JP2009001695A - Vinyl chloride based resin for paste and vinyl chloride based resin composition for paste - Google Patents

Vinyl chloride based resin for paste and vinyl chloride based resin composition for paste Download PDF

Info

Publication number
JP2009001695A
JP2009001695A JP2007164808A JP2007164808A JP2009001695A JP 2009001695 A JP2009001695 A JP 2009001695A JP 2007164808 A JP2007164808 A JP 2007164808A JP 2007164808 A JP2007164808 A JP 2007164808A JP 2009001695 A JP2009001695 A JP 2009001695A
Authority
JP
Japan
Prior art keywords
vinyl chloride
polymer
weight
paste
requirement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007164808A
Other languages
Japanese (ja)
Other versions
JP5118396B2 (en
Inventor
Kunio Kamata
邦男 鎌田
Taizo Yokoyama
泰三 横山
Shuichi Shimoda
修一 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Dai Ichi Vinyl Corp
Original Assignee
Shin Dai Ichi Vinyl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Dai Ichi Vinyl Corp filed Critical Shin Dai Ichi Vinyl Corp
Priority to JP2007164808A priority Critical patent/JP5118396B2/en
Publication of JP2009001695A publication Critical patent/JP2009001695A/en
Application granted granted Critical
Publication of JP5118396B2 publication Critical patent/JP5118396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vinyl chloride based resin for a paste which can be suitably used for lowering the heating treatment temperature in the production of a tile carpet, etc. required to have high strength (durability, warp resistance, dimensional stability, etc.). <P>SOLUTION: The vinyl chloride resin for a paste comprises a vinyl chloride polymer A satisfying the following requirement 1 and a vinyl chloride polymer B satisfying the requirement 2, wherein the relationship of the polymer A and the polymer B satisfies the requirement 3. Requirement 1: the vinyl chloride polymer A has a particle size distribution curve having a maximum value of 0.1-0.25 μm and an average polymerization degree of 1,000-1,400; requirement 2: the vinyl chloride polymer B has a particle size distribution curve having a maximum value of 1.0-2.5 μm and an average polymerization degree of 600-900; and requirement 3: the content of the vinyl chloride polymer A is 15-40 wt.% and the content of the vinyl chloride polymer B is 60-85 wt.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ペースト用塩化ビニル系樹脂及びペースト用塩化ビニル系樹脂組成物に関するものである。   The present invention relates to a vinyl chloride resin for paste and a vinyl chloride resin composition for paste.

ペースト用塩化ビニル樹脂は、難燃性等に優れた特性を有し、しかも作業性にも優れたいるので、壁材、床材、レザー、帆布、車両内装品、鋼板コート、綿材コート、糸コート、作業手袋、玩具、日用雑貨品等の製品の製造に使用されており、極めて有用なものである。このため、ペースト用塩化ビニル樹脂に関する技術については、各種のものが開発されている。   Since the vinyl chloride resin for paste has excellent properties such as flame retardancy and also excellent workability, it can be used for wall materials, flooring materials, leather, canvas, vehicle interior products, steel plate coating, cotton material coating, It is used for the manufacture of products such as yarn coats, work gloves, toys, and sundries, and is extremely useful. For this reason, various technologies relating to the vinyl chloride resin for paste have been developed.

通常の用途のものとしては、例えば、(1)粒子径が0.01μm以上0.45μm未満であるポリ塩化ビニル系樹脂粒子(A)が30〜50重量%、粒子径が0.45μm以上4.5μm未満であるポリ塩化ビニル系樹脂粒子(B)が35〜55重量%、粒子径が4.5μm以上20μm以下であるポリ塩化ビニル系樹脂粒子(C)が10〜30重量%よりなり、かつ、顆粒における平均粒子径が20〜130μmであることを特徴とするペースト加工用ポリ塩化ビニル系樹脂顆粒(特許文献1)、(2)塩化ビニル系樹脂の平均重合度が1500以上で0.05〜0.2μmの平均粒径を持つ微小粒子8〜30重量%と、塩化ビニル系樹脂の平均重合度1000以下で0.8〜3μmの平均粒径を持つ粒子70〜92重量%からなり、その平均重合度が1300以下であることを特徴とするペースト加工用塩化ビニル系樹脂(特許文献2)、(3)レーザー回折法の測定による重合体粒子の粒径が、少なくとも0.2〜5μmの範囲に連続的に分布し、頻度に二つの極大値を有し、小粒子の群の極大値を与える粒径が0.2〜0.6μmの範囲に、大粒子の群の極大値を与える粒径が1.0〜4.0μmの範囲にそれぞれあり、全体の平均粒径が0.6〜3.0μmであって、粒径0.1〜0.7μmの粒子と粒径0.8〜5μmの粒子との比率が5〜40重量%対60〜95重量%である粒径分布を有し、該樹脂100重量部とジ−2−エチルヘキシルフタレート60重量部とを混合して得られるペーストの未分散粒子率が0.1重量%以下で、セーバーズ流出量が30g/100秒以上であることを特徴とするペースト加工用塩化ビニル系樹脂顆粒(特許文献3)等がある。   For example, (1) 30 to 50% by weight of polyvinyl chloride resin particles (A) having a particle diameter of 0.01 μm or more and less than 0.45 μm, and a particle diameter of 0.45 μm or more 4 The polyvinyl chloride resin particles (B) having a particle diameter of less than 5 μm are 35 to 55% by weight, and the polyvinyl chloride resin particles (C) having a particle diameter of 4.5 μm or more and 20 μm or less are 10 to 30% by weight, And the average particle diameter in a granule is 20-130 micrometers, The polyvinyl chloride resin granule for paste processing (patent document 1) characterized by the above-mentioned. (2) The average degree of polymerization of vinyl chloride resin is 1500 or more and 0.00. 8-30% by weight of fine particles having an average particle diameter of 05-0.2 μm and 70-92% by weight of particles having an average polymerization degree of vinyl chloride resin of 1000 or less and an average particle diameter of 0.8-3 μm. The average A vinyl chloride resin for paste processing (patent document 2) characterized in that the degree of integration is 1300 or less (3) The particle size of the polymer particles measured by laser diffraction method is at least in the range of 0.2 to 5 μm. The particle size which gives the maximum value of the group of large particles in the range of 0.2 to 0.6 μm, which is continuously distributed, has two maximum values in frequency, and gives the maximum value of the group of small particles Are in the range of 1.0 to 4.0 μm, the overall average particle size is 0.6 to 3.0 μm, and the particle size is 0.1 to 0.7 μm and the particle size is 0.8 to 5 μm. Of a paste obtained by mixing 100 parts by weight of the resin with 60 parts by weight of di-2-ethylhexyl phthalate, having a particle size distribution of 5 to 40% by weight to 60 to 95% by weight. The undispersed particle ratio is 0.1% by weight or less, and the saver spillage is 30 g / 100 seconds or more. And vinyl chloride resin granules (Patent Document 3) for paste processing.

また、特定の用途のものとしては、例えば、(4) 基布とパイルとによって形成された表層部と、表層部裏面に積層された裏層部とからなり、該裏層部は、ポリ塩化ビニル100重量部に対して可塑剤70〜100重量部、無機充填剤300〜500重量部、有機発泡剤1〜3重量部及び発泡安定剤1〜3重量部が配合され、有機発泡剤の活性化による1.1〜1.8倍に発泡させた発泡層と、ポリ塩化ビニル100重量部に対して無機充填剤300〜500重量部が含まれる非発泡層と、発泡層と非発泡層の間に介在するガラス繊維布層とで形成され、発泡層を表層部裏面側に配置させて積層してなるタイルカーペット(特許文献4)、(5)上部織物層と下部裏打ち層からなるタイルカーペットを製造する方法において、上部織物層として、該織物層1m あたり、ペースト塩ビ樹脂、可塑剤、安定剤を主成分とする塩化ビニルプラスチゾル組成物を0.5Kg〜2Kg含浸した上部織物層を使用することを特徴とするタイルカーペットの製造方法(特許文献5)、(6)2層構造のシート材料において、上部に主としてガラス繊維からなる無機繊維層、下部に化学合成繊維からなる有機繊維層が配置され、該シートの有機繊維層を構成する化学合成繊維として、140℃における熱収縮率が、30から60%である化学合成繊維が使用され、前記化学合成繊維の配合量が、シート重量に対して20から50重量%であることを特徴とするシート材料(特許文献6)、(7)塩化ビニル−酢酸ビニル共重合体と、ペースト塩化ビニル系樹脂と、可塑剤と、充填材と、短繊維とを含有する樹脂組成物を板状に成形してなる床材用シートであって、短繊維が8〜13重量%含まれていることを特徴とする床材用シート(特許文献7)等がある。
上記の(1)〜(3)は、特定の粒度等からなる塩化ビニル樹脂に関するものであって、粉体流動性、発泡性、ケミカルエンボス特性等の向上を図ったものである。
また、上記の(4)〜(7)は、ペースト塩化ビニル系樹脂を用いたタイルカーペットや床材用シート等に関するものであって、耐久性、反り防止、寸法安定性等を図ったものである。
In addition, specific applications include, for example, (4) a surface layer portion formed of a base fabric and a pile, and a back layer portion laminated on the back surface of the surface layer portion. 70 to 100 parts by weight of plasticizer, 300 to 500 parts by weight of inorganic filler, 1 to 3 parts by weight of organic foaming agent, and 1 to 3 parts by weight of foaming stabilizer are blended with 100 parts by weight of vinyl. A foam layer that has been foamed 1.1 to 1.8 times, a non-foam layer containing 300 to 500 parts by weight of an inorganic filler with respect to 100 parts by weight of polyvinyl chloride, and a foam layer and a non-foam layer. Tile carpet (Patent Document 4) formed with a glass fiber cloth layer interposed therebetween and laminated with a foam layer disposed on the back side of the surface layer part (Patent Document 4), Tile carpet composed of an upper fabric layer and a lower backing layer In the method of manufacturing the upper fabric layer An upper fabric layer impregnated with 0.5 kg to 2 kg of vinyl chloride plastisol composition mainly composed of a paste vinyl chloride resin, a plasticizer and a stabilizer is used per 1 m 2 of the fabric layer. Manufacturing method (Patent Document 5), (6) In a sheet material having a two-layer structure, an inorganic fiber layer mainly made of glass fiber is arranged on the upper part, and an organic fiber layer made of chemically synthesized fiber is arranged on the lower part, and the organic fiber layer of the sheet Is used as a chemically synthesized fiber having a heat shrinkage rate at 140 ° C. of 30 to 60%, and the compounding amount of the chemically synthesized fiber is 20 to 50% by weight with respect to the sheet weight. (7) A vinyl chloride-vinyl acetate copolymer, a paste vinyl chloride resin, a plasticizer, a filler, and a short fiber. There is a sheet for flooring formed by molding a resin composition to be contained into a plate shape, which includes 8 to 13% by weight of short fibers (Patent Document 7). .
The above (1) to (3) relate to a vinyl chloride resin having a specific particle size and the like, and are intended to improve powder flowability, foamability, chemical embossing characteristics, and the like.
The above (4) to (7) relate to tile carpets and flooring sheets using a paste vinyl chloride resin, and are intended for durability, warpage prevention, dimensional stability, etc. is there.

