic bodies. In one mode thereof, the carrier containing the magnetic bodies is gelatin gum-arabic coacervate with the magnetic bodies sealed therein and is selected from among a group comprising an erythrocyte-bonding substance anti-glycophorin antibody, broom lectin (CSA), and thorn apple lectin (DSA). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、赤血球を磁性標識するための磁性粒子に関する。   The present invention relates to a magnetic particle for magnetically labeling red blood cells.

免疫検査の分野では、磁性体に抗原や抗体を結合させ、検体中の目的の抗原や抗体を捕捉して測定する方法が広く知られている。また、磁性体に各種の抗体を結合して磁石で分離することによって、細胞の選別やB/F分離を行う方法も知られている(例えば、特許文献1)。   In the field of immunoassay, a method of binding an antigen or antibody to a magnetic substance and capturing and measuring the target antigen or antibody in a specimen is widely known. Also known is a method of sorting cells and separating B / F by binding various antibodies to a magnetic material and separating them with a magnet (for example, Patent Document 1).

そこで、赤血球を磁性標識化することができれば、赤血球の凝集反応における沈降パターンを磁力によって迅速に形成させたり、2次標識抗体を用いて赤血球に結合した抗体を発色させたりすることが可能になり、免疫検査における操作を簡便・迅速にすることができる。   Therefore, if the erythrocytes can be magnetically labeled, a sedimentation pattern in the erythrocyte agglutination reaction can be rapidly formed by a magnetic force, or a secondary labeled antibody can be used to develop an antibody bound to the erythrocytes. The operation in the immunological test can be made simple and rapid.

しかしながら、赤血球を磁性標識化し、免疫学的検査に利用する方法は知られていない。唯一DiaGast社が、ナノ磁性粒子を用いて磁性標識化しているが、使用している粒子について公開されておらず、技術的内容が全く不明である。
特開平2001−91521号
However, there is no known method for magnetically labeling red blood cells and using them for immunological examinations. Only DiaGast is magnetically labeled with nanomagnetic particles, but the particles used are not disclosed and the technical content is completely unknown.
JP 2001-91521 A

そこで本発明では、赤血球を磁性標識化するための磁性粒子を提供することを目的とする。   Accordingly, an object of the present invention is to provide magnetic particles for magnetically labeling red blood cells.

本発明によれば、磁性体を含有する担体に赤血球結合物質が担持されたことを特徴とする、赤血球標識用磁性粒子が提供される。一つの態様において、前記磁性体を含有する担体は、磁性体が封入されたゼラチンアラビアゴムコアセルベートである。また、前記赤血球結合物質は赤血球のリガンドであることが好ましい。また、前記リガンドは、抗グリコフォリン抗体、エニシダレクチン(CSA)及びチョウセンアサガオレクチン(DSA)からなる群から選択されることが好ましい。   According to the present invention, there is provided a magnetic particle for red blood cell labeling characterized in that a red blood cell binding substance is supported on a carrier containing a magnetic substance. In one embodiment, the carrier containing the magnetic material is gelatin gum arabic coacervate in which the magnetic material is encapsulated. The red blood cell binding substance is preferably a red blood cell ligand. In addition, the ligand is preferably selected from the group consisting of an anti-glycophorin antibody, any lectin lectin (CSA) and datura saga orectin (DSA).

本発明の磁性粒子を用いることによって、赤血球を磁性標識化することができる。これにより、免疫検査における操作を簡便・迅速にすることができる。   Red blood cells can be magnetically labeled by using the magnetic particles of the present invention. Thereby, operation in an immunoassay can be made simple and rapid.

