JP2008539302A - Compositions and methods for reducing NOx emissions during fluid catalytic cracking - Google Patents

Compositions and methods for reducing NOx emissions during fluid catalytic cracking Download PDF

Info

Publication number
JP2008539302A
JP2008539302A JP2008508858A JP2008508858A JP2008539302A JP 2008539302 A JP2008539302 A JP 2008539302A JP 2008508858 A JP2008508858 A JP 2008508858A JP 2008508858 A JP2008508858 A JP 2008508858A JP 2008539302 A JP2008539302 A JP 2008539302A
Authority
JP
Japan
Prior art keywords
composition
catalyst
zeolite
reduction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008508858A
Other languages
Japanese (ja)
Other versions
JP5383184B2 (en
JP2008539302A5 (en
Inventor
ジーバース,マイケル・エス
クリシユナモールテイ,メーナクシ・スンダラム
ルシアー,ロジヤー・ジエイ
Original Assignee
ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット filed Critical ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット
Publication of JP2008539302A publication Critical patent/JP2008539302A/en
Publication of JP2008539302A5 publication Critical patent/JP2008539302A5/ja
Application granted granted Critical
Publication of JP5383184B2 publication Critical patent/JP5383184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/655Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/182Regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

接触分解工程、好ましくは流動触媒接触工程時に発生するNOを低減する組成物が開示されている。この組成物は、好ましくはY−タイプゼオライトと、約2〜約7.2オングストロームの範囲の細孔寸法および約500未満のAlに対するSiOのモル比を有し、そして亜鉛、鉄およびこれらの混合物からなる群から選択される金属または金属イオンにより安定化されるNO低減用ゼオライトを含有する流動接触分解触媒組成物を含んでなる。好ましくは、NO低減用ゼオライト粒子は無機バインダーにより結合されて、粒子状組成物を形成する。代替としては、NO低減用ゼオライト粒子は、触媒の一体の成分として分解触媒の中に組み込まれる。本発明による組成物は、接触分解製品の転換率または収率の実質的な変化無しでFCC工程の条件下で運転される流動接触分解ユニットの再生装置から放出されるNO排出物を低減するのに改善された有効性を呈する。この組成物の使用方法も開示されている。Catalytic cracking process, preferably the composition to reduce the NO x generated during fluidized catalyst contacting step is disclosed. The composition preferably has a Y-type zeolite, a pore size in the range of about 2 to about 7.2 angstroms, and a molar ratio of SiO 2 to Al 2 O 3 of less than about 500, and zinc, iron and comprising a fluid catalytic cracking catalyst composition comprising a NO x reducing zeolite stabilized by a metal or metal ion selected from the group consisting of mixtures. Preferably, the NO x reducing zeolite particles are bound by an inorganic binder to form a particulate composition. Alternatively, NO x reducing zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst. The composition according to the present invention reduces the NO x emissions emitted from the regenerator of a fluid catalytic cracking unit operated under the conditions of the FCC process without a substantial change in catalytic cracking product conversion or yield. Presents improved effectiveness. A method of using the composition is also disclosed.

Description

関連出願へのクロスリフェレンスCross-reference to related applications

この出願は、2004年8月2日出願の米国特許出願連続番号10/909,706および2004年8月2日出願の米国特許出願連続番号10/909,709の一部継続出願である。   This application is a continuation-in-part of US patent application serial number 10 / 909,706 filed on August 2, 2004 and US patent application serial number 10 / 909,709 filed on August 2, 2004.

本発明は、精製法、特に流動接触分解(FCC)法においてNO排出物を低減するためのNO低減用組成物およびこれらの使用の方法に関する。特に、本発明は、FCC法時に流動接触分解ユニット(FCCU)再生装置から放出されるNOオフガスの含量を、炭化水素転換率または有価の接触分解製品の収率の実質的な変化を伴わずに低減するためのNO低減用組成物およびこれらの使用の方法に関する。 The present invention relates to NO x reduction compositions for reducing NO x emissions and methods of their use in purification processes, particularly fluid catalytic cracking (FCC) processes. In particular, the present invention relates to NO x offgas content released from a fluid catalytic cracking unit (FCCU) regenerator during the FCC process without substantial changes in hydrocarbon conversion or valuable catalytic cracking product yield. to a method of the NO x reduction compositions and the use of these for reducing the.