特開平9−309998号公報JP-A-9-309998 特開平11−80479号公報Japanese Patent Laid-Open No. 11-80479 特開2000−17080号公報JP 2000-17080 A 特開平7−24948号公報Japanese Patent Laid-Open No. 7-24948 特開平7−24972号公報JP 7-24972 A 特開平8−260326号公報JP-A-8-260326 特開2006−37274号公報JP 2006-37274 A

タイルカーペットは、オフィスビルなど主に建築物の床面に敷かれる一辺が約50cmの正方形状のカーペットである。従来から使用されているフロアーカーペットに比べ、オフィスの椅子、机等により傷んだ場合、その箇所だけ取り替えれば良い機能的な部分と、最近オフィス空間の環境のレベルアップのニーズの高まりに伴って堅調に需要が拡大している分野である。
タイルカーペットは、ナイロンやポリエステル繊維のカーペットに塩化ビニル樹脂層を裏打ちしたものであり、ゾル(塩化ビニル樹脂)をエンドレスベルトに塗布するが、先ず、第1コーターで1〜2mmでゾルを塗布し、この上にガラス不織布を乗せ、更に第2コーターでゾルを塗布した後、更にその上に基布(ポリエステル不織布にナイロン繊維等のパイルが織り込まれている)を乗せ、加熱炉でゲル化溶融されることにより製造されるが、この場合、加熱温度による基布の熱収縮を考慮して、炉の上層(基布側)は140〜150℃、下層(ベルト下側)約200℃で成形されるのが通常である。しかし、最近では、加熱温度による基布の熱収縮を考慮して、120℃付近での加熱処理においても優れた強度を有するもの、即ち、低温特性に優れたものが求められているのが実状である。
以上のように、タイルカーペットの製造においては、加熱処理により基布の熱収縮が生起するので、この点の配慮が重要になる。このため、強度(耐久性、反り防止、寸法安定性等)が求められるタイルカーペット等の製造においては、加熱処理温度を低くすることができるペースト用塩化ビニル系樹脂が求められている。
A tile carpet is a square carpet with a side of about 50 cm, which is mainly laid on the floor of an office building or the like. Compared to traditional floor carpets, when damaged by office chairs, desks, etc., functional parts that only need to be replaced, and with the recent increase in the level of office space environment This is a field where demand is steadily expanding.
The tile carpet is a nylon or polyester fiber carpet lined with a vinyl chloride resin layer, and sol (vinyl chloride resin) is applied to the endless belt. First, the sol is applied at 1 to 2 mm with the first coater. Put a glass nonwoven fabric on top of this, apply sol with a second coater, then place a base fabric (a polyester nonwoven fabric is woven with a pile of nylon fibers, etc.) on it, and gel and melt it in a heating furnace. In this case, considering the thermal shrinkage of the base fabric due to the heating temperature, the upper layer (base fabric side) of the furnace is molded at 140 to 150 ° C. and the lower layer (belt lower side) at about 200 ° C. It is usually done. However, in recent years, considering the thermal shrinkage of the base fabric due to the heating temperature, a material having an excellent strength even in a heat treatment at around 120 ° C., that is, a material having excellent low-temperature characteristics has been demanded. It is.
As described above, in the production of tile carpet, heat shrinkage of the base fabric occurs due to the heat treatment, and thus this point is important. For this reason, in the manufacture of tile carpets and the like that require strength (durability, warpage prevention, dimensional stability, etc.), a vinyl chloride resin for paste that can lower the heat treatment temperature is required.

本発明の課題は、強度(耐久性、反り防止、寸法安定性等)が求められるタイルカーペット等の製造において、加熱処理温度を低くすることができるペースト用塩化ビニル系樹脂を提供することにある。   An object of the present invention is to provide a vinyl chloride resin for paste that can lower the heat treatment temperature in the production of tile carpets and the like that require strength (durability, warpage prevention, dimensional stability, etc.). .

本発明者らは、上記の課題を解決するため鋭意研究を重ねたところ、粒度と平均重合度が異なる2種類の塩化ビニル系樹脂を特定の割合で配合すると、強度(耐久性、反り防止、寸法安定性等)が求められるタイルカーペット等の製造において、加熱処理温度を低くすることができるペースト用塩化ビニル系樹脂が得られることを知り、更に研究を重ねた結果、本発明を完成するに至った。
即ち、本発明は、以下の発明から構成されるものである。
1.塩化ビニル系樹脂が、以下の要件1を満たす塩化ビニル系重合体Aと要件2を満たす塩化ビニル系重合体Bからなるものであって、しかも該重合体Aと重合体Bの関係が、以下の要件3を満たすことを特徴とするペースト用塩化ビニル系樹脂。
要件1:塩化ビニル系重合体A
平均粒径0.1〜0.25μm、
平均重合度1000〜1400
要件2:塩化ビニル系重合体B
平均粒径1.0〜2.5μm、
平均重合度600〜800
要件3:塩化ビニル系重合体Aと塩化ビニル系重合体Bの割合
塩化ビニル系重合体A15〜40重量%、
塩化ビニル系重合体B60〜85重量%
2.要件1を満たす塩化ビニル系重合体Aの分散水溶液と要件2を満たす塩化ビニル系重合体Bの分散水溶液を、要件3を満たすように配合して得た、要件1〜要件3を満たす塩化ビニル系樹脂の分散水溶液を噴霧乾燥することを特徴とする上記1又は2記載のペースト用塩化ビニル系樹脂の製造方法。
3.上記1記載のペースト用塩化ビニル系樹脂及び可塑剤からなる配合剤から構成されるペースト用塩化ビニル系樹脂組成物。
4.配合剤が、安定剤、充填剤、又は発泡剤からなる群の一種又は二種以上からなる成分を含有するものである上記3記載のペースト用塩化ビニル系樹脂組成物。
The inventors of the present invention have made extensive studies in order to solve the above problems. As a result, when two kinds of vinyl chloride resins having different particle sizes and average polymerization degrees are blended at a specific ratio, strength (durability, warpage prevention, In the manufacture of tile carpets and the like that require dimensional stability, etc., it has been found that a vinyl chloride resin for paste that can reduce the heat treatment temperature can be obtained, and as a result of further research, the present invention is completed. It came.
That is, this invention is comprised from the following invention.
1. The vinyl chloride resin is composed of a vinyl chloride polymer A satisfying the following requirement 1 and a vinyl chloride polymer B satisfying the requirement 2, and the relationship between the polymer A and the polymer B is as follows: A vinyl chloride resin for paste, which satisfies the requirement 3 of the above.
Requirement 1: Vinyl chloride polymer A
Average particle size 0.1-0.25 μm,
Average degree of polymerization 1000-1400
Requirement 2: Vinyl chloride polymer B
Average particle size 1.0-2.5 μm,
Average polymerization degree 600-800
Requirement 3: Ratio of vinyl chloride polymer A and vinyl chloride polymer B
Vinyl chloride polymer A 15 to 40% by weight,
Vinyl chloride polymer B60-85% by weight
2. Vinyl chloride satisfying requirements 1 to 3 obtained by blending a dispersion aqueous solution of vinyl chloride polymer A satisfying requirement 1 and a dispersion aqueous solution of vinyl chloride polymer B satisfying requirement 2 so as to satisfy requirement 3. 3. The method for producing a vinyl chloride resin for paste according to 1 or 2 above, wherein the dispersion aqueous solution of the resin is spray-dried.
3. A vinyl chloride resin composition for paste comprising the compounding agent comprising the vinyl chloride resin for paste and the plasticizer according to 1 above.
4). 4. The vinyl chloride resin composition for paste as described in 3 above, wherein the compounding agent contains one or more components of the group consisting of a stabilizer, a filler, or a foaming agent.

本発明のペースト用塩化ビニル系樹脂は、上記の要件1を満たす塩化ビニル系重合体Aと要件2を満たす塩化ビニル系重合体Bからなり、塩化ビニル系重合体Aと塩化ビニル系重合体Bは、上記の要件3を満たすことを特徴とするものであって、強度(耐久性、反り防止、寸法安定性等)が要求される用途(タイルカーペット等)に最適な特性を有する点で優れている。
本発明は、以下の知見に基づいてなされたものである。
前述したように、通常の用途の場合、ペースト用塩化ビニル系樹脂は、その特性としては、粉体流動性、発泡性、ケミカルエンボス特性等の向上に資するものが要求されるが、タイルカーペット等のような用途の場合、ペースト用塩化ビニル系樹脂は、その特性としては、強度(耐久性、反り防止、寸法安定性等)の向上に資するものが要求される。
このような現状下、強度(耐久性、反り防止、寸法安定性等)の特性向上に資するペースト用塩化ビニル系樹脂について研究を重ねたところ、塩化ビニル系樹脂の粒子径、平均重合度、配合割合等が重要な因子であることが分かった。
そこで、更に研究を重ねた結果、上記の要件1と2を満たす塩化ビニル系重合体Aと塩化ビニル系重合体Bからなるものであって、重合体Aと重合体Bは、上記の要件3を満たすようにしたところ、優れた特性を有するペースト用塩化ビニル系樹脂が得られることをつきとめ、本発明を完成した。
The vinyl chloride resin for paste of the present invention comprises a vinyl chloride polymer A satisfying the above requirement 1 and a vinyl chloride polymer B satisfying the requirement 2, and the vinyl chloride polymer A and the vinyl chloride polymer B. Is characterized by satisfying the above requirement 3, and is excellent in that it has optimum characteristics for applications (such as tile carpet) that require strength (durability, warpage prevention, dimensional stability, etc.). ing.
The present invention has been made based on the following findings.
As described above, in the case of normal use, the vinyl chloride resin for paste is required to contribute to improvement of powder flowability, foamability, chemical embossing characteristics, etc. In the case of such applications, the vinyl chloride resin for paste is required to have a characteristic that contributes to improvement in strength (durability, warpage prevention, dimensional stability, etc.).
Under such circumstances, research on vinyl chloride resin for paste that contributes to improving the properties of strength (durability, warpage prevention, dimensional stability, etc.) revealed that the particle size, average degree of polymerization, and blending of vinyl chloride resin It was found that the ratio was an important factor.
Therefore, as a result of further research, it is composed of a vinyl chloride polymer A and a vinyl chloride polymer B that satisfy the above requirements 1 and 2, and the polymer A and the polymer B are the above requirements 3 As a result, it was found that a vinyl chloride resin for paste having excellent characteristics was obtained, and the present invention was completed.