免疫検査等で使用される一般的な磁性粒子の担体には、ポリスチレン粒子などが用いられている。また、医用磁性ナノビーズの新しい作製技術(応用物理74巻12;1580-2005を参照)による担体も用いられている。このようなナノサイズの磁性粒子担体は、小さな抗原や抗体と結合するためには好ましい。しかし、赤血球のような大きな粒子(約8μm)を磁力で迅速に動かすためには、小さなナノ粒子担体では、赤血球の表面を全て覆うほどに結合させなければならない可能性があり、赤血球の抗原がマスクされてしまう恐れがある。   Polystyrene particles or the like are used as carriers for general magnetic particles used in immunological tests and the like. In addition, a carrier using a new production technique for medical magnetic nanobeads (see Applied Physics 74, 12; 1580-2005) is also used. Such nano-sized magnetic particle carriers are preferred for binding to small antigens and antibodies. However, in order to move large particles such as erythrocytes (about 8 μm) rapidly by magnetic force, small nanoparticle carriers may have to be bound to cover the entire surface of erythrocytes. There is a risk of being masked.

そこで本発明では、ゼラチンアラビアゴムコアセルベートを担体として用い、これに磁性体を封入して磁性粒子として用いた。ゼラチンアラビアゴムコアセルベートは、ゼラチンと水溶性多糖類であるアラビアゴムを主成分として形成された複合コアセルベートである。これは例えば、「HG Bundenberg de Jong. In Colloid Science 1949 Vol.2, Amsterdam」によって紹介されている。ゼラチンアラビアゴムコアセルベートは天然成分に由来するため容易に分解され、環境に優しいという利点がある。また免疫学的な非特異反応が少ないという利点もある。さらに、簡単な設備があれば容易に安価で製造できるため好適に用いることができる。さらに、ゼラチンアラビアゴムコアセルベートは、任意の粒径を有するように調製することができるため、赤血球に適するように粒径を大きくすることができる。   Therefore, in the present invention, gelatin gum arabic coacervate was used as a carrier, and a magnetic material was encapsulated therein to be used as magnetic particles. Gelatin gum arabic coacervate is a complex coacervate formed from gelatin and gum arabic, which is a water-soluble polysaccharide, as main components. This is introduced, for example, by “HG Bundenberg de Jong. In Colloid Science 1949 Vol. 2, Amsterdam”. Gelatin gum arabic coacervate has the advantage of being easily decomposed and environmentally friendly because it is derived from natural ingredients. There is also an advantage that there are few immunological non-specific reactions. Furthermore, since simple equipment can be easily manufactured at low cost, it can be suitably used. Furthermore, since gelatin gum arabic coacervate can be prepared to have an arbitrary particle size, the particle size can be increased to suit red blood cells.

ゼラチンアラビアゴムコアセルベートは、粒子内に封入される磁性体の量を容易に調整することができる。従って、この磁性粒子で標識された赤血球の移動速度を磁力によって調整するために、封入される磁性体の量を増減させることも可能である。   Gelatin gum arabic coacervate can easily adjust the amount of magnetic substance enclosed in the particles. Therefore, in order to adjust the moving speed of the red blood cells labeled with the magnetic particles by the magnetic force, the amount of the magnetic substance to be encapsulated can be increased or decreased.

ここで述べたように、ゼラチンアラビアゴムコアセルベートは赤血球標識用の磁性粒子に都合よく用いることができるが、現在までにこれを使用して赤血球を磁性標識化した例は報告されていない。   As described herein, gelatin gum arabic coacervate can be conveniently used for magnetic particles for red blood cell labeling, but no examples of magnetic labeling of red blood cells using it have been reported so far.

ゼラチンアラビアゴムコアセルベートは、既知の方法によって製造し、所望の量の磁性粒子を含有するように製造することができる。製造された磁性粒子には、赤血球結合物質を担持させる。ここで赤血球結合物質は、赤血球と抗原抗体反応をし、赤血球を凝集させるリガンドであることが好ましい。   Gelatin gum arabic coacervate is manufactured by known methods and can be manufactured to contain the desired amount of magnetic particles. The manufactured magnetic particles carry an erythrocyte binding substance. Here, the red blood cell binding substance is preferably a ligand that causes an antigen-antibody reaction with red blood cells to aggregate the red blood cells.

