JP2009001874A - Permanent cathode system electrolytic refining method - Google Patents

Permanent cathode system electrolytic refining method Download PDF

Info

Publication number
JP2009001874A
JP2009001874A JP2007164946A JP2007164946A JP2009001874A JP 2009001874 A JP2009001874 A JP 2009001874A JP 2007164946 A JP2007164946 A JP 2007164946A JP 2007164946 A JP2007164946 A JP 2007164946A JP 2009001874 A JP2009001874 A JP 2009001874A
Authority
JP
Japan
Prior art keywords
cathode plate
insulating material
cathode
electrolytic
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007164946A
Other languages
Japanese (ja)
Inventor
Satoshi Matsubara
諭 松原
Osamu Nakano
修 中野
Hidekazu Aoki
英和 青木
Hiroshi Sato
浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007164946A priority Critical patent/JP2009001874A/en
Publication of JP2009001874A publication Critical patent/JP2009001874A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent cathode system electrolytic refining method by which the electrodeposition of metallic grains such as copper grains inside an insulating material attached to both side edges of a cathode plate is suppressed and the insulating material is easily detached. <P>SOLUTION: When the insulating material 5 is attached to both side edges of the cathode plate 4, after the cathode plate 4 is inserted and held in a cathode plate mounting groove 6 of the insulating material 5 which has a closed lower end, a silicone based caulking material 7 is injected from a gap between the lower end of the cathode plate 4 and the lower end closed part of the insulating material 5. In such a case, the silicone based caulking material 7 is filled only into a lower end portion of the gap between the cathode plate 4 and the cathode plate mounting groove 6 of the insulating material 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パーマネントカソード方式の電解精製において、両側縁に絶縁材を取り付けた陰極板を用いて銅など金属を電解精製する場合に、陰極板と絶縁材の間に電解液が侵入して、陰極板の絶縁材で覆われた部分に金属粒が付着することを抑制する方法に関する。   In the present invention, in the electrolytic purification of the permanent cathode method, when electrolytically refining a metal such as copper using a cathode plate with an insulating material attached on both side edges, an electrolyte enters between the cathode plate and the insulating material, The present invention relates to a method for suppressing metal particles from adhering to a portion of a cathode plate covered with an insulating material.

例えば、銅の銅電解精製では、複数の陽極板と陰極板とを電解槽中に交互に装入して電解操業を実施している。その際、銅品位およそ98%の粗銅を鋳造した陽極板から銅が溶け出し、その銅が電解の進行につれて陰極板上に次第に電着して、製品たる銅品位およそ99.99%の電気銅が得られる。   For example, in copper electrorefining of copper, electrolytic operation is performed by alternately charging a plurality of anode plates and cathode plates into an electrolytic cell. At that time, copper melts from the anode plate in which approximately 98% of the copper grade is cast, and the copper gradually electrodeposits on the cathode plate as the electrolysis progresses. Is obtained.

一般的な銅電解精製では、陰極板として、種板と称する薄い電気銅板を使用している。例えば図1(a)に示すように、陰極板となる電気銅製の種板1は、その上部に吊手2が取り付けられており、吊手2に保持された導電性材料からなるカソードビーム3によって電解槽中に吊り下げられる。電解精製により電気銅が電着した種板1は、電解精製終了後に洗浄されてカソードビーム3を抜き取られ、そのまま製品として保管場所に保管される。   In general copper electrolytic purification, a thin electric copper plate called a seed plate is used as a cathode plate. For example, as shown in FIG. 1A, a seed plate 1 made of electrolytic copper serving as a cathode plate has a handle 2 attached to an upper portion thereof, and a cathode beam 3 made of a conductive material held by the handle 2. Is suspended in the electrolytic cell. The seed plate 1 on which electrolytic copper is electrodeposited by electrolytic purification is washed after completion of electrolytic purification, the cathode beam 3 is extracted, and stored as it is in a storage place.

