JP2009002681A - Magnetic measuring device provided with permanent magnet which performs periodic motion and oscillating coil - Google Patents

Magnetic measuring device provided with permanent magnet which performs periodic motion and oscillating coil Download PDF

Info

Publication number
JP2009002681A
JP2009002681A JP2007161367A JP2007161367A JP2009002681A JP 2009002681 A JP2009002681 A JP 2009002681A JP 2007161367 A JP2007161367 A JP 2007161367A JP 2007161367 A JP2007161367 A JP 2007161367A JP 2009002681 A JP2009002681 A JP 2009002681A
Authority
JP
Japan
Prior art keywords
coil
permanent magnet
vibration
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007161367A
Other languages
Japanese (ja)
Inventor
Satoru Hirano
悟 平野
Naoto Miyauchi
直人 宮内
Eiichi Matsumoto
栄一 松本
Toshiyuki Sugimoto
俊之 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007161367A priority Critical patent/JP2009002681A/en
Publication of JP2009002681A publication Critical patent/JP2009002681A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and light high-sensitivity magnetic measuring device which uses induced current with respect to an applied AC magnetic field of a constant frequency, one example of which is an eddy current defect detector, and can detect a defect in a deep part of a conductor sample, without deteriorating the sensitivity of the whole of its measurement system even if the applied AC magnetic field has an extremely low frequency of several Hz or less. <P>SOLUTION: The magnetic measuring device is provided with a magnet for applying the AC magnetic field, and a coil for detecting a magnetic signal. The magnet for applying the AC magnetic field is a permanent magnet which performs a periodic motion with the constant frequency mechanically, and the coil for detecting the magnetic signal is a coil which mechanically vibrates with a constant frequency, and moreover in the magnetic measuring device the two of the frequency of the periodic motion of the permanent magnet and the vibration frequency of the vibration detecting coil are different from each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、導体内に発生する誘導電流を利用した磁気測定装置に関するものである。   The present invention relates to a magnetic measurement apparatus using an induced current generated in a conductor.

図2は従来の誘導電流を利用した磁気測定装置を説明する模式図である。図2の中で、5は交流磁場を導体試料3に印加するための磁石を表し、6は磁気信号を検出する磁気センサを表す。磁気センサ6は、多くの場合、常伝導金属線を巻いた誘導コイルからなるが、他種の磁気センサであってもよい。ここでは便宜上、金属線誘導コイルを考える。前記磁気センサ6が金属線誘導コイルの場合、前記磁気センサ6を検出コイル6という。 FIG. 2 is a schematic diagram for explaining a conventional magnetic measuring apparatus using an induced current. In FIG. 2, 5 represents a magnet for applying an alternating magnetic field to the conductor sample 3, and 6 represents a magnetic sensor for detecting a magnetic signal. In many cases, the magnetic sensor 6 is an induction coil wound with a normal metal wire, but may be another type of magnetic sensor. Here, for convenience, a metal wire induction coil is considered. When the magnetic sensor 6 is a metal wire induction coil, the magnetic sensor 6 is referred to as a detection coil 6.

図2において、通常、磁石5は電磁石であるが、後述するように、永久磁石を機械的に動かすことで導体試料3の内部に誘導電流を誘起することも出来る。磁石5が電磁石の場合、一つのコイルが磁石5と検出コイル6の機能を兼ねてもよい。ここでは便宜上、図2のような二つのコイルを含む装置を考える。磁石5が電磁石の場合、磁石5を印加コイル5と呼ぶ。 In FIG. 2, the magnet 5 is usually an electromagnet. However, as will be described later, an induced current can be induced inside the conductor sample 3 by mechanically moving the permanent magnet. When the magnet 5 is an electromagnet, one coil may serve as the function of the magnet 5 and the detection coil 6. Here, for convenience, an apparatus including two coils as shown in FIG. 2 is considered. When the magnet 5 is an electromagnet, the magnet 5 is referred to as an application coil 5.

一般に、誘導電流を利用した磁気測定装置では、磁石5を用いて交流磁場を印加すると、導体試料3の内部に誘導電流(渦電流)が発生し、その渦電流のつくる磁場を磁気センサ6により検出する。このような測定装置は、例えば、金属部品などの欠陥を検出する渦流探傷装置である。通常、前記磁気センサ6を導体試料3の表面近傍で走査し、前記磁気センサ6の出力の変動をモニターすることで前記導体試料3内部の欠陥箇所の検出を行なう。 In general, when an AC magnetic field is applied using a magnet 5 in a magnetic measuring device using induced current, an induced current (eddy current) is generated inside the conductor sample 3, and the magnetic field generated by the eddy current is generated by the magnetic sensor 6. To detect. Such a measuring device is, for example, an eddy current flaw detector that detects defects such as metal parts. Usually, the magnetic sensor 6 is scanned in the vicinity of the surface of the conductor sample 3 and the fluctuation of the output of the magnetic sensor 6 is monitored to detect a defective portion inside the conductor sample 3.

渦流探傷装置は、導体試料内の渦電流の変化を検出することにより、欠陥の存在を検知する。渦流探傷装置において、深部にある欠陥を検出するためには、導体試料深部まで十分に大きな渦電流を発生させることと、欠陥によって生じる渦電流の乱れが深部にあり磁気信号が小さくても高感度に検出できることが必要である。 Eddy current flaw detectors detect the presence of defects by detecting changes in eddy currents in a conductor sample. In eddy current flaw detectors, in order to detect defects in the deep part, a sufficiently large eddy current is generated to the deep part of the conductor sample and high sensitivity is obtained even if the eddy current disturbance caused by the defect is deep and the magnetic signal is small. It must be detectable.