以下に、磁性体封入ゼラチンアラビアゴムコアセルベートの作成方法を説明するが、さらなる詳細は、特開2004-157040号公報を参照されたい。まず、ゼラチンのゲル化温度以上(好ましくは35℃以上、例えば約40℃)において、0.01〜2重量%のゼラチンと0.01〜2重量%のアラビアゴムを、G/A=0.5〜1.5、好ましくは0.5〜1.1、より好ましくは0.5〜1.0、更に好ましくは0.6〜0.9になるように、29〜65重量%の水溶性有機溶媒中で混合する。ここで水溶性有機溶媒は、メタノール、エタノール、プロパノール、アセトン等が使用可能であるが、毒性等を考慮すればエタノールが望ましい。また、G/Aが1.6を超えるとコアセルベート径の調製は困難となる。コアセルベートの調製液中には、当該分野で公知のとおり、コアセルベート粒子の凝集を防止するために、界面活性剤を添加しておくことが好ましい。界面活性剤の種類および添加量については、その効果を奏する範囲内において当業者であれば適宜設定することができる。   Hereinafter, a method for producing a magnetic substance-encapsulated gelatin gum arabic coacervate will be described. For further details, refer to JP-A-2004-157040. First, at a temperature equal to or higher than the gelling temperature of gelatin (preferably 35 ° C. or higher, for example, about 40 ° C.), 0.01 to 2% by weight of gelatin and 0.01 to 2% by weight of gum arabic, G / A = 0.5 to 1.5, It mixes in 29-65weight% of a water-soluble organic solvent so that it may become 0.5-1.1, More preferably, it is 0.5-1.0, More preferably, it is 0.6-0.9. Here, methanol, ethanol, propanol, acetone or the like can be used as the water-soluble organic solvent, but ethanol is desirable in view of toxicity. On the other hand, when G / A exceeds 1.6, it is difficult to adjust the coacervate diameter. As is known in the art, a surfactant is preferably added to the coacervate preparation solution in order to prevent coacervate particles from aggregating. The type and addition amount of the surfactant can be appropriately set by those skilled in the art within the range where the effect is exhibited.

次いで、酸(例えば酢酸、プロピオン酸、希塩酸、希硫酸)の添加により、ゼラチンアラビアゴムコアセルベートを析出させる。ここで酸の添加量は、作製したいコアセルベート径に応じて適宜設定する。その後ゲル化温度以下(好ましくは35℃以下、例えば約10℃)に冷却し、グルタルアルデヒド、ホルマリン等のアルデヒドで架橋する。   The gelatin gum arabic coacervate is then precipitated by the addition of an acid (eg acetic acid, propionic acid, dilute hydrochloric acid, dilute sulfuric acid). Here, the addition amount of the acid is appropriately set according to the coacervate diameter to be produced. Thereafter, it is cooled to a gelation temperature or lower (preferably 35 ° C. or lower, for example, about 10 ° C.), and crosslinked with an aldehyde such as glutaraldehyde or formalin.

また、コアセルベートの形態を有する担体の作製にあたっては、芯物質を加えて、芯物質をコアセルベートで包んだいわゆるマイクロカプセルとすることもできる。所望の芯物質を用いることにより、コアセルベートの比重調整、コアセルベートの磁性化、着色等を行うことが可能である。その際には適当な界面活性剤(例えばTween20、Tween80、Triton X-100など)を添加して、分散性を上げておくことが望ましい。芯物質としては、SiO(ガラス)、TiO、CuO、CoO、Feなどの金属酸化物の微粉末、カーボン、タルクなど種々のものを利用することができる。磁性体を含有させた担体は、適宜の磁気発生手段(永久磁石、電磁石等)により、液体中での攪拌、洗浄、測定等の各種処理工程を短時間で行うことができる。なお、当業者であれば、担体を所望の性質とするために適切な芯物質の種類および芯物質の使用量について適宜選択することができる。 Further, in the production of a carrier having a coacervate form, a so-called microcapsule in which a core substance is added and the core substance is wrapped with coacervate may be used. By using a desired core material, it is possible to adjust the specific gravity of the coacervate, to magnetize the coacervate, and to color the coacervate. In that case, it is desirable to add a suitable surfactant (for example, Tween 20, Tween 80, Triton X-100, etc.) to increase the dispersibility. Examples of the core material, SiO 2 (glass) can be utilized fine powder of TiO 2, CuO, CoO, metal oxides such as Fe 2 O 3, carbon, any of various talc. The carrier containing the magnetic material can be subjected to various processing steps such as stirring, washing, and measurement in a liquid in a short time by appropriate magnetism generating means (permanent magnet, electromagnet, etc.). A person skilled in the art can appropriately select the type of the core substance and the amount of the core substance used to make the carrier have the desired properties.