上記の種板は、別工程の種板電解工程において、母板と称するステンレスなどの板上に銅を数ミリ程度電着させた後、この銅を母板から剥ぎ取り、銅電解精製用の電解槽中に吊り下げるための加工を施すことにより製造される。このようにして製造される種板は薄いため、母板から剥ぎ取る際に歪みが生じ易く、また運搬時やハンドリング時などに曲がり易いことから、平坦度の確保が困難となる場合がある。種板の平坦度が低下すると、電解電精製中に隣接する陽極板と接触してショートなどの問題を引き起こすため、操業効率の低下など種々の悪影響を及ぼすことがある。   In the seed plate electrolysis step, which is a separate step, the above-mentioned seed plate is electrodeposited with copper on a plate such as stainless steel called a mother plate for several millimeters, and then stripped from the mother plate for copper electrolytic purification. Manufactured by applying a process to suspend it in an electrolytic cell. Since the seed plate manufactured in this way is thin, distortion is likely to occur when it is peeled off from the mother plate, and it is difficult to ensure flatness because it is easy to bend during transportation or handling. When the flatness of the seed plate is lowered, it causes contact with the adjacent anode plate during electrolytic refining and causes a problem such as a short circuit, which may have various adverse effects such as a reduction in operation efficiency.

これに対して、パーマネントカソード方式の銅電解精製では、図1(b)に示すように、ステンレスもしくはチタン等の厚い母板を陰極板4として使用し、その上部に取り付けたカソードビーム3により電解槽中に吊り下げられる。電解精製により陰極板4上に電気銅が電着するが、陰極板4の両表面に電着した電気銅の剥ぎ取りを容易にするために、陰極板4の左右両側縁には樹脂などからなる絶縁材5が装着されている。   On the other hand, in the copper electrorefining of the permanent cathode system, as shown in FIG. 1B, a thick base plate such as stainless steel or titanium is used as the cathode plate 4 and electrolysis is performed by the cathode beam 3 attached to the upper portion. It can be hung in the tank. Electrolytic copper is electrodeposited on the cathode plate 4 by electrolytic refining. In order to facilitate the stripping of the electrodeposited copper on both surfaces of the cathode plate 4, the left and right edges of the cathode plate 4 are made of resin or the like. An insulating material 5 is attached.

電解精製の終了後、陰極板上に電着した電気銅は剥ぎ取られ、洗浄されて製品として保管場所に保管される。電着した電気銅を剥ぎ取った後の陰極板は、再び電解槽に装入されて電解精製が繰り返される。このように、パーマネントカソード方式の銅電解精製では、平坦度の高い陰極板を繰り返し使用するため、ショートの発生を抑制することができるうえ、種板電解工程や電解槽中に吊り下げるための加工工程が不要となることからコスト的にも有利である。   After the electrolytic purification is completed, the electrolytic copper electrodeposited on the cathode plate is peeled off, washed and stored in a storage place as a product. After the electrodeposited electrolytic copper is stripped, the cathode plate is again placed in the electrolytic cell and the electrolytic purification is repeated. Thus, in the permanent cathode type copper electrolytic refining, the cathode plate with high flatness is repeatedly used, so that the occurrence of short-circuits can be suppressed and the process for hanging in the seed plate electrolysis process or electrolytic cell. Since no process is required, it is advantageous in terms of cost.

パーマネントカソード方式の電解精製で用いる陰極板は、図2(a)に示すように、左右両側縁に絶縁材5が装着されている。即ち、絶縁材5には、陰極板4の側縁を挿入するための長手方向に沿った切込溝部6aと、これに直交するストッパ用溝部6bとからなる陰極板装着溝6が設けてあり、その陰極板装着溝6の上端は開放されているが下端は閉塞している。この陰極板装着溝6の切込溝部6a内に陰極板4の側縁部を挿入し、陰極板4の下端を陰極板装着溝6の下端閉塞部に当接させて保持するようになっている。尚、陰極板4の左右両側縁には突出部(図示せず)が設けてあり、この突出部が絶縁材5のストッパ用溝部6bと係合するようになっている。   As shown in FIG. 2 (a), the cathode plate used in the permanent cathode type electrolytic purification is provided with insulating materials 5 on both left and right edges. That is, the insulating material 5 is provided with a cathode plate mounting groove 6 comprising a cut groove portion 6a along the longitudinal direction for inserting a side edge of the cathode plate 4 and a stopper groove portion 6b orthogonal thereto. The upper end of the cathode plate mounting groove 6 is open, but the lower end is closed. The side edge portion of the cathode plate 4 is inserted into the cut groove portion 6 a of the cathode plate mounting groove 6, and the lower end of the cathode plate 4 is held in contact with the lower end closing portion of the cathode plate mounting groove 6. Yes. The left and right edges of the cathode plate 4 are provided with protrusions (not shown), and the protrusions engage with the stopper groove 6b of the insulating material 5.