近年、米国などにおいて有害な窒素酸化物、イオウおよびカーボンの工業排出物からの空気汚染に関して懸念が増大している。このような懸念に応えて、政府機関は、これらの汚染物質の1つ以上の許容し得る排出物に限界を設定し、そして傾向は明らかにますます厳しくなる規制の方向にある。   In recent years, concerns have increased regarding air pollution from industrial emissions of harmful nitrogen oxides, sulfur and carbon, such as in the United States. In response to these concerns, government agencies have set limits on one or more acceptable emissions of these pollutants, and the trend is clearly in the direction of increasingly strict regulations.

流動接触分解(FCC)再生装置から出る煙道ガス流れ中のNOまたは窒素酸化物は広範囲にわたる問題である。流動接触分解ユニット(FCCU)は、一部がコーク中に含有される窒素化合物を含有する重質炭化水素フィードを、それが再生装置に入るときに触媒上で処理する。このコーク−窒素の一部は、FCC再生装置または下流のCOボイラー中でNO排出物に最後に変換される。このように、窒素含有フィードを処理するすべてのFCCUは、触媒再生によりNO排出物問題を有する可能性がある。 NO x or nitrogen oxides in the flue gas stream exiting the fluid catalytic cracking (FCC) regenerator are a widespread problem. A fluid catalytic cracking unit (FCCU) treats a heavy hydrocarbon feed containing nitrogen compounds, some of which are contained in coke, on the catalyst as it enters the regenerator. The Cork - part of the nitrogen is finally converted into NO x emissions in FCC regenerator or downstream CO boiler. Thus, all FCCUs that process nitrogen-containing feeds can have NO x emissions problems due to catalyst regeneration.

FCC法においては、触媒粒子(inventory)は、接触分解域と触媒再生域の間を連続的に循環される。再生時に、分解域中で接触分解触媒粒子上に堆積されるコークは、空気などの酸素含有気体による酸化により高温で除去される。コーク堆積物の除去は、触媒粒子の活性を分解反応で再使用可能な点まで回復させる。一般に、コークを欠乏した酸素により燃焼させると、再生装置の煙道気体は、高いCO/CO比および低いレベルのNOを有するが、過剰の酸素と共に燃焼させると、煙道気体は高いレベルのNOと低下したCO含量を有する。このように、COおよびNOまたはこれらの汚染物質の混合物は、ユニットフィード速度、フィードの窒素含量、再生装置設計、再生装置の運転モードおよび触媒の触媒粒子の組成物などの要素に依っていろいろな量で、煙道気体と共に排出される。 In the FCC process, the catalyst particles (inventory) are continuously circulated between the catalytic cracking zone and the catalyst regeneration zone. During regeneration, coke deposited on the catalytic cracking catalyst particles in the cracking zone is removed at high temperature by oxidation with an oxygen-containing gas such as air. Removal of the coke deposits restores the activity of the catalyst particles to a point where they can be reused in the decomposition reaction. Generally, when coke is burned with oxygen deficient, the regenerator flue gas has a high CO / CO 2 ratio and a low level of NO x , but when burned with excess oxygen, the flue gas is at a high level. having a CO content decreased with the NO x. Thus, CO and NO x or mixtures of these contaminants can vary depending on factors such as unit feed rate, feed nitrogen content, regenerator design, regenerator operating mode and catalyst catalyst particle composition. In small quantities with flue gas.

形成後のNO気体を処理することにより、例えば(特許文献1)、(特許文献2)、(特許文献3)、(特許文献4)、(特許文献5)、(特許文献6)および(特許文献7)で述べられているようにNO含有気体流れを後処理することにより、FCCUから排出されるNO気体の量を制限するために、種々の試みが行われてきた。 By treating the NO x gas after formation, for example (Patent Document 1), (Patent Document 2), (Patent Document 3), (Patent Document 4), (Patent Document 5), and (Patent Document 6) ( Various attempts have been made to limit the amount of NO x gas discharged from the FCCU by post-processing the NO x containing gas stream as described in US Pat.

もう一つのアプローチは、再生装置の運転を部分燃焼に改変し、次にNOに変換される前に煙道気体中でNO前駆体を処理することであった(例えば、(特許文献8)、(特許文献9)、(特許文献10)、(特許文献6)、(特許文献11)、(特許文献12)および(特許文献13))。 Another approach is to modify the operation of the reproducing apparatus in partial burn was to process the NO x precursors in the flue gas before the next is converted to NO x (e.g., (Patent Document 8 ), (Patent Literature 9), (Patent Literature 10), (Patent Literature 6), (Patent Literature 11), (Patent Literature 12) and (Patent Literature 13)).