本発明のゼラチンアラビアゴムコアセルベートは、赤血球を標識するために用いるので、その粒径が0.1〜200μmであることが好ましく、1〜30μmであることがより好ましく、2〜12μmであることが最も好ましい。   Since the gelatin gum arabic coacervate of the present invention is used for labeling red blood cells, its particle size is preferably 0.1 to 200 μm, more preferably 1 to 30 μm, most preferably 2 to 12 μm. .

次に、リガンドを磁性粒子に担持させるには、既知の方法を用いることができる。例えば、特開2004-157040号公報に記載されたEDAC/NHS法を用いることができる。その概要を簡単に説明する。   Next, a known method can be used to support the ligand on the magnetic particles. For example, the EDAC / NHS method described in JP 2004-157040 A can be used. The outline will be briefly described.

コアセルベートをアルデヒドで架橋し、これを純水で洗浄後、必要に応じて染色を行い、公知のN−ヒドロキシスクシンイミド法を適用する。まず、N−ヒドロキシスクシンイミドとカルボジイミドを溶かした水溶液(MES(2−Morpholinoethanesulfonic acid溶液))に、先の架橋済みコアセルベートを懸濁し、室温で1〜3時間反応させる。反応後、コアセルベートを遠心洗浄し、目的とするリガンドを適切なバッファー(例えば純水、酢酸バッファー、MESバッファー)に適切な濃度で溶解したものを加え、室温あるいは冷蔵(2〜8℃)で2時間から一晩反応させる。反応後、BSA(bovine serum albumin)やゼラチン、動物血清などで、未反応の官能基をブロックし(ブロッキング)、所望のリガンドを担持したコアセルベートが作製される。作製されたコアセルベートは、そのまま目的とする免疫学的反応用の溶液に置換して目的の反応に利用してもよいし、バイアル瓶等に分注して凍結乾燥し、長期保存をすることも可能である。   The coacervate is crosslinked with aldehyde, washed with pure water, dyed as necessary, and a known N-hydroxysuccinimide method is applied. First, the previously crosslinked coacervate is suspended in an aqueous solution (MES (2-Morpholinoethanesulfonic acid solution)) in which N-hydroxysuccinimide and carbodiimide are dissolved, and reacted at room temperature for 1 to 3 hours. After the reaction, the coacervate is washed by centrifugation, and the ligand of interest is dissolved in an appropriate buffer (for example, pure water, acetate buffer, MES buffer) at an appropriate concentration, and is added at room temperature or refrigerated (2 to 8 ° C.). React overnight from time. After the reaction, BSA (bovine serum albumin), gelatin, animal serum, etc. are used to block unreacted functional groups (blocking) to produce a coacervate carrying a desired ligand. The prepared coacervate may be used as it is for the intended reaction by substituting the solution for the desired immunological reaction, or it may be dispensed into vials and freeze-dried for long-term storage. Is possible.