ここで、導体試料3の深部に大きな渦電流を発生させるためには、導体試料3の表皮効果のため、印加交流磁場の周波数は低周波でなければならない。電磁気学から、半無限大の導体試料表面に平行に交流磁場を印加した場合には、交流磁場が導体試料内部に侵入しうる長さの目安となる表皮深さが、交流磁場の周波数の平方根に反比例することが知られている。表皮効果については、例えば下記の非特許文献1に記載されている。交流磁場の磁力線は、定義により、途中で切れずに閉じなければならないため、交流磁場を有限の大きさの磁石によって有限の大きさの導体試料表面に垂直に印加した場合も、表皮効果はほぼ同様に起こり、従って、導体試料の大きさが前記磁石5に比べて十分大きいときは、表皮深さは導体試料表面に平行に交流磁場を印加した場合にほぼ等しく、表皮深さは、交流磁場の周波数の平方根にほぼ反比例すると考えてよい。従って、交流磁場を導体試料表面に垂直に印加した場合でも、導体試料3の深部に大きな渦電流を発生させるためには、印加交流磁場の周波数は低周波でなければならない。ところが、交流磁場の周波数が小さくなると、電磁誘導の法則とオームの法則により、導体試料3の内部に発生する渦電流密度も比例して小さくなる。 Here, in order to generate a large eddy current in the deep part of the conductor sample 3, the frequency of the applied AC magnetic field must be low because of the skin effect of the conductor sample 3. From the viewpoint of electromagnetics, when an AC magnetic field is applied in parallel to the surface of a semi-infinite conductor sample, the skin depth, which is a measure of how long the AC magnetic field can penetrate inside the conductor sample, is the square root of the frequency of the AC magnetic field. It is known to be inversely proportional to The skin effect is described in Non-Patent Document 1 below, for example. By definition, the magnetic field lines of an alternating magnetic field must be closed without breaking in the middle, so even when an alternating magnetic field is applied perpendicularly to the surface of a conductor sample of a finite size by a finite size magnet, the skin effect is almost the same. Similarly, therefore, when the size of the conductor sample is sufficiently larger than that of the magnet 5, the skin depth is substantially equal when an AC magnetic field is applied parallel to the surface of the conductor sample, and the skin depth is equal to the AC magnetic field. It can be considered that it is almost inversely proportional to the square root of the frequency. Therefore, even when an AC magnetic field is applied perpendicularly to the surface of the conductor sample, in order to generate a large eddy current in the deep part of the conductor sample 3, the frequency of the applied AC magnetic field must be low. However, as the frequency of the alternating magnetic field decreases, the density of eddy current generated inside the conductor sample 3 also decreases proportionally due to the law of electromagnetic induction and the law of Ohm.

そのため、深部に大きな渦電流を発生させるには、振幅の大きな低周波交流磁場を印加する必要がある。通常の電磁石を使って振幅の大きな交流磁場を発生するためには、振幅の大きな交流電流を前記印加コイル5に流す必要があり、印加コイル5が大型のものとなるだけでなく、大型の交流電流源も必要となる。印加コイルと交流電流源の大型化は装置全体の大型化につながり、渦流探傷装置として実用できる用途が大きく限定されてしまう。 Therefore, in order to generate a large eddy current in the deep part, it is necessary to apply a low-frequency alternating magnetic field having a large amplitude. In order to generate an alternating magnetic field with a large amplitude using a normal electromagnet, it is necessary to pass an alternating current with a large amplitude through the application coil 5, and the application coil 5 is not only large, but also a large alternating current. A current source is also required. Increasing the size of the application coil and the AC current source leads to an increase in the size of the entire device, greatly limiting the applications that can be used as an eddy current flaw detector.

小型で強力な低周波交流磁場を印加するには、前記磁石5を強力な永久磁石とし、永久磁石5を導体試料3の近傍で周期的に振動させることで解決できることが、以前より知られている。 It has been known for a long time that a small and powerful low-frequency alternating magnetic field can be solved by making the magnet 5 a strong permanent magnet and periodically vibrating the permanent magnet 5 in the vicinity of the conductor sample 3. Yes.

ところが、前記磁石5として永久磁石を用いた場合、使用可能な磁気センサ6の種類が限られてしまう。すなわち、磁気センサ6としてホールセンサ、フラックスゲート磁束計など、センサ材料の物性を利用するものを選択した場合は、強磁場中で使用可能なものは、感度が高くなく、逆に、高感度なものは、強磁場中で使用すると出力が飽和してしまうことが多い。そのため、強磁場中で使用するためには、常伝導金属線を巻いた空芯誘導コイルを前記検出コイル6として用いるのがよい。 However, when a permanent magnet is used as the magnet 5, the types of usable magnetic sensors 6 are limited. That is, when a sensor that uses the physical properties of a sensor material, such as a Hall sensor or a fluxgate magnetometer, is selected as the magnetic sensor 6, a sensor that can be used in a strong magnetic field is not highly sensitive. In many cases, the output is saturated when used in a strong magnetic field. Therefore, an air core induction coil wound with a normal metal wire is preferably used as the detection coil 6 for use in a strong magnetic field.

従って、従来の技術によれば、小型で強力な0008記載の永久磁石5を低周波で機械的に周期運動させて導体試料3に渦電流を発生させ、その渦電流の変化を試料近傍に置いた0009記載の空芯検出コイル6で検出することになる。一般の渦流探傷装置では、前記検出コイル6を導体試料3の表面近傍で走査するが、従来の技術によれば、前記検出コイル6に発生する信号電圧のうち、印加交流磁場と同一の周波数、即ち、前記永久磁石5の周期運動の周波数と同一の周波数で時間変化する成分を、信号電圧として検出する。前記検出コイル6に発生する信号電圧をロックイン検出する場合には、参照信号の周波数は、前記永久磁石5の周期運動の周波数である。 Therefore, according to the conventional technique, the small and powerful permanent magnet 5 described in 0008 is mechanically moved at a low frequency to generate eddy current in the conductor sample 3, and the change in the eddy current is placed in the vicinity of the sample. It is detected by the air core detecting coil 6 described in 0009. In a general eddy current flaw detector, the detection coil 6 is scanned in the vicinity of the surface of the conductor sample 3. According to the conventional technique, the signal voltage generated in the detection coil 6 has the same frequency as the applied AC magnetic field, That is, a component that changes over time at the same frequency as the frequency of the periodic motion of the permanent magnet 5 is detected as a signal voltage. When lock-in detection of the signal voltage generated in the detection coil 6 is performed, the frequency of the reference signal is the frequency of the periodic motion of the permanent magnet 5.