更にもう一つのアプローチは、NO排出物を低減するのに再生装置の運転を改変すること(例えば(特許文献14))であり、あるいは使用されるCO燃焼促進剤を改変する
ことであった(例えば、(特許文献15)、(特許文献16)および(特許文献17))。部分燃焼モードで運転されている再生装置中での酸素による空気の富化も提案された(例えば、(特許文献18))。
Yet another approach was to modify the operation of the regenerator to reduce NO x emissions (eg, US Pat. (For example, (Patent Document 15), (Patent Document 16) and (Patent Document 17)). Enrichment of air by oxygen in a regenerator operating in the partial combustion mode has also been proposed (for example (Patent Document 18)).

NO排出物を扱う試みにおいて添加物も使用されてきた。(特許文献19)、(特許文献20)、(特許文献21)および(特許文献22)は、FCCU再生装置からのNO排出物を低減するためにNO除去組成物を使用することを開示している。(特許文献23)および(特許文献24)も再生段階時に排出されるNOのレベルを同時に低減する一方で、FCC触媒再生工程段階時にCO燃焼を促進するNO低減用組成物を開示している。これらの特許により開示されているNO低減用組成物は、FCC触媒の触媒粒子と共に循環される添加物として使用されるか、あるいはFCC触媒の一体の部分として組み込まれ得る。 Additives have also been used in attempts to handle NO x emissions. (Patent Literature 19), (Patent Literature 20), (Patent Literature 21), and (Patent Literature 22) disclose the use of NO x removal compositions to reduce NO x emissions from FCCU regenerators. is doing. While reducing the level of (Patent Document 23) and (Patent Document 24) are also emitted during the regeneration step NO x simultaneously, discloses a NO x reduction composition, which promotes CO combustion during FCC catalyst regeneration process step Yes. The NO x reduction compositions disclosed by these patents can be used as an additive circulated with the catalyst particles of the FCC catalyst or incorporated as an integral part of the FCC catalyst.

(特許文献25)および(特許文献26)は、接触分解触媒の触媒粒子の中に銅を付着させたゼオライトを含有する別々の添加物粒子を組み込むことにより、FCCUの再生装置からのNO排出物を低減することを開示している。 (Patent Document 25) and (Patent Document 26) disclose NO x emission from a regenerating apparatus of FCCU by incorporating separate additive particles containing zeolite with copper attached to catalyst particles of a catalytic cracking catalyst. It is disclosed to reduce things.

NO排出物の制御にこれまで使用された多数の添加物組成物は、通常、コークの生成を増加させる一方で、炭化水素転換率または有価の接触分解製品、例えば、ガソリン、軽質オレフィンおよび液化石油気体(LPG)の収率の顕著な減少を引き起こしてきた。FCCUに添加されるNO添加物が接触分解製品の収率に影響を及ぼさないか、あるいは全体のユニット転換率を変化させないことは極めて望ましい特性である。FCCUの運転は、通常、接触分解製品の候補を製造し、そして精製収益性を最大にするためにユニット設計、フィードおよび触媒に基づいて最適化される。製品の候補は特定の精製の値モデルに基づく。例えば、ピークの夏のドライブの季節には、多数の精製業者は、ガソリンの生成を最大にすることを望み、冬の季節には暖房用の油の製造を最大にすることを望む。他の場合には、精製業者は、一般の市場で販売可能な、あるいはフィードストックとして関連の石油化学プラントで使用される、軽質オレフィン製品を製造することが利益になることを見出し得る。 Numerous additives composition used heretofore to control of the NO x emissions are normally while increasing the production of coke, catalytic cracking products of a hydrocarbon conversion or valuable, for example, gasoline, light olefins and liquefied It has caused a significant decrease in the yield of petroleum gas (LPG). It is a highly desirable property that the NO x additive added to the FCCU does not affect the yield of the catalytic cracking product or change the overall unit conversion. FCCU operation is typically optimized based on unit design, feed and catalyst to produce catalytic cracking product candidates and maximize refining profitability. Product candidates are based on specific purification value models. For example, during the peak summer drive season, many refiners want to maximize gasoline production and in the winter season they want to maximize the production of heating oil. In other cases, refiners may find it beneficial to produce light olefin products that can be sold in the general market or used in related petrochemical plants as feedstock.