このようなN−ヒドロキシスクシンイミド法は、担体のカルボキシル基とリガンドのアミノ基を結合させる方法であるが、担体のカルボキシル基を活性化させる物質として、N−ヒドロキシスクシンイミド以外に、1−ヒドロキシベンゾトリアゾール、3−ヒドロキシ−4−オキソ−3,4−ジヒドロ−1,2,3−ベンゾトリアジンを含むN−ヒドロキシ化合物等を使用することができる。また、リガンドの担体への結合反応時に脱水剤として機能するカルボジイミドとして、EDAC;1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、DIPC;ジイソプロピルカルボジイミド等を使用することができる。   Such an N-hydroxysuccinimide method is a method in which the carboxyl group of the carrier and the amino group of the ligand are combined. In addition to N-hydroxysuccinimide, 1-hydroxybenzotriazole is used as a substance that activates the carboxyl group of the carrier. N-hydroxy compounds containing 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine can be used. Moreover, EDAC; 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, DIPC: diisopropylcarbodiimide, etc. can be used as the carbodiimide that functions as a dehydrating agent during the binding reaction of the ligand to the carrier.

赤血球を凝集させるリガンドは種々のものが知られており、赤血球を非特異的或いは特異的に凝集させるレクチンも数多く市販化されている(例えば、豊年コーポレーションのカタログを参照されたい)。   Various ligands for agglutinating erythrocytes are known, and many lectins that agglutinate erythrocytes non-specifically or specifically are commercially available (see, for example, the catalog of Toyotomi Corporation).

しかしながら、通常では赤血球凝集能を有するリガンドであっても、本発明の磁性粒子に固定化すると、赤血球の凝集能力が著しく減少するものがあることが明らかになった。例えば、特許02532670に記載されたWGAを、特開2004-157040号公報に示した方法により、ゼラチンとアラビアゴムのコアセルベートに固定化したところ、赤血球を凝集させることが出来なかった。   However, it has been clarified that some ligands having erythrocyte agglutination ability usually remarkably reduce erythrocyte aggregation ability when immobilized on the magnetic particles of the present invention. For example, when WGA described in Japanese Patent No. 02532670 was immobilized on gelatin and gum arabic coacervate by the method shown in JP-A-2004-157040, red blood cells could not be aggregated.

そこで、本発明者は、本発明の磁性粒子に固定化した場合に赤血球凝集能を示すリガンドを選択するための試験を行った。その詳細を以下に記載する。   Therefore, the present inventor conducted a test for selecting a ligand that exhibits hemagglutination ability when immobilized on the magnetic particles of the present invention. Details are described below.

(1)磁性体封入ゼラチンアラビアゴムコアセルベート(磁性粒子)の作成
上記のような方法でゼラチンとアラビアゴムのコアセルベートを作成し、磁性体を取り込ませ、粒径2-12μmの磁性粒子を作成した。
(1) Preparation of magnetic material-encapsulated gelatin gum arabic coacervate (magnetic particles) Gelatin and gum arabic coacervate were prepared by the method described above, and the magnetic material was taken in to produce magnetic particles having a particle size of 2-12 μm.

(2)磁性粒子へのリガンドの固定化
上記のような方法により、表1に示した各種のリガンドを、上記(1)で作成した磁性粒子に固定化した。全ての物質速度は10μg/mLで反応を行った。反応後、BSA(ウシアルブミン)でブロッキングを行い、0.1%BSA/PBS pH7.2に5%濃度で浮遊させた。
(2) Immobilization of ligands on magnetic particles Various ligands shown in Table 1 were immobilized on the magnetic particles prepared in (1) above by the method described above. Reactions were carried out at all material rates of 10 μg / mL. After the reaction, it was blocked with BSA (bovine albumin) and suspended in 0.1% BSA / PBS pH 7.2 at a concentration of 5%.