しかし、上記絶縁材5は、陰極板4への脱着を容易にするために、陰極板4の左右両側縁に嵌め込んで密着保持させているだけである。このため、陰極板4の下端と絶縁材5の下端閉塞部とを密着させることは構造上極めて難しく、両者の間に陰極板装着溝6が僅かに開口した間隙が残ることが避けられない。その結果、この間隙から電解操業中に電解液が侵入し、電解が進行するにつれて、本来は電着させてはならない陰極板4の絶縁材5で覆われた部分、即ち絶縁材5内の陰極板4に銅粒が電着してしまう。   However, the insulating material 5 is merely fitted and held in close contact with the left and right side edges of the cathode plate 4 in order to facilitate attachment to and removal from the cathode plate 4. For this reason, it is extremely difficult to make the lower end of the cathode plate 4 and the lower end closed portion of the insulating material 5 closely contact each other, and it is inevitable that a gap in which the cathode plate mounting groove 6 is slightly opened remains between them. As a result, the electrolytic solution penetrates from the gap during the electrolytic operation, and as the electrolysis proceeds, the portion of the cathode plate 4 that should not be electrodeposited by the insulating material 5, that is, the cathode in the insulating material 5. Copper particles are electrodeposited on the plate 4.

絶縁材内の陰極板に電着した銅粒は、電解精製終了後に陰極板から剥ぎ取られた電気銅に付着して製品電気銅の外観を損ねたり、電着と剥ぎ取りの電解精製サイクルを繰り返すことによって絶縁材内部で成長し、剥ぎ取りの際に電気銅に付随しようとして絶縁材下端部を破損したりする。また、銅粒が大きく成長することによって、電解精製中に絶縁材が内部から破損したり、電解精製終了後に陰極板搬送設備に引っ掛かるなどの設備トラブルを引き起こしたりする。   The copper particles electrodeposited on the cathode plate in the insulating material adhere to the electrolytic copper peeled off from the cathode plate after the completion of electrolytic purification, impair the appearance of the product electrolytic copper, or perform the electrolytic purification cycle of electrodeposition and peeling. By repeating, it grows inside the insulating material and breaks the lower end portion of the insulating material in an attempt to accompany the electrolytic copper during stripping. In addition, large growth of the copper grains causes damage to the insulating material from the inside during electrolytic refining, and causes equipment troubles such as being caught on the cathode plate transport equipment after completion of electrolytic refining.

このような問題を解消する方法として、例えば、特開2006−265699号公報には、パーマネントカソード法に用いる陰極板とエッジストリップ(絶縁材)とを強固に密着させるために、エッジストリップの陰極板を挿入するための溝内に予めシリコンシーラントを充填し、好ましくは陰極板側縁のエッジストリップと接触する部分にもシリコンシーラントを塗布した後、陰極板の側縁にエッジストリップを装着する方法が記載されている。   As a method for solving such a problem, for example, Japanese Patent Application Laid-Open No. 2006-265699 discloses an edge strip cathode plate for firmly adhering a cathode plate used in a permanent cathode method and an edge strip (insulating material). A method of attaching the edge strip to the side edge of the cathode plate after pre-filling the silicon sealant in the groove for inserting the substrate, preferably applying the silicon sealant also to the portion contacting the edge strip on the side edge of the cathode plate Are listed.

しかしながら、この方法は、陰極板に装着する前に、絶縁材などにシリコンシーラントを塗布するものである。そのため、シリコンシーラントを塗布した絶縁材を準備し、これを陰極板の側縁に装着することによって陰極板と絶縁材とを固定しても、図2に示すような両者の構造から、陰極板の下端と絶縁材の下端閉塞部とが密着できず、両者の間に陰極板装着溝が開口した間隙が残ってしまい、この間隙に電解液が侵入して金属粒が電着する。しかも、絶縁材の陰極板装着溝全体にシリコンシーラントと塗布するため、絶縁材と陰極板が強固に接着してしまい、老朽化に伴う交換が必要となった場合にも絶縁材の取り外しが極めて困難である。   However, this method is to apply a silicon sealant to an insulating material or the like before mounting on the cathode plate. Therefore, even if an insulating material coated with a silicon sealant is prepared, and the cathode plate and the insulating material are fixed by attaching them to the side edges of the cathode plate, the structure of both of them as shown in FIG. The lower end of the insulating material and the lower end closing portion of the insulating material cannot be in close contact with each other, and a gap in which the cathode plate mounting groove is opened remains between them, and the electrolyte enters the gap and the metal particles are electrodeposited. In addition, since the silicon sealant is applied to the entire cathode plate mounting groove of the insulating material, the insulating material and the cathode plate are firmly adhered, and the insulating material can be removed even when replacement due to aging is necessary. Have difficulty.

また、特開2007−002282号公報には、陰極板縁部に取り付ける絶縁材の装着溝の内面に、絶縁材よりも軟質な熱可塑性エストラマの弾性材を配置して一体形成すると共に、絶縁材の装着溝の反対側に締め付け具を装着して、この締め付け具で絶縁材を陰極板に押し付けることにより、陰極板と絶縁材(熱可塑性エストラマの弾性材)とを密着させて、電解液が侵入することを防止する方法が記載されている。   Japanese Patent Laid-Open No. 2007-002282 discloses that an insulating material that is softer than the insulating material is disposed on the inner surface of the mounting groove of the insulating material that is attached to the edge of the cathode plate, and is integrally formed. By attaching a clamping tool to the opposite side of the mounting groove, and pressing the insulating material against the cathode plate with this clamping tool, the cathode plate and the insulating material (elastic material of thermoplastic elastomer) are brought into close contact with each other. A method for preventing intrusion is described.

しかし、この方法では、締め付け具を装着した特殊な構造の絶縁材が必要となるため、従来からパーマネントカソード方式の電解精製に使用されている通常の絶縁材をそのまま用いることはできない。しかも、この特殊な構造の絶縁材を用いたとしても、図2に示すような陰極板と絶縁材の構造から、両者の装着時に陰極板の下端と絶縁材の下端閉塞部とが密着できずに残る間隙をなくすことは不可能であり、従って残った間隙から電解液が侵入することを完全に防止することはできなかった。   However, since this method requires an insulating material having a special structure with a fastening tool, it is not possible to use an ordinary insulating material that has been conventionally used for permanent cathode electrolytic purification. Moreover, even if this special structure of insulating material is used, the cathode plate and insulating material structure as shown in FIG. 2 prevents the lower end of the cathode plate and the lower end blocking portion of the insulating material from being in close contact with each other. Therefore, it was impossible to eliminate the remaining gap, and therefore it was not possible to completely prevent the electrolyte from entering from the remaining gap.

特開2006−265699号公報JP 2006-265699 A 特開2007−002282号公報JP 2007-002282 A

本発明は、上記した従来の事情に鑑み、パーマネントカソード方式の電解精製において、陰極板の両側縁に取り付けた絶縁材の内部で銅粒などの金属粒が陰極板に電着することを抑制する方法を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention suppresses electrodeposition of metal particles such as copper particles on the cathode plate inside the insulating material attached to both side edges of the cathode plate in the electrolytic purification of the permanent cathode method. It aims to provide a method.

上記目的を達成するため、本発明が提供するパーマネントカソード方式の電解精製方法は、陰極板の両側縁に絶縁材を取り付ける際に、絶縁材の下端が閉塞した陰極板装着溝内に陰極板を挿入保持した後、陰極板の下端と絶縁材の陰極板装着溝の下端閉塞部との間隙からシリコーン系コーキング材を注入して、絶縁材の陰極板装着溝内に存在する陰極板との隙間部の内の下端部分に充填することを特徴とする。   In order to achieve the above object, the electrolytic purification method of the permanent cathode method provided by the present invention is a method of attaching a cathode plate in a cathode plate mounting groove in which the lower end of the insulating material is closed when the insulating material is attached to both side edges of the cathode plate. After inserting and holding, the silicone caulking material is injected from the gap between the lower end of the cathode plate and the lower end closed portion of the cathode plate mounting groove of the insulating material, and the gap between the cathode plate existing in the cathode plate mounting groove of the insulating material The lower end portion of the portion is filled.

本発明によれば、陰極板の両側縁に絶縁材を取り付ける際に、陰極板の下端と絶縁材の陰極板装着溝の下端閉塞部が密着しなくても、両者の間に開口している間隙に後からシリコーン系コーキング材を充填して、その間隙を封止することができる。従って、この陰極板を使用して繰り返し電解精製を行っても、陰極板と絶縁材の間に電解液が侵入することを防ぐことができ、陰極板の絶縁材内に挿入された部分への金属粒の電着を抑制することができる。   According to the present invention, when the insulating material is attached to both side edges of the cathode plate, the lower end of the cathode plate and the lower end closing portion of the cathode plate mounting groove of the insulating material are opened between the two, even if they are not in close contact with each other. The gap can be filled later with a silicone caulking material to seal the gap. Therefore, even when electrolytic purification is repeatedly performed using this cathode plate, it is possible to prevent the electrolyte from entering between the cathode plate and the insulating material, and to the portion inserted into the insulating material of the cathode plate. Electrodeposition of metal particles can be suppressed.

また、上記した絶縁材内の陰極板への金属粒の電着を抑制することによって、電解精製終了後に陰極板から電気銅を剥ぎ取る際に電気銅の外観を損ねることがなくなり、高品質の製品電気銅を得ることができる。加えて、電解精製の操業中における絶縁材の破損や、設備トラブルの発生を低減することができる。   In addition, by suppressing the electrodeposition of the metal particles on the cathode plate in the insulating material described above, the appearance of the electrolytic copper is not impaired when the electrolytic copper is peeled off from the cathode plate after the completion of electrolytic purification. The product electrolytic copper can be obtained. In addition, it is possible to reduce the damage of the insulating material and the occurrence of equipment troubles during the operation of electrolytic purification.

本発明においては、図2(a)に示すように陰極板4の両側縁に絶縁材5を取り付けた後、陰極板4の下端部と絶縁材5の陰極板装着溝6の下端閉塞部が密着できずに生じた間隙に、図3に示すように、シリコーン系コーキング材7を注入充填する。シリコーン系コーキング材7を充填するには、絶縁材5に挟み込まれている陰極板4の最下端に残る間隙を注入口8として、コーキングガンなどによりシリコーン系コーキング材7を注入すればよい。   In the present invention, as shown in FIG. 2A, after the insulating material 5 is attached to both side edges of the cathode plate 4, the lower end portion of the cathode plate 4 and the lower end closing portion of the cathode plate mounting groove 6 of the insulating material 5 are As shown in FIG. 3, a silicone-based caulking material 7 is injected and filled into the gap formed without being in close contact. In order to fill the silicone-based caulking material 7, the silicone-based caulking material 7 may be injected with a caulking gun or the like using the gap remaining at the lowermost end of the cathode plate 4 sandwiched between the insulating materials 5 as the injection port 8.

このように、陰極板4の最下端の間隙からシリコーン系コーキング材7を注入して、絶縁材5の陰極板装着溝6内に存在する陰極板4との隙間部のうち、図3に示すように隙間部の下端部分だけをシリコーン系コーキング材7で充填することにより、陰極板装着溝6に沿った間隙部全体に充填しなくても、電解液の進入をほぼなくすことができる。その結果、陰極板4の絶縁材5で覆われた部分への金属粒の電着が抑制されるため、電解精製を繰り返しても絶縁材5の破損などのトラブルが減少し、パーマネントカソード方式の陰極板4の寿命を更に延長させることができる。   In this way, the silicone caulking material 7 is injected from the gap at the lowermost end of the cathode plate 4, and the gap between the insulating plate 5 and the cathode plate 4 existing in the cathode plate mounting groove 6 is shown in FIG. 3. Thus, by filling only the lower end portion of the gap portion with the silicone-based caulking material 7, it is possible to substantially eliminate the ingress of the electrolytic solution without filling the entire gap portion along the cathode plate mounting groove 6. As a result, the electrodeposition of the metal particles on the portion of the cathode plate 4 covered with the insulating material 5 is suppressed, so that troubles such as breakage of the insulating material 5 are reduced even if electrolytic refining is repeated. The life of the cathode plate 4 can be further extended.

本発明においてシリコーン系コーキング材を使用する理由は、以下のとおりである。即ち、電解精製で使用される陰極板は、一般的に硫酸銅と硫酸を含み且つ60℃程度の温度に保持された電解液中で使用されることから、コーキング材には電解液中で劣化しない耐薬品性と耐温度性が要求される。また、コーキング材を充填する際に、例えばコーキングガンなどにより容易に注入できるように、コーキング材は適度な流動性を持たなければならない。   The reason for using the silicone-based caulking material in the present invention is as follows. That is, the cathode plate used in electrolytic purification is generally used in an electrolytic solution containing copper sulfate and sulfuric acid and maintained at a temperature of about 60 ° C. Does not require chemical resistance and temperature resistance. Further, when filling the caulking material, the caulking material must have an appropriate fluidity so that it can be easily injected, for example, with a caulking gun.

更に、コーキング材は、樹脂製の絶縁材と接触するため、樹脂との相溶性が弱いことが必要である。相溶性が強すぎるとコーキング材と絶縁材が互いに溶解して劣化し、コーキング材の再充填や絶縁材の交換の頻度が高くなるからである。しかも、陰極板の両側縁に装着された絶縁材が劣化した場合には、絶縁材の交換が必要となるが、この交換に際して古い絶縁材を取り外す際に、充填されているコーキング材が邪魔することがないよう適度な硬度を持つことが好ましい。   Furthermore, since the caulking material is in contact with the resin insulating material, it is necessary that the compatibility with the resin is weak. This is because if the compatibility is too strong, the caulking material and the insulating material dissolve and deteriorate each other, and the frequency of refilling the caulking material and replacing the insulating material increases. In addition, when the insulating material attached to both side edges of the cathode plate deteriorates, it is necessary to replace the insulating material. However, when the old insulating material is removed during this replacement, the filled caulking material interferes. It is preferable to have an appropriate hardness so as not to occur.

上記した条件を満たすコーキング材を選定するため、シリコーン系、ポリウレタン系、アクリル系、アクリルウレタン系ブチルゴム系、ポリイソブチレン系など、市販されている様々なコーキング材を試験した結果、シリコーン系コーキング材が最適であることが判明した。尚、シリコーン系コーキング材の具体例としては、ヘンケルジャパン(株)から市販されているロックタイト(商品名)などがある。   As a result of testing various commercially available caulking materials such as silicone-based, polyurethane-based, acrylic-based, acrylic urethane-based butyl rubber-based, polyisobutylene-based, etc. It turned out to be optimal. A specific example of the silicone-based caulking material is Loctite (trade name) commercially available from Henkel Japan.

[実施例1]
ステンレス製の母板を陰極板とし、その陰極板の左右両側縁にABS樹脂製の絶縁材を装着した。その後、図3に示すように、この陰極板4の下端と絶縁材5の下端閉塞部との間隙から、コーキングガンを用いてシリコーン系コーキング材7を注入した。その際、陰極板4と絶縁材5の間に存在する隙間部うち、下端部分だけにシリコーン系コーキング材を充填した。使用したシリコーン系コーキング材は、ヘンケルジャパン(株)製のロックタイト5699(商品名)である。
[Example 1]
A stainless steel base plate was used as a cathode plate, and an insulating material made of ABS resin was attached to the left and right side edges of the cathode plate. Thereafter, as shown in FIG. 3, a silicone-based caulking material 7 was injected from the gap between the lower end of the cathode plate 4 and the lower end closed portion of the insulating material 5 using a caulking gun. At that time, only the lower end portion of the gap portion between the cathode plate 4 and the insulating material 5 was filled with the silicone-based caulking material. The silicone caulking material used is Loctite 5699 (trade name) manufactured by Henkel Japan K.K.

このようにして作製した絶縁板付きの陰極板110枚と、粗銅からなる陽極板111枚とを、電解槽中に交互に複数装入して、パーマネントカソード方式による銅電解精製を実施した。また、比較例として、シリコーン系コーキング材を注入していない以外は上記と同じ絶縁材付き陰極板を使用して、上記と同様に銅電解精製を実施した。尚、電解精製の条件は、いずれの場合も、電流密度320A/m、通電時間184時間とした。 A plurality of 110 cathode plates with insulating plates and 111 anode plates made of crude copper were alternately placed in an electrolytic cell, and copper electrolytic purification by a permanent cathode method was performed. In addition, as a comparative example, copper electrolytic purification was performed in the same manner as described above, using the same cathode plate with an insulating material as described above except that the silicone-based caulking material was not injected. In all cases, the conditions for electrolytic purification were a current density of 320 A / m 2 and an energization time of 184 hours.