NO低減用添加物がコークの生成を増加させる場合には、FCCUは、余分なコークを燃焼させるのに不充分な空気容量を有し、そしてユニット中で低フィードスループットを生じ得る。添加物が低価の値の乾燥気体の生成を減少させる場合には、更に有価な製品の生成が減少し得る。乾燥気体の増加は、これを取り扱うユニットの能力を超えて、処理されるフィードの量を低減させ得る。精製業者がこれらの製品の価値を評価し、そしてユニットが余分な軽質炭化水素の処理に必要な装置を有する場合には、軽質オレフィンの生成を増加させる添加物が望ましい一方で、精製業者の目標がガソリンの生成を最大にすることである場合には、この添加物は収益性を低減し得る。軽質オレフィンは、通常、ガソリンの生成を犠牲にしてFCCUで製造される。製品の収率に影響を及ぼし、ユニットを設備の限界に達せしめ、そして/あるいは処理可能なフィードの量を減少させる場合には、ユニット転換率を増加させる添加物でも望ましくないことがあり得る。
米国特許第4,434,147号 米国特許第4,778,664号 米国特許第4,735,927号 米国特許第4,798,813号 米国特許第4,855,115号 米国特許第5,413,699号 米国特許第5,547,648号 米国特許第5,173,278号 米国特許第5,240,690号 米国特許第5,372,706号 米国特許第5,705,053号 米国特許第5,716,514号 米国特許第5,830,346号 米国特許第5,382,352号 米国特許第4,199,435号 米国特許第4,812,430号 米国特許第4,812,431号 米国特許第5,908,804号 米国特許第6,379,536号 米国特許第6,280,607号 米国特許第6,129,834号 米国特許第6,143,167号 米国特許第6,165,933号 米国特許第6,358,881号 米国特許第4,973,399号 米国特許第4,980,052号
If the NO x reduction additive increases coke production, the FCCU has insufficient air volume to burn excess coke and may result in low feed throughput in the unit. If the additive reduces the production of low value dry gas, the production of valuable products can be further reduced. The increase in dry gas can exceed the capacity of the unit handling it and reduce the amount of feed processed. If the refiner evaluates the value of these products and the unit has the equipment needed to process excess light hydrocarbons, additives that increase the production of light olefins are desirable while the refiner's goal is If is to maximize gasoline production, this additive can reduce profitability. Light olefins are usually produced with FCCU at the expense of gasoline production. Additives that increase unit conversion may be undesirable if they affect product yield, reach unit limits, and / or reduce the amount of feed that can be processed.
U.S. Pat. No. 4,434,147 U.S. Pat. No. 4,778,664 U.S. Pat. No. 4,735,927 U.S. Pat. No. 4,798,813 US Pat. No. 4,855,115 US Pat. No. 5,413,699 US Pat. No. 5,547,648 US Pat. No. 5,173,278 US Pat. No. 5,240,690 US Pat. No. 5,372,706 US Pat. No. 5,705,053 US Pat. No. 5,716,514 US Pat. No. 5,830,346 US Pat. No. 5,382,352 U.S. Pat. No. 4,199,435 U.S. Pat. No. 4,812,430 U.S. Pat. No. 4,812,431 US Pat. No. 5,908,804 US Pat. No. 6,379,536 US Pat. No. 6,280,607 US Pat. No. 6,129,834 US Pat. No. 6,143,167 US Pat. No. 6,165,933 US Pat. No. 6,358,881 US Pat. No. 4,973,399 U.S. Pat. No. 4,980,052

結果として、製品の候補に影響を及ぼすか、あるいはフィードを所望の速度で処理する能力を変化させるFCCUに対するいかなる変化も精製業者の収益性にとって有害である可能性がある。それゆえ、製品の収率と全体のユニット転換率に著しい影響を及ぼさないNO制御用組成物に対する必要性が存在する。 As a result, any change to the FCCU that affects product candidates or changes the ability to process the feed at the desired rate can be detrimental to refiner profitability. Therefore, a need exists for NO x control compositions that do not significantly affect product yield and overall unit conversion.

ある金属安定化ゼオライトは、増大した活性および安定性を呈して、接触分解工程時にNO排出物を低減するということが見出された。分解触媒の触媒粒子、特に活性Y−タイプゼオライトを含有し、流動接触分解(FCC)工程時に流動接触分解ユニット(FCCU)中で循環される接触分解触媒の触媒粒子と共に金属安定化ゼオライト成分を組み込むことによって、炭化水素転換率またはFCC工程時に生成する接触分解製品の収率を実質的に変化させずに、あるいはこれらに影響を及ぼさずに卓越したNO制御性能がもたらされる。 Certain metal-stabilized zeolites exhibit increased activity and stability, has been found that reduced NO x emissions was during catalytic cracking process. Incorporates metal-stabilized zeolite component with catalytic cracking catalyst particles containing catalytic particles of cracking catalyst, especially active Y-type zeolite, and circulated in fluid catalytic cracking unit (FCCU) during fluid catalytic cracking (FCC) process it allows the yield of catalytic cracking products produced during hydrocarbon conversion or FCC process without substantially changing or excellent NO x control performance without affecting these results.