(3)赤血球凝集能力の測定
上記リガンドが固定された磁性粒子の5%浮遊液1滴(25μL)に、O、A又はB型の赤血球(試薬血球Ortho社セレクトジェン、アファーマジェン)1滴を加えて、時計皿上で撹拌した。3分後に血球凝集を目視観察した。その結果を表1に示す。

Figure 2009002685
(3) Measurement of erythrocyte agglutination ability One drop of O, A or B type red blood cell (reagent blood cell Ortho Selectgen, Apharma Gen) to one drop (25 μL) of 5% suspension of magnetic particles to which the ligand is immobilized And stirred on a watch glass. After 3 minutes, hemagglutination was visually observed. The results are shown in Table 1.
Figure 2009002685

表1において、0、+、++、及び+++とある表示は、図1に示すような凝集状態を表すものとする。即ち、(a)0は磁性粒子と赤血球が反応しない状態を表す。(b)+は、磁性粒子と赤血球が弱く凝集し、細かい凝集を生じた状態を表す。(c)++は、磁性粒子と赤血球が強く凝集し、比較的大きな凝集を生じた状態を表す。(d)+++は、磁性粒子と赤血球が強く凝集し、大きい凝集塊を生じた状態を表す。   In Table 1, “0”, “+”, “++”, and “++” display indicate aggregation states as shown in FIG. That is, (a) 0 represents a state where magnetic particles and red blood cells do not react. (B) + represents a state in which the magnetic particles and red blood cells are weakly aggregated to cause fine aggregation. (C) ++ represents a state in which the magnetic particles and red blood cells are strongly aggregated to cause relatively large aggregation. (D) ++ represents a state where magnetic particles and red blood cells are strongly aggregated to form a large aggregate.

表1に示したように、本発明の磁性粒子に固定化した状態で、赤血球を凝集させる能力を有するリガンドは、抗グリコフォリン抗体、ニシダレクチン(CSA)及びチョウセンアサガオレクチン(DSA)であった。特にDSAの凝集力が強く、最も好適に用いられることが示された。そのほかのリガンドは、通常では凝集能を有するにもかかわらず、本発明の磁性粒子に固定化した状態では凝集能を示さなかった。   As shown in Table 1, the ligands having the ability to aggregate erythrocytes in the state of being immobilized on the magnetic particles of the present invention were anti-glycophorin antibody, Nishida lectin (CSA) and Datura saga orectin (DSA). . In particular, DSA has a strong cohesive force, indicating that it is most suitably used. Although other ligands usually have an aggregating ability, they did not exhibit an aggregating ability when immobilized on the magnetic particles of the present invention.

(4)ドナー由来の血漿が混入した状態における赤血球凝集能力の測定
上記(3)と同じ方法を用いて、血清が25%混入した状態における赤血球凝集力を観察した。O型ドナー赤血球を使用した。その結果を表1に示した。上記(3)で凝集力を有したリガンドは、血漿成分の混入があっても赤血球を強く凝集することが確認された。
(4) Measurement of hemagglutination ability in a state in which donor-derived plasma was mixed Using the same method as in (3) above, the hemagglutination power in a state in which serum was mixed in 25% was observed. Type O donor erythrocytes were used. The results are shown in Table 1. It was confirmed that the ligand having an aggregating power in (3) strongly aggregates erythrocytes even when plasma components are mixed.

以上の試験から、赤血球を標識するための磁性粒子に用いることができるリガンドは、抗グリコフォリン抗体、ニシダレクチン(CSA)及びチョウセンアサガオレクチン(DSA)であることが明らかになった。従って、本発明の赤血球標識用磁性粒子としては、ゼラチンアラビアゴムコアセルベートを担体とする磁性粒子に、抗グリコフォリン抗体、ニシダレクチン(CSA)及びチョウセンアサガオレクチン(DSA)から選択されるリガンドが固定化されたものが好適に用いられる。   From the above test, it was revealed that the ligands that can be used for magnetic particles for labeling erythrocytes are anti-glycophorin antibody, Nishida lectin (CSA) and Datura saga orectin (DSA). Therefore, as the magnetic particles for erythrocyte labeling of the present invention, a ligand selected from anti-glycophorin antibody, Nishida lectin (CSA) and datura saga lectin (DSA) is immobilized on magnetic particles using gelatin gum arabic coacervate as a carrier. What was made is used suitably.