従来の技術によれば、深部の欠陥を検出するために、永久磁石5を周期運動させる周波数を低周波にする必要があるが、そうすると、0006で説明したように渦電流の大きさが小さくなるだけでなく、検出コイル6に発生する誘導起電力も小さくなる。検出コイル6に発生する誘導起電力は、検出コイル6に鎖交する磁束の時間変化率(周波数)に比例するからである。一般に、低周波微小信号の高感度測定は難しく、印加磁場の周波数が極めて小さく数Hzという超低周波領域になると、様々な原因によって測定システムの感度が悪くなる。 According to the prior art, in order to detect a defect in a deep part, it is necessary to set the frequency for periodically moving the permanent magnet 5 to a low frequency. However, as described in 0006, the magnitude of the eddy current is reduced. In addition, the induced electromotive force generated in the detection coil 6 is also reduced. This is because the induced electromotive force generated in the detection coil 6 is proportional to the time change rate (frequency) of the magnetic flux linked to the detection coil 6. In general, high-sensitivity measurement of a low-frequency minute signal is difficult, and when the frequency of the applied magnetic field is extremely small and becomes an ultra-low frequency region of several Hz, the sensitivity of the measurement system is degraded due to various causes.

印加交流磁場を参照信号としてロックイン検出する場合でも、参照信号周波数が数Hzという超低周波領域になると、ロックインアンプを含むエレクトロニクス4自体のドリフト、温度特性などのため、信号雑音比(SN比)の改善が難しくなり、高価なロックインアンプを必要とするなど、エレクトロニクス4が複雑になる。 Even when lock-in detection is performed using an applied AC magnetic field as a reference signal, if the reference signal frequency is in an extremely low frequency region of several Hz, the signal-to-noise ratio (SN) is caused by drift, temperature characteristics, etc. of the electronics 4 itself including the lock-in amplifier. Ratio) becomes difficult, and an expensive lock-in amplifier is required, making the electronics 4 complicated.

結局、従来の技術によれば、導体試料深部の欠陥を検出できる小型軽量な渦流探傷装置を製作することが難しい。このような問題から、導体試料深部の欠陥を検出するための、数Hz以下の交流磁場印加が可能な渦流探傷装置の成功例は未だ報告されていないのが現状である。
砂川重信著、理論電磁気学、第2版、紀伊國屋書店、1973年9月30日発行。
After all, according to the conventional technique, it is difficult to manufacture a small and lightweight eddy current flaw detector capable of detecting a defect in a deep part of a conductor sample. Due to such problems, there have been no reports of successful examples of eddy current flaw detectors capable of applying an alternating magnetic field of several Hz or less for detecting defects in the depth of a conductor sample.
Published by Shigenobu Sunagawa, Theoretical Electromagnetism, 2nd edition, Kinokuniya, September 30, 1973.

渦流探傷装置を一例とする、一定周波数の印加交流磁場に対する誘導電流を利用した測定装置において、印加交流磁場の周波数が数Hz以下という極めて小さい場合でも測定システム全体の感度が劣化せず、深部欠陥の検出が可能な、小型軽量の高感度磁気測定装置を実現する。 For example, an eddy current flaw detector, which uses an induced current for an applied AC magnetic field with a constant frequency, even if the frequency of the applied AC magnetic field is very low (several Hz or less), the sensitivity of the entire measurement system does not deteriorate and deep defects A small and lightweight high-sensitivity magnetic measurement device capable of detecting the above is realized.

上記課題の解決は、導体試料に交流磁場を印加するための磁石と、磁気信号検出を行なうためのコイルと、を備えた磁気測定装置であって、交流磁場印加を行なうための前記磁石が一定の周波数で機械的に周期運動する永久磁石であり、磁気信号検出を行なう前記コイルが一定の周波数で機械的に振動するコイルであって、かつ、前記永久磁石の周期運動の周波数と、前記振動検出コイルの振動の周波数の、二つの周波数が異なることを特徴とする磁気測定装置により達成される。   The solution to the above problem is a magnetometer for applying an alternating magnetic field to a conductor sample and a coil for detecting a magnetic signal, wherein the magnet for applying an alternating magnetic field is constant. A permanent magnet that mechanically moves periodically at a frequency, and the coil that performs magnetic signal detection is a coil that mechanically vibrates at a constant frequency, and the frequency of periodic motion of the permanent magnet and the vibration This is achieved by a magnetic measuring device characterized in that two frequencies of the vibration frequency of the detection coil are different.