本発明によれば、本発明のNO低減用組成物は、通常、FCC工程時にNOを低減する能力を有し、そして亜鉛、鉄およびこれらの混合物からなる群から選択される金属により安定化されたゼオライト成分の粒子を含有する粒子状組成物を含んでなる。本発明の好ましい態様においては、粒子状ゼオライト成分はフェリエライトである。本発明の更に好ましい態様においては、ゼオライト粒子は、無機バインダーにより結合されている。バインダーは、好ましくはシリカ、アルミナまたはシリカ−アルミナを含んでなる。ゼオライトは、水素、アンモニウム、アルカリ金属およびこれらの組み合わせ物により交換され得る。好ましいアルカリ金属は、ナトリウム、カリウムまたはこれらの組み合わせ物である。 In accordance with the present invention, the NO x reduction composition of the present invention typically has the ability to reduce NO x during the FCC process and is more stable with a metal selected from the group consisting of zinc, iron, and mixtures thereof. Comprising a particulate composition containing particles of a modified zeolite component. In a preferred embodiment of the invention, the particulate zeolite component is ferrierite. In a further preferred embodiment of the present invention, the zeolite particles are bound by an inorganic binder. The binder preferably comprises silica, alumina or silica-alumina. The zeolite can be exchanged with hydrogen, ammonium, alkali metals and combinations thereof. Preferred alkali metals are sodium, potassium or combinations thereof.

本発明の一つの局面においては、金属安定化ゼオライトに基づくNO低減添加物組成物が提供される。この組成物は、FCC工程時にFCCU再生装置から放出されるNO排出物を低減するために、接触分解触媒の循環する触媒粒子に添加される。 In one aspect of the present invention, NO x reduction additive compositions based on a metal stabilizing zeolite is provided. The composition, in order to reduce NO x emissions was released from the FCCU regenerator during the FCC process, it is added to the catalyst particles circulating catalytic cracking catalyst.

本発明のもう一つの局面においては、FCC触媒の一体の成分として組み込まれ、好ましくはY−タイプゼオライト活性な分解成分を含有する金属安定化ゼオライトを含んでな
るNO低減触媒組成物が提供される。
In another aspect of the present invention, incorporated as an integral component of the FCC catalyst, preferably Y- type zeolite active NO x reduction catalyst composition comprising a metal stabilized zeolite containing cracking component is provided The

本発明の更にもう一つの局面においては、炭化水素転換率および接触分解石油製品の収率を実質的に維持する一方で、FCC工程時にFCCU再生装置から放出されるNO排出物を低減する、改善されたNO低減用組成物が提供される。 In yet another aspect of the invention, while substantially maintaining the yield of hydrocarbon conversion and cracking petroleum products, to reduce NO x emissions was released from the FCCU regenerator during the FCC process, An improved NO x reduction composition is provided.

本発明のもう一つの局面は、本発明によるNO低減用組成物を用いるFCC工程時のFCCU再生装置のオフガス中のNO含量を低減するための方法を提供する。 Another aspect of the present invention provides a method for reducing the NO x content in the off-gas of the FCCU regenerator during the FCC process using the NO x reduction composition according to the present invention.

本発明のもう一つの局面は、炭化水素転換率またはFCC工程時に生成する接触分解製品の収率に実質的に影響を及ぼさずに、FCCU再生装置のオフガス中のNO含量を低減するための改善されたFCC法を提供することである。 Another aspect of the present invention, without substantially affecting the catalytic cracking product yield generated during hydrocarbon conversion or FCC process, to reduce the NO x content in the off gas of the FCCU regenerator It is to provide an improved FCC method.

本発明のこれらの局面および他の局面は下記に詳述される。   These and other aspects of the invention are described in detail below.

外周条件で比較的安定である、いくつかの窒素酸化物が知られているが、本発明の目的には、酸化窒素、二酸化窒素(主要な有害な窒素酸化物)ならびにN、Nおよびこれらの混合物を表すのにNOがこの明細書では使用される。 Although some nitrogen oxides are known that are relatively stable at ambient conditions, for the purposes of the present invention, nitrogen oxides, nitrogen dioxide (the main harmful nitrogen oxides) as well as N 2 O 4 , N NO x is used in this specification to represent 2 O 5 and mixtures thereof.