本発明に従った赤血球標識用磁性粒子を用いることにより、血液型判定などの免疫検査において、赤血球を磁性標識化することができる。例えば血液型判定では、反応容器内で赤血球を凝集反応させて沈降させ、そのパターンによって陽性か陰性かを判定するが、この沈降には通常30〜60分程度の時間を要する。しかしながら、赤血球を磁性標識化すると、磁力により沈降速度を著しく速めることができ、わずか3分程度で沈降パターンを観察することができる。   By using the magnetic particles for red blood cell labeling according to the present invention, red blood cells can be magnetically labeled in an immunological test such as blood type determination. For example, in blood type determination, erythrocytes are allowed to agglutinate in a reaction vessel to be settled, and whether it is positive or negative is determined according to the pattern. This sedimentation usually takes about 30 to 60 minutes. However, when red blood cells are magnetically labeled, the sedimentation rate can be significantly increased by magnetic force, and the sedimentation pattern can be observed in only about 3 minutes.

さらに、本発明の磁性粒子を用いて赤血球を標識化することにより、B/F分離を簡単に行うことができる。未反応物の洗浄が簡単に行えるため、EIAやCLEIAのような蛍光標識などによる観察を行うことができる。これらの測定では、結果を数値化することが可能であるため、血液型などの免疫検査を全自動で行うのに好適である。   Furthermore, B / F separation can be easily performed by labeling red blood cells with the magnetic particles of the present invention. Since unreacted substances can be easily washed, observation with a fluorescent label such as EIA or CLEIA can be performed. In these measurements, the results can be quantified, which is suitable for fully automated immunological tests such as blood type.

磁性粒子による赤血球の凝集の強度を表す概念図。The conceptual diagram showing the intensity | strength of the aggregation of the erythrocyte by a magnetic particle.

Claims (4)

磁性体を含有する担体に赤血球結合物質が担持されたことを特徴とする、赤血球標識用磁性粒子。   A magnetic particle for erythrocyte labeling, characterized in that an erythrocyte binding substance is supported on a carrier containing a magnetic substance. 前記磁性体を含有する担体が、磁性体が封入されたゼラチンアラビアゴムコアセルベートである、請求項1に記載の赤血球標識用磁性粒子。   The magnetic particle for erythrocyte labeling according to claim 1, wherein the carrier containing the magnetic substance is gelatin gum arabic coacervate in which the magnetic substance is encapsulated. 前記赤血球結合物質が、赤血球のリガンドである、請求項1又は2に記載の赤血球標識用磁性粒子。   The magnetic particle for red blood cell labeling according to claim 1 or 2, wherein the red blood cell binding substance is a ligand of red blood cells. 前記リガンドが、抗グリコフォリン抗体、エニシダレクチン(CSA)及びチョウセンアサガオレクチン(DSA)からなる群から選択される、請求項3に記載の赤血球標識用磁性粒子。   The magnetic particle for erythrocyte labeling according to claim 3, wherein the ligand is selected from the group consisting of an anti-glycophorin antibody, any lectin lectin (CSA) and datura saga orectin (DSA).
JP2007161481A 2007-06-19 2007-06-19 Magnetic particles for red blood cell labeling Expired - Fee Related JP5210551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161481A JP5210551B2 (en) 2007-06-19 2007-06-19 Magnetic particles for red blood cell labeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161481A JP5210551B2 (en) 2007-06-19 2007-06-19 Magnetic particles for red blood cell labeling

Publications (2)

Publication Number Publication Date
JP2009002685A true JP2009002685A (en) 2009-01-08
JP5210551B2 JP5210551B2 (en) 2013-06-12

Family

ID=40319248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161481A Expired - Fee Related JP5210551B2 (en) 2007-06-19 2007-06-19 Magnetic particles for red blood cell labeling

Country Status (1)

Country Link
JP (1) JP5210551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643409A (en) * 2017-09-19 2018-01-30 汪德清 A kind of blood group antigens chip and its application in red blood cell accident antibody test