従来の技術において、印加交流磁場周波数が超低周波領域にある場合に感度劣化等の問題が生じる根本原因は、検出コイルが機械的に固定されているためであり、本発明は、その根本原因を取り除くことで、印加交流磁場の周波数とは無関係に、前記振動検出コイルの振動周波数でロックイン検出することが可能となり、前記振動検出コイルの振動周波数で決定される磁場勾配検出感度をもつようになる。本発明では、交流磁場を印加する磁石を超低周波で周期運動する永久磁石とすることにより、強い超低周波交流磁場を印加でき、かつ、小型軽量という特徴を持たせることができる。これにより、導体試料深部の欠陥を高感度に検出できる小型で実用的な磁気測定装置を実現することが可能となる。   In the prior art, when the applied AC magnetic field frequency is in the ultra-low frequency region, the root cause of problems such as sensitivity deterioration is because the detection coil is mechanically fixed, and the present invention provides the root cause. By removing the, it becomes possible to perform lock-in detection at the vibration frequency of the vibration detection coil regardless of the frequency of the applied AC magnetic field, and to have a magnetic field gradient detection sensitivity determined by the vibration frequency of the vibration detection coil. become. In the present invention, a magnet that applies an alternating magnetic field is a permanent magnet that periodically moves at an ultra-low frequency, so that a strong ultra-low-frequency alternating magnetic field can be applied, and a small size and light weight can be provided. As a result, it is possible to realize a small and practical magnetic measuring apparatus capable of detecting a defect in the deep part of the conductor sample with high sensitivity.

図1は、本発明の、導体試料に交流磁場を印加するための磁石と、磁気信号検出を行なうためのコイルと、を備えた磁気測定装置であって、交流磁場印加を行なうための前記磁石が一定の周波数で機械的に周期運動する永久磁石1であり、磁気信号検出を行なう前記コイルが一定の周波数で機械的に振動するコイル2であって、かつ、前記永久磁石1の周期運動の周波数と、前記振動検出コイル2の振動の周波数の、二つの周波数が異なることを特徴とする磁気測定装置、を説明する模式図である。ここで、図1における前記永久磁石1の周期運動の形態および前記振動検出コイル2の振動方向はそれぞれ任意である。また、図1におけるエレクトロニクス4は、前記振動検出コイル2に誘起された微小信号を高感度に増幅できるものであれば、どのようなものであってもよい。   FIG. 1 shows a magnetometer for applying an AC magnetic field to a conductor sample and a coil for detecting a magnetic signal according to the present invention, the magnet for applying an AC magnetic field. Is a permanent magnet 1 that periodically moves mechanically at a constant frequency, the coil that performs magnetic signal detection is a coil 2 that vibrates mechanically at a constant frequency, and the periodic motion of the permanent magnet 1 is It is a schematic diagram explaining the magnetic measurement apparatus characterized by two frequencies, a frequency and the frequency of the vibration of the said vibration detection coil 2 differing. Here, the form of the periodic motion of the permanent magnet 1 and the vibration direction of the vibration detection coil 2 in FIG. 1 are arbitrary. Further, the electronics 4 in FIG. 1 may be anything as long as it can amplify a minute signal induced in the vibration detection coil 2 with high sensitivity.

従来の技術における、印加交流磁場の周波数が超低周波領域にある場合に感度劣化等の問題が生じる根本原因である、検出コイルが機械的に固定されているという特徴が取り除かれたため、印加交流磁場の周波数とは無関係に、前記振動検出コイル2の振動周波数でロックイン検出することが可能となり、前記振動検出コイル2の振動周波数で決定される磁場勾配検出感度をもつ。 The characteristic that the detection coil is mechanically fixed, which is the root cause of problems such as sensitivity degradation when the frequency of the applied AC magnetic field is in the ultra-low frequency region, has been removed in the conventional technology. Regardless of the frequency of the magnetic field, lock-in detection can be performed at the vibration frequency of the vibration detection coil 2, and the magnetic field gradient detection sensitivity determined by the vibration frequency of the vibration detection coil 2 is provided.

機械的に振動させることにより、前記振動検出コイル2に局所的空間分布をもつ磁場が鎖交すると、前記振動検出コイル2に、振動周波数で変調された誘導起電力が生じる。即ち、前記振動検出コイル2の出力には、局所的な磁場勾配に比例した成分が含まれる。この磁場勾配信号は、前記振動検出コイル2の振動周波数でロックイン検出することが可能である。磁場勾配検出感度は前記振動検出コイル2の振動周波数で決定されるため、印加交流磁場の周波数を任意に低くすることができる。即ち、0017記載の永久磁石1の、周期運動の周波数を任意に低くすることができる。前記振動検出コイル2の振動周波数を十分に大きくしておけば、印加交流磁場の周波数が超低周波領域にある場合でも、顕著な感度の劣化が生じず、導体試料3深部の欠陥を高感度に検出することが可能となる。 When a magnetic field having a local spatial distribution is linked to the vibration detection coil 2 by mechanical vibration, an induced electromotive force modulated at a vibration frequency is generated in the vibration detection coil 2. That is, the output of the vibration detection coil 2 includes a component proportional to the local magnetic field gradient. This magnetic field gradient signal can be lock-in detected at the vibration frequency of the vibration detection coil 2. Since the magnetic field gradient detection sensitivity is determined by the vibration frequency of the vibration detection coil 2, the frequency of the applied AC magnetic field can be arbitrarily reduced. That is, the frequency of the periodic motion of the permanent magnet 1 described in 0017 can be arbitrarily lowered. If the vibration frequency of the vibration detection coil 2 is sufficiently high, even if the frequency of the applied AC magnetic field is in the very low frequency region, no significant deterioration in sensitivity occurs, and defects in the deep part of the conductor sample 3 are highly sensitive. Can be detected.

導体試料3の内部の、出来るだけ深部で誘導電流を発生させようとすると、交流磁場を印加するための周期運動を行なう0017記載の永久磁石1と、前記導体試料3の表面からの距離を、出来るだけ小さくするのが望ましく、かつ、出来るだけ高感度に誘導電流の変化を検出するためには、前記振動検出コイル2と、前記導体試料3の表面からの距離(リフトオフ)を、出来るだけ小さくするのが望ましい。 In order to generate an induced current as deep as possible inside the conductor sample 3, the permanent magnet 1 according to 0017 that performs periodic motion for applying an alternating magnetic field, and the distance from the surface of the conductor sample 3, It is desirable to make it as small as possible, and in order to detect a change in the induced current with as high sensitivity as possible, the distance (lift-off) from the vibration detection coil 2 and the surface of the conductor sample 3 is made as small as possible. It is desirable to do.