本発明は、流動接触分解(FCC)触媒、好ましくは活性なY−タイプゼオライトを含んでなる触媒との組み合わせでNO低減用組成物を含有するあるゼオライトの使用が炭化水素フィードの転換率または接触分解製品の収率の実質的な変化なしでFCC工程条件下でFCCU再生装置から放出されるNO排出物の低減に極めて有効であるという発見を網羅している。本発明の組成物は、一般に、FCC条件下でのFCCUの再生装置からのNO排出物を低減する能力を有する、少なくとも1つの金属安定化ゼオライト成分を含んでなる。このゼオライトは、NO低減用ゼオライトを提供するために亜鉛、鉄およびこれらの混合物からなる群から選択される金属または(金属イオン)により安定化される。本発明の好ましい態様においては、このゼオライトは、粒子状NO低減用組成物を形成するために無機バインダーにより結合される。粒子状NO低減用組成物は、別々の粒子添加物として接触分解触媒の循環する触媒粒子に添加され得る。本発明のもう一つの態様においては、接触分解触媒組成物中での組み込みの前後に所望の金属により安定化されるゼオライトは、接触分解触媒の一体の成分として組み込まれる。 The present invention is fluidized catalytic cracking (FCC) catalyst, preferably active Y- use of certain zeolite containing NO x reduction composition in combination with type zeolite comprising catalyst conversion of hydrocarbon feeds or an exhaustive discovery that it is very effective in reducing of the NO x emissions released from the FCCU regenerator with substantially without change FCC process conditions yield of catalytic cracking products. The compositions of the present invention generally comprise at least one metal-stabilized zeolitic component that has the ability to reduce NO x emissions from FCCU regenerators under FCC conditions. The zeolite zinc to provide a NO x reducing zeolite is stabilized by a metal selected from the group consisting of iron and mixtures thereof or (metal ion). In a preferred embodiment of the invention, the zeolite is bound by an inorganic binder to form a particulate NO x reduction composition. The particulate NO x reduction composition may be added to the circulating catalyst particles of the catalytic cracking catalyst as a separate particle additive. In another embodiment of the invention, the zeolite stabilized with the desired metal before and after incorporation in the catalytic cracking catalyst composition is incorporated as an integral component of the catalytic cracking catalyst.