以上のように、本発明のペースト用塩化ビニル系樹脂は、上記の要件1〜3を満たすものであって、優れた低温特性(強度)を有する点おいて、特段の効果を奏するが、このようなことは、以下述べるように、全く意外な結果である。
通常、塩化ビニル系樹脂の引張強度(抗張力)は、加熱温度120℃から測定可能となり、ホモポリマーの場合180℃、コポリマーの場合160℃で、それぞれ最高強度に達するとされており、塩化ビニル系樹脂の120℃の引張強さは、低いのが普通である。
これに対して、本発明の塩化ビニル系樹脂は、120℃において優れた強度を有し、最高強度に達する温度は160℃付近となる。このため、最高強度に達する温度は、従来より20℃程度低くなることからみて、本発明の塩化ビニル系樹脂は、従来の塩化ビニル系樹脂とは全く異なる特性を有しているということができる。
前述したように、タイルカーペットの製造では、加熱処理による基布の熱収縮を考慮して、加熱処理は140〜150℃で実施されているのが通常である。
従って、従来のホモポリマーを用いる場合、タイルカーペットの製造の加熱処理は、該樹脂の最高強度温度である180℃付近ではなく、該最高強度温度より30〜40℃も低い温度で実施していることになる。このため、従来では、使用した樹脂の強度が低い温度で実施することになるので、強度に優れた特性を有するタイルカーペットを製造することが困難であった。
これに対して、本発明のペースト用塩化ビニル系樹脂は、120〜160℃の強度が優れているから、タイルカーペットの製造の加熱処理は、120〜160℃での低温実施が可能となるため、加熱処理による基布の熱収縮が防止し得るので、大変有利である。
このように、本発明の塩化ビニル系樹脂組成物は、低温特性に優れているので、タイルカーペットの製造において、低温での加熱処理が可能となる。
従って、本発明の塩化ビニル系樹脂を採用すると、加熱処理による基布の熱収縮が防止し得るので、特に低温特性が要求される用途、例えば、パイルカーペット等に最適である。
上記のような本発明の優れた効果は、本発明の要件1〜3の何れが欠けても、達成できないことからみて、本発明の優れた効果は、該要件の複合的な相乗効果により達成されたものと推察される。
何れにしても、本発明の特段の効果からみて、本発明の要件1〜3の選択には格別の意義があるとするのが自然であろう。
As described above, the vinyl chloride resin for paste of the present invention satisfies the above-mentioned requirements 1 to 3, and has a special effect in that it has excellent low-temperature characteristics (strength). This is a completely unexpected result as described below.
Normally, the tensile strength (tensile strength) of vinyl chloride resin can be measured from a heating temperature of 120 ° C, and the maximum strength is reached at 180 ° C for homopolymers and 160 ° C for copolymers. The tensile strength at 120 ° C. of the resin is usually low.
In contrast, the vinyl chloride resin of the present invention has excellent strength at 120 ° C., and the temperature reaching the maximum strength is around 160 ° C. For this reason, it can be said that the vinyl chloride resin of the present invention has completely different characteristics from the conventional vinyl chloride resin, since the temperature at which the maximum strength is reached is about 20 ° C. lower than the conventional one. .
As described above, in the manufacture of tile carpet, the heat treatment is usually performed at 140 to 150 ° C. in consideration of the thermal shrinkage of the base fabric due to the heat treatment.
Therefore, when the conventional homopolymer is used, the heat treatment for the production of tile carpet is not performed at around 180 ° C., which is the maximum strength temperature of the resin, but at a temperature 30 to 40 ° C. lower than the maximum strength temperature. It will be. For this reason, conventionally, since the strength of the used resin is carried out at a low temperature, it has been difficult to produce a tile carpet having excellent strength characteristics.
On the other hand, since the vinyl chloride resin for paste of the present invention has an excellent strength of 120 to 160 ° C., the heat treatment for manufacturing the tile carpet can be performed at a low temperature of 120 to 160 ° C. Since the heat shrinkage of the base fabric due to the heat treatment can be prevented, it is very advantageous.
Thus, since the vinyl chloride resin composition of the present invention is excellent in low temperature characteristics, heat treatment at a low temperature is possible in the production of tile carpet.
Accordingly, when the vinyl chloride resin of the present invention is employed, thermal shrinkage of the base fabric due to heat treatment can be prevented, which is particularly suitable for applications requiring low temperature characteristics, such as pile carpets.
In view of the fact that the excellent effects of the present invention as described above cannot be achieved without any of the requirements 1 to 3 of the present invention, the excellent effects of the present invention are achieved by a combined synergistic effect of the requirements. It is inferred that
In any case, in view of the special effects of the present invention, it will be natural that the selection of requirements 1 to 3 of the present invention has special significance.

以下、本発明を更に詳細に説明する。
本発明の特徴は、本発明の要件1を満たす塩化ビニル系重合体Aと要件2を満たす塩化ビニル系重合体Bからなり、該重合体Aと重合体Bの関係が、本発明の要件3を満たすことを特徴とするペースト用塩化ビニル系樹脂、及び該ペースト用塩化ビニル系樹脂及び可塑剤、安定剤、充填剤、又は発泡剤からなる配合剤から構成されるペースト用塩化ビニル系樹脂組成物にある。
本発明のペースト用塩化ビニル系樹脂、及びペースト用塩化ビニル系樹脂組成物について、以下説明する。
Hereinafter, the present invention will be described in more detail.
A feature of the present invention is a vinyl chloride polymer A satisfying the requirement 1 of the present invention and a vinyl chloride polymer B satisfying the requirement 2. The relationship between the polymer A and the polymer B is the requirement 3 of the present invention. And a vinyl chloride resin composition for paste composed of a vinyl chloride resin for paste and a compounding agent comprising a plasticizer, a stabilizer, a filler, or a foaming agent. It is in the thing.
The vinyl chloride resin for paste and the vinyl chloride resin composition for paste of the present invention will be described below.

(1)ペースト用塩化ビニル系樹脂
本発明のペースト用塩化ビニル系樹脂は、本発明の要件1又は2を満たす塩化ビニル系重合体A又はBを含有する水性分散液を、本発明の要件3を満足するように、ブレンドする方法により得ることができる。
上記の塩化ビニル系重合体の水性分散液のブレンド方法としては、ブレンドすることが可能であればいかなる方法もとることが可能である。
例えば、水性分散液同士をブレンドする方法、水性分散液から塩化ビニル系樹脂をろ過又は遠心分離によりウェットケーキとした後、これを直接又は水で水性分散液に戻してブレンドする方法等、何れでもよい。
塩化ビニル系重合体の水性分散液の濃縮方法としては、例えば、透析膜や限外ろ過膜を用いた濃縮、真空蒸発器による濃縮、薄膜蒸発器による濃縮などを挙げることができる。これらの中で、膜濃縮に使用する膜には特に制限はなく、例えば、酢酸セルロース系膜、ポリスルホン系膜、ポリアミド系膜、ポリアクリロニトリル系膜、フッ素樹脂系膜などを挙げることができる。
本発明方法においては、上記の特定の粒径分布を有する塩化ビニル系重合体の固形分濃度が55〜75重量%、好ましくは60〜70重量%の塩化ビニル系重合体の水性分散液を噴霧乾燥処理する。
使用する噴霧乾燥機に特に制限はなく、例えば、噴霧形式としては、回転円盤型アトマイザー、二流体ノズル型アトマイザー、加圧ノズル型アトマイザーなどを挙げることができるが、これらの中で回転円盤式アトマイザーは、水性分散液の流量、密度、粘度などの変動に広く対応できるので好適に使用することができる。熱風と液滴群の接触方式にも特に制限はないが、併流方式が樹脂顆粒の熱履歴分布を小さくする上で好ましい。乾燥用空気は、大気から採取することができ、ことさらに湿度の調整を行う必要はないが、調湿を制限するものではない。乾燥用空気の入口温度は高いほど乾燥能率の上昇が望めるが、200℃を超えると樹脂顆粒のゾル分散性が悪化する。しかし、従来技術のように100℃以下の低い温度が必須ではなくて、100℃より高く200℃以下でよく、特に、110〜170℃の範囲が好ましい。また、乾燥用空気の出口温度は、40〜70℃の範囲が好ましく、45〜55℃の範囲がより好ましい。乾燥の程度は、乾燥された顆粒に含まれる水分が0.05〜1.5重量%であることが好ましく、0.1〜1.0重量%であることがより好ましい。乾燥用空気の出口温度と、乾燥された顆粒の水分率は、塩化ビニル系重合体の水性分散液の供給速度と、乾燥用熱風の温度と風量を制御することにより調整することができる。
噴霧液滴径は、塩化ビニル系重合体の水性分散液の供給速度や固形分濃度と、回転円盤型アトマイザーでは円盤回転数により、二流体ノズル型アトマイザーではアトマイズ空気圧と風量により、加圧ノズル型アトマイザーでは圧力を主たる因子として制御することができる。塩化ビニル系重合体の水性分散液の噴霧乾燥により、目的の平均粒径の顆粒を得ることができる。
(1) Vinyl chloride resin for paste The vinyl chloride resin for paste of the present invention is an aqueous dispersion containing a vinyl chloride polymer A or B satisfying the requirement 1 or 2 of the present invention. Can be obtained by a blending method.
As a method for blending the aqueous dispersion of the above-mentioned vinyl chloride polymer, any method can be used as long as blending is possible.
For example, either a method of blending aqueous dispersions, a method of blending a vinyl chloride resin from aqueous dispersions by filtering or centrifuging them into wet cakes and then returning them to aqueous dispersions directly or with water, etc. Good.
Examples of the concentration method of the aqueous dispersion of the vinyl chloride polymer include concentration using a dialysis membrane or an ultrafiltration membrane, concentration using a vacuum evaporator, and concentration using a thin film evaporator. Among these, the membrane used for membrane concentration is not particularly limited, and examples thereof include a cellulose acetate membrane, a polysulfone membrane, a polyamide membrane, a polyacrylonitrile membrane, and a fluororesin membrane.
In the method of the present invention, an aqueous dispersion of a vinyl chloride polymer having a specific particle size distribution of the vinyl chloride polymer having a solid content concentration of 55 to 75% by weight, preferably 60 to 70% by weight is sprayed. Dry.
There is no particular limitation on the spray dryer to be used. For example, examples of the spray type include a rotary disk atomizer, a two-fluid nozzle atomizer, and a pressure nozzle atomizer. Among these, a rotary disk atomizer is included. Can be suitably used because it can widely cope with fluctuations in the flow rate, density, viscosity and the like of the aqueous dispersion. There is no particular limitation on the contact method between the hot air and the droplet group, but the combined flow method is preferable for reducing the thermal history distribution of the resin granules. The drying air can be collected from the atmosphere, and it is not necessary to adjust the humidity. However, humidity adjustment is not limited. The higher the inlet temperature of the drying air, the higher the drying efficiency can be expected. However, when the temperature exceeds 200 ° C., the sol dispersibility of the resin granules deteriorates. However, a low temperature of 100 ° C. or lower as in the prior art is not essential, and may be higher than 100 ° C. and 200 ° C. or lower, particularly preferably in the range of 110 to 170 ° C. Moreover, the range of 40-70 degreeC is preferable and, as for the exit temperature of drying air, the range of 45-55 degreeC is more preferable. The degree of drying is preferably 0.05 to 1.5% by weight, more preferably 0.1 to 1.0% by weight, of water contained in the dried granule. The outlet temperature of the drying air and the moisture content of the dried granules can be adjusted by controlling the supply rate of the aqueous dispersion of the vinyl chloride polymer and the temperature and air volume of the drying hot air.
The spray droplet diameter depends on the supply rate and solid content of the aqueous dispersion of the vinyl chloride polymer, the rotational speed of the disk for the rotary disk type atomizer, the atomizing air pressure and the air volume for the two-fluid nozzle type atomizer, and the pressurized nozzle type. In the atomizer, pressure can be controlled as a main factor. By spray-drying an aqueous dispersion of a vinyl chloride polymer, granules having a desired average particle diameter can be obtained.

(塩化ビニル系重合体)
本発明におけるペースト用塩化ビニル系樹脂を構成する塩化ビニル系重合体は、塩化ビニル単独重合体若しくは塩化ビニル共重合体又はこれらの混合物の何れよりなるものでもよい。
塩化ビニル系単量体としては、塩化ビニル単量体又は塩化ビニル単量体と塩化ビニル単量体との共重合可能なビニル単量体との混合物である。
上記の塩化ビニル単量体と共重合し得るビニル単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル、ミリスチン酸ビニル、安息香酸ビニル等のビニルエステル類;アクリル酸、メタクリル酸、マレイン酸、フマル酸等の不飽和カルボン酸又はその無水物類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のメタクリル酸エステル類;マレイン酸エステル、フマル酸エステル、桂皮酸エステル等の不飽和カルボン酸エステル類;ビニルメチルエーテル、ビニルアミルエーテル、ビニルフェニルエーテル等のビニルエーテル類;エチレン、プロピレン、ブテン、ペンテン等のモノオレフィン類;塩化ビニリデン、スチレン及びその誘導体、アクリロニトリル、メタクリロニトリル等が挙げられ、これらは1種又は2種以上で用いることが可能である。
(Vinyl chloride polymer)
The vinyl chloride polymer constituting the vinyl chloride resin for paste in the present invention may be any of a vinyl chloride homopolymer, a vinyl chloride copolymer, or a mixture thereof.
The vinyl chloride monomer is a vinyl chloride monomer or a mixture of a vinyl chloride monomer and a vinyl monomer copolymerizable with a vinyl chloride monomer.
Examples of the vinyl monomer that can be copolymerized with the above vinyl chloride monomer include vinyl esters such as vinyl acetate, vinyl propionate, vinyl myristate, and vinyl benzoate; acrylic acid, methacrylic acid, maleic acid, Unsaturated carboxylic acids such as fumaric acid or anhydrides; acrylic esters such as methyl acrylate, ethyl acrylate and butyl acrylate; methacrylic esters such as methyl methacrylate, ethyl methacrylate and butyl methacrylate; Unsaturated carboxylic acid esters such as maleic acid ester, fumaric acid ester and cinnamic acid ester; vinyl ethers such as vinyl methyl ether, vinyl amyl ether and vinyl phenyl ether; monoolefins such as ethylene, propylene, butene and pentene; Vinylidene, styrene and its Conductor, acrylonitrile, methacrylonitrile, etc. These can be used singly or in combination.

(塩化ビニル系重合体の水性分散液)
塩化ビニル系重合体の水性分散液の製造方法としては、特に制限はなく、一般にペースト用塩化ビニル系重合体の製造方法として知られている方法でよい。
例えば、塩化ビニル系単量体を脱イオン水、界面活性剤、水溶性重合開始剤と共に緩やかな撹拌下で重合を行う乳化重合法;乳化重合法で得られた粒子をシードとして用い乳化重合を行うシード乳化重合法;塩化ビニル系単量体を脱イオン水、界面活性剤、必要に応じて高級アルコール、水溶性高分子等の分散補助剤、油溶性重合開始剤をホモジナイザー等で混合分散した後、緩やかな撹拌下で重合を行うミクロ懸濁重合法;ミクロ懸濁重合法で得られた油溶性重合開始剤を含有するシードを用い重合を行うシードミクロ懸濁重合法;塩化ビニル系単量体を脱イオン水、水溶性高分子、必要に応じて界面活性剤等の分散補助剤、油溶性重合開始剤を激しい撹拌下で重合を行う懸濁重合法等が挙げられる。この際、何れの方法においても、30〜80℃の温度範囲において重合することが好ましい。
(Aqueous dispersion of vinyl chloride polymer)
The method for producing the aqueous dispersion of the vinyl chloride polymer is not particularly limited, and may be a method generally known as a method for producing a vinyl chloride polymer for paste.
For example, an emulsion polymerization method in which a vinyl chloride monomer is polymerized with gentle stirring with deionized water, a surfactant, and a water-soluble polymerization initiator; emulsion polymerization is performed using particles obtained by the emulsion polymerization method as a seed. Seed emulsion polymerization method: vinyl chloride monomer was mixed and dispersed with deionized water, surfactant, if necessary, higher alcohol, dispersion aid such as water-soluble polymer, oil-soluble polymerization initiator with homogenizer etc. Thereafter, a micro suspension polymerization method in which polymerization is performed with gentle stirring; a seed micro suspension polymerization method in which polymerization is performed using a seed containing an oil-soluble polymerization initiator obtained by the micro suspension polymerization method; Examples of the polymerization method include deionized water, a water-soluble polymer, a dispersion aid such as a surfactant as required, and a suspension polymerization method in which an oil-soluble polymerization initiator is polymerized with vigorous stirring. At this time, in any method, it is preferable to polymerize in a temperature range of 30 to 80 ° C.

(界面活性剤)
塩化ビニル系重合体の水性分散液を製造する際に、界面活性剤を使用することも可能である。
その場合の界面活性剤としては、例えば、ラウリル硫酸エステルナトリウム,ミリスチル硫酸エステルナトリウムのようなアルキル硫酸エステル塩類、ドデシルベンゼンスルホン酸ナトリウム,ドデシルベンゼンスルホン酸カリウムのようなアルキルアリールスルホン酸塩類、ジオクチルスルホコハク酸ナトリウム,ジヘキシルスルホコハク酸ナトリウムのようなスルホコハク酸エステル塩類、ラウリン酸アンモニウム,ステアリン酸カリウムの如き脂肪酸塩類、ポリオキシエチレンアルキル硫酸エステル塩類、ポリオキシエチレンアルキルアリール硫酸エステル塩類等のアニオン界面活性剤;ソルビタンモノオレート,ポリオキシエチレンソルビタンモノステアレートのようなソルビタンエステル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルエステル類などのノニオン界面活性剤類などの従来より知られているものを1種以上で用いることができ、これらの界面活性剤は、重合時に使用する以外に、改質を目的として重合後の水性分散液に添加することも可能である。
(Surfactant)
In producing an aqueous dispersion of a vinyl chloride polymer, a surfactant may be used.
Examples of the surfactant include alkyl sulfates such as sodium lauryl sulfate and sodium myristyl sulfate, alkylaryl sulfonates such as sodium dodecylbenzenesulfonate and potassium dodecylbenzenesulfonate, and dioctylsulfosuccinate. Anionic surfactants such as sodium sulfate, sulfosuccinic acid ester salts such as sodium dihexyl sulfosuccinate, fatty acid salts such as ammonium laurate and potassium stearate, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl aryl sulfate salts; Sorbitan esters such as sorbitan monooleate, polyoxyethylene sorbitan monostearate, polyoxyethylene alkylphenyl One or more conventionally known nonionic surfactants such as ethers and polyoxyethylene alkyl esters can be used, and these surfactants can be modified in addition to being used during polymerization. It is also possible to add to the aqueous dispersion after polymerization for the purpose of quality.

(分散剤)
塩化ビニル系重合体の水性分散液を製造する際に、必要に応じて、分散剤を使用することも可能である。
その場合の分散剤としては、例えばセチルアルコール,ラウリルアルコール等の高級アルコール、ラウリル酸,パルミチン酸,ステアリン酸等の高級脂肪酸又はそのエステル類、芳香族炭化水素、高級脂肪族炭化水素、塩素化パラフィン等のハロゲン化炭化水素、ポリビニルアルコール,ヒドロキシメチルセルロース,ポリビニルピロリドン等の水溶性高分子等が挙げられ、これらを1種以上で用いることができる。
(Dispersant)
When producing an aqueous dispersion of a vinyl chloride polymer, a dispersant may be used as necessary.
Examples of the dispersant include higher alcohols such as cetyl alcohol and lauryl alcohol, higher fatty acids such as lauric acid, palmitic acid, and stearic acid or esters thereof, aromatic hydrocarbons, higher aliphatic hydrocarbons, and chlorinated paraffins. And water-soluble polymers such as polyvinyl alcohol, hydroxymethyl cellulose, polyvinyl pyrrolidone and the like, and one or more of them can be used.

(重合開始剤)
塩化ビニル系重合体の水性分散液を製造する際には、重合開始剤を使用することができる。
例えば、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等の水溶性重合開始剤;ベンゾイルパーオキサイド,p−クロロベンゾイルパーオキサイド等の芳香族ジアシルパーオキサイド、カプロイルパーオキサイド,ラウロイルパーオキサイド等の脂肪族ジアシルパーオキサイド、アゾビスイソブチロニトリル,アゾビスイソバレロニトリル等のアゾ化合物、t−ブチルパーオキシピバレート等の有機酸のパーオキシジエステル、ジイソプロピルパーオキシジカーボネート,ジオクチルパーオキシジカーボネート等のパーオキシジカーボネート、アセチルシクロヘキシルスルホニルパーオキサイド等の油溶性開始剤が挙げられる。そして、これらは単独又は2種類以上の組合わせで用いることが可能である。
そして、重合温度が、重合開始剤の10時間半減期温度よりも低い場合は、重合温度をコントロールする目的で、例えばチオ硫酸ナトリウム、アスコルビン酸などの還元剤を単独で重合時に添加するか、硫酸鉄−アスコルビン酸、硫酸銅−アスコルビン酸のようなレドックス系開始剤との併用で重合を行ってもよい。
(Polymerization initiator)
A polymerization initiator can be used when producing an aqueous dispersion of a vinyl chloride polymer.
For example, water-soluble polymerization initiators such as potassium persulfate, ammonium persulfate and hydrogen peroxide; aromatic diacyl peroxides such as benzoyl peroxide and p-chlorobenzoyl peroxide; aliphatics such as caproyl peroxide and lauroyl peroxide Azo compounds such as diacyl peroxide, azobisisobutyronitrile, azobisisovaleronitrile, peroxy diesters of organic acids such as t-butyl peroxypivalate, diisopropyl peroxy dicarbonate, dioctyl peroxy dicarbonate, etc. Examples thereof include oil-soluble initiators such as peroxydicarbonate and acetylcyclohexylsulfonyl peroxide. And these can be used individually or in combination of 2 or more types.
When the polymerization temperature is lower than the 10-hour half-life temperature of the polymerization initiator, for the purpose of controlling the polymerization temperature, for example, a reducing agent such as sodium thiosulfate or ascorbic acid is added alone during the polymerization, or sulfuric acid is used. Polymerization may be performed in combination with a redox initiator such as iron-ascorbic acid or copper sulfate-ascorbic acid.

(2)ペースト用塩化ビニル系樹脂組成物
本ペースト用塩化ビニル系樹脂組成物は、上記のペースト用塩化ビニル系樹脂に、可塑剤、安定剤、充填剤、発泡剤等の配合剤を配合することにより得ることができる。
(可塑剤)
本可塑剤は、成型加工性に優れたゾル粘度と適当な硬度を有する成型品を得るために、使用するものである。
本可塑剤としては、塩化ビニル系樹脂加工に用いられるものであれば、特に制限はなく、使用することができる。
例えば、フタル酸ジ−n−ブチル、フタル酸ジ−2−エチルヘキシル(以下、DOPという)、フタル酸ジイソオクチル、フタル酸オクチルデシル、フタル酸ジイソデシル、フタル酸ブチルベンジル、イソフタル酸ジ−2−エチルヘキシル等のフタル酸系可塑剤;アジピン酸ジ−2−エチルヘキシル、アジピン酸ジ−n−デシル、アジピン酸ジイソデシル、アゼライン酸ジ−2−エチルヘキシル、セバシン酸ジブチル、セバシン酸ジ−2−エチルヘキシル等の脂肪酸エステル系可塑剤;リン酸トリブチル、リン酸トリ−2−エチルヘキシルジフェニル、リン酸トリクレジル等のリン酸エステル系可塑剤;エポキシ化大豆油、エポキシ化トール油、脂肪酸−2−エチルヘキシル等のエポキシ系可塑剤等があげられ、これらの1種又は2種以上を混合して使用してもよい。
可塑剤の使用量は、ペースト用塩化ビニル系樹脂100重量部に対し30〜200重量部、好ましくは40〜100重量部であることが好ましい。
(2) Vinyl chloride resin composition for paste The vinyl chloride resin composition for paste contains compounding agents such as a plasticizer, a stabilizer, a filler, and a foaming agent in the vinyl chloride resin for paste. Can be obtained.
(Plasticizer)
This plasticizer is used in order to obtain a molded product having a sol viscosity excellent in molding processability and an appropriate hardness.
The plasticizer is not particularly limited as long as it is used for vinyl chloride resin processing, and can be used.
For example, di-n-butyl phthalate, di-2-ethylhexyl phthalate (hereinafter referred to as DOP), diisooctyl phthalate, octyl decyl phthalate, diisodecyl phthalate, butyl benzyl phthalate, di-2-ethylhexyl isophthalate, etc. Phthalic acid plasticizers; fatty acid esters such as di-2-ethylhexyl adipate, di-n-decyl adipate, diisodecyl adipate, di-2-ethylhexyl azelate, dibutyl sebacate, di-2-ethylhexyl sebacate Phosphate plasticizers such as tributyl phosphate, tri-2-ethylhexyl diphenyl phosphate, tricresyl phosphate; Epoxy plasticizers such as epoxidized soybean oil, epoxidized tall oil, and fatty acid-2-ethylhexyl Such as one or more of these It may be used in the combined.
The amount of the plasticizer used is 30 to 200 parts by weight, preferably 40 to 100 parts by weight, based on 100 parts by weight of the vinyl chloride resin for paste.

(安定剤)
本安定剤は、成型加工性に優れたものを得るために、使用することができる。
例えば、鉛白、塩基性ケイ酸鉛、三塩基性硫酸鉛、三塩基性亜リン酸鉛、三塩基性フタル酸鉛等の無機鉛塩系安定剤;ステアリン酸、ラウリン酸、リシノール酸、ナフテン酸、2−エチルヘキソイン酸等の脂肪酸;ナフテン酸カドミウム、ナフテン酸バリウム、ナフテン酸カルシウム、ナフテン酸亜鉛、ナフテン酸スズ、ナフテン酸マグネシウム等の金属塩からなる金属石鹸;バリウム−カドミウム系、バリウム−亜鉛系、カドミウム−バリウム−亜鉛系、カルシウム−亜鉛系、マグネシウム−亜鉛系等の液状安定剤;ジブチルスズジラウレート、ジブチルスズマレエート、ジブチルスズメルカプチドのような有機スズ安定剤;その他にエポキシ系安定剤、有機亜リン酸化合物等が挙げられ、これら2種以上を混合して用いてもよい。
安定剤の使用量としては、ペースト用塩化ビニル系樹脂100重量部に対し1〜10重量部、好ましくは2〜5重量部であることが好ましい。
(Stabilizer)
This stabilizer can be used in order to obtain an excellent molding processability.
Inorganic lead salt stabilizers such as lead white, basic lead silicate, tribasic lead sulfate, tribasic lead phosphite, tribasic lead phthalate; stearic acid, lauric acid, ricinoleic acid, naphthene Acids, fatty acids such as 2-ethylhexoic acid; metal soaps composed of metal salts such as cadmium naphthenate, barium naphthenate, calcium naphthenate, zinc naphthenate, tin naphthenate, magnesium naphthenate; barium-cadmium, barium-zinc , Cadmium-barium-zinc, calcium-zinc, magnesium-zinc, etc. liquid stabilizers; organotin stabilizers such as dibutyltin dilaurate, dibutyltin maleate, dibutyltin mercaptide; other epoxy stabilizers, organic A phosphorous acid compound etc. are mentioned, and these 2 or more types may be mixed and used.
The amount of the stabilizer used is 1 to 10 parts by weight, preferably 2 to 5 parts by weight, based on 100 parts by weight of the vinyl chloride resin for paste.

(充填剤)
本充填剤は、製品の柔軟性、風合い、強度等のために使用するものである。
例えば、炭酸カルシウム、ケイソウ土、炭酸マグネシウムを併用することも可能である。
充填剤の使用量は、ペースト用塩化ビニル系樹脂100重量部に対し30〜300重量部、好ましくは50〜150重量部であることが好ましい。
(filler)
This filler is used for the flexibility, texture, strength, etc. of the product.
For example, calcium carbonate, diatomaceous earth, and magnesium carbonate can be used in combination.
The amount of filler used is 30 to 300 parts by weight, preferably 50 to 150 parts by weight, based on 100 parts by weight of the vinyl chloride resin for paste.

(発泡剤)
本発泡剤は、優れた発泡性を有するものを得るために、使用することができる。
例えば、重炭酸ナトリウム、重炭酸アンモニウム、亜硝酸アンモニウム、アミド化合物、ホウ水素化ナトリウム等の無機発泡剤;イソシアネート化合物、アゾ化合物、ヒドラジン誘導体、セミカルバジド化合物、アジ化合物、ニトロソ化合物、トリアゾール化合物等の有機系発泡剤等が挙げられ、これら各種発泡剤を2種以上を混合して使用してもよい。
また、必要に応じて、亜鉛華(酸化亜鉛)等の分解促進剤を併用することも可能である。 発泡剤の使用量としては、ペースト用塩化ビニル系樹脂100重量部に対し1〜20重量部、好ましくは2〜7重量部であることが好ましい。
(Foaming agent)
This foaming agent can be used in order to obtain what has the outstanding foamability.
For example, inorganic foaming agent such as sodium bicarbonate, ammonium bicarbonate, ammonium nitrite, amide compound, sodium borohydride; organic system such as isocyanate compound, azo compound, hydrazine derivative, semicarbazide compound, azide compound, nitroso compound, triazole compound A foaming agent etc. are mentioned, You may use these various foaming agents in mixture of 2 or more types.
Further, if necessary, a decomposition accelerator such as zinc white (zinc oxide) can be used in combination. The amount of the foaming agent used is 1 to 20 parts by weight, preferably 2 to 7 parts by weight, based on 100 parts by weight of the vinyl chloride resin for paste.

(その他の添加剤)
その他の添加剤として、必要に応じて、酸化チタン等の顔料、難燃剤、希釈剤等の有機溶媒等を添加しても差し支えない。
(Other additives)
As other additives, pigments such as titanium oxide, organic solvents such as flame retardants and diluents may be added as necessary.

本発明のペースト用塩化ビニル系樹脂は、強度(耐久性、反り防止、寸法安定性等)の点に優れた特性を有するが、特に低温特性(強度)において、特段の効果を奏する。
即ち、本発明のペースト用塩化ビニル系樹脂は、120〜160℃の強度が優れているから、タイルカーペットの製造の加熱処理は、120〜160℃での低温実施が可能となるため、加熱処理による基布の熱収縮が防止し得る。
従って、特に低温特性が要求される用途、例えば、パイルカーペット等に最適である。
The vinyl chloride resin for pastes of the present invention has excellent properties in terms of strength (durability, warpage prevention, dimensional stability, etc.), but has a particular effect particularly in low temperature properties (strength).
That is, since the vinyl chloride resin for paste of the present invention has excellent strength at 120 to 160 ° C., the heat treatment for manufacturing the tile carpet can be performed at a low temperature at 120 to 160 ° C. The thermal contraction of the base fabric due to can be prevented.
Therefore, it is most suitable for applications requiring low temperature characteristics, such as pile carpets.

以下、実施例等を挙げて本発明を更に詳細に説明するが、本発明はこれらのものに限定されない。
実施例等における塩化ビニル系重合体の、(1)平均粒径、(2)平均重合度、(3)引張強さは、以下の測定方法に基づいて測定した。
(1)平均粒径
強制遠心一斉沈降法粒度分布測定装置[BROOKHAVEN INSTRUMENT CORP.製、BI−DCP]を用い、1200ppmで回転しているディスクにスピン液として15mlのイオン交換水を入れ、次いでバッファ液としてメタノール1mlを、続いて試料濃度1重量%水分散液0.25mlを注入し、測定時間2時間にて塩化ビニル系重合体水性分散液の粒子又は乾燥により得られた顆粒の累積粒径分布を測定し、50重量%に相当する粒径を平均粒径とした。
(2)平均重合度
JIS−K6721(1997年)に準じて、測定した。
(3)引張強さ
23℃、相対湿度50%の雰囲気で、ペースト加工用塩化ビニル系樹脂100重量部及びジ−2−エチルヘキシルフタレート60重量部を擂漬機にて混練して得られたプラスチゾルを真空脱泡した後、ガラス板上に厚み1mmのシートをギアオープンで加熱成形し、測定はJIS−K7113に準じて行った。
(試験片:2号試験片、試験速度:100mm/min)
Hereinafter, although an example etc. are given and the present invention is explained still in detail, the present invention is not limited to these.
The (1) average particle diameter, (2) average degree of polymerization, and (3) tensile strength of the vinyl chloride polymers in Examples and the like were measured based on the following measurement methods.
(1) Average particle size Using a forced centrifugal simultaneous sedimentation particle size distribution analyzer [BROOKHAVEN INSTRUMENT CORP., BI-DCP], a disk rotating at 1200 ppm was charged with 15 ml of ion-exchanged water as a spin solution, and then buffered Inject 1 ml of methanol as the liquid, and then add 0.25 ml of the 1% by weight aqueous dispersion of the sample concentration, and measure the cumulative particle size of the particles of the aqueous vinyl chloride polymer dispersion or the granules obtained by drying for 2 hours. The distribution was measured, and the particle size corresponding to 50% by weight was defined as the average particle size.
(2) Average polymerization degree It measured according to JIS-K6721 (1997).
(3) A plastisol obtained by kneading 100 parts by weight of a vinyl chloride resin for paste processing and 60 parts by weight of di-2-ethylhexyl phthalate in an atmosphere of 23 ° C. and 50% relative humidity in a pickling machine. After vacuum defoaming, a sheet having a thickness of 1 mm was thermoformed with a gear open on a glass plate, and the measurement was performed according to JIS-K7113.
(Test piece: No. 2 test piece, test speed: 100 mm / min)

1.塩化ビニル重合体Aの製造
(製造例1)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫酸ナトリウム0.05重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、61℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Aを得た。
重合体の平均粒径は0.2μmであり、平均重合度は900であった。
1. Production of vinyl chloride polymer A (Production Example 1)
A 10 liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 parts by weight of potassium persulfate and 0.05 parts by weight of sodium lauryl sulfate, and each was purged with nitrogen and degassed under reduced pressure. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 61 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion A was obtained with almost no scale.
The average particle size of the polymer was 0.2 μm, and the average degree of polymerization was 900.

(製造例2)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫酸ナトリウム0.05重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、58.5℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Bを得た。
重合体の平均粒径は0.2μmであり、平均重合度は1000であった。
(Production Example 2)
A 10 liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 parts by weight of potassium persulfate and 0.05 parts by weight of sodium lauryl sulfate, and each was purged with nitrogen and degassed under reduced pressure. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 58.5 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion B was obtained with almost no scale.
The average particle size of the polymer was 0.2 μm, and the average degree of polymerization was 1000.

(製造例3)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫酸ナトリウム0.05重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、54℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Cを得た。
重合体の平均粒径は0.2μmであり、平均重合度は1200であった。
(Production Example 3)
A 10 liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 parts by weight of potassium persulfate and 0.05 parts by weight of sodium lauryl sulfate, and each was purged with nitrogen and degassed under reduced pressure. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 54 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion C was obtained with almost no scale.
The average particle size of the polymer was 0.2 μm, and the average degree of polymerization was 1200.

(製造例4)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫
酸ナトリウム0.05重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、50℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Dを得た。
重合体の平均粒径は0.2μmであり、平均重合度は1400であった。
(Production Example 4)
A 10 liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 parts by weight of potassium persulfate and 0.05 parts by weight of sodium lauryl sulfate, and each was purged with nitrogen and degassed under reduced pressure. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 50 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion D was obtained with almost no scale.
The average particle size of the polymer was 0.2 μm, and the average degree of polymerization was 1400.

(製造例5)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫酸ナトリウム0.05重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、48℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Eを得た。
重合体の平均粒径は0.2μmであり、平均重合度は1600であった。
(Production Example 5)
A 10 liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 parts by weight of potassium persulfate and 0.05 parts by weight of sodium lauryl sulfate, and each was purged with nitrogen and degassed under reduced pressure. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 48 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion E was obtained with almost no scale.
The average particle size of the polymer was 0.2 μm, and the average degree of polymerization was 1600.

(製造例6)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫酸ナトリウム0.30重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、50℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Fを得た。
重合体の平均粒径は0.1μmであり、平均重合度は1400であった。
(Production Example 6)
A 10-liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 part by weight of potassium persulfate and 0.30 part by weight of sodium lauryl sulfate, and each was purged with nitrogen and degassed under reduced pressure. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 50 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion F was obtained with almost no scale.
The average particle size of the polymer was 0.1 μm, and the average degree of polymerization was 1400.

(製造例7)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫酸ナトリウム0.02重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、50℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Gを得た。
重合体の平均粒径は0.3μmであり、平均重合度は1400であった。
(Production Example 7)
A 10-liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 part by weight of potassium persulfate and 0.02 part by weight of sodium lauryl sulfate, and each was subjected to nitrogen substitution and vacuum degassing. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 50 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. A stable polymer particle aqueous dispersion G was obtained with almost no scale.
The average particle size of the polymer was 0.3 μm, and the average degree of polymerization was 1400.

(製造例8)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水150重量部、過硫酸カリウム0.05重量部及びラウリル硫酸ナトリウム0.01重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら昇温し、50℃にて乳化重合を開始した。重合転化率10〜85重量%の期間に、ドデシルベンゼンスルホン酸ナトリウム5重量%水溶液を一定速度で15重量部注入した。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Hを得た。
重合体の平均粒径は0.4μmであり、平均重合度は1400であった。
(Production Example 8)
A 10-liter stainless steel stirrer and jacketed pressure-resistant reactor were charged with 150 parts by weight of deionized water, 0.05 parts by weight of potassium persulfate and 0.01 parts by weight of sodium lauryl sulfate, followed by nitrogen substitution and vacuum degassing. Repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and emulsion polymerization was started at 50 ° C. 15 parts by weight of a 5% by weight aqueous solution of sodium dodecylbenzenesulfonate was injected at a constant rate during a polymerization conversion rate of 10 to 85% by weight.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion H was obtained with almost no scale.
The average particle size of the polymer was 0.4 μm, and the average degree of polymerization was 1400.

2.塩化ビニル重合体Bの製造
(製造例9)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水120重量部、微細懸濁重合によって得られたラウリルパーオキサイドを重合体に対して2重量%を含有する平均粒径0.7μm粒子の30重量%の水性分散液12重量部及びドデシルベンゼンスルホン酸ナトリウム0.7重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら、昇温し、62℃にて播種微細懸濁重合を行った。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Iを得た。
重合体の平均粒径は1.4μmであり、平均重合度は900であった。
2. Production of vinyl chloride polymer B (Production Example 9)
In a 10-liter stainless steel stirrer and jacketed pressure-resistant reactor, 120 parts by weight of deionized water and an average particle size of 2% by weight of lauryl peroxide obtained by fine suspension polymerization, based on the polymer, were obtained. 12 parts by weight of an aqueous dispersion of 30% by weight of 7 μm particles and 0.7 parts by weight of sodium dodecylbenzenesulfonate were charged, and nitrogen substitution and vacuum degassing were repeated twice. Thereafter, 100 parts by weight of vinyl chloride was added, the temperature was increased while stirring, and seeding fine suspension polymerization was performed at 62 ° C.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion I was obtained with almost no scale.
The average particle size of the polymer was 1.4 μm, and the average degree of polymerization was 900.

(製造例10)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水120重量部、微細懸濁重合によって得られたラウリルパーオキサイドを重合体に対して2重量%を含有する平均粒径0.7μm粒子の30重量%の水性分散液12重量部及びドデシルベンゼンスルホン酸ナトリウム0.7重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら、昇温し、66℃にて播種微細懸濁重合を行った。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Jを得た。
重合体の平均粒径は1.4μmであり、平均重合度は770であった。
(Production Example 10)
In a 10-liter stainless steel stirrer and jacketed pressure-resistant reactor, 120 parts by weight of deionized water and an average particle size of 2% by weight of lauryl peroxide obtained by fine suspension polymerization, based on the polymer, were obtained. 12 parts by weight of an aqueous dispersion of 30% by weight of 7 μm particles and 0.7 parts by weight of sodium dodecylbenzenesulfonate were charged, and nitrogen substitution and vacuum degassing were repeated twice. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and seeding fine suspension polymerization was performed at 66 ° C.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion J was obtained with almost no scale.
The average particle size of the polymer was 1.4 μm, and the average degree of polymerization was 770.

(製造例11)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水120重量部、微細懸濁重合によって得られたラウリルパーオキサイドを重合体に対して2重量%を含有する平均粒径0.7μm粒子の30重量%の水性分散液12重量部及びドデシルベンゼンスルホン酸ナトリウム0.7重量部、チオグリコール酸2−エチルヘキシル0.05重量部を仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら、昇温し、66℃にて播種微細懸濁重合を行った。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Kを得た。
重合体の平均粒径は1.4μmであり、平均重合度は690であった。
(Production Example 11)
In a 10-liter stainless steel stirrer and jacketed pressure-resistant reactor, 120 parts by weight of deionized water and an average particle size of 2% by weight of lauryl peroxide obtained by fine suspension polymerization, based on the polymer, were obtained. Charge 12 parts by weight of an aqueous dispersion of 30% by weight of 7 μm particles, 0.7 parts by weight of sodium dodecylbenzenesulfonate and 0.05 parts by weight of 2-ethylhexyl thioglycolate, and repeat nitrogen substitution and vacuum degassing twice each. It was. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and seeding fine suspension polymerization was performed at 66 ° C.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion K was obtained with almost no scale.
The average particle size of the polymer was 1.4 μm, and the average degree of polymerization was 690.

(製造例12)
10リットルのステンレス製の攪拌機及びジャケット付き耐圧反応器に、脱イオン水120重量部、微細懸濁重合によって得られたラウリルパーオキサイドを重合体に対して2重量%を含有する平均粒径0.7μm粒子の30重量%の水性分散液12重量部及びドデシルベンゼンスルホン酸ナトリウム0.7重量部、チオグリコール酸2−エチルヘキシルを0.2重量部仕込み、窒素置換、減圧脱気を各2回繰り返した。その後、塩化ビニル100重量部を仕込み、攪拌しながら、昇温し、66℃にて播種微細懸濁重合を行った。
重合転化率が90重量%になった時点で冷却し、未反応単量体を除去した。スケールが殆どない状態で安定な重合体粒子水性分散液Lを得た。
重合体の平均粒径は1.4μmであり、平均重合度は600であった。
(Production Example 12)
In a 10-liter stainless steel stirrer and jacketed pressure-resistant reactor, 120 parts by weight of deionized water and an average particle size of 2% by weight of lauryl peroxide obtained by fine suspension polymerization, based on the polymer, were obtained. Charge 12 parts by weight of an aqueous dispersion of 30% by weight of 7 μm particles, 0.7 parts by weight of sodium dodecylbenzenesulfonate, and 0.2 parts by weight of 2-ethylhexyl thioglycolate. Repeat nitrogen replacement and vacuum degassing twice each. It was. Thereafter, 100 parts by weight of vinyl chloride was charged, the temperature was increased while stirring, and seeding fine suspension polymerization was performed at 66 ° C.
When the polymerization conversion rate reached 90% by weight, the system was cooled to remove unreacted monomers. Stable polymer particle aqueous dispersion L was obtained with almost no scale.
The average particle size of the polymer was 1.4 μm, and the average degree of polymerization was 600.

3.ペースト用塩化ビニル系樹脂の製造
(実施例1)
製造例3で得られた重合体粒子水性分散液C及び製造例10で得られた重合体粒子水性分散液Jを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が430の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.81N/mm、160℃×5minでは14.61N/mmであった。
3. Production of vinyl chloride resin for paste (Example 1)
The aqueous polymer particle dispersion C obtained in Production Example 3 and the aqueous polymer particle dispersion J obtained in Production Example 10 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion having a difference in average polymerization degree of the combined B of 430 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.81N / mm 2, 160 ℃ × In 5min 14.61N / mm 2.

(実施例2)
製造例4で得られた重合体粒子水性分散液D及び製造例11で得られた重合体粒子水性分散液Kを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が710の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.89N/mm、160℃×5minでは14.81N/mmであった。
(Example 2)
The aqueous polymer particle dispersion D obtained in Production Example 4 and the aqueous polymer particle dispersion K obtained in Production Example 11 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion having a difference in the average degree of polymerization of the polymer B of 710 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.89N / mm 2, 160 ℃ × In 5min 14.81N / mm 2.

(実施例3)
製造例6で得られた重合体粒子水性分散液F及び製造例11で得られた重合体粒子水性分散液Kを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が710の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.99N/mm、160℃×5minでは14.83N/mmであった。
(Example 3)
The aqueous polymer particle dispersion F obtained in Production Example 6 and the aqueous polymer particle dispersion K obtained in Production Example 11 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion having a difference in the average degree of polymerization of the polymer B of 710 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.99N / mm 2, 160 ℃ × In 5min 14.83N / mm 2.

(実施例4)
製造例4で得られた重合体粒子水性分散液D及び製造例11で得られた重合体粒子水性分散液Kを、固形分重量比で20/80の比率で混合し、重合体Aと重合体Bの平均重合度の差が710の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.78N/mm、160℃×5minでは14.59N/mmであった。
Example 4
The aqueous polymer particle dispersion D obtained in Production Example 4 and the aqueous polymer particle dispersion K obtained in Production Example 11 were mixed at a solid content weight ratio of 20/80, and the polymer A A polymer particle mixed aqueous dispersion having a difference in the average degree of polymerization of the polymer B of 710 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.78N / mm 2, 160 ℃ × In 5min 14.59N / mm 2.

(実施例5)
製造例4で得られた重合体粒子水性分散液D及び製造例11で得られた重合体粒子水性分散液Kを、固形分重量比で40/60の比率で混合し、重合体Aと重合体Bの平均重合度の差が710の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.81N/mm、160℃×5minでは14.87N/mmであった。
(Example 5)
The polymer particle aqueous dispersion D obtained in Production Example 4 and the polymer particle aqueous dispersion K obtained in Production Example 11 were mixed at a solid content weight ratio of 40/60, and the polymer A A polymer particle mixed aqueous dispersion having a difference in the average degree of polymerization of the polymer B of 710 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.81N / mm 2, 160 ℃ × In 5min 14.87N / mm 2.

(比較例1)
製造例1で得られた重合体粒子水性分散液A及び製造例9で得られた重合体粒子水性分散液Iを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が0の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.58N/mm、160℃×5minでは13.68N/mmであった。
(Comparative Example 1)
The polymer particle aqueous dispersion A obtained in Production Example 1 and the polymer particle aqueous dispersion I obtained in Production Example 9 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion in which the difference in the average degree of polymerization of the polymer B was 0 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.58N / mm 2, 160 ℃ × In 5min 13.68N / mm 2.

(比較例2)
製造例2で得られた重合体粒子水性分散液B及び製造例9で得られた重合体粒子水性分散液Iを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が100の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.61N/mm、160℃×5minでは13.98N/mmであった。
(Comparative Example 2)
The polymer particle aqueous dispersion B obtained in Production Example 2 and the polymer particle aqueous dispersion I obtained in Production Example 9 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion having an average polymerization degree difference of 100 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.61N / mm 2, 160 ℃ × In 5min 13.98N / mm 2.

(比較例3)
製造例5で得られた重合体粒子水性分散液E及び製造例12で得られた重合体粒子水性分散液Lを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が1000の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.68N/mm、160℃×5minでは13.02N/mmであった。
(Comparative Example 3)
The aqueous polymer particle dispersion E obtained in Production Example 5 and the aqueous polymer particle dispersion L obtained in Production Example 12 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion having a difference in the average degree of polymerization of the polymer B of 1000 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.68N / mm 2, 160 ℃ × In 5min 13.02N / mm 2.

(比較例4)
製造例5で得られた重合体粒子水性分散液E及び製造例9で得られた重合体粒子水性分散液Jを、固形分重量比で30/70の比率で混合した。
次いで、この混合重合体粒子水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.36N/mm、160℃×5minでは14.58N/mmであった。
(Comparative Example 4)
The polymer particle aqueous dispersion E obtained in Production Example 5 and the polymer particle aqueous dispersion J obtained in Production Example 9 were mixed at a solid weight ratio of 30/70.
Next, this mixed polymer particle aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.36N / mm 2, 160 ℃ × In 5min 14.58N / mm 2.

(比較例5)
製造例7で得られた重合体粒子水性分散液G及び製造例11で得られた重合体粒子水性分散液Kを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が710の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.71N/mm、160℃×5minでは14.46N/mmであった。
(Comparative Example 5)
The aqueous polymer particle dispersion G obtained in Production Example 7 and the aqueous polymer particle dispersion K obtained in Production Example 11 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion having a difference in the average degree of polymerization of the polymer B of 710 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.71N / mm 2, 160 ℃ × In 5min 14.46N / mm 2.

(比較例6)
製造例8で得られた重合体粒子水性分散液H及び製造例11で得られた重合体粒子水性分散液Kを、固形分重量比で30/70の比率で混合し、重合体Aと重合体Bの平均重合度の差が710の重合体粒子混合水性分散液を得た。
次いで、得られた重合体粒子混合水性分散液を噴霧乾燥機にて乾燥後、ハンマーミルにて粉砕して、ペースト用塩化ビニル樹脂を得た。
得られた塩化ビニル樹脂の引張強さは、120℃×5minでは2.61N/mm、160℃×5minでは13.87N/mmであった。
(Comparative Example 6)
The aqueous polymer particle dispersion H obtained in Production Example 8 and the aqueous polymer particle dispersion K obtained in Production Example 11 were mixed at a solid content weight ratio of 30/70, and the polymer A A polymer particle mixed aqueous dispersion having a difference in the average degree of polymerization of the polymer B of 710 was obtained.
Next, the obtained polymer particle mixed aqueous dispersion was dried with a spray dryer and pulverized with a hammer mill to obtain a vinyl chloride resin for paste.
The resulting tensile strength of vinyl chloride resin was 120 ° C. × In 5min 2.61N / mm 2, 160 ℃ × In 5min 13.87N / mm 2.

以上の結果に基づいて、塩化ビニル系重合体A及び塩化ビニル系重合体Bの平均重合度の影響は表1に、塩化ビニル系重合体Aの平均粒径の影響は表2に、塩化ビニル系重合体Aと塩化ビニル系重合体Bの割合の影響は表3に、それぞれ示す。   Based on the above results, the influence of the average polymerization degree of the vinyl chloride polymer A and the vinyl chloride polymer B is shown in Table 1, the influence of the average particle diameter of the vinyl chloride polymer A is shown in Table 2, and the vinyl chloride. Table 3 shows the influence of the proportions of the polymer A and the vinyl chloride polymer B.

Figure 2009001695
Figure 2009001695













Figure 2009001695
Figure 2009001695











Figure 2009001695
Figure 2009001695













上記の表1〜3の結果から、以下のことがいえる。
(1)要件2と3を満足しても、要件1を満足しないと、120〜160℃の強度、特に120℃の強度はよくない(比較例3、5、6)。
(2)要件1と3を満足しても、要件2を満足しないと、120〜160℃の強度、特に120℃の強度はよくない(比較例2)。
(3)要件1と2を満足しても、要件3を満足しないと、120〜160℃の強度、特に120℃の強度はよくない(比較例7)。
(4)これに対して、要件1〜3の全てを満足すると、120〜160℃の強度、特に120℃の強度は優れている(実施例1〜6)
以上のことから、本発明の要件1〜3の全てを満足しないと、所期の目的が達成できないことが分かる。
From the results shown in Tables 1 to 3, the following can be said.
(1) Even if the requirements 2 and 3 are satisfied, if the requirement 1 is not satisfied, the strength at 120 to 160 ° C., particularly the strength at 120 ° C. is not good (Comparative Examples 3, 5, and 6).
(2) Even if the requirements 1 and 3 are satisfied, if the requirement 2 is not satisfied, the strength at 120 to 160 ° C., particularly the strength at 120 ° C. is not good (Comparative Example 2).
(3) Even if the requirements 1 and 2 are satisfied, if the requirement 3 is not satisfied, the strength at 120 to 160 ° C., particularly the strength at 120 ° C. is not good (Comparative Example 7).
(4) On the other hand, when all the requirements 1 to 3 are satisfied, the strength of 120 to 160 ° C., particularly the strength of 120 ° C. is excellent (Examples 1 to 6).
From the above, it can be seen that the intended purpose cannot be achieved unless all of the requirements 1 to 3 of the present invention are satisfied.