さらに、導体試料3の内部に発生する誘導電流の大きさが最も大きくなる領域が、前記永久磁石1の直下付近であるため、出来るだけ高感度に誘導電流の変化を検出するためには、前記振動検出コイル2が、誘導電流最大の領域に最も近くなるように配置されるのが望ましい。 Furthermore, since the region where the magnitude of the induced current generated inside the conductor sample 3 is the largest is near the area immediately below the permanent magnet 1, in order to detect the change in the induced current as highly sensitive as possible, It is desirable that the vibration detection coil 2 be arranged so as to be closest to the region of maximum induced current.

図3は、本発明の、機械的に周期運動する0017記載の永久磁石1が、振動する永久磁石であって、かつ、磁気信号検出を行なうための機械的に振動する0017記載のコイル2が、振動する空芯コイルであって、振動する前記空芯コイル2の振動軸線が、振動する前記永久磁石1の振動軸線と、同一直線上にあることを特徴とする磁気測定装置、を説明する模式図である。 FIG. 3 shows that the permanent magnet 1 according to the present invention is a permanent magnet that vibrates mechanically, and the coil 2 according to the present invention that mechanically vibrates for magnetic signal detection. A magnetic measuring device that is an oscillating air-core coil, in which the oscillating axis of the oscillating air-core coil 2 is collinear with the oscillating axis of the permanent magnet 1 oscillating. It is a schematic diagram.

図3から明らかなように、前記振動検出コイル2は前記振動永久磁石1に対し、同心空芯コイルとなっており、前記振動永久磁石1の振動の中心点と、前記振動検出コイル2の振動の中心点との、前記導体試料3の表面からの距離、を同じ、即ち、最小にすることが出来る。これは、0020で説明したように、前記導体試料3の内部に出来るだけ大きな渦電流を発生させるために有利な配置であり、また、渦電流の変化を出来るだけ高感度に検出するために有利な配置である。さらに、図3から明らかなように、前記振動検出コイル2は、前記導体試料3の内部に発生する誘導電流の大きさが最も大きくなる領域の直上にあり、0021で説明したように、さらに誘導電流の変化を高感度に検出することが出来る配置となっている。   As is clear from FIG. 3, the vibration detection coil 2 is a concentric air-core coil with respect to the vibration permanent magnet 1, and the vibration center point of the vibration permanent magnet 1 and the vibration of the vibration detection coil 2 are detected. The distance from the surface of the conductor sample 3 to the center point of the conductor sample 3 can be the same, that is, minimized. As described in 0020, this is an advantageous arrangement for generating as large an eddy current as possible inside the conductor sample 3, and is advantageous for detecting a change in eddy current as highly as possible. It is an arrangement. Further, as is apparent from FIG. 3, the vibration detection coil 2 is directly above the region where the magnitude of the induced current generated inside the conductor sample 3 is the largest, and as described in 0021, further induction The arrangement is such that a change in current can be detected with high sensitivity.

図4は、本発明の、機械的に周期運動する0017記載の永久磁石1が、導体試料3に対して極性(N極、S極)が交互に反転するような回転を行なう永久磁石であって、かつ、磁気信号検出を行なうための機械的に振動する0017記載のコイル2が、振動する空芯コイルであって、振動する前記空芯コイル2の振動軸線が、回転する前記永久磁石1の回転軸線と、前記空芯コイル2の振動軸線上で交わることを特徴とする磁気測定装置、を説明する模式図である。 FIG. 4 shows a permanent magnet 1 according to the present invention described in 0017 that mechanically moves periodically and rotates so that polarities (N pole and S pole) are alternately reversed with respect to the conductor sample 3. In addition, the mechanically vibrating coil 2 for detecting a magnetic signal is an oscillating air-core coil, and the oscillating axis of the oscillating air-core coil 2 rotates the permanent magnet 1. It is a schematic diagram explaining the magnetic measuring apparatus characterized by crossing on the axis of rotation of this, and the vibration axis of the said air-core coil 2. FIG.

図4から明らかなように、この場合も図3と同様に、回転する前記永久磁石1の回転軸と前記振動検出コイル2の振動の中心点との前記導体試料3の表面からの距離を同じにすることが出来るため、前述したように、前記導体試料3の内部に出来るだけ大きな渦電流を発生させるためと、渦電流の変化を出来るだけ高感度に検出するために有利な配置である。さらに、図4から明らかなように、この場合も、振動検出コイル2は、導体試料3の内部に発生する誘導電流の大きさが最も大きくなる領域の直上に置かれているため、さらに誘導電流の変化を高感度に検出するために有利な配置となっている。   As is clear from FIG. 4, in this case as well, the distance from the surface of the conductor sample 3 between the rotating shaft of the rotating permanent magnet 1 and the center of vibration of the vibration detecting coil 2 is the same as in FIG. Therefore, as described above, the arrangement is advantageous in order to generate as large an eddy current as possible in the conductor sample 3 and to detect a change in eddy current as highly sensitive as possible. Further, as is clear from FIG. 4, in this case as well, the vibration detection coil 2 is placed immediately above the region where the magnitude of the induced current generated inside the conductor sample 3 is the largest. This is an advantageous arrangement for detecting a change in the position with high sensitivity.