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991370A (en) * 1982-10-15 1984-05-26 シバ・カンパニ− Fluorescent screening for deciding blood type
JPH0786508B2 (en) * 1987-07-21 1995-09-20 オリンパス光学工業株式会社 Method of manufacturing carrier
JPH08201391A (en) * 1995-01-20 1996-08-09 Olympus Optical Co Ltd Immunological measuring method with marker grain
JP2001330614A (en) * 2000-05-24 2001-11-30 Olympus Optical Co Ltd Solid phase to which biological activity is imparted, and method for manufacturing the same
JP2004101256A (en) * 2002-09-06 2004-04-02 Asahi Kasei Corp Method for screening biomaterial
JP2004526452A (en) * 2001-04-10 2004-09-02 バイオアーゴノミクス, インコーポレイテッド Cell separation compositions and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991370A (en) * 1982-10-15 1984-05-26 シバ・カンパニ− Fluorescent screening for deciding blood type
JPH0786508B2 (en) * 1987-07-21 1995-09-20 オリンパス光学工業株式会社 Method of manufacturing carrier
JPH08201391A (en) * 1995-01-20 1996-08-09 Olympus Optical Co Ltd Immunological measuring method with marker grain
JP2001330614A (en) * 2000-05-24 2001-11-30 Olympus Optical Co Ltd Solid phase to which biological activity is imparted, and method for manufacturing the same
JP2004526452A (en) * 2001-04-10 2004-09-02 バイオアーゴノミクス, インコーポレイテッド Cell separation compositions and methods
JP2004101256A (en) * 2002-09-06 2004-04-02 Asahi Kasei Corp Method for screening biomaterial

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643409A (en) * 2017-09-19 2018-01-30 汪德清 A kind of blood group antigens chip and its application in red blood cell accident antibody test

Also Published As

Publication number Publication date
JP5210551B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
CN109312293B (en) Compositions and methods for magnetic levitation separation
Hao et al. Core–Shell‐Heterostructured Magnetic–Plasmonic Nanoassemblies with Highly Retained Magnetic–Plasmonic Activities for Ultrasensitive Bioanalysis in Complex Matrix
EP1151297B1 (en) Methods for enhancing binding interactions between members of specific binding pairs
JP6716683B2 (en) Stable nano magnetic particle dispersion
JP5358648B2 (en) Blue gold nanoparticles for immunological measurement, production method thereof and measurement method using the same
CN101419234B (en) Chemiluminescence detection kit based on corpuscle
CN105300966A (en) Preserving fluid and preparation method thereof
Urusov et al. Application of magnetic nanoparticles in immunoassay
CN108982834A (en) The method of nano enzyme immuno-sandwich new technology detection biomolecule
JP2009168495A (en) Colored latex
JP6913908B2 (en) Magnetic composite particles, their manufacturing methods, and immunoassay particles
JP2004331953A (en) Magnetic material encapsulating particle, immunity measuring particle and immunity measuring method
JP5210551B2 (en) Magnetic particles for red blood cell labeling
JP2018124277A (en) Particle-containing composition, immunoassay reagent, immunoassay method and particle storage method
JP2015163846A (en) Magnetic signal measurement device and magnetic signal measurement method
JP2007205911A (en) Gold/iron oxide composite magnetic particle, magnetic particle for measuring immunity, and immunoassay
JP6737643B2 (en) Labeled antibody, method for producing the same, and immunological assay
GB2426583A (en) Magnetic particles
JP2010060416A (en) Method for preparing antibody dissociated solution from erythrocyte
JP2009276089A (en) Stirring method of liquid composition, detection method and detection kit
JPH0692640A (en) Fine magnetic particle for marking biological material and its production
JP4142405B2 (en) Ligand-supported carrier and method for producing the same
JP2009030997A (en) Blood group determining kit for type and screening and blood group determining device using the same
WO2019240045A1 (en) Core-shell particles, and method for separating and purifying substance to be separated using core-shell particles
CN114414795B (en) Method for manufacturing microspheres and application

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5210551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees