JP2008543790A - Treatment of short bowel syndrome - Google Patents

Treatment of short bowel syndrome Download PDF

Info

Publication number
JP2008543790A
JP2008543790A JP2008516083A JP2008516083A JP2008543790A JP 2008543790 A JP2008543790 A JP 2008543790A JP 2008516083 A JP2008516083 A JP 2008516083A JP 2008516083 A JP2008516083 A JP 2008516083A JP 2008543790 A JP2008543790 A JP 2008543790A
Authority
JP
Japan
Prior art keywords
arginine
bowel syndrome
short bowel
donor
egf receptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008516083A
Other languages
Japanese (ja)
Inventor
ハーディン・ジェイムズ・エイ.
ビュレー・アンドレ・ジェラルド
Original Assignee
ユニバーシティー・テクノロジーズ・インターナショナル・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーシティー・テクノロジーズ・インターナショナル・インコーポレイテッド filed Critical ユニバーシティー・テクノロジーズ・インターナショナル・インコーポレイテッド
Publication of JP2008543790A publication Critical patent/JP2008543790A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1808Epidermal growth factor [EGF] urogastrone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Obesity (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

短腸症候群を治療または予防するための薬剤組成物を提供する。組成物は、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを含む。組成物は、短腸症候群において体重を増加させ、腸内吸収表面積を増加させることが示されている。投与単位、治療方法、使用およびキットも提供される。  A pharmaceutical composition for treating or preventing short bowel syndrome is provided. The composition comprises an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor. The composition has been shown to increase body weight and increase intestinal absorption surface area in short bowel syndrome. Dosage units, methods of treatment, uses and kits are also provided.

Description

本発明は、一般的には、短腸症候群(SBS)または結腸の切除、小腸の切除および小腸大量切除を含む状態を治療または予防するための組成物および方法に関する。   The present invention generally relates to compositions and methods for treating or preventing conditions involving short bowel syndrome (SBS) or colon resection, small intestine resection, and large intestinal resection.

短腸症候群(SBS)は、小腸の主要部を外科的に切除した後に生じるさまざまな吸収不良として定義される。この症候群は栄養素の吸収不良を特徴とする。SBSは、早産児から成人まで、すべての年齢の人々に影響を及ぼす。有意な長さの小腸の外科的除去が必要とされ、SBSを引き起こす多くの状態が存在し、限定されないが、壊死性腸炎(NEC)、腹壁欠損、空腸回腸閉鎖、中腸腸捻転および炎症性腸疾患を含む。   Short bowel syndrome (SBS) is defined as various malabsorption that occurs after surgical removal of the main part of the small intestine. This syndrome is characterized by poor malabsorption of nutrients. SBS affects people of all ages, from premature infants to adults. Surgical removal of the small intestine of significant length is required and there are many conditions that cause SBS, including but not limited to necrotizing enterocolitis (NEC), abdominal wall defects, jejunal ileal closure, midgut torsion and inflammatory bowel Including disease.

乳児の場合、SBSは、例えば壊死性腸炎(NEC)または腸捻転の外科的介入後、多くの事象により引き起こされ得る。SBSは、発育不良、成長障害および重度の発達障害、ならびに死亡となり得る栄養素の吸収の低下を引き起こす(Buchman,A.L.ら、1994年;Strong,S.A.ら、1999年)。更に、小児は、長期間にわたる完全非経口栄養により誘発される胆汁うっ滞に続発する末期肝臓疾患の発症へと進行し得る。   In infants, SBS can be caused by a number of events, for example after surgical intervention of necrotizing enterocolitis (NEC) or intestinal torsion. SBS causes stunting, growth disorders and severe developmental disorders, and reduced absorption of nutrients that can be fatal (Buchman, AL, et al., 1994; Strong, SA, et al., 1999). In addition, children can progress to the development of end-stage liver disease secondary to cholestasis induced by long-term complete parenteral nutrition.

成人の場合、SBSは、例えばクローン病および他の病気の外科的介入など多くの要因によって起こる可能性があり、栄養素の吸収の低下、時には特定の必須栄養素の欠損をもたらす。これは、遠位回腸が切除されたときに起こる。遠位回腸は、特定の必須栄養素(例えば、ビタミンB12および他の脂溶性ビタミン)の吸収および胆汁酸塩の吸収のためのメカニズムを発現する。成人の場合、SBSは、乳児の場合よりも生命を脅かす危険性は少ないが、深刻なライフスタイルの変化、例えば、慢性の下痢、慢性の脱水症、筋痙攣、完全非経口栄養(TPN)への依存、感染症およびビタミンB12などの外因性栄養補給剤への依存をもたらし得る。   In adults, SBS can be caused by many factors, such as surgical intervention for Crohn's disease and other illnesses, resulting in reduced nutrient absorption and sometimes certain essential nutrient deficiencies. This occurs when the distal ileum is removed. The distal ileum develops mechanisms for the absorption of certain essential nutrients (eg, vitamin B12 and other fat-soluble vitamins) and the absorption of bile salts. In adults, SBS is less life-threatening than in infants, but to serious lifestyle changes such as chronic diarrhea, chronic dehydration, muscle spasms, total parenteral nutrition (TPN) Dependence, infections and dependence on exogenous nutritional supplements such as vitamin B12.

数多くの研究者らが、小腸大量切除後の腸の適応におけるEGFの役割を実証している(Chaet,M.S.ら、1994年;Dunn,J.C.ら、1997年;O’Loughlin,E.V.ら、1994年;Sham,J.ら、2002年;Shin,C.E.ら、1998年;Thompson,J.S.、1999年)。EGF治療は、小腸大量切除に応じて、残存腸における、粘膜過形成を増加させ(Chaet,M.S.ら、1994年;Goodlad,R.A.ら、1988年;Shin,C.E.ら、1998年)、グルコース吸収(Hardin,J.A.ら、1997年;O’Loughlin,E.V.ら、1994年)および消化酵素発現(Dunn,J.C.ら、1997年;O’Loughlin,E.V.ら、1994年)を増大させる。EGFの内因性産生の主要源は唾液腺からである。小腸切除後の適応力は唾液腺切除術により弱まり、外因性EGFを用いることによりこれを回復に向かわせられる(Helmrath,M.A.ら、1998年)。残存腸において、EGF受容体の発現が増大する(Avissar,N.E.ら、2000年;Warner,B.W.ら、1997年)。適応力は欠損したEGF受容体を有する動物において弱められ(Helmrath,M.A.ら、1997年)、腸におけるEGFの過剰発現は小腸切除後の適応力を高める(Erwin,C.R.ら、1999年)。更に、EGF治療は、小腸大量切除後の腸細胞のアポトーシス率を抑制し、EGFの能力に寄与して障壁の完全性を維持し得る効果が示されている(Stern,L.E.ら、2000年)。最後に、最近行われたヒト臨床試験において、腸の長さが通常の<50%である5人のSBS小児患者が経口的な組み換えヒトEGFによる治療を受けた。EGF治療は、3−O−メチルグルコース吸収および食事耐性を増大させ、すべての患者の体重が増加した。この治療法に関連する有害事象は存在しなかった(Sigalet,D.ら、2005年)。   Numerous researchers have demonstrated the role of EGF in intestinal adaptation after massive resection of the small intestine (Chaet, MS et al., 1994; Dunn, JC et al., 1997; O'Loughlin , EV et al., 1994; Sham, J. et al., 2002; Shin, CE et al., 1998; Thompson, JS, 1999). EGF treatment increases mucosal hyperplasia in the residual intestine in response to massive resection of the small intestine (Chaet, MS et al., 1994; Goodlad, RA et al., 1988; Shin, CE 1998), glucose absorption (Hardin, JA et al., 1997; O'Loughlin, EV et al., 1994) and digestive enzyme expression (Dunn, JC. Et al., 1997; O 'Loughlin, EV et al., 1994). The main source of endogenous production of EGF is from the salivary glands. Adaptability after resection of the small intestine is weakened by salivary gland excision, which can be recovered by using exogenous EGF (Helmrat, MA et al., 1998). In the remaining intestine, EGF receptor expression is increased (Avissar, NE et al., 2000; Warner, BW et al., 1997). Adaptability is weakened in animals with deficient EGF receptors (Helmrat, MA et al., 1997), and overexpression of EGF in the intestine enhances adaptability after small bowel resection (Erwin, CR et al. 1999). Furthermore, EGF treatment has been shown to suppress the rate of apoptosis of enterocytes after massive resection of the small intestine and contribute to the ability of EGF to maintain the integrity of the barrier (Stern, LE et al., 2000). Finally, in a recent human clinical trial, five SBS pediatric patients with normal <50% intestinal length were treated with oral recombinant human EGF. EGF treatment increased 3-O-methylglucose absorption and diet tolerance, and all patients gained weight. There were no adverse events associated with this therapy (Sigalet, D. et al., 2005).

内因性アルギニン産生の主要源、血漿中のL−アルギニンおよびL−シトルリンは、小腸大量切除後に適応することができない小児患者において減少し(Wasa,M.ら、1999年)、SBSを伴わずに完全非経口栄養(TPN)に依存している患者に比べ、SBSを伴ってTPNに依存している成人および小児患者においても減少する(Wasa,M.ら、1999年)。L−シトルリンは、主に、腸におけるグルタミンの分解により産生され、小腸大量切除が行われたラットにおいて、L−シトルリン産生の減少(Chen,K.ら、1996年;Dejong,C.H.ら、1998年)、腸におけるグルタミン取り込みの減少(Chen,K.ら、1996年)および腎臓におけるシトルリンからアルギニンへの変換の減少(Dejong,C.H.ら、1998年)が報告されている。アルギニン欠乏食を与えられた切除ラットは、体重減少、負の窒素バランスおよび著しく減少した筋中アルギニン濃度を示し、小腸大量切除後、アルギニンが必須アミノ酸となることを示唆している(Wakabayashi,Y.ら、1994年)。   The major sources of endogenous arginine production, L-arginine and L-citrulline in plasma are reduced in pediatric patients who cannot be adapted after massive resection of the small intestine (Wasa, M. et al., 1999) without SBS It is also reduced in adult and pediatric patients who are dependent on TPN with SBS compared to patients who are dependent on total parenteral nutrition (TPN) (Wasa, M. et al., 1999). L-citrulline is produced mainly by degradation of glutamine in the intestine and decreased L-citrulline production (Chen, K. et al. 1996; Dejong, CH et al. 1998), decreased glutamine uptake in the intestine (Chen, K. et al., 1996) and reduced conversion of citrulline to arginine in the kidney (Dejung, CH. Et al., 1998). Resected rats fed an arginine deficient diet show weight loss, negative nitrogen balance, and markedly reduced muscle arginine concentrations, suggesting that arginine becomes an essential amino acid after massive resection of the small intestine (Wakabayashi, Y Et al., 1994).

切除後の腸の適応におけるアルギニンの役割について調べた幾つかの研究は、矛盾する結果をもたらした。小腸大量切除が行われたラットにおいて、L−アルギニンを有する基本食の補給は、構造的適応力を増大させた(Hebiguchi,T.ら、1997年)。Camliら(2005年)は、SBSのモデルにおいて、腹腔内アルギニン投与後の体重増加および腸の適応力の増大を報告した。彼らは、また、アルギニン投与後の血清中、唾液中および尿中EGFの増大についても指摘しており、アルギニンの有益な効果がEGFレベルの上方調節によるものであり得ると結論付けている。腹腔内L−アルギニン投与は、90%の小腸切除が行われたラットにおいて、体重増加、細胞増殖および構造的適応力を増大させることが報告されている(Ozturk,H.ら、2002年)。小腸大量切除後のラットへのグルタミンおよびアルギニンの前駆体、オルニチンアルファ−ケトグルタラートの経口供給は、腸の構造的適応力、オルニチンデカルボキシラーゼ活性およびオルニチン含有量、ならびに血漿中および筋肉中のグルタミンレベルを増大させることが報告されている(Dumas,F.ら、1998年)。逆に、SBSのラットモデルにおいて、飲用水でL−アルギニンを与えられた動物は、非治療SBSラットに比べ、空腸および回腸重量が減少し、腸細胞のアポトーシス率が増加するとともに、残存腸の構造的適応力が低下することを示した(Sukhotnikら、2003年)。SBSのラットモデルにおける皮下アルギニン投与は、腸におけるタンパク質の合成およびグルタミンの取り込みを減少させ、アルギニンを与えられたラットにおいては腸透過性が改善されたものの、適応プロセスが抑制されたことを示す(Welters,C.F.ら、1999年)。SBSのモデルにおいて、アルギニンの非経口投与は、非治療切除動物と比べ、腸の適応力を弱めた(Sukhotnikら、2005年)。小腸大量切除が行われたラットへのグルタミン補強TPNの投与は、腸におけるグルタミンの取り込み、粘膜のグルタミナーゼ活性、ならびに粘膜のDNAおよびタンパク質含有量を有意に増大させたが、対照に比べ、血中L−アルギニンレベルを減少させた(Chen,K.ら、1996年)。最後に、無アルギニン食を5日間与えられ、腸を切除してからの平均経過時間が46か月の安定したSBS患者は、血漿中のアルギニン、オルニチンおよびヒドロキシプロリンレベルの有意な減少、ならびにオロチン酸および窒素化合物の尿中排出量の変化を示したが、不利な臨床事象を何ら伴わなかった(Pitaら、2004年)。   Several studies examining the role of arginine in post-resectal intestinal adaptation have produced conflicting results. In rats that underwent massive resection of the small intestine, supplementation with a basic diet with L-arginine increased structural fitness (Hebigichi, T. et al., 1997). Camli et al. (2005) reported increased body weight and increased intestinal adaptability after intraperitoneal arginine administration in a model of SBS. They also point to increases in serum, saliva and urine EGF after arginine administration, and conclude that the beneficial effects of arginine may be due to upregulation of EGF levels. Intraperitoneal L-arginine administration has been reported to increase body weight gain, cell proliferation and structural fitness in rats undergoing 90% small bowel resection (Ozturk, H. et al., 2002). Oral delivery of glutamine and arginine precursor, ornithine alpha-ketoglutarate, to the rat after massive resection of the small intestine is related to intestinal structural fitness, ornithine decarboxylase activity and ornithine content, and glutamine in plasma and muscle It has been reported to increase levels (Dumas, F. et al., 1998). Conversely, in the rat model of SBS, animals given L-arginine in drinking water have reduced jejunum and ileal weights, increased enterocyte apoptosis rate, and residual intestinal It has been shown that structural adaptability is reduced (Sukhotnik et al., 2003). Subcutaneous arginine administration in a rat model of SBS reduced protein synthesis and glutamine uptake in the intestine, indicating that although the intestinal permeability was improved in rats given arginine, the adaptation process was suppressed ( Welters, CF et al., 1999). In a model of SBS, parenteral administration of arginine weakened the intestinal adaptability compared to untreated excised animals (Sukhotnik et al., 2005). Administration of glutamine-reinforced TPN to rats undergoing massive resection of the small intestine significantly increased intestinal glutamine uptake, mucosal glutaminase activity, and mucosal DNA and protein content, but compared to controls, L-arginine levels were reduced (Chen, K. et al., 1996). Finally, stable SBS patients who were fed a arginine-free diet for 5 days and had an average elapsed time of 46 months after resection of the intestine had a significant decrease in plasma arginine, ornithine and hydroxyproline levels, and orotine It showed changes in urinary excretion of acids and nitrogen compounds, but with no adverse clinical events (Pita et al., 2004).