図5は、本発明の、交流磁場印加を行なうための振動永久磁石1と、磁気信号検出を行なうための振動検出コイル2とを備え、かつ、二つの振動周波数が異なることを特徴とする磁気測定装置であって、かつ、振動検出コイル2が空芯コイルであって、その振動軸線が、振動永久磁石1の振動軸線と、同一直線上にあることを特徴とする磁気測定装置、の一実施例を説明する模式図である。 FIG. 5 shows a magnetism having a vibration permanent magnet 1 for applying an alternating magnetic field and a vibration detection coil 2 for detecting a magnetic signal according to the present invention, wherein two vibration frequencies are different. One of the magnetic measuring devices, wherein the vibration detecting coil 2 is an air-core coil, and its vibration axis is collinear with the vibration axis of the vibration permanent magnet 1. It is a schematic diagram explaining an Example.

図5から明らかなように、前記振動永久磁石1は架台に固定された振動子7によって、機械的に振動する。前記振動検出コイル2は、図5のように、前記振動永久磁石1に対し、同心軸上に配置され、架台に固定された振動子8によって、機械的に振動する。即ち、「てこ」を架台に固定する固定具が「てこ」の支点となり、「てこ」の他端と前記振動子8との接触点が力点となり、前記振動検出コイル2が配置されている点が作用点となる。図5に示したような構造は、あくまでも一例であって、以下の実施例2および実施例3から明らかなように、前記振動永久磁石1と前記振動検出コイル2の架台に対する固定方法、および機械的振動を実現する構造は、用途に応じて、様々な構造を取りうる。本発明の実施例1における要点は、振動検出コイル2が空芯コイルであって、その振動軸線が、振動永久磁石1の振動軸線と、同心軸をなす、という点である。 As apparent from FIG. 5, the vibrating permanent magnet 1 is mechanically vibrated by the vibrator 7 fixed to the gantry. As shown in FIG. 5, the vibration detection coil 2 is arranged on a concentric axis with respect to the vibration permanent magnet 1 and mechanically vibrates by a vibrator 8 fixed to a gantry. That is, the fixing tool that fixes the “lever” to the gantry serves as a fulcrum of the “lever”, the contact point between the other end of the “lever” and the vibrator 8 serves as a power point, and the vibration detection coil 2 is disposed. Is the point of action. The structure shown in FIG. 5 is merely an example, and as will be apparent from the following second and third embodiments, a method for fixing the vibration permanent magnet 1 and the vibration detection coil 2 to a gantry and machine The structure for realizing the dynamic vibration can take various structures depending on the application. The main point of the first embodiment of the present invention is that the vibration detection coil 2 is an air-core coil, and its vibration axis is concentric with the vibration axis of the vibration permanent magnet 1.

図5から明らかなように、前記振動検出コイル2が前記振動永久磁石1に対し、同心軸上に配置されているため、両者の振動の中心点の導体試料3の表面からの距離を同じにすることが出来る。従って、導体試料3内の深部にある欠陥を検出するために、両者を可能な限り導体試料3表面に近づけることが可能となる。さらに、前記振動検出コイル2は、導体試料3の内部に発生する誘導電流の大きさが最も大きくなる領域の直上に置かれているため、誘導電流の変化を高感度に検出するために有利な配置となっている。 As apparent from FIG. 5, the vibration detection coil 2 is arranged on the concentric axis with respect to the vibration permanent magnet 1, so that the distance from the surface of the conductor sample 3 at the center point of both vibrations is the same. I can do it. Therefore, in order to detect a defect in a deep part in the conductor sample 3, it is possible to bring them as close to the surface of the conductor sample 3 as possible. Further, since the vibration detection coil 2 is placed immediately above a region where the magnitude of the induced current generated inside the conductor sample 3 is the largest, it is advantageous for detecting a change in the induced current with high sensitivity. It is an arrangement.

図6は、本発明における、第二の実施例を説明する模式図である。 FIG. 6 is a schematic diagram for explaining a second embodiment of the present invention.

図6から明らかなように、振動検出コイル2は中空円筒状に成形された振動子9によって振動する。前記振動検出コイル2が、前記振動永久磁石1に対し、同心軸上に配置されているという特徴は、第一の実施例と同様である。 As is apparent from FIG. 6, the vibration detection coil 2 vibrates by a vibrator 9 formed in a hollow cylindrical shape. The feature that the vibration detection coil 2 is arranged on a concentric axis with respect to the vibration permanent magnet 1 is the same as in the first embodiment.

図7は、本発明における、第三の実施例を説明する模式図である。 FIG. 7 is a schematic diagram for explaining a third embodiment of the present invention.

第三の実施例では、図7から明らかなように、振動検出コイル2は中空円筒状に成形された振動子9によって振動する。永久磁石1は回転するように架台に固定され、架台に固定された回転装置10の回転を回転伝達装置11によって前記永久磁石1に伝達することで前記永久磁石1を回転させる。この場合も、回転する前記永久磁石1と前記振動検出コイル2の架台に対する固定方法、および機械的回転もしくは振動を実現する構造は、用途に応じて、様々な構造を取りうる。 In the third embodiment, as is apparent from FIG. 7, the vibration detection coil 2 vibrates by the vibrator 9 formed in a hollow cylindrical shape. The permanent magnet 1 is fixed to the gantry so as to rotate, and the rotation of the rotating device 10 fixed to the gantry is transmitted to the permanent magnet 1 by the rotation transmitting device 11 to rotate the permanent magnet 1. Also in this case, the method for fixing the rotating permanent magnet 1 and the vibration detection coil 2 to the gantry and the structure for realizing mechanical rotation or vibration can take various structures depending on the application.

第三の実施例でも、回転する前記永久磁石1の回転軸と前記振動検出コイル2の振動の中心点との、導体試料3の表面からの距離を同じにすることが出来、また、前記振動検出コイル2を、導体試料3の内部に発生する誘導電流の大きさが最も大きくなる領域の直上に置くことが出来、深部欠陥の高感度検出に有利な配置となっている。 Also in the third embodiment, the distance from the surface of the conductor sample 3 between the rotation axis of the rotating permanent magnet 1 and the center of vibration of the vibration detecting coil 2 can be made the same, and the vibration The detection coil 2 can be placed immediately above a region where the magnitude of the induced current generated inside the conductor sample 3 is the largest, and is advantageous for highly sensitive detection of deep defects.