強度(耐久性、反り防止、寸法安定性等)が要求される用途、例えば、パイルカーペット等に最適である。







It is optimal for applications that require strength (durability, warpage prevention, dimensional stability, etc.), such as pile carpets.







Claims (4)

塩化ビニル系樹脂が、以下の要件1を満たす塩化ビニル系重合体Aと要件2を満たす塩化ビニル系重合体Bからなるものであって、しかも該重合体Aと重合体Bの関係が、以下の要件3を満たすことを特徴とするペースト用塩化ビニル系樹脂。
要件1:塩化ビニル系重合体A
平均粒径0.1〜0.25μm、
平均重合度1000〜1400
要件2:塩化ビニル系重合体B
平均粒径1.0〜2.5μm、
平均重合度600〜800
要件3:塩化ビニル系重合体Aと塩化ビニル系重合体Bの割合
塩化ビニル系重合体A15〜40重量%、
塩化ビニル系重合体B60〜85重量%
The vinyl chloride resin is composed of a vinyl chloride polymer A satisfying the following requirement 1 and a vinyl chloride polymer B satisfying the requirement 2, and the relationship between the polymer A and the polymer B is as follows: A vinyl chloride resin for paste, which satisfies the requirement 3 of the above.
Requirement 1: Vinyl chloride polymer A
Average particle size 0.1-0.25 μm,
Average degree of polymerization 1000-1400
Requirement 2: Vinyl chloride polymer B
Average particle size 1.0-2.5 μm,
Average polymerization degree 600-800
Requirement 3: Ratio of vinyl chloride polymer A and vinyl chloride polymer B
Vinyl chloride polymer A 15 to 40% by weight,
Vinyl chloride polymer B60-85% by weight
要件1を満たす塩化ビニル系重合体Aの分散水溶液と要件2を満たす塩化ビニル系重合体Bの分散水溶液を、要件3を満たすように配合して得た、要件1〜要件3を満たす塩化ビニル系樹脂の分散水溶液を噴霧乾燥することを特徴とする請求項1記載のペースト用塩化ビニル系樹脂の製造方法。   Vinyl chloride satisfying requirements 1 to 3 obtained by blending a dispersion aqueous solution of vinyl chloride polymer A satisfying requirement 1 and a dispersion aqueous solution of vinyl chloride polymer B satisfying requirement 2 so as to satisfy requirement 3. 2. The method for producing a vinyl chloride resin for paste according to claim 1, wherein the aqueous dispersion of the resin is spray-dried. 請求項1記載のペースト用塩化ビニル系樹脂及び可塑剤からなる配合剤から構成されるペースト用塩化ビニル系樹脂組成物。   A vinyl chloride resin composition for paste, comprising a compounding agent comprising the vinyl chloride resin for paste according to claim 1 and a plasticizer. 配合剤が、安定剤、充填剤、又は発泡剤からなる群の一種又は二種以上からなる成分を含有するものである請求項3記載のペースト用塩化ビニル系樹脂組成物。






4. The vinyl chloride resin composition for paste according to claim 3, wherein the compounding agent contains one or more components of the group consisting of a stabilizer, a filler, or a foaming agent.






JP2007164808A 2007-06-22 2007-06-22 Vinyl chloride resin for paste and vinyl chloride resin composition for paste Active JP5118396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164808A JP5118396B2 (en) 2007-06-22 2007-06-22 Vinyl chloride resin for paste and vinyl chloride resin composition for paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164808A JP5118396B2 (en) 2007-06-22 2007-06-22 Vinyl chloride resin for paste and vinyl chloride resin composition for paste

Publications (2)

Publication Number Publication Date
JP2009001695A true JP2009001695A (en) 2009-01-08
JP5118396B2 JP5118396B2 (en) 2013-01-16

Family

ID=40318446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164808A Active JP5118396B2 (en) 2007-06-22 2007-06-22 Vinyl chloride resin for paste and vinyl chloride resin composition for paste

Country Status (1)

Country Link
JP (1) JP5118396B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102313A (en) * 2010-10-13 2012-05-31 Aisin Chemical Co Ltd Sound absorption undercoat composition
US20180039170A1 (en) * 2015-02-27 2018-02-08 Canon Kabushiki Kaisha Nanonimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing cured product pattern, method for manufacturing optical component, and method for manufacturing circuit board
JP2021100989A (en) * 2019-12-24 2021-07-08 東ソー株式会社 Paste vinyl chloride-based resin
JP2021116328A (en) * 2020-01-23 2021-08-10 東ソー株式会社 Hydroxy group-containing vinyl chloride copolymer composition particle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152951A (en) * 1976-06-16 1977-12-19 Mitsubishi Plastics Ind Ltd Impact-resistant vinyl chloride resin composition
JPS5976579A (en) * 1982-10-26 1984-05-01 Sumitomo Electric Ind Ltd Anticorrosion method of metallic body
JPH06107887A (en) * 1992-09-29 1994-04-19 Nippon Zeon Co Ltd Plastisol
JPH07207094A (en) * 1994-01-12 1995-08-08 Bando Chem Ind Ltd Polyvinyl chloride film
JPH07304920A (en) * 1994-05-13 1995-11-21 Sekisui Chem Co Ltd Vinyl chloride paste resin composition
JPH08259761A (en) * 1995-03-17 1996-10-08 Nippon Zeon Co Ltd Plastisol composition
JPH1135873A (en) * 1997-07-23 1999-02-09 Shindaiichi Enbi Kk Vinyl chloride resin granule for paste processing and its production
JPH1180479A (en) * 1997-07-08 1999-03-26 Tosoh Corp Vinyl chloride resin for paste processing, vinyl chloride resin composition for paste processing and foam derived therefrom
JP2000290307A (en) * 1996-08-27 2000-10-17 Atofina Latex of vinyl-chloride-based polymer having two particle diameter distributions and having high fine content, production of same, and use of same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52152951A (en) * 1976-06-16 1977-12-19 Mitsubishi Plastics Ind Ltd Impact-resistant vinyl chloride resin composition
JPS5976579A (en) * 1982-10-26 1984-05-01 Sumitomo Electric Ind Ltd Anticorrosion method of metallic body
JPH06107887A (en) * 1992-09-29 1994-04-19 Nippon Zeon Co Ltd Plastisol
JPH07207094A (en) * 1994-01-12 1995-08-08 Bando Chem Ind Ltd Polyvinyl chloride film
JPH07304920A (en) * 1994-05-13 1995-11-21 Sekisui Chem Co Ltd Vinyl chloride paste resin composition
JPH08259761A (en) * 1995-03-17 1996-10-08 Nippon Zeon Co Ltd Plastisol composition
JP2000290307A (en) * 1996-08-27 2000-10-17 Atofina Latex of vinyl-chloride-based polymer having two particle diameter distributions and having high fine content, production of same, and use of same
JPH1180479A (en) * 1997-07-08 1999-03-26 Tosoh Corp Vinyl chloride resin for paste processing, vinyl chloride resin composition for paste processing and foam derived therefrom
JPH1135873A (en) * 1997-07-23 1999-02-09 Shindaiichi Enbi Kk Vinyl chloride resin granule for paste processing and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102313A (en) * 2010-10-13 2012-05-31 Aisin Chemical Co Ltd Sound absorption undercoat composition
US20180039170A1 (en) * 2015-02-27 2018-02-08 Canon Kabushiki Kaisha Nanonimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing cured product pattern, method for manufacturing optical component, and method for manufacturing circuit board
JP2021100989A (en) * 2019-12-24 2021-07-08 東ソー株式会社 Paste vinyl chloride-based resin
JP7413766B2 (en) 2019-12-24 2024-01-16 東ソー株式会社 Paste vinyl chloride resin
JP2021116328A (en) * 2020-01-23 2021-08-10 東ソー株式会社 Hydroxy group-containing vinyl chloride copolymer composition particle

Also Published As

Publication number Publication date
JP5118396B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
EP2344448B1 (en) Fluoroalkyl ether sulfonate surfactants
JPH04216850A (en) Polyvinyl chloride plastisol composition
JP5118396B2 (en) Vinyl chloride resin for paste and vinyl chloride resin composition for paste
JP5261903B2 (en) Vinyl chloride resin for paste processing, vinyl chloride resin composition for paste processing, and molded article
KR101530335B1 (en) Polyvinyl chloride paste resin and Method for preparing the same
JP7243310B2 (en) Vinyl chloride resin composite and vinyl chloride resin composition using the same
JP4955845B2 (en) Vinyl chloride resin for paste and vinyl chloride resin composition for paste comprising the same
JP4036019B2 (en) Vinyl chloride resin latex, vinyl chloride resin for paste processing, its production method, vinyl chloride resin composition for paste processing and uses
JP3218647B2 (en) Adhesive plastisol composition and sealant between metal plates using the composition
JPH11217479A (en) Polastisol composition and molded product
JP5003692B2 (en) Method for producing vinyl chloride resin for paste
CN113748139A (en) Process for producing vinyl chloride-based polymer
KR102345310B1 (en) Vinyl chloride polymer and preparation method thereof
JP2021169568A (en) Vinyl chloride resin composition for pasting and applications thereof
JP2533797B2 (en) Process for producing vinyl chloride polymer composition for paste dispersion
JP2006306963A (en) Vinyl chloride-based paste resin
JP3328980B2 (en) Plastisol composition
JP4122835B2 (en) Paste vinyl chloride resin, method for producing the same, and resin composition using the same
JP2855691B2 (en) Method for producing vinyl chloride copolymer
JP2756995B2 (en) Method for producing vinyl chloride copolymer
JP4481483B2 (en) Method for producing plastisol acrylic resin
US20220220232A1 (en) Composition for polymerizing vinyl chloride-based polymer and method for preparing vinyl chloride-based polymer using same
JP2782805B2 (en) Method for producing vinyl chloride copolymer
EP3865526B1 (en) Composition for polymerizing vinyl chloride-based polymer, and method for preparing vinyl chloride-based polymer using same
KR101338652B1 (en) Method for producing plastisol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

R150 Certificate of patent or registration of utility model

Ref document number: 5118396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250