本発明の目的には、語句「炭化水素フィード転換率または接触分解製品の収率の実質的な変化」は、(i)同一のあるいは実質的に同一の生成物のベースライン収率と比較した、LPGと組み合わせたLCO(ライトサイクルオイル)、残油およびガソリンの収率の30%未満の相対的な変化、好ましくは20%未満の相対的な変化および最も好ましくは10%未満の相対的な変化;または(ii)ベースラインの転換率と比較した、炭化水素フィードの転換率の10%未満の相対的な変化、好ましくは6.5%未満の相対的な変化および最も好ましくは5%未満の相対的な変化のどちらかを意味すると、この明細書では定義される。転換率は100%×(1−残油収率−LCO収率)として定義される。NO低減用組成物を別々の添加物として使用する場合、ベースラインは、同一のあるいは実質的に同一のフィードについて、そして同一のあるいは実質的に同一の反応およびユニット条件下で運転されるが、本発明の添加物を触媒の触媒粒子に添加する前のFCCU中の生成物の平均の転換率あるいは収率である。NO低減用組成物を接触分解触媒粒子の中に集積化あるいは組み込んで、一体のNO低減触媒系を提供する場合、炭化水素転換率または接触分解製品の収率の著しい変化は、同一のあるいは実質的に同一の反応およびユニット条件下で同一のあるいは実質的に同一のフィードについて、そしてNO低減用組成物を分解触媒中でカオリンまたは他の充填剤などのマトリックス成分により置き換えていることを除いて、NO低減用組成物を含有するものと同一のあるいは実質的に同一の分解触媒組成物を含んでなる分解触媒の触媒粒子について運転される同一のあるいは実質的に同一のFCCUにおける平均の転換率あるいは収率として定義される、ベースラインを用いて求められる。上記に特定されたパーセント変化は、1)G,W.Young,G.D.Weatherbee,and S.W.Davey,「Simulating Commercial FCCU yields with the Davison Circulating Riser(DCR) pilot plant unit」,National Petroleum Refiners Association(NPRA) Paper AM88−52;および2)G.W.Young,「Realistic Assessment of FCC Catalyst Performance in the Laboratory」,in Fluid Catalytic Cracking:Science and Technology,J.S.Magee and M.M.Mitchell,Jr.Eds.,Studies in Surface Science and Catalysis,Volume 76,p,257,Elsevier Science Publishers B.V.,Amsterdam 1993,ISBN 0−444−89037−8に述べられているダビソン循環ライザー(DCR)から得られる運転データの統計的な分析から誘導される。 For the purposes of the present invention, the phrase “substantial change in hydrocarbon feed conversion or catalytic cracking product yield” is compared to (i) the baseline yield of the same or substantially the same product. LCO (light cycle oil) combined with LPG, residual oil and gasoline yield less than 30% relative change, preferably less than 20% relative change and most preferably less than 10% relative change Or (ii) less than 10% relative change in hydrocarbon feed conversion compared to baseline conversion, preferably less than 6.5% relative change and most preferably less than 5%. It is defined in this specification to mean either relative change. Conversion is defined as 100% x (1-resid yield-LCO yield). When the NO x reduction composition is used as a separate additive, the baseline is operated for the same or substantially the same feed and under the same or substantially the same reaction and unit conditions. The average conversion or yield of the product in the FCCU before the additive of the present invention is added to the catalyst particles of the catalyst. When the NO x reduction composition is integrated or incorporated into the catalytic cracking catalyst particles to provide an integrated NO x reduction catalyst system, the significant change in hydrocarbon conversion or catalytic cracking product yield is the same. Or for the same or substantially the same feed under substantially the same reaction and unit conditions, and the NO x reduction composition being replaced by a matrix component such as kaolin or other filler in the cracking catalyst In the same or substantially the same FCCU operated on the catalyst particles of the cracking catalyst comprising the same or substantially the same cracking catalyst composition as that containing the NO x reduction composition Determined using baseline, defined as average conversion or yield. The percent changes identified above are: 1) G, W. Young, G.M. D. Weatherbee, and S.W. W. Davey, “Simulating Commercial FCCU Yields with the Davison Circulating Riser (DCR) pilot plant unit”, National Petroleum Refiners Association (NPR2); W. Young, “Realistic Assessment of FCC Catalyst Performance in the Laboratory”, in Fluid Catalytic Cracking: Science and Technology, J. MoI. S. Magee and M.M. M.M. Mitchell, Jr. Eds. , Studies in Surface Science and Catalysis, Volume 76, p, 257, Elsevier Science Publishers B .; V. , Amsterdam 1993, ISBN 0-444-89037-8, derived from statistical analysis of operational data obtained from the Davison circulating riser (DCR).

本発明において有用なゼオライトは、分解条件下での接触分解工程時に、特にFCC条件下でのFCC工程時にNO排出物を低減する能力を有するゼオライトを含む。一般に、このNO低減用ゼオライトは、約500未満の、好ましくは250未満の、最も好ましくは100未満のAlに対するSiOのモル比で約2〜約7.2オングストロームの範囲の細孔寸法を有するゼオライトを含む。好ましくは、このゼオライトは、フェリエライト、ZSM−11、ベータ、MCM−49、モルデナイト、MCM−56、ゼオライト−L、ゼオライトロー、エリオナイト、シャバザイト、クリノプチロライト、MCM−22、MCM−35、MCM−61、オフレタイト、A、ZSM−12、ZSM−23、ZSM−18、ZSM−22、ZSM−57、ZSM−61、ZK−5、NaJ、Nu−87、Cit−1、SSZ−35、SSZ−48、SSZ−44、SSZ−23、ダキアルダイト、メルリノイト、ロブダライト、レビン、ローモンタイト、エピスチルバイト、グメリナイト、ジスモンディン、カンクリナイト、ブリューステライト、スチルバイト、ポーリンジャイト、グースクリーカイト、ナトロライト、オメガまたはこれらの混合物からなる群から選択される。本発明の更に好ましい態様においては、このNO低減用ゼオライト成分は、フェリエライト、ベータ、MCM−49、モルデナイト、MCM−56、ゼオライト−L、ゼオライトロー、エリオナイト、シャバザイト、クリノプチロライト、MCM−22、オフレタイト、A、ZSM−12、ZSM−23、オメガおよびこれらの混合物からなる群から選択されるゼオライトである。本発明の最も好ましい態様においては、このゼオライトはフェリエライトである。 Zeolites useful in the present invention, when the catalytic cracking process of the decomposition conditions include zeolites, especially with the ability to reduce NO x emissions was during FCC process in FCC conditions. In general, the NO x reducing zeolite is less than about 500, preferably less than 250, most preferably in the range of from about 2 to about 7.2 Angstroms at a molar ratio of SiO 2 to less than 100 Al 2 O 3 fine Including zeolite with pore size. Preferably, the zeolite is ferrierite, ZSM-11, beta, MCM-49, mordenite, MCM-56, zeolite-L, zeolite rho, erionite, shabazite, clinoptilolite, MCM-22, MCM-35. , MCM-61, offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35 , SSZ-48, SSZ-44, SSZ-23, dakialdite, merlinoite, lobdarite, levin, lomontite, epistilbite, gmelinite, dysmondin, cancrinite, brewsterite, stilbite, porinite, goosecreekite, natrolite, omega Or this It is selected from the group consisting of. In a further preferred embodiment of the present invention, the NO x reducing zeolite component is ferrierite, beta, MCM-49, mordenite, MCM-56, zeolite-L, zeolite low, erionite, shabazite, clinoptilolite, Zeolite selected from the group consisting of MCM-22, offretite, A, ZSM-12, ZSM-23, omega and mixtures thereof. In the most preferred embodiment of the invention, the zeolite is ferrierite.