以上詳細に説明したように、本発明によれば、従来の技術における、印加交流磁場の周波数が超低周波領域にある場合に感度劣化等の問題が生じる根本原因である、検出コイルが機械的に固定されているという特徴を取り除くことが出来、かつ、大型のコイルや電源を用いることなく、永久磁石によって強力な超低周波交流磁場を印加することが可能となり、従って、小型・軽量かつ深部欠陥検出が可能であるなどの特徴を持つ実用性の高い高感度な渦流探傷装置を実現することが可能となる。 As described above in detail, according to the present invention, in the conventional technique, the detection coil is a mechanical cause that causes a problem such as sensitivity degradation when the frequency of the applied AC magnetic field is in the very low frequency region. It is possible to remove the feature of being fixed to the surface, and it is possible to apply a strong ultra-low frequency alternating magnetic field by a permanent magnet without using a large coil or power source, and thus, it is small, light and deep. It is possible to realize a highly practical and highly sensitive eddy current flaw detector having features such as defect detection.

本発明は、小型で軽量かつ深部欠陥を高感度に検出できる渦流探傷装置を提供するものである。 The present invention provides a eddy current flaw detector that is small, lightweight, and capable of detecting deep defects with high sensitivity.

本発明の、機械的に周期運動する永久磁石と機械的に振動するコイルを備え、かつ、二つの周波数が異なることを特徴とする磁気測定装置を説明する模式図である。It is a schematic diagram explaining the magnetic measuring apparatus provided with the permanent magnet and the coil which vibrates mechanically of the present invention, and having two different frequencies. 従来の、誘導電流を利用した磁気測定装置を説明する模式図である。It is a schematic diagram explaining the conventional magnetic measuring apparatus using an induced current. 本発明の、振動検出コイルが空芯コイルであって、その振動軸線が、振動する永久磁石の振動軸線と、同一直線上にあることを特徴とする磁気測定装置を説明する模式図である。FIG. 3 is a schematic diagram illustrating a magnetic measurement apparatus according to the present invention, wherein the vibration detection coil is an air-core coil, and the vibration axis thereof is collinear with the vibration axis of a permanent magnet that vibrates. 本発明の、振動検出コイルが空芯コイルであって、その振動軸線が、回転する永久磁石の回転軸線と、振動検出コイルの振動軸上で交わることを特徴とする磁気測定装置を説明する模式図である。A schematic diagram illustrating a magnetic measurement apparatus according to the present invention, wherein the vibration detection coil is an air-core coil, and the vibration axis intersects the rotation axis of the rotating permanent magnet and the vibration axis of the vibration detection coil. FIG. 本発明の一実施例を説明する模式図である。(実施例1)It is a schematic diagram explaining one Example of this invention. Example 1 本発明の第2の実施例を説明する模式図である。(実施例2)It is a schematic diagram explaining the 2nd Example of this invention. (Example 2) 本発明の第3の実施例を説明する模式図である。(実施例3)It is a schematic diagram explaining the 3rd Example of this invention. (Example 3)

符号の説明Explanation of symbols

1 周期運動する永久磁石
2 振動検出コイル
3 導体試料
4 エレクトロニクス
5 磁石
6 磁気センサ
7 振動子
8 振動子
9 中空円筒状振動子
10 回転装置
11 回転伝達装置
DESCRIPTION OF SYMBOLS 1 Permanently moving permanent magnet 2 Vibration detection coil 3 Conductor sample 4 Electronics 5 Magnet 6 Magnetic sensor 7 Vibrator 8 Vibrator 9 Hollow cylindrical vibrator 10 Rotating device 11 Rotating transmission device

Claims (3)

誘導電流を利用した測定装置において、導体試料に交流磁場を印加するための磁石と、磁気信号検出を行なうためのコイルと、を備えた磁気測定装置であって、交流磁場印加を行なうための前記磁石が一定の周波数で機械的に周期運動する永久磁石であり、磁気信号検出を行なう前記コイルが一定の周波数で機械的に振動するコイルであって、かつ、前記永久磁石の周期運動の周波数と、前記振動コイルの振動の周波数の、二つの周波数が異なることを特徴とする磁気測定装置。 A measurement apparatus using an induced current, comprising: a magnet for applying an alternating magnetic field to a conductor sample; and a coil for detecting a magnetic signal, wherein the magnetic measurement apparatus is configured to apply an alternating magnetic field. The magnet is a permanent magnet that periodically moves mechanically at a constant frequency, and the coil that performs magnetic signal detection is a coil that mechanically vibrates at a constant frequency, and the frequency of the periodic motion of the permanent magnet is The magnetic measurement apparatus is characterized in that two frequencies of vibration frequencies of the vibration coil are different. 機械的に周期運動する請求項1記載の永久磁石が、機械的に振動する永久磁石であって、かつ、磁気信号検出を行なうための機械的に振動する請求項1記載のコイルが、機械的に振動する空芯コイルであって、前記空芯コイルの振動軸線が、振動する前記永久磁石の振動軸線と、同一直線上にあることを特徴とする請求項1記載の磁気測定装置。   The permanent magnet according to claim 1, which is mechanically moved periodically, is a mechanically vibrated permanent magnet, and the mechanically vibrated coil for magnetic signal detection is mechanically vibrated. The magnetic measuring apparatus according to claim 1, wherein the vibration axis of the air core coil is collinear with the vibration axis of the permanent magnet that vibrates. 機械的に周期運動する請求項1記載の永久磁石が、導体試料に対して極性が交互に反転するような回転を行なう永久磁石であって、かつ、磁気信号検出を行なうための機械的に振動する請求項1記載のコイルが、機械的に振動する空芯コイルであって、振動する前記空芯コイルの振動軸線が、回転する前記永久磁石の回転軸線と、前記空芯コイルの振動軸線上で交わることを特徴とする請求項1記載の磁気測定装置。   2. The permanent magnet according to claim 1, wherein the permanent magnet moves mechanically periodically. The permanent magnet rotates so that the polarity is alternately reversed with respect to the conductor sample, and mechanically vibrates to detect a magnetic signal. The coil according to claim 1 is an air-core coil that vibrates mechanically, and a vibration axis of the air-core coil that vibrates is on a rotation axis of the rotating permanent magnet and a vibration axis of the air-core coil. The magnetic measurement apparatus according to claim 1, wherein
JP2007161367A 2007-06-19 2007-06-19 Magnetic measuring device provided with permanent magnet which performs periodic motion and oscillating coil Pending JP2009002681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161367A JP2009002681A (en) 2007-06-19 2007-06-19 Magnetic measuring device provided with permanent magnet which performs periodic motion and oscillating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161367A JP2009002681A (en) 2007-06-19 2007-06-19 Magnetic measuring device provided with permanent magnet which performs periodic motion and oscillating coil