しかし、SBSに対する現在の治療法の選択肢は依然として限られている。蠕動運動を抑制し、且つ、胃酸を減少させるために、薬に加えて、特別食が処方される。時間が経っても治癒しないSBSの場合は、生涯にわたる治療が必要になり得る。重度の場合においては、静脈内に投与される流動食または小腸移植手術が考慮される。   However, current treatment options for SBS remain limited. In addition to drugs, a special diet is prescribed to suppress peristalsis and reduce gastric acid. For SBS that does not heal over time, lifelong treatment may be required. In severe cases, a liquid food or small intestine transplantation administered intravenously is considered.

本発明の1つの態様は、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを含み、アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比が、1:454000000〜1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜1:45000(モル:モル)である、短腸症候群を治療または予防するための組成物を提供することである。組成物は固体形態、凍結乾燥形態または溶液形態であり得る。溶液は、ヒトへの経口送達、例えばヒトへの経腸送達に適し得る。また、溶液は、静脈内投与に適し得る。EGF受容体アゴニストはEGFであり、合成され、場合により化学合成もしくは組み換え技術によって製造され、または天然源に由来し得る。組成物はL−アルギニンを含んでもよい。組成物は、短腸症候群の人、または短腸症候群のリスクがある人において体重を増加させる目的で使用され得る。また、組成物は、短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用され得る。EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比は1:100,000(モル:モル)であり得る。   One aspect of the present invention comprises an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor, wherein the agonist and L-arginine, a biological equivalent of L-arginine or The ratio with the NO donor is 1: 4540000-1: 1 (mol: mol), or 1: 45400000 to about 1: 4500 (mol: mol), or 1: 4540000-1: 45000 (mol: mol). It is to provide a composition for treating or preventing short bowel syndrome. The composition can be in solid form, lyophilized form or solution form. The solution may be suitable for oral delivery to humans, for example enteral delivery to humans. The solution may also be suitable for intravenous administration. The EGF receptor agonist is EGF and can be synthesized, optionally produced by chemical synthesis or recombinant techniques, or derived from natural sources. The composition may comprise L-arginine. The composition can be used for weight gain purposes in persons with short bowel syndrome or at risk for short bowel syndrome. The composition can also be used for the purpose of increasing the absorbed surface area of the intestine in persons with short bowel syndrome or at risk for short bowel syndrome. The ratio of EGF receptor agonist to L-arginine, a biological equivalent of L-arginine or a NO donor can be 1: 100,000 (mol: mol).

本発明の別の態様は、製薬上許容される液体で溶解して、短腸症候群のリスクがある、または短腸症候群と診断された被検体に経口投与するのに適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む投与単位を提供することである。該液体は、水、生理食塩水、乳児用特殊調製乳、緩衝液、搾乳した母乳、他の適切な担体、およびそれらの組み合わせからなる群から選択され得る。アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比は、1:454000000〜1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜1:45000(モル:モル)であり得る。EGF受容体アゴニストはEGFであり、投与単位はL−アルギニンを含んでもよい。   Another aspect of the invention is L-arginine, dissolved in a pharmaceutically acceptable liquid, suitable for oral administration to a subject at risk of short bowel syndrome or diagnosed with short bowel syndrome, It is to provide a dosage unit comprising a biological equivalent of L-arginine or a NO donor and an EGF receptor agonist. The liquid may be selected from the group consisting of water, saline, infant formula, buffer, milked milk, other suitable carriers, and combinations thereof. The ratio of agonist to L-arginine, the biological equivalent of L-arginine or the NO donor is 1: 4540000-1: 1 (mol: mol), or 1: 45400000 to about 1: 4500 (mol: mol). ), Or 1: 4540000 to 1: 45000 (mol: mol). The EGF receptor agonist is EGF and the dosage unit may comprise L-arginine.

本発明の別の態様は、製薬上許容される溶液で溶解して、短腸症候群のリスクがある、または短腸症候群と診断された被検体に静脈内投与するのに適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む投与単位を提供することである。アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比は、1:454000000〜1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜1:45000(モル:モル)であり得る。EGF受容体アゴニストはEGFであり、投与単位はL−アルギニンを含んでもよい。   Another aspect of the invention is an L-arginine dissolved in a pharmaceutically acceptable solution and suitable for intravenous administration to a subject at risk of short bowel syndrome or diagnosed with short bowel syndrome. Providing a dosage unit comprising a biological equivalent of L-arginine or a NO donor and an EGF receptor agonist. The ratio of agonist to L-arginine, the biological equivalent of L-arginine or the NO donor is 1: 4540000-1: 1 (mol: mol), or 1: 45400000 to about 1: 4500 (mol: mol). ), Or 1: 4540000 to 1: 45000 (mol: mol). The EGF receptor agonist is EGF and the dosage unit may comprise L-arginine.

本発明の別の態様は、製薬上許容される溶液で溶解して、短腸症候群のリスクがある、または短腸症候群と診断された被検体に非経口投与するのに適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体およびEGF受容体アゴニストを含む投与単位を提供することである。該液体は、水、生理食塩水、乳児用特殊調製乳、緩衝液、搾乳した母乳、他の適切な担体、およびそれらの組み合わせからなる群から選択され得る。アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比は、1:454000000〜1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜1:45000(モル:モル)であり得る。EGF受容体アゴニストはEGFであり、投与単位はL−アルギニンを含んでもよい。   Another aspect of the invention is L-arginine, dissolved in a pharmaceutically acceptable solution, suitable for parenteral administration to a subject at risk of short bowel syndrome or diagnosed with short bowel syndrome. Providing a dosage unit comprising a biological equivalent of L-arginine or a NO donor and an EGF receptor agonist. The liquid may be selected from the group consisting of water, saline, infant formula, buffer, milked milk, other suitable carriers, and combinations thereof. The ratio of agonist to L-arginine, the biological equivalent of L-arginine or the NO donor is 1: 4540000-1: 1 (mol: mol), or 1: 45400000 to about 1: 4500 (mol: mol). ), Or 1: 4540000 to 1: 45000 (mol: mol). The EGF receptor agonist is EGF and the dosage unit may comprise L-arginine.

本発明の投与単位は、短腸症候群の人、または短腸症候群のリスクがある人において体重増加を目的として使用され得る。また、投与単位は、短腸症候群の人、または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用され得る。   The dosage unit of the present invention can be used for weight gain purposes in persons with short bowel syndrome or at risk for short bowel syndrome. The dosage unit can also be used for the purpose of increasing the intestinal absorption surface area in persons with short bowel syndrome or at risk for short bowel syndrome.

本発明の別の態様は、短腸症候群と診断された、または短腸症候群のリスクがある患者を治療する方法であって、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを、それらが必要な患者に投与することを含む方法を提供することである。患者は、小腸切除術を既に受けている、または将来小腸切除術を受ける患者であってもよい。   Another aspect of the present invention is a method for treating a patient diagnosed with short bowel syndrome or at risk for short bowel syndrome, comprising an EGF receptor agonist and L-arginine, the biological equivalent of L-arginine. Providing a product or NO donor to a patient in need thereof. The patient may be a patient who has already undergone a small bowel resection or will undergo a future small bowel resection.

本発明の別の態様は、短腸症候群を治療または予防する方法であって、好適には少なくとも1日に1回、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを、それらが必要な患者に経腸的に投与することを含む方法を提供することである。EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とは、例えば少なくとも1日に1回、混合物として一緒に投与され得る。EGF受容体アゴニストはEGFであり得る。EGFは、組み換え技術または合成化学プロセスにより合成され得る。方法はL−アルギニンを含んでもよい。   Another aspect of the present invention is a method for treating or preventing short bowel syndrome, preferably at least once a day, an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or It is to provide a method comprising administering NO donors enterally to a patient in need thereof. The EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor can be administered together as a mixture, for example, at least once a day. The EGF receptor agonist can be EGF. EGF can be synthesized by recombinant techniques or synthetic chemical processes. The method may include L-arginine.

本発明の方法は、短腸症候群の人、または短腸症候群のリスクがある人において体重増加を目的で使用され得る。また、方法は、短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用され得る。   The methods of the invention can be used for weight gain purposes in persons with short bowel syndrome or at risk for short bowel syndrome. The method can also be used to increase the absorbed surface area of the intestine in people with short bowel syndrome or at risk for short bowel syndrome.

本発明の別の態様は、治療量のEGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体と短腸症候群の治療または予防において使用するための指示とを含むキットを提供することである。EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とは、固体形態で配合されて供給され得る。また、キットは、固体形態を経口投与、例えば静脈内投与に適した溶液に溶解する工程についての指示を含んでもよい。アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とは別々に供給されてもよい。それらは固体または溶液形態であり得る。指示は、投与する前にアゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを混合する工程を含んでもよい。   Another aspect of the invention includes therapeutic amounts of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor and instructions for use in the treatment or prevention of short bowel syndrome. Is to provide a kit. An EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor can be formulated and supplied in solid form. The kit may also include instructions for dissolving the solid form in a solution suitable for oral administration, eg, intravenous administration. The agonist and L-arginine, the biological equivalent of L-arginine or the NO donor may be supplied separately. They can be in solid or solution form. The instructions may include mixing the agonist with L-arginine, a biological equivalent of L-arginine or a NO donor prior to administration.

キットは、短腸症候群の人、または短腸症候群のリスクがある人において体重を増加させる目的で使用され得る。また、キットは、短腸症候群の人、または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用され得る。   The kit can be used for weight gain purposes in persons with short bowel syndrome or at risk for short bowel syndrome. The kit can also be used to increase the absorbed surface area of the intestine in people with short bowel syndrome or at risk for short bowel syndrome.

本発明の別の態様は、患者においてSBSを治療または予防する方法であって、(i)第1治療期間にわたり、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを含む組成物を患者の皮下にまたは静脈内に投与すること;および(ii)第1治療期間の後の第2治療期間にわたり、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを含む組成物を患者に経腸的に投与することを含む方法を提供することである。第2治療期間はイレウスの治癒後に開始され得る。経腸投与は、浣腸による投与または経口投与を含み得る。第2治療期間は2つの段階を含み、第1段階では投与が経口的に行われ、第2段階では投与が浣腸により行われてもよい。例えば、第1治療期間の間の投与が静脈内投与により行われ、第2治療期間の間の投与が経口的な経路により、切除の4〜6日後に行われ得る。   Another aspect of the present invention is a method of treating or preventing SBS in a patient comprising (i) an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or NO over the first treatment period. Administering a composition comprising a donor subcutaneously or intravenously to a patient; and (ii) an EGF receptor agonist and L-arginine, L-arginine, over a second treatment period after the first treatment period. It is to provide a method comprising enterally administering to a patient a composition comprising a biological equivalent or NO donor. The second treatment period may begin after ileus has been cured. Enteral administration can include enema administration or oral administration. The second treatment period includes two phases, where administration may be performed orally in the first phase and administration by enema in the second phase. For example, administration during the first treatment period can be performed intravenously, and administration during the second treatment period can be performed 4-6 days after resection by the oral route.

本発明の別の態様は、SBS患者を治療する方法またはSBSのリスクがある患者を治療する方法であって、患者の腸管へEGF受容体アゴニストを送達することおよび患者の腸管内においてNOの生体内産生を増大させることを含む方法を提供することである。NOの生体内産生を増大させることは、患者に酸化窒素シンターゼの基質を投与すること、例えばNO供与体を投与することを含み得る。患者は、既に小腸の主要部が外科的に切除されていてもよい。   Another aspect of the invention is a method of treating an SBS patient or a patient at risk for SBS, comprising delivering an EGF receptor agonist to the patient's intestine and producing NO in the patient's intestine. It is to provide a method comprising increasing in-vivo production. Increasing in vivo production of NO can include administering a nitric oxide synthase substrate to the patient, eg, administering a NO donor. The patient may already have the main part of the small intestine surgically removed.

本発明の方法は、短腸症候群の人、または短腸症候群のリスクがある人において体重を増加させる目的で使用され得る。また、方法は、短腸症候群の人、または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用され得る。   The methods of the invention can be used for the purpose of gaining weight in persons with short bowel syndrome or at risk for short bowel syndrome. The method can also be used to increase the absorbed surface area of the intestine in people with short bowel syndrome or at risk for short bowel syndrome.

本発明の別の態様は、短腸症候群を治療または予防するための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用を提供することである。   Another aspect of the invention is to provide the use of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor for the treatment or prevention of short bowel syndrome. .

本発明の別の態様は、短腸症候群の人、または短腸症候群のリスクがある人において体重を増加させるための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用を提供することである。   Another aspect of the present invention is an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a biological equivalent for increasing weight in a person with short bowel syndrome or at risk for short bowel syndrome. Providing use with NO donors.

本発明の別の態様は、短腸症候群の人、または短腸症候群のリスクがある人において腸の吸収表面積を増大させるための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用を提供することである。   Another aspect of the present invention is the biological of EGF receptor agonists and L-arginine, L-arginine to increase intestinal absorption surface area in persons with short bowel syndrome or at risk for short bowel syndrome. To provide use with an equivalent or NO donor.

本発明の別の態様は、短腸症候群を治療または予防するための薬剤を調製するための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用を提供することである。   Another aspect of the present invention is the use of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor for the preparation of a medicament for treating or preventing short bowel syndrome Is to provide.

本発明の別の態様は、短腸症候群の人、または短腸症候群のリスクがある人において体重を増加させるための薬剤を調製するための、EGF受容体アゴニストおよびL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体の使用を提供することである。   Another aspect of the invention is the use of an EGF receptor agonist and L-arginine, L-arginine for the preparation of a medicament for increasing body weight in a person with short bowel syndrome or at risk for short bowel syndrome. To provide for the use of a biological equivalent or NO donor.

本発明の別の態様は、短腸症候群の人、または短腸症候群のリスクがある人において腸の吸収表面積を増大させるための薬剤を調製するための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用を提供することである。   Another aspect of the invention is an EGF receptor agonist and L-arginine, L, for preparing a medicament for increasing the intestinal absorption surface area in a person with short bowel syndrome or at risk for short bowel syndrome. -To provide use of a biological equivalent of arginine or a NO donor.

本発明のこれらのおよび他の態様は、以下の詳細な説明および添付の図面を参照することにより明らかになるであろう。更に、特定の手順、装置または組成についてより詳細に述べている様々な参考文献を以下に示す。本明細書に記載されるすべての参考文献は、各文献の内容全体が本明細書に再掲されたかの如く、参照により本明細書に組み入れられる。出願人は、出願の係属中、裁量により、そのような文献のいずれかまたはすべてを直接に組み入れる権利を留保する。   These and other aspects of the invention will be apparent upon reference to the following detailed description and attached drawings. In addition, various references are provided below that describe the specific procedures, equipment or compositions in more detail. All references described herein are hereby incorporated by reference as if the entire contents of each document were reprinted herein. Applicants reserve the right to directly incorporate any or all such documents at their discretion while the application is pending.

本発明について説明する前に、以下で使用される特定の用語の定義を説明することが本発明を理解する上で役立つであろう。   Before describing the present invention, it will be helpful in understanding the present invention to explain the definitions of certain terms used below.

本明細書で使用する「含む」という用語は、特定の構成要素を含有すること、特定の構成要素を包含すること、または特定の構成要素からなることを意味するが、それらの構成要素のみに限定するものではない。この用語は非制限的である。例えば、「EGFおよびL−アルギニンを含む薬剤組成物」という用語は、EGFおよびL−アルギニンを含有するあらゆる薬剤組成物を意味し、その組成物は、他の構成要素、例えば別の活性成分、香料、アジュバントなども含み得る。   As used herein, the term “comprising” means containing a particular component, including a particular component, or consisting of a particular component, but only to those components. It is not limited. This term is non-limiting. For example, the term “pharmaceutical composition comprising EGF and L-arginine” means any pharmaceutical composition containing EGF and L-arginine, the composition comprising other components such as another active ingredient, Perfumes, adjuvants and the like may also be included.

本明細書で使用する「短腸症候群(short bowel syndrome)」もしくはSBS、または「短消化管症候群(short gut syndrome)」という用語は、栄養素の吸収不良からもたらされる種々の症状、例えば小腸の有意な長さを外科的に切除した後に生じる、腹痛、下痢、体液うっ滞、非意図的な体重減少および極端な疲労などを特徴とする胃腸症候群を意味する。従って、本明細書で使用する場合、「短腸症候群」という用語は、短消化管症候群および小腸大量切除をも包含する。腸のホルモン反射およびフィードバックループが乱され、近位胃および小腸分泌物の量の増大、ならびに運動パターンの変質をもたらすことがある。水分、ナトリウムおよびマグネシウムの損失は、電解質平衡異常をもたらし得る。腸の特定部分に固有な特定の特異的吸収機能、例えば回腸によるビタミンB12、胆汁酸塩および他の脂溶性ビタミンの吸収などが損なわれることもあり得る。   As used herein, the term “short bowel syndrome” or SBS, or “short gut syndrome” refers to various symptoms resulting from malabsorption of nutrients, such as significant intestinal It refers to gastrointestinal syndrome, which is characterized by abdominal pain, diarrhea, fluid retention, unintentional weight loss and extreme fatigue that occurs after surgical removal of a long length. Thus, as used herein, the term “short bowel syndrome” also encompasses short gastrointestinal syndrome and large bowel resection. Intestinal hormonal reflexes and feedback loops may be disrupted, resulting in increased amounts of proximal stomach and small intestinal secretions, and altered motility patterns. The loss of moisture, sodium and magnesium can lead to electrolyte imbalances. Certain specific absorption functions unique to specific parts of the intestine, such as absorption of vitamin B12, bile salts and other fat-soluble vitamins by the ileum, may be impaired.

本明細書で使用する「EGF受容体アゴニスト」は、erbB(1〜4)受容体のうちのいずれか、特にerbB1受容体に結合したとき、以下の効果のいずれかまたはすべてが起こるように、生化学的な効果を生じさせるあらゆる分子を意味する:腸グルコース輸送を増大させる、腸細胞(小腸の内腔を覆っている細胞)の先端表面を変化させる、粘膜表面を横断する病原体のコロニー形成または転移が抑制される、および腸の成熟が誘発される。分子は、好適には、上皮細胞成長因子である。さもなければ、分子は、抗体、小分子、タンパク質、ペプチド、ペプチド類似体またはペプチド模倣物質であり得る。   As used herein, an “EGF receptor agonist” is any of the following effects when bound to any of the erbB (1-4) receptors, particularly the erbB1 receptor: Any molecule that produces a biochemical effect: increases intestinal glucose transport, alters the apical surface of enterocytes (cells covering the lumen of the small intestine), colonization of pathogens across the mucosal surface Or metastasis is suppressed and intestinal maturation is induced. The molecule is preferably an epidermal growth factor. Otherwise, the molecule can be an antibody, small molecule, protein, peptide, peptidomimetic or peptidomimetic.

本明細書で使用する「上皮細胞成長因子」またはEGFは、正常なヒトの十二指腸および唾液腺で合成され、ヒトの母乳中において発現されることが知られている、53アミノ酸のタンパク質である。ヒトEGFのアミノ酸配列は:
Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys Trp Trp Glu Leu Arg;
である(Boonstraら、1995年)。
As used herein, “epidermal growth factor” or EGF is a 53 amino acid protein that is synthesized in normal human duodenum and salivary glands and is known to be expressed in human breast milk. The amino acid sequence of human EGF is:
Asn Ser Asp Ser Glu Cys Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp Gly Val Cys Met Tyr Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys Val Val Gly Tyr Ile Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys Trp Trp Glu Leu Arg;
(Boonstra et al., 1995).

本明細書で述べる実験において使用したタンパク質は、前述の配列を有していた。本発明において使用されるEGFは、Protein Express(Higeta−Shoyu Co.Ltd.,Japan)から入手した組み換えヒトEGF(純度>97%)である。ヒトにおいてEGFとして作用する非ヒトEGF配列も想定されている。従って、EGFの変異体、例えばマウス、ラットおよびブタについて報告されているEGF(Jorgensen,P.E.ら、1998年;Nexo,E.ら、1985年;Pascall,J.C.ら、1991年;およびSimpson,R.J.ら、1985年)、または米国特許出願第20030059802号において引用されているウシEGFなど、または種々の異なるEGF受容体リガンドのいわゆる超アゴニスト(supra−agonistic)キメラ(Lenferink,A.E.ら、2000年)なども含められる。この定義は、精製天然上皮細胞成長因子と実質的に同じ配列および活性を有するポリペプチドに対しても適用される。これは、組み換え技術により化学的に合成されたペプチドまたはタンパク質を包含する。また、この用語は、EGFの生物学的活性が実質的に保持されている限り、他のアミノ酸での置換、または1以上のアミノ酸の欠失により天然の配列と異なるタンパク質に対しても適用される。更に、この定義は、EGFの生物学的活性が実質的に保持されている限り、EGFのフラグメント、ペプチド類似体、ペプチド模倣物質、および米国特許第5,070,188号におけるアシル化された形態も包含する。EGFの生物学的活性は、受容体結合アッセイによりスクリーニングし、受容体アゴニストに関して、上記で示したいずれかの方法を用いて確認することができる。従って、例えば、21位のメチオニン(Met)がイソロイシン(Ile)で置換されているヒトEGFタンパク質は、「EGF」の範囲内に収まる。そのようなタンパク質は、一般的にhEGF−I21と表され、組み換え技術により調製された場合には、一般的にrhEGF−I21と表される(化学的に合成されたhEGFは、「hEGF」という用語に包含される)。同様に、11位のAspがGluで置換されているhEGFは、一般的にhEGF−E11と表される。カルボキシ末端付近で切断された幾つかのEGFタンパク質は、それらの生物学的活性を保持しており、一般的に、保持されている最後のペプチド残基を示す添え字で表わされる。従って、正常な53ペプチドの最後の2つを欠いたEGFは、一般的に、EGF51と表記される。アミノ酸欠失を有するタンパク質、例えば、Trp49を欠いているタンパク質は、残りのアミノ酸の番号を変えることなく、一般的に、「del」(または.DELTA.)という用語とその位置を示す添え字で表される。従って、Trp49が欠失している場合には、生じるタンパク質は、EGF−.DELTA.49と表記される。鎖長を増大させる挿入は、一般的に、1個のアミノ酸を2個以上のアミノ酸で置き換える置換として指示され、例えば、rhEGF−L/G15は、天然のLeu15の後にGlyが挿入されていることを示す。最後に、他の修飾を伴うか伴わないかにかかわらず、His16が別のアミノ酸で置換される場合、本発明のEGFは、一般的に、総称してEGF−X16と表される。例えば2001年2月20日に発行された米国特許第6,191,106号(Mullenbachら)に記載されているように、EGFの突然変異タンパク質も、それらが不可欠なEGF活性を有していることを条件として、この定義の範囲内に収まる。 The protein used in the experiments described herein had the sequence described above. The EGF used in the present invention is recombinant human EGF (purity> 97%) obtained from Protein Express (Higeta-Shoyu Co. Ltd., Japan). Non-human EGF sequences that act as EGF in humans are also envisioned. Thus, EGF variants, such as those reported for mice, rats and pigs (Jorgensen, PE et al., 1998; Nexo, E. et al., 1985; Pascall, J.C. et al., 1991). And Simpson, RJ et al., 1985), or bovine EGF cited in US Patent Application No. 20030059802, or so-called super-agonist chimeras of various different EGF receptor ligands (Lenferink). AE et al., 2000). This definition also applies to polypeptides having substantially the same sequence and activity as purified natural epidermal cell growth factor. This includes peptides or proteins chemically synthesized by recombinant techniques. This term also applies to proteins that differ from the native sequence by substitution with other amino acids or deletion of one or more amino acids, as long as the biological activity of EGF is substantially retained. The Further, this definition provides that fragments of EGF, peptide analogs, peptidomimetics, and acylated forms in US Pat. No. 5,070,188, so long as the biological activity of EGF is substantially retained. Is also included. The biological activity of EGF can be screened by receptor binding assays and confirmed using any of the methods indicated above for receptor agonists. Thus, for example, human EGF protein in which methionine (Met) at position 21 is substituted with isoleucine (Ile) falls within the range of “EGF”. Such proteins are generally expressed as hEGF-I 21, when prepared by recombinant techniques is generally expressed as rhEGF-I 21 (chemically synthesized hEGF is "hEGF ”). Similarly, position 11 Asp is the hEGF substituted with Glu, generally expressed as hEGF-E 11. Some EGF proteins cleaved near the carboxy terminus retain their biological activity and are generally represented by a subscript indicating the last peptide residue retained. Thus, EGF lacking the last two of the normal 53 peptides is generally designated EGF 51 . Proteins with amino acid deletions, eg, proteins lacking Trp 49 , generally have the term “del” (or .DELTA.) And a subscript indicating its position without changing the number of the remaining amino acids. It is represented by Thus, when Trp 49 is deleted, the resulting protein is EGF-. DELTA. 49 . Insertion that increases chain length is generally indicated as a substitution that replaces one amino acid with two or more amino acids, eg, rhEGF-L / G 15 is a natural Leu 15 followed by a Gly insertion. Indicates that Finally, regardless of whether with or without other modifications, if His 16 is replaced by another amino acid, EGF of the present invention are generally represented as EGF-X 16 collectively. For example, as described in US Pat. No. 6,191,106 (Mullenbach et al.) Issued February 20, 2001, EGF muteins also have essential EGF activity. Is within the scope of this definition.

本明細書で使用する「L−アルギニン」は、準必須アミノ酸(2−アミノ−5−グアニジノ吉草酸)およびその塩、例えば哺乳動物への投与に適した酸付加塩を意味する。L−アルギニンの生物学的等価物は、L−アルギニンと同様に、NOを生体内産生する酸化窒素シンターゼの基質である化合物、またはアルギニン−シトルリンサイクルを介してもしくは尿素サイクルの酵素を介してLーシトルリンなどの酸化窒素シンターゼの基質に変換され得る化合物である。内因性L−アルギニン産生における律速酵素はアルギニンコハク酸シンターゼである。内因性L−アルギニン産生の主要部位は、L−シトルリンをL−アルギニンへ変換する腎臓である(Boger,R.H.ら、2001年)。グルタミンは小腸でL−シトルリンへ変換され(Pita,A.M.ら、2003年)、オルニチンα−ケトグルタラートはグルタミンの前駆体である(Dumas,F.ら、1998年)。生体内に投与されたときにNO分子を供与することができる、典型的に小さな有機分子の化合物、「NO供与体」も投与され得る。そのような化合物は、S−ニトロソ−N−アセチル−ペニシラミン(SNAP)、3−モルホリノシドノニミン(SIN−1)、ニトロプルシドナトリウム(SNP)、4−フェニル−3−フロキサンカルボニトリル(PFC)、グルセリル三硝酸エステル(GTN)およびイソソルビドジニトラート(ISDN)を含むが、これらに限定するものではない(Feelisch,M.、1998年;Pacher,P.ら、2003年;Zell,R.ら、2003年)。NO産生は、生体外において、Griessアッセイにより(Marion,R.,M.ら、2003年)、もしくは化学発光検出法により(Kikuchi,K.ら、1993年;Kojima,H.ら、1998年)、または生体内において、マノメトリーおよび電子酸化窒素センサーを用いることにより(Snygg,J.ら、2003年;Levine,D.Z.ら、2001年)、測定することができる。NOの生体外検出用の市販のアッセイは、Cayman Chemicals(Ann Arbor,Michigan)から入手することができる。   As used herein, “L-arginine” means a semi-essential amino acid (2-amino-5-guanidinovaleric acid) and salts thereof, eg, acid addition salts suitable for administration to mammals. A biological equivalent of L-arginine, like L-arginine, is a compound that is a substrate for nitric oxide synthase that produces NO in vivo, or L via an arginine-citrulline cycle or an enzyme of the urea cycle. A compound that can be converted to a substrate for nitric oxide synthase such as citrulline. The rate-limiting enzyme in endogenous L-arginine production is arginine succinate synthase. The major site of endogenous L-arginine production is the kidney that converts L-citrulline to L-arginine (Boger, RH et al., 2001). Glutamine is converted to L-citrulline in the small intestine (Pita, AM et al., 2003), and ornithine α-ketoglutarate is a precursor of glutamine (Dumas, F. et al., 1998). “NO donors”, typically small organic molecule compounds that can donate NO molecules when administered in vivo, can also be administered. Such compounds include S-nitroso-N-acetyl-penicillamine (SNAP), 3-morpholinoside nonimine (SIN-1), sodium nitroprusside (SNP), 4-phenyl-3-furoxanecarbonitrile (PFC). , Glyceryl trinitrate (GTN) and isosorbide dinitrate (ISDN), including but not limited to (Feelisch, M., 1998; Pacher, P. et al., 2003; Zell, R. et al., 2003). NO production is performed in vitro by the Griess assay (Marion, R., M. et al., 2003) or by chemiluminescence detection (Kikuchi, K. et al., 1993; Kojima, H. et al., 1998). Or in vivo by using manometry and an electronic nitric oxide sensor (Snygg, J. et al., 2003; Levine, DZ et al., 2001). Commercially available assays for in vitro detection of NO are available from Cayman Chemicals (Ann Arbor, Michigan).

短腸症候群の治療または予防
材料および方法
疾患の動物モデル
Sprague−Dawleyラット(250〜300g)を最初に7日間飼育して順応させ、手術前に4日間、1日に1回、擬似食をチューブ補給した。
Treatment or prevention of short bowel syndrome Materials and methods Animal model of disease Sprague-Dawley rats (250-300 g) were initially housed and acclimatized for 7 days, once daily for 4 days before surgery. The simulated food was supplemented with tubes.

実験計画
動物を以下の5つのグループに無作為に振り分けた:1)切除し、賦形剤(0.9%の無菌生理食塩水)を毎日チューブ補給する(SBS)、2)切除し、アルギニン1.5mmol/kg/日を毎日チューブ補給する(Arg)、3)切除し、EGF100μg/kg/日を毎日チューブ補給する(EGF)、4)切除し、EGF100μg/kg/日およびアルギニン1.5mmol/kg/日を毎日チューブ補給する(EGF−Arg)、ならびに5)賦形剤を毎日チューブ補給する対照(Con)。EGF−Arg治療は約1:100,000 モル:モルである。この研究で使用したL−アルギニンは、174.2の分子量を有する純粋なL−アルギニンではなく、210.7の分子量を有するアミノ酸の塩酸塩であった。一晩の絶食後、上述のように、ハロタン麻酔下において手術を実施し、25cmの残存小腸を確保した(Sham,J.ら、2002年)。簡単に説明すると、開腹術後、Treitz靭帯から遠位方向に延びる25cmの空腸を計測し、腸をそのポイントで分け、遠位側の腸全体を右結腸動脈の直ぐ下にある上行結腸の中間部分まで取り除き、吻合術を実施した。動物は、10日間、1ccの賦形剤中における試験化合物を毎日午前9時〜10時にチューブ補給された。本発明において使用したEGFは、Protein Express(商標)(Higeta−Shoyu Co.Ltd.,Japan)から入手した組み換えヒトEGFである。
Experimental Design Animals were randomly assigned to the following 5 groups: 1) excised and supplemented with vehicle (0.9% sterile saline) daily (SBS), 2) excised, arginine 1.5 mmol / kg / day tube replenished daily (Arg), 3) excised, EGF 100 μg / kg / day tube replenished daily (EGF), 4) excised, EGF 100 μg / kg / day and arginine 1.5 mmol Tube replenish daily / kg / day (EGF-Arg), and 5) Control reconstituted daily with vehicle (Con). EGF-Arg treatment is about 1: 100,000 mole: mole. The L-arginine used in this study was not pure L-arginine with a molecular weight of 174.2 but an amino acid hydrochloride with a molecular weight of 210.7. After overnight fast, as described above, surgery was performed under halothane anesthesia to secure a 25 cm residual small intestine (Sham, J. et al., 2002). Briefly, after a laparotomy, a 25 cm jejunum extending distally from the Treitz ligament is measured, the intestine is divided at that point, and the entire distal intestine is located in the middle of the ascending colon just below the right colonic artery The part was removed and an anastomosis was performed. Animals were tube supplemented with test compounds in 1 cc of vehicle daily for 9 days from 9 am to 10 am. The EGF used in the present invention is recombinant human EGF obtained from Protein Express ™ (Higeta-Shoyu Co. Ltd., Japan).

測定
切除後、動物は、手術を終えた日の残りの時間、水を摂取することを許され、その後、手術後2日目にペアフィーディングを開始し、最大で20g/日まで自由にドライフードの摂取が許された。各動物ケージ内における動物および食物の重量を毎日計量し、摂取した食物の量を定量化した。動物は、1日当たり20gの普通食が与えられた。各組の対照(切除および非切除)+3種類の治療グループを5匹1組にした。あるグループの1匹の動物が食べた量が20g未満であった場合には、その後の日々、5匹の組全体が、その動物が食べた重量+10%を得た。各グループにおける動物の数は以下のとおりであった:アルギニングループ、EGFグループおよびEGF+アルギニングループはn=10、SBS(非治療)グループはn=9、対照はn=8。
Measurements After excision, animals are allowed to ingest water for the remainder of the day after surgery, and then start pair feeding on the second day after surgery and freely dry food up to 20 g / day. Ingestion was allowed. The animals and food in each animal cage were weighed daily to quantify the amount of food consumed. The animals were fed a normal diet of 20 g per day. Each set of controls (resected and non-resected) + 3 treatment groups were grouped into 5 animals. If an animal in a group ate less than 20g, the entire set of 5 animals gained the weight the animal ate plus 10% each day thereafter. The number of animals in each group was as follows: arginine group, EGF group and EGF + arginine group n = 10, SBS (untreated) group n = 9, control n = 8.

動物は、10日目の致死前に一晩絶食した。SBSを有するこれらの動物の間では死亡率が高かった(最終的に非治療SBS動物グループはn=3、ArgグループおよびEGF+Argグループはn=6、EGF治療グループはn=7、対照はn=8)。午前中に行われる通常の試験化合物の投薬後、すべての動物は、2mlのEnsure(商標)の経口的なチューブ補給と共に、ブロモデオキシウリジン(BRDU)(50mg/kg)が腹腔内に注射された。BRDU注射の1時間後、動物はハロタンで麻酔をかけられ、腸が取り出され、洗浄された。腸の長さは、標準化された重量、ならびに測定された残存空腸の重量および直径を用いて決定された。2cmの組織断片をTreitz靭帯の下方2cmの位置で採取し、組織学的評価およびBRDU評価用に固定した。   The animals were fasted overnight before the 10th day of lethality. There was a high mortality among these animals with SBS (finally n = 3 for untreated SBS animal group, n = 6 for Arg group and EGF + Arg group, n = 7 for EGF treated group, n = for control) 8). After the usual test compound dosing in the morning, all animals were injected intraperitoneally with bromodeoxyuridine (BRDU) (50 mg / kg) with oral tube supplementation of 2 ml Ensure ™. . One hour after BRDU injection, the animals were anesthetized with halothane and the intestines were removed and washed. Intestinal length was determined using the standardized weight and the measured residual jejunum weight and diameter. A 2 cm tissue fragment was taken 2 cm below the Treitz ligament and fixed for histological and BRDU evaluation.

統計解析
結果は、平均値±SEMとして報告されている。統計解析は、Tukeyポストテストを用いる分散分析(ANOVA)により実施された。P<0.05を有意と考えた。
Statistical analysis The results are reported as mean ± SEM. Statistical analysis was performed by analysis of variance (ANOVA) using the Tukey post test. P <0.05 was considered significant.

結果
外科手術は、切除されたグループにおいて、有意な体重減少および死亡率を伴う重度のSBSをもたらした。この理由から、動物の体重は、実験グループにおける有意な死亡率よりも前の手術後5日目まで徹底的に分析した。図1に示されているように、体重減少を元の体重に対する百分率として表わし、それらのデータポイントをプロットして各成長曲線の傾きを求め、比較した。体重減少は、対照グループに比べ、すべての治療グループおよび非治療SBSグループにおいて有意に大きかった(p<0.001)。更に、体重減少は、非治療SBSグループに比べ、EGF−アルギニンの組み合わせを投与された動物において有意に小さかった(p<0.05)。体重減少は、治療グループの間、または非治療SBS動物とEGFまたはアルギニン単独による治療を受けた動物との間で相違がなかった。EGFまたはアルギニン単独での治療は統計学的に有意な効果を与えかったが、EGFとアルギニンとの両方の組み合わせを用いた治療は、統計学的に有意に小さい体重減少をもたらした。従って、EGFとアルギニンとを組み合わせた治療法で治療された動物は、EGFまたはアルギニン単独による治療を受けた動物よりも体重が増えた。
Results Surgery resulted in severe SBS with significant weight loss and mortality in the resected group. For this reason, animal weights were thoroughly analyzed up to 5 days after surgery prior to significant mortality in the experimental group. As shown in FIG. 1, weight loss was expressed as a percentage of the original weight, and those data points were plotted to determine the slope of each growth curve and compared. Weight loss was significantly greater in all treated and untreated SBS groups compared to the control group (p <0.001). Furthermore, weight loss was significantly less in animals that received the EGF-arginine combination compared to the untreated SBS group (p <0.05). Weight loss was not different between treated groups or between untreated SBS animals and animals treated with EGF or arginine alone. Treatment with EGF or arginine alone did not have a statistically significant effect, whereas treatment with a combination of both EGF and arginine resulted in a statistically significantly smaller weight loss. Therefore, animals treated with a combination of EGF and arginine gained more weight than animals treated with EGF or arginine alone.

腸の幅が(腸の直径の測定値として)図2に示される。腸の幅は、対照の動物に比べ、EGF−アルギニンを組み合わせて治療された動物において有意に増大した(p<0.05)。腸の幅は、他のどのグループ間においても相違がなかった。従って、EGFまたはアルギニン単独による治療は、腸の幅に統計学的に有意な効果を与えなかったが、EGFとアルギニンを組み合わせた治療は統計学的により大きな腸の幅となった。腸の長さが同じ場合での腸の幅の増大は、腸の吸収表面積全体の増大となる。   The gut width is shown in FIG. 2 (as a measure of gut diameter). Intestinal width was significantly increased in animals treated with the EGF-arginine combination (p <0.05) compared to control animals. Intestinal width did not differ between any other groups. Thus, treatment with EGF or arginine alone did not have a statistically significant effect on intestinal width, while treatment with EGF and arginine resulted in a statistically larger intestinal width. An increase in intestinal width for the same intestine length results in an increase in the entire intestinal absorption surface area.

図3は、致死後の動物における総体的な腸のパラメータに対する様々な治療法の効果を示している。長さ当たりの腸の湿重量は、すべての治療グループにおける腸重量の有意な増大により、対照グループに比べて、すべての治療グループおよび非治療SBSグループにおいて有意に増大した(p<0.01)。腸の長さは、どのグループ間においても相違がなかった。非治療SBSグループ、ならびにEGFグループおよびアルギニングループに比べて、EGF−アルギニンを組み合わせたグループにおいて腸の湿重量が増大する傾向があったが、この傾向は、統計学的な有意性に達しなかった。統計学的に有意な結果を実現しなかったが、EGFおよびアルギニンによる治療には、EGF治療およびアルギニン治療の両方を上回る傾向が存在した。   FIG. 3 shows the effect of various treatments on overall intestinal parameters in post-mortem animals. Intestinal wet weight per length was significantly increased in all treated and non-treated SBS groups compared to the control group due to a significant increase in intestinal weight in all treated groups (p <0.01). . Intestinal length did not differ between any groups. There was a trend toward increased gut wet weight in the untreated SBS group and in the EGF-arginine combination group compared to the EGF group and the arginine group, but this trend did not reach statistical significance . Although not statistically significant, treatment with EGF and arginine tended to outweigh both EGF and arginine treatments.

図4は、対照、SBS、アルギニン、EGFおよびEGF−アルギニン治療動物から得られた空腸組織における絨毛の長さおよび陰窩の深さを示す。絨毛の長さは、対照グループに比べて、EGF治療動物において有意に増大した(p<0.05)。絨毛の長さは他のどのグループ間においても相違がなかった。陰窩の深さは、対照に比べ、EGF(p<0.05)、EGF−アルギニンおよび非治療SBS(p<0.01)において有意に増大した。陰窩の深さは、アルギニン治療動物と対照との間、またはいずれの切除グループの間でも相違がなかった。   FIG. 4 shows villi length and crypt depth in jejunal tissue obtained from control, SBS, arginine, EGF and EGF-arginine treated animals. Villi length was significantly increased in EGF treated animals compared to the control group (p <0.05). The villi length was not different between any other groups. Crypt depth was significantly increased in EGF (p <0.05), EGF-arginine and untreated SBS (p <0.01) compared to controls. Crypt depth was not different between arginine treated animals and controls, or between any excised groups.

結論
EGF−アルギニンを組み合わせた投与は、EGFまたはアルギニンを単独で投与するよりも、SBSを治療する上で有意に効果的であった。EGF−アルギニンの組み合わせ治療は、EGFまたはアルギニンを単独で与えた場合と比べて、切除された試験動物における体重増加および腸の吸収表面積の増大をもたらした。体重増加は、この条件の第1の評価項目であり、治療の臨床的有益性を示す。腸の吸収表面積の増大は第2の評価項目であり、第1の評価項目を達成するために必要である。この研究は、このような条件の第1および第2両方の評価項目における有意な改善を実証している。
CONCLUSION EGF-arginine combined administration was significantly more effective in treating SBS than EGF or arginine administered alone. The EGF-arginine combination treatment resulted in increased body weight and increased intestinal absorption surface area in resected test animals compared to EGF or arginine given alone. Weight gain is the primary endpoint for this condition and indicates the clinical benefit of treatment. An increase in the intestinal absorption surface area is the second evaluation item, and is necessary to achieve the first evaluation item. This study demonstrates a significant improvement in both the first and second endpoints of such conditions.

単独のEGFおよびアルギニンは、体重減少に対していくらか保護をもたらすことが示されたが、組み合わせ治療のみが、非治療SBS対照動物に比べて統計学的に有意であった。更に、組み合わせ治療のみが、腸の吸収表面積を改善した。従って、本発明は、EGFおよびアルギニンを組み合わせて短腸症候群を治療する実現可能性を立証している。組み合わせが、SBSを罹患している患者の体重を増加させ、且つ、腸の吸収表面積を増大させることにより、実際に機能することを明らかに示す。本発明に先立って、SBSを治療するためにアルギニンを単独で用いた研究は、幾つかの研究の有利性を示したが、他の研究が不利であったと示した点において相反的である。これに加え、他の研究は、グルカゴン様ペプチドII、ボンベシン、インスリン様成長因子1 オクトレオチド(商標)、天然の抱合胆汁酸、低脂肪食およびグルタミンが、有利なおよび/または不利な効果を有し得ることを示している。しかし、本発明は、EGFとアルギニンとの組み合わせが、EGFまたはアルギニンを単独で投与した場合よりも、SBSの治療においてより効果的であることを明確に立証する。   Single EGF and arginine were shown to provide some protection against weight loss, but only combination treatment was statistically significant compared to untreated SBS control animals. Moreover, only the combination treatment improved the intestinal absorption surface area. Thus, the present invention demonstrates the feasibility of combining EGF and arginine to treat short bowel syndrome. It is clearly shown that the combination actually works by increasing the weight of patients suffering from SBS and increasing the intestinal absorption surface area. Prior to the present invention, studies using arginine alone to treat SBS have shown the advantages of some studies, but are contradictory in that other studies have shown disadvantages. In addition, other studies have shown that glucagon-like peptide II, bombesin, insulin-like growth factor 1 octreotide ™, natural conjugated bile acids, low-fat diet and glutamine have beneficial and / or adverse effects. Show you get. However, the present invention clearly demonstrates that the combination of EGF and arginine is more effective in treating SBS than when EGF or arginine is administered alone.

短腸症候群を治療または予防するための薬剤組成物
短腸症候群の治療または予防は、EGF受容体アゴニストとL−アルギニンまたはL−アルギニンの生物学的等価物とを含む。SBSは、手術後に被検体が吸収不良を起こすにつれて発症する。従って、手術後に吸収を促進することが予防に役立つと予想される。
Pharmaceutical composition for treating or preventing short bowel syndrome The treatment or prevention of short bowel syndrome comprises an EGF receptor agonist and L-arginine or a biological equivalent of L-arginine. SBS develops as the subject experiences malabsorption after surgery. Therefore, promoting absorption after surgery is expected to help prevent.

EGF受容体アゴニストとL−アルギニンとの相対的な量は、モル基準で好都合に決定される。L−アルギニンの生物学的等価物は、モル基準で、酸化窒素シンターゼの基質としてL−アルギニンよりも多量のNOを産生できる場合、その生物学的等価物が産生できるNOの量のモル当量基準で決定される。同様に、NO供与体により放出されるNOの量は、モル当量基準で決定される。従って、SBSを治療または予防する方法は、EGF受容体アゴニストを患者の腸管へ送達し、患者の腸管内におけるNOの生体内産生を高めることにより提供される。これは、酸化窒素シンターゼの基質の投与またはNO供与体の投与を含んでもよい。   The relative amounts of EGF receptor agonist and L-arginine are conveniently determined on a molar basis. A biological equivalent of L-arginine is, on a molar basis, a molar equivalent basis for the amount of NO that the biological equivalent can produce if it can produce more NO than L-arginine as a substrate for nitric oxide synthase. Determined by Similarly, the amount of NO released by the NO donor is determined on a molar equivalent basis. Accordingly, a method for treating or preventing SBS is provided by delivering an EGF receptor agonist to a patient's intestine and enhancing in vivo production of NO in the patient's intestine. This may include administration of a substrate for nitric oxide synthase or administration of a NO donor.

本発明の治療は、適切な経路による投与を必要とする。生物学的に利用可能な物質を腸の上皮細胞の自由な腔側へ投与するためには、経口経路による投与が最も好適であろう。そのようなものとして、これら2つの物質の投与単位が、容易な開封ならびに食事療法用品などの製薬上許容される溶液への送達および混合に適した容器に入れて提供される。従って、適切な量の本発明の成分は、ミルクまたは他の食物に直接添加される粉末または顆粒形態で提供することができる。完全非経口栄養(TPN)を必要とする被検体は、別の調合物として、またはTPN組成物の成分としてこれらの成分を受容する利益を得ることができる。あるいは、これらの成分は、患者がすぐに消化するのに適した溶液形態で、または適切な溶液で希釈して提供され得る。先行する溶液は経口胃内チューブを介して患者に投与され得る。   The treatment of the present invention requires administration by an appropriate route. For administration of bioavailable substances to the free cavity side of the intestinal epithelial cells, administration by the oral route will be most preferred. As such, dosage units of these two substances are provided in a container suitable for easy opening and delivery and mixing into a pharmaceutically acceptable solution such as a dietary article. Thus, an appropriate amount of the ingredients of the present invention can be provided in powder or granular form that is added directly to milk or other food. A subject in need of total parenteral nutrition (TPN) can benefit from receiving these components as separate formulations or as components of a TPN composition. Alternatively, these components can be provided in a solution form suitable for immediate digestion by the patient or diluted with a suitable solution. The preceding solution can be administered to the patient via an oral gastric tube.

適切な食事療法用品の例は、水、生理食塩水、緩衝液、経口再水和溶液、特殊調製乳および搾乳した母乳、他の適切な担体、またはそれらの組み合わせを含む。経口投与に適したあらゆる溶液が使用されてもよい。膵臓プロテアーゼによる酵素分解からEGFを保護し(Playfordら、1993年)、バイスタンダー(bystander)タンパク質(即ち、不活性タンパク質「フィラー(filler)」)として作用する添加剤が加えられてもよい。例えば、カゼイン(乳タンパク質)がこの目的で実験的に使用されている(Playfordら、1993年)。他の手法は、EGFの構造および活性を保存するために、プロテアーゼ阻害剤と投与することを含み得る。   Examples of suitable dietary products include water, saline, buffers, oral rehydration solutions, specialty formulas and milked breast milk, other suitable carriers, or combinations thereof. Any solution suitable for oral administration may be used. Additives may be added that protect EGF from enzymatic degradation by pancreatic proteases (Playford et al., 1993) and act as bystander proteins (ie, an inactive protein “filler”). For example, casein (milk protein) has been used experimentally for this purpose (Playford et al., 1993). Other approaches may include administering with a protease inhibitor to preserve EGF structure and activity.

あるいは、本発明の治療は、経口的に、経腸的に、非経口的に、静脈内注射により、皮下的に、経鼻的に、または浣腸により投与されてもよい。例えば、最初にSBSを治療するとき、治療の最初の期間において、一部の患者は経口投与治療を受けることができないので、この期間の間、静脈内経路を選択することが可能である。組成物は、スプレー、溶液、懸濁、コロイド、濃縮液、粉末、顆粒、錠剤、圧縮錠剤、カプセル剤(コーティングされたもしくはコーティングされていない錠剤またはカプセル剤を含む)、坐薬などとして製剤化できる。徐放性または放出制御製剤も含まれる。   Alternatively, the treatment of the present invention may be administered orally, enterally, parenterally, by intravenous injection, subcutaneously, nasally, or by enema. For example, when initially treating SBS, during the initial period of treatment, some patients cannot receive oral treatment, so it is possible to select an intravenous route during this period. The composition can be formulated as a spray, solution, suspension, colloid, concentrate, powder, granule, tablet, compressed tablet, capsule (including coated or uncoated tablet or capsule), suppository, etc. . Sustained release or controlled release formulations are also included.

製剤は、必要な場合には、粘度調整剤、浸透圧調整剤、緩衝剤、pH調整剤、香料、安定剤、着色剤、保存剤などの添加剤を含んでもよい。   The preparation may contain additives such as a viscosity adjusting agent, an osmotic pressure adjusting agent, a buffering agent, a pH adjusting agent, a fragrance, a stabilizer, a coloring agent, a preservative, etc.

投与単位は、1回の投与、即ち、患者の1回の摂取における投与に適した用量である。従って、例えばL−アルギニンの塩酸塩として投与されるL−アルギニンの投与単位は、約20mg/kg/日(0.09mmol/kg/日)〜約2000mg/kg/日(9mmol/kg/日)、またはより好適には約100mg/kg/日(0.45mmol/kg/日)〜約1000mg/kg/日(4.5mmol/kg/日)、またはより好適には約200mg/kg/日(0.9mmol/kg/日)〜約500mg/kg/日(2.4mmol/kg/日)のL−アルギニン、またはより好適には約250mg/kg/日(1.2mmol/kg/日)〜約400mg/kg/日(1.9mmol/kg/日)、より好適には約300mg/kg/日(1.4mmol/kg/日)〜約350mg/kg/日(1.6mmol/kg/日)、および約0.2μg/kg/日(0.032nmol/kg/日)〜約2mg/kg/日(0.32μmol/kg/日)、またはより好適には約1μg/kg/日(0.16nmol/kg/日)〜約1mg/kg/日(0.16mmol/kg/日)、またはより好適には約2μg/kg/日(0.32nmol/kg/日)〜約0.2mg/kg/日(32nmol/kg/日)のEGF受容体アゴニストを含む。本明細書において、「μg」はマイクログラムを意味し、「μmol」はマイクロモルを意味する、等々。典型的には、L−アルギニン−EGF受容体アゴニストの比は、約1:454000000のEGF受容体アゴニスト(mol)/L−アルギニン(mol)〜約1:1のEGF受容体アゴニスト(mol)/L−アルギニン(mol)、より好ましくは1:45400000のEGF受容体アゴニスト(mol)/L−アルギニン(mol)〜約1:4500のEGF受容体アゴニスト(mol)/L−アルギニン(mol)、より好ましくは1:4540000のEGF受容体アゴニスト(mol)/L−アルギニン(mol)〜約1:45000のEGF受容体アゴニスト(mol)/L−アルギニン(mol)であろう。治療は、おそらく少なくとも1日に1回、1日当たり3または4回、更には持続的に投与されると考えられる。間欠投与は、例えばボーラス注入、本明細書の別の箇所で説明する経口製剤などのいずれかの適当な経路によって、皮下的に、または持続的な静脈内点滴によって投与することができる。より持続的な投与は、更に典型的には、静脈内点滴または制御放出インプラントによるであろう。   The dosage unit is a dose suitable for administration in a single administration, i.e. in a single ingestion of the patient. Thus, for example, the dosage unit of L-arginine administered as the hydrochloride salt of L-arginine is about 20 mg / kg / day (0.09 mmol / kg / day) to about 2000 mg / kg / day (9 mmol / kg / day). Or more preferably about 100 mg / kg / day (0.45 mmol / kg / day) to about 1000 mg / kg / day (4.5 mmol / kg / day), or more preferably about 200 mg / kg / day ( 0.9 mmol / kg / day) to about 500 mg / kg / day (2.4 mmol / kg / day) of L-arginine, or more preferably about 250 mg / kg / day (1.2 mmol / kg / day) to About 400 mg / kg / day (1.9 mmol / kg / day), more preferably about 300 mg / kg / day (1.4 mmol / kg / day) to about 350 mg / kg / day (1.6 mm l / kg / day), and about 0.2 μg / kg / day (0.032 nmol / kg / day) to about 2 mg / kg / day (0.32 μmol / kg / day), or more preferably about 1 μg / day kg / day (0.16 nmol / kg / day) to about 1 mg / kg / day (0.16 mmol / kg / day), or more preferably about 2 μg / kg / day (0.32 nmol / kg / day) to About 0.2 mg / kg / day (32 nmol / kg / day) of EGF receptor agonist. As used herein, “μg” means microgram, “μmol” means micromole, and so on. Typically, the ratio of L-arginine-EGF receptor agonist is about 1: 454000000 EGF receptor agonist (mol) / L-arginine (mol) to about 1: 1 EGF receptor agonist (mol) / L-arginine (mol), more preferably 1: 45400000 EGF receptor agonist (mol) / L-arginine (mol) to about 1: 4500 EGF receptor agonist (mol) / L-arginine (mol), more Preferably from 1: 4540000 EGF receptor agonist (mol) / L-arginine (mol) to about 1: 45000 EGF receptor agonist (mol) / L-arginine (mol). The treatment will probably be administered at least once a day, 3 or 4 times a day, or even continuously. Intermittent administration can be administered by any suitable route, such as bolus injection, oral formulations described elsewhere herein, subcutaneously, or by continuous intravenous infusion. More sustained administration will more typically be by intravenous infusion or controlled release implants.

本発明の治療は、SBSを発症するリスクがある人を予防的に治療するためにも使用できる。そのようなリスクがある人には、小腸主要部の外科的切除を受けたばかりの患者も含まるであろう。そのような治療は、手術後できるだけ速やかに、おそらく手術終了後に開始してもよい。切除後、腸は、通常3〜4日後に機能し始める。従って、経口治療は手術後4〜6日で始めることが可能である。手術後の速やかな治療が必要とされる場合、治療法は静脈内に投与され、おそらく、続いて腸の機能が再開すると、経口治療が行われる。従って、治療は、第1の治療期間と、それに続く第2の治療期間とを含むであろう。   The treatment of the present invention can also be used to preventively treat a person at risk of developing SBS. Those at risk may include patients who have just undergone surgical resection of the main small intestine. Such treatment may begin as soon as possible after surgery, possibly after the surgery. After resection, the intestine usually begins to function after 3-4 days. Thus, oral treatment can be started 4-6 days after surgery. If prompt treatment after surgery is required, the therapy is administered intravenously, possibly followed by oral treatment when bowel function resumes. Thus, the treatment will include a first treatment period followed by a second treatment period.

一般的に言えば、EGFは、合成プロセスにより調製され、通常のバイオテクノロジーまたは化学的な技術により製造される。勿論、EGFは、天然源から得てもよい。   Generally speaking, EGF is prepared by a synthetic process and manufactured by conventional biotechnology or chemical techniques. Of course, EGF may be obtained from natural sources.

好適には、本発明の要素の組み合わせは、単一の混合物として供給され、一緒に投与されるであろうが、それらを別々の区画に分けたキットとして提供して、投与のために混合する、または別々に投与することもできる。両方とも、腸の上皮細胞の腔側で生物学的に利用可能であってよい。   Preferably, the combination of elements of the invention will be supplied as a single mixture and administered together, but they are provided as separate compartments and mixed for administration Or can be administered separately. Both may be bioavailable on the luminal side of the intestinal epithelial cells.

水と共に送達するように、液体との混合に調製されるときには、投与単位は、そこに溶解促進剤を組み入れてもよい。   When prepared for admixture with a liquid for delivery with water, the dosage unit may incorporate a solubility enhancer therein.

腸に達するまで溶解しない、コーティングされた組成物を使用することにより、与薬の有効性が高められることがよくある。Gennaro編集の「Remington’s Pharmaceutical Sciences」(Mack Publishing Company、第19版、1995年)を参照されたい。本活性物質の製薬上許容される塩(例えば、L−アルギニンの酸付加塩)は、合成有機化学の分野における熟練者にとって既知の報告された標準的な手順(March,J.、1992年)を用いて調製することができる。また、適切な製薬上許容される担体、例えば希釈剤、賦形剤などのペプチドをベースとした薬剤とともに通常使用されている担体などを含めることも望ましいであろう。   The use of a coated composition that does not dissolve until it reaches the intestine often increases the effectiveness of the medication. See "Remington's Pharmaceutical Sciences" edited by Gennaro (Mack Publishing Company, 19th edition, 1995). Pharmaceutically acceptable salts of the active agent (eg, acid addition salts of L-arginine) are reported standard procedures known to those skilled in the art of synthetic organic chemistry (March, J., 1992). Can be prepared. It may also be desirable to include suitable pharmaceutically acceptable carriers, such as those commonly used with peptide-based agents such as diluents, excipients and the like.

勿論、本製品は、密封された無菌のパッケージに入った状態で提供されるであろう。典型的には、EGFまたは同等のポリペプチドは、凍結乾燥材料として提供される。   Of course, the product will be provided in a sealed, sterile package. Typically, EGF or equivalent polypeptide is provided as lyophilized material.

[参考文献]
Avissar,N.E.,H.T.Wang,J.−N.H.Miller, P.Iannoli,and H.C.Sax. Epidermal growth factor receptor is increased in rabbit intestinal brush border membrane after small bowel resection. Dig.Dis.Sci.45:1145−1152,2000.

Boger,R.H.and S.M.Bode−Boger. The clinical pharmacology of L−arginine. Ann.Rev.Pharmacol.Toxicol.41:79−99,2001.

Boonstra,J.,P.Rijken,B.Humbel,F.Cremers,A.Verkleij,and P.Van Bergen en Henegouwen. The epidermal growth factor. Cell Biol.Int.19:413−430,1995.

Buchman,A.L.,A.A.Moukarzel,M.E.Ament, C.Eckert,S.Bhuta,J.Mestecky,and D.Hollander. Effects of total parenteral nutrition on intestinal morphology and function in humans. Transplant.Proc.26:1457,1994.

Camli,A.,Barlas,M.,Yagmurlu,A. Does L−arginine induce intestinal adaptation by epithelial growth factor? ANZ J.Surg.75:73−5,2005.

Chaet,M.S.,G.Arya,M.M.Ziegler,and B.W.Warner. Epidermal growth factor enhances intestinal adaptation after massive small bowel resection. J.Pediatr.Surg.29:1035−1039,1994.

Chen,K.,R.Nezu,K.Sando,S.M.Haque,Y.Iiboshi,A.Masunari,H.Yoshida,S.Kamata,Y.Takagi,and A.Okada. Influence of glutamine−supplementead parenteral nutrition on intestinal amino acid metabolism in rats after small bowel resection. Surg.Today 26:618−623,1996.

Dejong,C.H.,C.F.Welters,N.E.Deutz,E.Heinman,and P.B.Soeters. Renal arginine metabloism in fasted rats with subacute short bowel syndrome. Clin.Sci.95:409−418,1998.

Dumas,F.,J.P.De Bandt,V.Colomb,J.Le Boucher,C.Coudray−Lucas,S.Lavie,N.Brousse,C.Ricour,L.Cynober,and O.Goulet. Enteral ornithine alpha−ketoglutarate enhances intestinal adaptation to massive resection in rats. Metabolism 47:1366−1371,1998.