上記条件で1サイクルの電解精製を終了した後、陰極板に電着した電気銅を剥ぎ取り、得られた電気銅下端部への銅粒の付着状況を確認した。その結果、本発明によるシリコーン系コーキング材を充填した陰極板では、110枚(下端部総数220箇所)のうち、銅粒の付着があった陰極板(下端部数)はゼロであった。一方、比較例によるシリコーン系コーキング材を充填していない陰極板では、110枚(下端部総数220箇所)のうち、銅粒の付着があった下端部数は198と極めて多かった。   After completing one cycle of electrolytic purification under the above conditions, the electrolytic copper electrodeposited on the cathode plate was peeled off, and the state of adhesion of the copper particles to the obtained lower end portion of the electrolytic copper was confirmed. As a result, in the cathode plate filled with the silicone-based caulking material according to the present invention, the number of cathode plates (the number of lower end portions) to which copper particles adhered out of 110 pieces (the total number of lower end portions of 220) was zero. On the other hand, in the cathode plate not filled with the silicone-based caulking material according to the comparative example, the number of the lower end portions to which the copper particles adhered was extremely large as 198 out of 110 pieces (total number of the lower end portions of 220).

[実施例2]
上記実施例1と同じシリコーン系コーキング材を充填した陰極板と、比較例によるシリコーン系コーキング材を充填していない陰極板の2種類の絶縁材付き陰極板を用いて、上記と同じ条件(電流密度320A/m、通電時間184時間)の電解精製を10サイクル繰り返した。
[Example 2]
The same conditions (current) as above using two types of cathode plates with an insulating material, the cathode plate filled with the same silicone caulking material as in Example 1 and the cathode plate not filled with the silicone caulking material according to the comparative example. The electrolytic purification with a density of 320 A / m 2 and an energization time of 184 hours was repeated 10 cycles.

各サイクルの電解精製終了後に陰極板に電着した電気銅を剥ぎ取り、最後の10サイクル目の電解精製終了後に陰極板の両側縁から絶縁材を取り外した。その際、本発明の陰極板は、絶縁材の陰極板挿着溝内の陰極板との隙間部のうち、その下端部分にのみシリコーン系コーキング材が充填してあるため、大きな支障なしに絶縁材を取り外すことができた。   The electrolytic copper electrodeposited on the cathode plate after the completion of electrolytic purification in each cycle was peeled off, and the insulating material was removed from both side edges of the cathode plate after the final 10th cycle of electrolytic purification. At that time, the cathode plate of the present invention is insulated without significant trouble since the silicone caulking material is filled only in the lower end portion of the gap portion between the cathode plate in the cathode plate insertion groove of the insulating material. The material could be removed.

また、取り外した絶縁材下端部の破損状況を確認した結果、比較例によるシリコーン系コーキング材を充填していない陰極板では、絶縁材内の陰極板に電着した銅粒の成長により、110枚の陰極板に装着した絶縁材220本のうち48本が破損していた。これに対して、本発明によるシリコーン系コーキング材を充填した陰極板では、110枚の陰極板に装着した絶縁材220本のうち、破損した絶縁材はわずかに2本のみであった。   In addition, as a result of confirming the damage state of the lower end portion of the removed insulating material, in the cathode plate not filled with the silicone-based caulking material according to the comparative example, 110 sheets were grown due to the growth of the copper particles electrodeposited on the cathode plate in the insulating material. Of the 220 insulating materials attached to the cathode plate, 48 were damaged. On the other hand, in the cathode plate filled with the silicone-based caulking material according to the present invention, only 220 of the insulating materials attached to the 110 cathode plates were damaged.

陰極板の概略の正面図であり、(a)は通常の陰極板、(b)はパーマネントカソード方式による絶縁材付きの陰極板である。It is a schematic front view of a cathode plate, (a) is a normal cathode plate, (b) is a cathode plate with an insulating material by a permanent cathode system. 陰極板に絶縁材を装着した状態を示し、(a)は陰極板の側縁部の概略の正面図であり、(b)は(a)のA−A線に沿った概略の断面図である。The state which attached the insulating material to the cathode plate is shown, (a) is a schematic front view of the side edge part of the cathode plate, (b) is a schematic sectional view along the AA line of (a). is there. 本発明による絶縁材を装着した陰極板の側縁部を示す概略の正面図である。It is a schematic front view which shows the side edge part of the cathode plate equipped with the insulating material by this invention.