Publications (1)

Publication Number Publication Date
JP2009002681A true JP2009002681A (en) 2009-01-08

Family

ID=40319244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161367A Pending JP2009002681A (en) 2007-06-19 2007-06-19 Magnetic measuring device provided with permanent magnet which performs periodic motion and oscillating coil

Country Status (1)

Country Link
JP (1) JP2009002681A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047736A (en) * 2009-08-26 2011-03-10 Sumitomo Chemical Co Ltd Method of inspecting austenite-based stainless steel welding section
WO2011135872A1 (en) 2010-04-27 2011-11-03 トヨタ自動車株式会社 Eddy current measuring sensor
KR101230444B1 (en) 2010-06-21 2013-02-06 이아이티주식회사 Power measuring device and power measuring method
JP2015531477A (en) * 2012-09-06 2015-11-02 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Differential sensor, inspection system, and method for detecting abnormality of conductive material
CN108872364A (en) * 2018-06-29 2018-11-23 中国科学院大学 A kind of defect inspection method based on Lorentz force
CN109036048A (en) * 2018-10-13 2018-12-18 苏州科技大学 A kind of experimental provision and its experimental method of Faraday's electromagnetic induction law
CN113777154A (en) * 2021-09-09 2021-12-10 国家石油天然气管网集团有限公司华南分公司 Method for enhancing sensitivity of eddy current sensor coil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047736A (en) * 2009-08-26 2011-03-10 Sumitomo Chemical Co Ltd Method of inspecting austenite-based stainless steel welding section
WO2011135872A1 (en) 2010-04-27 2011-11-03 トヨタ自動車株式会社 Eddy current measuring sensor
US8890517B2 (en) 2010-04-27 2014-11-18 Toyota Jidosha Kabushiki Kaisha Eddy current measuring sensor
KR101230444B1 (en) 2010-06-21 2013-02-06 이아이티주식회사 Power measuring device and power measuring method
JP2015531477A (en) * 2012-09-06 2015-11-02 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Differential sensor, inspection system, and method for detecting abnormality of conductive material
CN108872364A (en) * 2018-06-29 2018-11-23 中国科学院大学 A kind of defect inspection method based on Lorentz force
CN109036048A (en) * 2018-10-13 2018-12-18 苏州科技大学 A kind of experimental provision and its experimental method of Faraday's electromagnetic induction law
CN113777154A (en) * 2021-09-09 2021-12-10 国家石油天然气管网集团有限公司华南分公司 Method for enhancing sensitivity of eddy current sensor coil

Similar Documents

Publication Publication Date Title
JP2009002681A (en) Magnetic measuring device provided with permanent magnet which performs periodic motion and oscillating coil
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
US9983073B2 (en) Solid borne sound wave phase delay comparison
JP2007139745A (en) Method for generating and measuring torsional vibration using magnetic deformation, and device for generating and measuring torsional vibration using it
JP2015102513A (en) Metallic foreign matter detection device, and eddy current flaw detector
KR101066248B1 (en) Non-contact type transducer for rod member having multi-loop coil
EP3376216B1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
US5959452A (en) Lorentz force magnetometer having a resonator
JPH0772229A (en) Magnetic-force microscope
JP2018096690A (en) Magnetic field sensor
JP2010513912A (en) Device and method for detecting and / or identifying magnetic material in the working area, use of the device in inspection of structures
JP2010160068A (en) Calibration apparatus for flaw detector of wire rope
JP6167265B2 (en) Apparatus for evaluating magnetic properties of magnetic fine particles and method for evaluating magnetic properties
JP2014066654A (en) Electromagnetic acoustic transducer and electromagnetic acoustic flaw detector
JP2021530709A (en) Methods and systems for detecting material responses
KR100573735B1 (en) Apparatus for non-contact generation and measurement of bending vibration in non-ferromagnetic pipes
JPH0815229A (en) High resolution eddy current flaw detector
Wang et al. Detection of a rectangular crack in martensitic stainless steel using a magnetoreactance sensing system
JP2008064746A (en) Magnetic body sensor system
RU2672978C1 (en) Method for detecting defects in a long-dimensional ferromagnetic object
JP6358788B2 (en) AC magnetic field measuring apparatus and AC magnetic field measuring method
RU2492459C1 (en) Magnetoelastic transducer for determining mechanical stresses in ferromagnetic materials
JP2007183197A (en) Eddy current flaw sensor
JP5134997B2 (en) Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method