Dunn,J.C.,C.P.Parungo,E.W.Fonkalsrud, D.W.McFadden,and S.W.Ashley. Epidermal growth factor selectively enhances functional enterocyte adaptation after massive small bowel resection. J.Surg.Res.67:90−93,1997.

Erwin,C.R.,M.A.Helmrath,C.E.Shin,R.A.Falcone,Jr.,L.E.Stern,and B.W.Warner. Intestinal overexpression of EGF in transgenic mice enhances adaptation after small bowel resection. American Journal of Physiology:Gastrointestinal and Liver Physiology 277:G533−G540,1999.

Feelisch,M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch.Pharmacol.358:113−122,1998.

Gennaro eds.1995 Remington‘s Pharmaceutical Sciences,Mack Publishing Company,19th Ed.

Goodlad,R.A.,A.P.Savage,W.Lenton,M. A.Ghatei,H.Gregory,S.R.Bloom,and N.A. Wright. Does resection enhance the response of the intestine to urogastrone−epidermal growth factor in the rat. Cli.Sci.75:121−126,1988.

Hardin,J.A.,B.Chung,E.V.O’Loughlin,and D.G.Gall. The effect of epidermal growth factor on brush border surface area and function in the distal remnant following resection in the rabbit. Gut 44:26−32,1999.

Hebiguchi,T.,T.Kato,H.Yoshino,M.Mizuno,and K.Koyama. The effect of arginine supplementation on growth hormone release and intestinal mucosal growth after massive small bowel resection in growing rats. J.Pediatr. Surg.32:1149−1153,1997.

Helmrath,M.A.,C.R.Erwin,and B.W.Warner. A defective EGF−receptor in waved−2 mice attenuates intestinal adaptation. J.Surg.Res.69:76−80,1997.

Helmrath,M.A.,C.E.Shin,J.W.Fox,C.R. Erwin,and B.W.Warner. Adaptation after small bowel resection is attenuated by sialoadenectomy:The role for endogenous epidermal growth factor. Surgeiy 124:848−854,1998.

Jorgensen,P.E.,L.G.Jensen,B.S.Sorensen,S.S.Poulsen,and E.Nexo. Pig epidermal growth factor precursor contains segments that are highly conserved among species. Scand.J.Clin.Lab. Invest.58:287−297,1998.

Kikuchi,K.,T.Nagano,H.Hayakawa,Y.Hirata,and M.Hirobe. Detection of nitric oxide production from a perfused organ by a luminol−H system. Anal. Chem.65:1794−1799,1993.

Kojima,H.,N.Nakatsubo,K.Kikuchi,S.Kawahara,Y.Kirino,H.Nagoshi,Y.Hirata,and T.Nagano. Detection and imaging of nitric oxide with novel fluorescent indicators:diaminoflouresceins.Anal.Chem.70:2446−2453,1998.

Lenferink,A.E.,E.J.Van Zoelen,M.J.Van Vugt,S.Grothe,W.van Rotterdam,M. L.Van de Poll,and M.D.O’Connor−McCourt. Superagonistic activation of ErbB−1 by EGF−related growth factors with enhanced association and dissociation rate constants. J.Biol.Chem. 275:26748−26753,2000.

Levine,D.Z.,M.Iacovitti,K.D.Burns,and X.Zhang. Real−time profiling of kidney tubular fluid nitric oxide concentrations in vivo. AmJ.Physiol.Renal Physiol.281:F189−F194,2001.

March,J. “Advanced Organic Chemistry: Reactions, Mechanisms and Structure”,4th Ed. New York:Wiley−Interscience.1992.

Marion,R.,M.Coeffier,A.Leplingard,L.Favennec,P.Ducrotte,and P.Dechelotte. Cytokine−stimulated nitric oxide production and inducible NO−synthase mRNA level in human intestinal cells:lack of modulation by glutamine. Clin.Nutr.22:523−528,2003.

Mullenbach et al., United States Patent No.6,191,106 February 20,2001.

Nexo,E.and H.F.Hansen. Binding of epidermal growth factor from man,rat and mouse to the human epidermal growth factor receptor. Biochim.Biophys.Acta 843:101−106,1985.

O’Loughlin,E.V.,M. Winter,A.Shun,J. A. Hardin,and D.G.Gall. Structural and functional adaptation following jejunal resection in rabbits:effect of epidermal growth factor. Gastroenterology 107:87−93,1994.

Ozturk,H.,A.I.Dokucu,Y.Yagmur,andI. Sari. Effects of supplemental L−arginine on the intestinal adaptive response after massive small−bowel resection in rats. Pediatr.Surg.Int.18:332−336,2002.

Pacher,P.,J.G.Mabley,L.Liaudet,O.V.Evgenov,G.J.Southan,G.E.Abdelkarim, C.Szabo,and A.L.Salzman. Topical administration of a novel nitric oxide donor, linear polyethylenimine−nitric oxide/nucleophile adduct(DSl),selectiviely increases vaginal blood flow in anesthetized rats. Int.J.Impot.Res.15:461−464,2003.

Pascall,J.C,D.S.C.Jones,S.M.Doel,J. M.Clements,M.Hunter,T.Fallon,M.Edwards,and K.D.Brown. Cloning and characterization of a gene encoding pig epidermal growth factor. J.Mol.Endocrinol.6:63−70,1991.

Pita,A.M.,Y.Wakabayashi,M.A.Fernandez−Bustos,N.Virgili,E.Riudor,J.Soler, and M.Farriol. Plasma urea−cycle−related amino acids, ammonium levels, and urinary orotic acid excretion in short bowel patients managed with an oral diet. Clin.Nutr.22:93−98,2003.

Pita,A.M.,Fernandez−Bustos,A.,Rodes,M.,Arranz,J.A.,Fisac,C,Virgili,N.,Soler,J.,Wakabayashi,Y. Orotic aciduria and plasma urea cycle−related amino acid alterations in short bowel syndrome, evoked by an arginine−free diet. J Parenter Enteral Nutr.28:315−23,2004.

Playford et al. 1993.Lancet.341:843−8.

Sham,J.,G.Martin,J.B.Meddings,and D. L.Sigalet. Epidermal growth factor improves nutritional outcome in a rat model of short bowel syndrome. J. Pediatr.Surg.37:765−769,2002.

Shin,C.E.,M.A.Helmrath,R.A.Falcone,Jr.,J.W.Fox,K.R.Duane,C.R.Erwin,and B.W.Warner. Epidermal growth factor augments adaptation following small bowel resection:Optimal dosage,route, and timing of administration. J. Surg.Res.77:11−16,1998.

Sigalet,D.L.,Martin,G.R.,Butzner,J.D.,Buret,A.,Meddings,J.B. A pilot study of the use of epidermal growth factor in pediatric short bowel syndrome. J.Pediatr.Surg.40:763−8,2005.

Simpson,R.J.,J.A.Smith,R.L.Moritz,M.J.O’Hare,P.S.Rudland,J.R.Morrison,C. J.Lloyd,B.Grego,A.W.Burgess, and E.C. Nice. Rat epidermal growth factor:complete amino acid sequence. Eur.J.Biochem.153:629−637,1985.

Snygg,J.,A.Aneman,A.Pettersson,and L. Fandriks. Intestinal nitric oxide output during reduced mucosal blood flow in healthy volunteers. Crit.Care Med.31:2198−2204,2003.

Stern,L.E.,R.A.Falcone,Jr.,F.Huang,C.J.Kemp,C.R.Erwin,and B.W.Warner. Epidermal growth factor alters the bax:bcl−w ratio following massive small bowel resection. J.Surg.Res.91:38−42,2000.

Strong,S.A.and V.W.Fazio. Surgical treatment of inflammatory bowel disease. Curr.Opin.Gastroenterol.15:326−330,1999.

Sukhotoik,I.,A.Lerner,E.Sabo,M.M.Krausz,L.Siplovich,A.G.Coran,J.Mogilner, and E.Shiloni. Effects of enteral arginine supplementation on the structural intestinal adaptation in a rat model of short bowel syndrome. Dig.Dis.Sci.48:1346−1351,2003.

Sukhotnik,I.,Mogilner,J.G.,Lerner,A.,Coran,A.G.,Lurie,M.,Miselevich,I.,Shiloni,E. Parenteral arginine impairs intestinal adaptation following massive small bowel resection in a rat model. Pediatr.Surg.Int.21:460−5,2005.

Thompson,J.S. Epidermal growth factor and the short bowel syndrome. J. Parent.Enter.Nutr.23:S113−S116,1999.

Wakabayashi,Y.,E.Yamada,T.Yoshida,and H.Takahashi. Arginine becomes an essential amino acid after massive resection of rat small intestine. J. Biol.Chem.269:32667−32671,1994.

Warner,B.W.,W.E.Vander KoIk,G.Can,M. A.Helmrath,C.E.Shin,and C.R.Erwin. Epidermal growth factor receptor expression following small bowel resection.J.Surg.Res.70:171−177,1997.

Wasa,M.,Y.Takagi,K.Sando,T.Harada,and A.Okada. Intestinal adaptation in pediatric patients with short bowel syndrome. EurJ.Pediatr.Surg.9:207−209,1999.

Wasa,M.,Y.Takagi,K.Sando,T.Harada,and A.Okada. Long−term outcome of short bowel syndrome in adult and pediatric patients. J.Parent.Enter.Nutr. 23:Sl10−Sl12,1999.

Welters,C.F.,C.H.Dejong,N.E.Deutz,and E.Heinman. Effects of parenteral arginine supplementation on the intestinal adaptive response after massive small bowel resection in the rat. J.Surg.Res.85:259−266,1999.

Zell,R.,R.Markgraf,M.Schmidtke,M.Gorlach,A.Stelzner,A.Henke,H.H.Sigusch,and B.Gluck. Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A abd 3C in vitro,virus production in cells,and signs of myocarditis in virus−infected mice. Med. Microbiol.Immunol.2003.
[References]
Avissar, N .; E. , H .; T.A. Wang, J .; -N. H. Miller, P.M. Ianoli, and H.C. C. Sax. Epidermal growth factor receptor is increased in rabbit intestinal brush border membrane after small bowl re- eection. Dig. Dis. Sci. 45: 1145-1152, 2000.

Boger, R.A. H. and S. M.M. Board-Boger. The clinical pharmacology of L-argine. Ann. Rev. Pharmacol. Toxicol. 41: 79-99, 2001.

Boonstra, J. et al. , P.M. Rijken, B.M. Humber, F.M. Cremers, A.M. Verkleij, and P.M. Van Bergen en Henegowen. The epidemic growth factor. Cell Biol. Int. 19: 413-430, 1995.

Buchman, A.M. L. A. A. Moukarzel, M .; E. Ament, C.I. Eckert, S.M. Bhuta, J .; Mestecky, and D.M. Hollander. Effects of total parenteral nu- lation on intensional morphology and function in humans. Transplant. Proc. 26: 1457, 1994.

Camli, A .; Barlas, M .; Yagmurlu, A .; Does L-argineline inductive adaptation by epitaxy growth factor? ANZ J.H. Surg. 75: 73-5, 2005.

Chaet, M .; S. , G. Alya, M .; M.M. Ziegler, and B.C. W. Warner. Epidermal growth factor enhances intestinal adaptation after mass small bow resection. J. et al. Pediatr. Surg. 29: 1035-1039, 1994.

Chen, K .; , R. Nezu, K .; Sando, S .; M.M. Haque, Y. et al. Iiboshi, A.I. Masunari, H .; Yoshida, S .; Kamata, Y .; Takagi, and A.A. Okada. Inflation of glutamine-supplemented parental nutration on intestinal amino acid metabolism in rats after small bowl revocation. Surg. Today 26: 618-623, 1996.

Dejong, C.I. H. , C.I. F. Welters, N.A. E. Deutsch, E .; Heinman, and P.M. B. Soeters. General argon metabism in fasted rats with substructure short bow syndrome. Clin. Sci. 95: 409-418, 1998.

Dumas, F.A. , J .; P. De Bandt, V.D. Columb, J. et al. Le Boucher, C.I. Coudray-Lucas, S.M. Lavie, N .; Browse, C.I. Ricour, L.M. Cynober, and O.M. Goulet. Entertainmental Alpha-Ketoglutarate enhances intestinal adaptation to mass resumption in rats. Metabolism 47: 1366-1371, 1998.

Dunn, J .; C. , C.I. P. Parungo, E .; W. Foncalsrud, D.M. W. McFadden, and S.M. W. Ashley. Epidermal growth factor selective enhance enhancement functional adaptation after mass small revocation. J. et al. Surg. Res. 67: 90-93, 1997.

Erwin, C.I. R. , M.M. A. Helmrat, C.I. E. Shin, R .; A. Falcon, Jr. L. E. Stern, and B.M. W. Warner. Intensional overexpression of EGF in transduction of high frequency adaptation after small bow revocation. American Journal of Physiology: Gastrointestinal and Liver Physiology 277: G533-G540, 1999.

Feelisch, M.M. The use of nitric oxide donors in pharmacologic studies. Naunyn Schmiedebergs Arch. Pharmacol. 358: 113-122, 1998.

Gennaro eds. 1995 Remington's Pharmaceutical Sciences, Mack Publishing Company, 19th Ed.

Goodlad, R.A. A. A. P. Savage, W.M. Lenton, M.M. A. Gatei, H .; Gregory, S.M. R. Bloom, and N.M. A. Wright. Does rejection enhancement the response of the intestine to urogastrone-epidemic growth factor in the rat. Cli. Sci. 75: 121-126, 1988.

Hardin, J .; A. B. Chung, E .; V. O'Loughlin, and D.C. G. Gall. The effect of epidemic growth factor on brush border surface area and function in the remnant reflowing resumption in therabbit. Gut 44: 26-32, 1999.

Hebiguchi, T .; , T. Kato, H .; Yoshino, M .; Mizuno, and K.M. Koyama. The effect of argonine supplementation on growth hormone release and intestinal mucosal growth after mass small relocation in growing. J. et al. Pediatr. Surg. 32: 1149-1153, 1997.

Helmrat, M.M. A. , C.I. R. Erwin, and B.M. W. Warner. A defective EGF-receptor in waved-2 mice attends intestinal adaptation. J. et al. Surg. Res. 69: 76-80, 1997.

Helmrat, M.M. A. , C.I. E. Shin, J. et al. W. Fox, C.I. R. Erwin, and B.M. W. Warner. Adaptation after small bowl revocation is attended by sialadenotomy: The for forendogenous epidemic growth factor. Surgey 124: 848-854, 1998.

Jorgensen, P.M. E. L. G. Jensen, B.M. S. Sorensen, S.M. S. Poulsen, and E.M. Nexo. Pig epigrowth growth factor precontainers content segments that are high conserved among species. Scand. J. et al. Clin. Lab. Invest. 58: 287-297, 1998.

Kikuchi, K.K. , T. Nagano, H .; Hayagawa, Y .; Hirata, and M.M. Hirobe. Detection of native oxide production from a perfused organ by a luminol-H 2 O 2 system. Anal. Chem. 65: 1794-1799, 1993.