符号の説明Explanation of symbols

1 種板
2 吊手
3 カソードビーム
4 陰極板
5 絶縁材
6 陰極板装着溝
6a 切込溝部
6b ストッパ用溝部
7 シリコーン系コーキング材
8 注入口
1 Seed plate 2 Lifter 3 Cathode beam 4 Cathode plate 5 Insulating material 6 Cathode plate mounting groove 6a Cut groove 6b Stopper groove 7 Silicone caulking material 8 Inlet

Claims (1)

パーマネントカソード方式の電解精製において、陰極板の両側縁に絶縁材を取り付ける際に、絶縁材の下端が閉塞した陰極板装着溝内に陰極板を挿入保持した後、陰極板の下端と絶縁材の陰極板装着溝の下端閉塞部との間隙からシリコーン系コーキング材を注入して、絶縁材の陰極板装着溝内に存在する陰極板との隙間部の内の下端部分に充填することを特徴とするパーマネントカソード方式の電解精製方法。   In the electrolytic refining of the permanent cathode method, when attaching an insulating material to both side edges of the cathode plate, the cathode plate is inserted and held in the cathode plate mounting groove where the lower end of the insulating material is closed, and then the lower end of the cathode plate and the insulating material It is characterized by injecting a silicone-based caulking material from the gap with the lower end blocking portion of the cathode plate mounting groove, and filling the lower end portion of the gap between the insulating plate and the cathode plate existing in the cathode plate mounting groove. Permanent cathode electrolytic purification method.
JP2007164946A 2007-06-22 2007-06-22 Permanent cathode system electrolytic refining method Pending JP2009001874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164946A JP2009001874A (en) 2007-06-22 2007-06-22 Permanent cathode system electrolytic refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164946A JP2009001874A (en) 2007-06-22 2007-06-22 Permanent cathode system electrolytic refining method

Publications (1)

Publication Number Publication Date
JP2009001874A true JP2009001874A (en) 2009-01-08

Family

ID=40318576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164946A Pending JP2009001874A (en) 2007-06-22 2007-06-22 Permanent cathode system electrolytic refining method

Country Status (1)

Country Link
JP (1) JP2009001874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248596A (en) * 2009-04-20 2010-11-04 Sumitomo Metal Mining Co Ltd Negative plate provided with insulation material for electrolytic refining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248596A (en) * 2009-04-20 2010-11-04 Sumitomo Metal Mining Co Ltd Negative plate provided with insulation material for electrolytic refining

Similar Documents

Publication Publication Date Title
US8337679B2 (en) Electrolytic cathode assemblies and methods of manufacturing and using same
JP2009001874A (en) Permanent cathode system electrolytic refining method
US6231730B1 (en) Cathode frame
US6274012B1 (en) Electrode edge strip with interior floating retaining pins
CA2094473C (en) Edge protector for electrolytic electrode, spreader bar thereof and method of attaching same to electrolytic electrode
WO2001096629A1 (en) Edge insulating member for electrode plate, method of locking and unlocking the edge insulating member, and edge insulating member installation jig
US6312573B1 (en) Corner insert for edge strips used with modified electrodes for electrolytic processes
JP2007002282A (en) Edge part insulating member
JP5565337B2 (en) Electrodeposition metal stripping device
US20020017457A1 (en) Corner insert for edge strips used with modified electrodes for electrolytic processes
EP3084041B1 (en) Method for maintenance of used permanent cathode plates
AU2007201708A1 (en) Modular system for improving electro-metallurgical processes
JP2009114475A (en) Electrode for producing electrolytic copper powder and anode for producing electrolytic copper powder
JP4343969B2 (en) Measures for power outage of copper electrolytic refining method
US6814847B1 (en) Method and apparatus for electro-deposition of metal
JP2006265699A (en) Adhesion method of edge strip to cathode plate
CN103668341A (en) Negative plate with insulating sealed edge
JP2011140685A (en) Electrode for electrolytic refining and electrolytic refining method using the same
US20060289301A1 (en) Edge protector assembly
US10961637B2 (en) Method for electrolytically depositing a zinc nickel alloy layer on at least a substrate to be treated
JP5213828B2 (en) Method for electrolytic purification of copper
JP2009287110A (en) Removing device and removing method of edge strip
WO2010067828A1 (en) Electrolytic recovery device for gold or silver
JP5446419B2 (en) Cathode plate with insulation for electrolytic purification
JP2004137529A (en) Insulating member for edge part of electrolytic refining electrode plate