Kojima, H .; , N.M. Nakatsubo, K .; Kikuchi, S .; Kawahara, Y .; Kirino, H .; Nagashi, Y .; Hirata, and T.R. Nagano. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70: 2446-2453, 1998.

Lenferink, A.M. E. , E.C. J. et al. Van Zolen, M.M. J. et al. Van Vuggt, S.W. Grothe, W.W. van Rotterdam, M.M. L. Van de Poll, and M.M. D. O'Connor-McCourt. Superagonistic activation of ErbB-1 by EGF-related growth factors with enhanced associations and dissociation rate constants. J. et al. Biol. Chem. 275: 26748-26753, 2000.

Levine, D.M. Z. , M.M. Iacovitti, K.M. D. Burns, and X. Zhang. Real-time profiling of kindney tubular fluid nitrite contents in vivo. AmJ. Physiol. Renal Physiol. 281: F189-F194, 2001.

March, J. et al. “Advanced Organic Chemistry: Reactions, Mechanisms and Structure”, 4th Ed. New York: Wiley-Interscience. 1992.

Marion, R.A. , M.M. Coeffier, A .; Leplingard, L.M. Favennec, P.M. Ducrotte, and P.M. Dechelotte. Cytokine-stimulated nitric oxide production and inducible NO-synthase mRNA level in human intensional cells: rack of modulation by glutamine. Clin. Nutr. 22: 523-528, 2003.

Mullenbach et al. , United States Patent No. 6,191,106 February 20,2001.

Nexo, E .; and H. F. Hansen. Binding of epidemic growth factor from man, rat and mouse to the human epidemic growth factor receptor. Biochim. Biophys. Acta 843: 101-106, 1985.

O'Loughlin, E .; V. , M.M. Winter, A.M. Shun, J .; A. Hardin, and D.H. G. Gall. Structural and functional adaptation following junior rejection in rabbits: effect of epidemic growth factor. Gastroenterology 107: 87-93, 1994.

Ozturk, H.M. A. I. Dokucu, Y. et al. Yagmur, and I.I. Sari. Effects of supplemental L-argineine on the intestinal adaptive response after mass small-bowel resumption in rats. Pediatr. Surg. Int. 18: 332-336, 2002.

Pacher, P.A. , J .; G. Mabley, L.M. Liaudet, O .; V. Evgenov, G. et al. J. et al. Southan, G .; E. Abdelkarim, C.I. Szabo, and A.S. L. Salzman. Topical administration of a novel oxidative donor, linear polyethylenine-nitric-oxides-inductives (DSL), selective-inflows. Int. J. et al. Impot. Res. 15: 461-464, 2003.

Pascall, J.M. C, D.C. S. C. Jones, S.M. M.M. Doel, J .; M.M. Elements, M.M. Hunter, T.A. Fallon, M .; Edwards, and K.E. D. Brown. Cloning and charac- terization of a gene encoding pig epidermal growth factor. J. et al. Mol. Endocrinol. 6: 63-70, 1991.

Pita, A.M. M.M. Y. Wakabayashi, M .; A. Fernandez-Bustos, N.M. Virgili, E .; Riudor, J .; Soler, and M.M. Farriol. Plasma urea-cycle-related amino acids, ammonia levels, and urinary urotic acid excretion in short valents managed with an diet. Clin. Nutr. 22: 93-98, 2003.

Pita, A.M. M.M. Fernandez-Bustos, A .; Rodes, M .; Arranz, J .; A. , Fisac, C, Virgil, N .; Soler, J .; , Wakabayashi, Y .; Orotic acidia and plasma urea cycle-related amino acid alternations in short bowel syndrom, evoked by an argonine-free diet. J Parenter Nutra. 28: 315-23, 2004.

Playford et al. 1993. Lancet. 341: 843-8.

Sham, J .; , G. Martin, J.M. B. Medings, and D.M. L. Sigalet. Epidermal growth factor impulses nutritive outcome in a rat model of short bow syndrome. J. et al. Pediatr. Surg. 37: 765-769, 2002.

Shin, C.I. E. , M.M. A. Helmrat, R.A. A. Falcon, Jr. , J .; W. Fox, K.M. R. Duane, C.I. R. Erwin, and B.M. W. Warner. Epidermal growth factor augments adapting falling small bowl resumption: Optimal dosage, route, and timing of administration. J. et al. Surg. Res. 77: 11-16, 1998.

Sigalet, D.M. L. Martin, G .; R. Butzner, J .; D. Buret, A .; Medings, J .; B. A pilot study of the use of epidemic growth factor in pediatric short bow syndrome. J. et al. Pediatr. Surg. 40: 763-8, 2005.

Simpson, R.M. J. et al. , J .; A. Smith, R.A. L. Moritz, M.M. J. et al. O'Hare, P.A. S. Rudland, J.M. R. Morrison, C.I. J. et al. Lloyd, B.M. Grego, A.A. W. Burgess, and E.M. C. Nice. Rat epidemic growth factor: complete amino acid sequence. Eur. J. et al. Biochem. 153: 629-637, 1985.

Snygg, J. et al. A. Anneman, A .; Pettersson, and L.L. Fandriks. Intensional nitric oxide output reducing reduced mucosal blood flow in health volunters. Crit. Care Med. 31: 2198-2204, 2003.

Stern, L.M. E. , R. A. Falcon, Jr. , F.A. Huang, C.I. J. et al. Kemp, C.I. R. Erwin, and B.M. W. Warner. Epidermal growth factor alters the bax: bcl-w ratio following mass small bow resection. J. et al. Surg. Res. 91: 38-42, 2000.

Strong, S.M. A. and V.A. W. Fazio. Surgical treatment of information bowel disease. Curr. Opin. Gastroenterol. 15: 326-330, 1999.

Sukhotik, I. et al. A. Lerner, E .; Sabo, M .; M.M. Krausz, L .; Siplovich, A.M. G. Coran, J .; Mogilner, and E.M. Shiloni. Effects of general argon supplementation on the structural intestinal adaptation in a rat model of short bow syndrome. Dig. Dis. Sci. 48: 1346-1351, 2003.

Sukhotnik, I. et al. Mogilner, J .; G. Lerner, A .; Coran, A .; G. Lurie, M .; Miselevich, I .; Shiloni, E .; Parental arginine impairs intestinal adaptation following massaging small bow revocation in a rat model. Pediatr. Surg. Int. 21: 460-5, 2005.

Thompson, J.M. S. Epidemic growth factor and the short bow syndrome. J. et al. Parent. Enter. Nutr. 23: S113-S116, 1999.

Wakabayashi, Y. et al. , E.C. Yamada, T .; Yoshida, and H.K. Takahashi. Arginine becomes an essential amino acid after mass revocation of rat small intestine. J. et al. Biol. Chem. 269: 32667-32671, 1994.

Warner, B.W. W. , W .; E. Vander KoIk, G.M. Can, M.C. A. Helmrat, C.I. E. Shin, and C.C. R. Erwin. Epidermal growth factor receptor expres- sion flowing small bowl re- tion. J. et al. Surg. Res. 70: 171-177, 1997.

Wasa, M .; Y. Takagi, K .; Sando, T .; Harada, and A.A. Okada. Intestinal adaptation in pediatric patients with short bowel syndrome. EurJ. Pediatr. Surg. 9: 207-209, 1999.

Wasa, M .; Y. Takagi, K .; Sando, T .; Harada, and A.A. Okada. Long-term outcome of short bow syndrome in adult and pedipatic patents. J. et al. Parent. Enter. Nutr. 23: Sl10-Sl12, 1999.

Welters, C.I. F. , C.I. H. Dejong, N.A. E. Deutsch, and E.C. Heinman. Effects of parental argon supplementation on the intestinal adaptive response after massive small resumption in the rat. J. et al. Surg. Res. 85: 259-266, 1999.

Zell, R.A. , R. Markraf, M .; Schmidtke, M.M. Gorlach, A .; Stelzner, A.M. Henke, H.C. H. Sigusch, and B.B. Gluck. Nitric oxide donors in thebit the coxsackievirus B3 proteinases 2A abd 3C in vitro, virus production in cells, and signs of myinocindrivindocindrivindicindocindrivinds Med. Microbiol. Immunol. 2003.

図1は、5つの試験グループのラットについて、動物の元の体重に対する百分率として表わされる体重減少を示すグラフである。FIG. 1 is a graph showing the weight loss expressed as a percentage of the animal's original body weight for the five test groups of rats. 図2は、非治療(SBS)、アルギニンで治療した(arg)、EGFで治療した(EGF)、EGFおよびアルギニンで治療した(EGF−アルギニン)、ならびにSBSを有していない(対照)SBS動物の剖検時における腸の幅を示す棒グラフである。FIG. 2 shows untreated (SBS), treated with arginine (arg), treated with EGF (EGF), treated with EGF and arginine (EGF-arginine), and no SBS (control) SBS animals It is a bar graph which shows the width | variety of the intestine at the time of autopsy. 図3a、3bおよび3cは、剖検時における全体的な腸の形態を示す棒グラフであり、それぞれ、腸の長さ、腸の湿重量および腸の湿重量/長さを表す。Figures 3a, 3b and 3c are bar graphs showing the overall gut morphology at necropsy, representing gut length, gut wet weight and gut wet weight / length, respectively. 図4aおよび4bは、対照、SBS、arg治療、EGF治療およびEGF−arg治療動物における空腸組織の絨毛の長さおよび陰窩の深さを表す棒グラフである。FIGS. 4a and 4b are bar graphs representing jejunal villus length and crypt depth in control, SBS, arg treated, EGF treated and EGF-arg treated animals.

Claims (75)

EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを含み、該アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比が、1:454000000〜約1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜約1:45000(モル:モル)である、短腸症候群を治療または予防するための組成物。   An EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor, wherein the ratio of the agonist to L-arginine, a biological equivalent of L-arginine or a NO donor is 1: 4540000 to about 1: 1 (mol: mol), or 1: 4540000 to about 1: 4500 (mol: mol), or 1: 4540000 to about 1: 45000 (mol: mol). A composition for treating or preventing. 固体形態の、請求項1記載の組成物。   The composition of claim 1 in solid form. 凍結乾燥形態の、請求項1または2に記載の組成物。   3. A composition according to claim 1 or 2 in lyophilized form. 溶液形態の、請求項1記載の組成物。   The composition of claim 1 in solution form. 溶液がヒトへの経口送達に適している、請求項4記載の組成物。   5. The composition of claim 4, wherein the solution is suitable for oral delivery to a human. 溶液がヒトへの経腸送達に適している、請求項4記載の組成物。   5. The composition of claim 4, wherein the solution is suitable for enteral delivery to a human. 溶液が静脈内投与に適している、請求項4記載の組成物。   5. A composition according to claim 4, wherein the solution is suitable for intravenous administration. EGF受容体アゴニストがEGFである、請求項1〜7のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 7, wherein the EGF receptor agonist is EGF. EGF受容体アゴニストが合成物であり、場合により化学合成もしくは組み換え技術によって製造される、または天然源に由来する、請求項8記載の組成物。   9. The composition of claim 8, wherein the EGF receptor agonist is a synthetic, optionally produced by chemical synthesis or recombinant techniques, or derived from a natural source. L−アルギニンを含む、請求項1〜9のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 9, comprising L-arginine. 製薬上許容される液体で溶解して、短腸症候群のリスクがある被検体への経口投与に適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む、投与単位。   L-arginine, a biological equivalent of L-arginine or NO donor and EGF receptor agonist suitable for oral administration to a subject at risk for short bowel syndrome, dissolved in a pharmaceutically acceptable liquid A dosage unit comprising 製薬上許容される液体で溶解して、短腸症候群と診断された被検体への経口投与に適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む、投与単位。   L-arginine, a biological equivalent of L-arginine or an NO donor and an EGF receptor agonist suitable for oral administration to a subject diagnosed with short bowel syndrome, dissolved in a pharmaceutically acceptable liquid A dosage unit comprising 製薬上許容される液体が、水、生理食塩水、乳児用特殊調製乳、緩衝液、搾乳した母乳、他の適切な担体、およびそれらの組み合わせからなる群から選択される、請求項11または12に記載の投与単位。   The pharmaceutically acceptable liquid is selected from the group consisting of water, saline, special infant formula, buffer, milked milk, other suitable carriers, and combinations thereof. The dosage unit described in 1. アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比が、1:454000000〜約1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜約1:45000(モル:モル)である、請求項11、12または13に記載の投与単位。   The ratio of agonist to L-arginine, a biological equivalent of L-arginine or a NO donor is from 1: 4540000 to about 1: 1 (mol: mol), or 1: 4540000 to about 1: 4500 (mol: 14. A dosage unit according to claim 11, 12 or 13, which is from 1 mol. EGF受容体アゴニストがEGFである、請求項11〜14のいずれか1項に記載の投与単位。   The dosage unit according to any one of claims 11 to 14, wherein the EGF receptor agonist is EGF. L−アルギニンを含む、請求項11〜15のいずれか1項に記載の投与単位。   16. A dosage unit according to any one of claims 11 to 15, comprising L-arginine. 製薬上許容される溶液で溶解して、短腸症候群のリスクがある被検体への静脈内投与に適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む、投与単位。   L-arginine, a biological equivalent of L-arginine or an NO donor and an EGF receptor suitable for intravenous administration to a subject at risk for short bowel syndrome, dissolved in a pharmaceutically acceptable solution A dosage unit comprising an agonist. 製薬上許容される溶液で溶解して、短腸症候群と診断された被検体への静脈内投与に適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む、投与単位。   L-arginine, a biological equivalent of L-arginine or an NO donor and an EGF receptor suitable for intravenous administration to a subject diagnosed with short bowel syndrome dissolved in a pharmaceutically acceptable solution A dosage unit comprising an agonist. アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比が、1:454000000〜約1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜約1:45000(モル:モル)である、請求項17または18に記載の投与単位。   The ratio of agonist to L-arginine, a biological equivalent of L-arginine or a NO donor is from 1: 4540000 to about 1: 1 (mol: mol), or 1: 4540000 to about 1: 4500 (mol: 19. A dosage unit according to claim 17 or 18, wherein the dosage unit is from 1: 4540000 to about 1: 45000 (mol: mol). EGF受容体アゴニストがEGFである、請求項17〜19のいずれか1項に記載の投与単位。   The dosage unit according to any one of claims 17 to 19, wherein the EGF receptor agonist is EGF. L−アルギニンを含む、請求項17〜20のいずれか1項に記載の投与単位。   21. A dosage unit according to any one of claims 17 to 20, comprising L-arginine. 製薬上許容される溶液で溶解して、短腸症候群のリスクがある被検体への非経口投与に適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む、投与単位。   L-arginine, a biological equivalent of L-arginine or an NO donor and an EGF receptor suitable for parenteral administration to a subject at risk for short bowel syndrome, dissolved in a pharmaceutically acceptable solution A dosage unit comprising an agonist. 製薬上許容される液体で溶解して、短腸症候群と診断された被検体への非経口投与に適した、L−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とEGF受容体アゴニストとを含む、投与単位。   L-arginine, a biological equivalent of L-arginine or an NO donor and an EGF receptor suitable for parenteral administration to a subject diagnosed with short bowel syndrome dissolved in a pharmaceutically acceptable liquid A dosage unit comprising an agonist. 製薬上許容される液体が、水、生理食塩水、緩衝液および完全非経口栄養調合物からなる群から選択される、請求項22または23に記載の投与単位。   24. A dosage unit according to claim 22 or 23, wherein the pharmaceutically acceptable liquid is selected from the group consisting of water, saline, buffer and complete parenteral nutritional formulation. アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比が、1:454000000〜約1:1(モル:モル)、または1:45400000〜約1:4500(モル:モル)、または1:4540000〜約1:45000(モル:モル)である、請求項22〜24のいずれか1項に記載の投与単位。   The ratio of agonist to L-arginine, a biological equivalent of L-arginine or a NO donor is from 1: 4540000 to about 1: 1 (mol: mol), or 1: 4540000 to about 1: 4500 (mol: 25) dosage unit according to any one of claims 22 to 24, wherein the dosage unit is from 1: 4540000 to about 1: 45000 (mol: mol). EGF受容体アゴニストがEGFである、請求項22〜25のいずれか1項に記載の投与単位。   26. A dosage unit according to any one of claims 22 to 25, wherein the EGF receptor agonist is EGF. L−アルギニンを含む、請求項22〜26のいずれか1項に記載の投与単位。   27. A dosage unit according to any one of claims 22 to 26, comprising L-arginine. 短腸症候群と診断された患者を治療する方法であって、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを、それらが必要な患者に投与することを含む、治療方法。   A method of treating a patient diagnosed with short bowel syndrome, comprising administering an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor to a patient in need thereof A treatment method comprising: 短腸症候群のリスクがある患者を治療する方法であって、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを、それらが必要な患者に投与することを含む、治療方法。   A method of treating a patient at risk for short bowel syndrome comprising administering an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor to a patient in need thereof. A treatment method comprising: 患者が既に小腸の切除を受けている、または将来小腸の切除を受ける、請求項28または29に記載の方法。   30. A method according to claim 28 or 29, wherein the patient has already undergone resection of the small intestine or undergoes resection of the small intestine in the future. 好適には少なくとも1日に1回、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを、それらが必要な患者に経腸的に投与することを含む、患者において短腸症候群を治療または予防する方法。   Preferably enterally administering the EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor at least once a day to a patient in need thereof. A method of treating or preventing short bowel syndrome in a patient. EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とが混合物として一緒に投与される、請求項31記載の方法。   32. The method of claim 31, wherein the EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor are administered together as a mixture. 混合物が少なくとも1日に1回投与される、請求項32記載の方法。   35. The method of claim 32, wherein the mixture is administered at least once a day. EGF受容体アゴニストがEGFである、請求項31〜33のいずれか1項に記載の方法。   34. The method according to any one of claims 31 to 33, wherein the EGF receptor agonist is EGF. EGFが組み換え技術または合成化学プロセスにより合成される、請求項34記載の方法。   35. The method of claim 34, wherein EGF is synthesized by recombinant techniques or synthetic chemical processes. L−アルギニンを含む、請求項31〜35のいずれか1項に記載の方法。   36. The method according to any one of claims 31 to 35, comprising L-arginine. 治療量のEGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体と短腸症候群の治療または予防において使用するための指示とを含む、キット。   A kit comprising a therapeutic amount of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor and instructions for use in the treatment or prevention of short bowel syndrome. EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とが、固体形態で配合されて供給される、請求項37記載のキット。   38. The kit according to claim 37, wherein the EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor are supplied in a solid form. 指示が、経口投与に適した溶液に固体形態を溶解する工程を含む、請求項38記載のキット。   40. The kit of claim 38, wherein the instructions comprise dissolving the solid form in a solution suitable for oral administration. 指示が、静脈内投与に適した溶液に固体形態を溶解する工程を含む、請求項38記載のキット。   40. The kit of claim 38, wherein the instructions comprise dissolving the solid form in a solution suitable for intravenous administration. アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とが別々に供給される、請求項38記載のキット。   40. The kit of claim 38, wherein the agonist and L-arginine, a biological equivalent of L-arginine or a NO donor are supplied separately. アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とのうちの少なくとも1つが固体形態である、請求項41記載のキット。   42. The kit of claim 41, wherein at least one of the agonist and L-arginine, a biological equivalent of L-arginine or a NO donor is in solid form. アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とのうちの少なくとも1つが溶液である、請求項41記載のキット。   42. The kit of claim 41, wherein at least one of the agonist and L-arginine, a biological equivalent of L-arginine or a NO donor is a solution. 指示が、投与前にアゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを混合する工程を含む、請求項41〜43のいずれか1項に記載のキット。   44. A kit according to any one of claims 41 to 43, wherein the instructions comprise mixing the agonist with L-arginine, a biological equivalent of L-arginine or a NO donor prior to administration. 患者においてSBSを治療または予防する方法であって、
(i)第1治療期間にわたり、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを含む組成物を患者の皮下にまたは静脈内に投与すること;および
(ii)第1治療期間の後の第2治療期間にわたり、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体とを含む組成物を患者に経腸的に投与すること
を含む、SBSの治療または予防方法。
A method of treating or preventing SBS in a patient comprising:
(I) administering a composition comprising an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor over the first treatment period, subcutaneously or intravenously to the patient; and (Ii) Entering into the patient enteral compositions comprising an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor over a second treatment period after the first treatment period. A method of treating or preventing SBS, comprising administering.
第2治療期間が、イレウスの治癒後に開始される、請求項45記載の方法。   46. The method of claim 45, wherein the second treatment period begins after ileus has healed. 経腸投与が浣腸による投与を含む、請求項45または46に記載の方法。   47. The method of claim 45 or 46, wherein enteral administration comprises administration by enema. 経腸投与が経口投与を含む、請求項45または46に記載の方法。   47. The method of claim 45 or 46, wherein enteral administration comprises oral administration. 第2治療期間が2つの段階を含み、第1段階の投与が経口投与であり、第2段階の投与が浣腸により行われる、請求項45記載の方法。   46. The method of claim 45, wherein the second treatment period comprises two phases, wherein the first phase administration is oral administration and the second phase administration is performed by enema. 第1治療期間の間の投与が静脈内投与により行われる、請求項45〜49のいずれか1項に記載の方法。   50. The method of any one of claims 45 to 49, wherein administration during the first treatment period is performed by intravenous administration. 第2治療期間の間の投与が経口的な経路によるものであり、切除の4〜6日後に行われる、請求項45〜50のいずれか1項に記載の方法。   51. The method of any one of claims 45-50, wherein administration during the second treatment period is by the oral route and occurs 4-6 days after resection. 患者においてSBSを治療する方法であって、患者の腸管にEGF受容体アゴニストを送達すること、および患者の腸管内においてNOの生体内産生を増大させることを含む、SBSの治療方法。   A method of treating SBS in a patient comprising delivering an EGF receptor agonist to the patient's intestine and increasing in vivo production of NO in the patient's intestine. NOの生体内産生を増大させることが、患者に酸化窒素シンターゼの基質を投与することを含む、請求項51記載の方法。   52. The method of claim 51, wherein increasing in vivo production of NO comprises administering a substrate for nitric oxide synthase to the patient. NOの生体内産生を増大させることが、NO供与体を投与することを含む、請求項51記載の方法。   52. The method of claim 51, wherein increasing in vivo production of NO comprises administering a NO donor. SBSのリスクがある人を治療する方法であって、患者の腸管にEGF受容体アゴニストを送達すること、および患者の腸管内においてNOの生体内産生を増大させることを含む、治療方法。   A method of treating a person at risk for SBS, comprising delivering an EGF receptor agonist to the patient's intestine and increasing in vivo production of NO in the patient's intestine. NOの生体内産生を増大させることが、患者に酸化窒素シンターゼの基質を投与することを含む、請求項55記載の方法。   56. The method of claim 55, wherein increasing in vivo production of NO comprises administering a substrate for nitric oxide synthase to the patient. NOの生体内産生を増大させることが、NO供与体を投与することを含む、請求項55記載の方法。   56. The method of claim 55, wherein increasing in vivo production of NO comprises administering a NO donor. 患者が既に小腸主要部の外科的切除を受けている、請求項55、56または57に記載の方法。   58. The method of claim 55, 56 or 57, wherein the patient has already undergone surgical resection of the main small intestine. 短腸症候群の人または短腸症候群のリスクがある人において体重を増加させる目的で使用するための、請求項1〜10のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 10, for use for the purpose of gaining weight in a person with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用するための、請求項1〜10のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 10, for use for the purpose of increasing the intestinal absorption surface area in a person with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において体重を増加させる目的で使用するための、請求項11〜26のいずれか1項に記載の投与単位。   27. A dosage unit according to any one of claims 11 to 26 for use for the purpose of gaining weight in a person with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用するための、請求項11〜26のいずれか1項に記載の投与単位。   27. A dosage unit according to any one of claims 11 to 26 for use for the purpose of increasing the intestinal absorption surface area in persons with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において体重を増加させる目的で使用するための、請求項27〜36のいずれか1項に記載の方法。   37. A method according to any one of claims 27 to 36 for use for gaining weight in a person with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用するための、請求項27〜36のいずれか1項に記載の方法。   37. A method according to any one of claims 27 to 36 for use for the purpose of increasing the intestinal absorption surface area in a person with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において体重を増加させる目的で使用するための、請求項37〜44のいずれか1項に記載のキット。   45. Kit according to any one of claims 37 to 44, for use for the purpose of gaining weight in a person with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の、または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用するための、請求項37〜44のいずれか1項に記載のキット。   45. Kit according to any one of claims 37 to 44, for use for the purpose of increasing the intestinal absorption surface area in a person with or at risk for short bowel syndrome. 短腸症候群の、または短腸症候群のリスクがある人において体重を増加させるための、請求項45〜58のいずれか1項に記載の方法。   59. A method according to any one of claims 45 to 58 for increasing body weight in a person with or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させる目的で使用するための、請求項45〜58のいずれか1項に記載の方法。   59. A method according to any one of claims 45 to 58 for use in increasing intestinal absorption surface area in a person with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群を治療または予防するための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用。   Use of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor for the treatment or prevention of short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において体重を増加させるための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用。   Use of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor for weight gain in persons with short bowel syndrome or at risk for short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させるための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用。   Use of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor to increase intestinal absorption surface area in persons with short bowel syndrome or at risk for short bowel syndrome . 短腸症候群を治療または予防するための薬剤を調製するための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用。   Use of an EGF receptor agonist and L-arginine, a biological equivalent of L-arginine or a NO donor for the preparation of a medicament for treating or preventing short bowel syndrome. 短腸症候群の人または短腸症候群のリスクがある人において体重を増加させるための薬剤を調製するための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用。   EGF receptor agonist and L-arginine, biological equivalent of L-arginine or NO donor for the preparation of a medicament for weight gain in persons with short bowel syndrome or at risk for short bowel syndrome Use with. 短腸症候群の人または短腸症候群のリスクがある人において腸の吸収表面積を増大させるための薬剤を調製するための、EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との使用。   An EGF receptor agonist and L-arginine, a biological equivalent of L-arginine, for preparing a medicament for increasing intestinal absorption surface area in a person with short bowel syndrome or at risk for short bowel syndrome or Use with NO donor. EGF受容体アゴニストとL−アルギニン、L−アルギニンの生物学的等価物またはNO供与体との比が、1:100,000(モル:モル)である、請求項1〜10のいずれかに記載の組成物。   11. The ratio of an EGF receptor agonist to L-arginine, a biological equivalent of L-arginine or a NO donor is 1: 100,000 (mol: mol). Composition.
JP2008516083A 2005-06-16 2005-06-16 Treatment of short bowel syndrome Pending JP2008543790A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2005/000948 WO2006133533A1 (en) 2005-06-16 2005-06-16 A treatment for short bowel syndrome

Publications (1)

Publication Number Publication Date
JP2008543790A true JP2008543790A (en) 2008-12-04

Family

ID=37531903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008516083A Pending JP2008543790A (en) 2005-06-16 2005-06-16 Treatment of short bowel syndrome

Country Status (3)

Country Link
JP (1) JP2008543790A (en)
AU (1) AU2005332949A1 (en)
WO (1) WO2006133533A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS54160B1 (en) 2003-03-19 2015-12-31 Biogen Idec Ma Inc. Nogo receptor binding protein
WO2006002437A2 (en) 2004-06-24 2006-01-05 Biogen Idec Ma Inc. Treatment of conditions involving demyelination
PT1904104E (en) 2005-07-08 2013-11-21 Biogen Idec Inc Sp35 antibodies and uses thereof
EP2982695B1 (en) 2008-07-09 2019-04-03 Biogen MA Inc. Compositions comprising antibodies to lingo or fragments thereof
NZ702178A (en) 2012-05-14 2017-01-27 Biogen Ma Inc Lingo-2 antagonists for treatment of conditions involving motor neurons
US10626460B2 (en) 2013-02-21 2020-04-21 Children's Hospital Medical Center Use of glycans and glycosyltransferases for diagnosing/monitoring inflammatory bowel disease
JP2018504400A (en) 2015-01-08 2018-02-15 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. LINGO-1 antagonist and use for treatment of demyelinating disorders
US10857167B2 (en) 2015-04-28 2020-12-08 Children's Hospital Medical Center Use of oligosaccharide compositions to enhance weight gain

Also Published As

Publication number Publication date
WO2006133533A1 (en) 2006-12-21
AU2005332949A1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP2008543790A (en) Treatment of short bowel syndrome
RU2351359C2 (en) Application of oxyntomodulin, method and pharmaceutical composition for prevention or treatment of excessive body weight
Calbet et al. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans
JP5645339B2 (en) Correction of eating behavior
ES2325773T5 (en) Treatment of obesity and related disorders
BRPI0609595A2 (en) use of amylin or amylin agonist and pharmaceutical composition comprising the same
US20080248999A1 (en) Amylin formulations
ES2399651T3 (en) Use of pasireotide for the treatment of endogenous hyperinsulenémic hypoglycemia
RU2009111391A (en) PHARMACEUTICAL COMPOSITIONS CONTAINING hGH FOR ORAL ADMINISTRATION
WO2004089279A2 (en) Long-acting derivatives of pyy agonists
BR112014010701A2 (en) USE OF A PEPTIDE
Dowling Polyamines in intestinal adaptation and disease
JPH04327537A (en) Method of insuring sufficient intracellular glutathione in tissue
Bauchart-Thevret et al. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs
Baccari et al. Relaxin: new functions for an old peptide
JPWO2005089743A1 (en) Treatment for renal anemia
JP2007291070A (en) Hypnotic pharmaceutical composition
AU2005318832B2 (en) Therapeutic nutrient compositions or combinations and methods of their use
US20070254837A1 (en) Treatment for Necrotizing Enterocolitis
WO2018139477A1 (en) NOVEL THERAPEUTIC AGENT FOR NEPHROGENIC ANEMIA TARGETING ERYTHROPOIETIN RECEPTOR VIA NO AND NO-pathway STIMULATION
WO2024061919A1 (en) Combination therapy
US6335317B1 (en) Use of gut-trophic growth factors to improve oxidative status
JP2022177648A (en) Hypoglycemic composition, and hypoglycemic agent containing the same
JPH02212424A (en) Hepatopathy inhibitor
van Berlo et al. Does gastrointestinal bleeding lead to increased nitrogen loss? A study in the rat