本発明の好ましい態様においては、本発明のNO低減用組成物を含んでなるゼオライトは、少なくとも100m/gの、好ましくは少なくとも200m/gの、そして最も好ましくは少なくとも300m/gの表面積を有する。本発明のもう一つの態様においては、このゼオライトは、粒子状NO低減用組成物またはFCC触媒を形成するためにバインダーの中に組み込む前に、あるいは金属または金属イオンにより安定化する前に、水素、アンモニウム、アルカリ金属およびこれらの組み合わせ物からなる群から選択される材料により交換される。好ましいアルカリ金属は、ナトリウム、カリウムおよびこれらの混合物からなる群から選択されるものである。 In a preferred embodiment of the present invention, the zeolite comprising the NO x reduction composition of the present invention is at least 100 m 2 / g, preferably at least 200 m 2 / g, and most preferably at least 300 m 2 / g. Has a surface area. In another embodiment of the present invention, the zeolite is either prior to incorporation into the binder to form a particulate NO x reduction composition or FCC catalyst, or before stabilization with a metal or metal ion. Exchanged by a material selected from the group consisting of hydrogen, ammonium, alkali metals and combinations thereof. Preferred alkali metals are those selected from the group consisting of sodium, potassium and mixtures thereof.

このNO低減用組成物は、安定化量の、例えば、金属酸化物としてNO低減用組成物の全重量基準で測定して約1.0〜約25重量パーセントの、好ましくは約5〜約15
重量パーセントの、最も好ましくは約8〜約12重量パーセントの亜鉛、鉄およびこれらの混合物からなる群から選択される金属または金属イオンにより安定化されている、少なくとも1つのNO低減用ゼオライトを含んでなる。
The NO x reduction composition is a stabilizing amount of, e.g., from about 1.0 to about 25 weight percent, as measured by total weight of the NO x reduction composition as the metal oxide, preferably from about 5 to About 15
Containing at least one NO x reducing zeolite stabilized by a metal or metal ion selected from the group consisting of weight percent, most preferably about 8 to about 12 weight percent zinc, iron and mixtures thereof. It becomes.

通常、このゼオライトの安定化は、ゼオライト成分中あるいはその上に所望の安定化金属または金属イオンを堆積するのに充分ないかなる方法によっても行われる。金属または金属イオンは、ゼオライトの細孔中に存在するか、あるいはゼオライトの骨組み内に組み込まれるという方法で堆積されるということが好ましい。当分野の熟練者ならば判るように、これは種々の方法により行われ得る。   Typically, the stabilization of the zeolite is performed by any method sufficient to deposit the desired stabilizing metal or metal ion in or on the zeolite component. The metal or metal ions are preferably deposited in such a way that they are present in the pores of the zeolite or are incorporated into the framework of the zeolite. This can be done in various ways, as will be appreciated by those skilled in the art.

金属または金属イオンは、金属または金属イオンの存在においてゼオライトを合成することによりゼオライトの骨組み内に組み込まれ得る。例えば、金属成分はゼオライトの製造時に合成ゲルに添加されることも得る。代替法においては、金属あるいは金属イオン成分は、ゼオライトの合成に使用される成分として他の反応試剤と共に添加されるか、あるいはゼオライトの合成に使用されるアルミニウムイオンなどの他の反応試剤の1つに対して部分的に置換されるか、あるいは交換され得る。安定化金属あるいは金属イオンは、本発明のNO低減用組成物を形成するために、例えばイオン交換、含浸などの慣用の方法を用いてゼオライトの細孔の中に組み込まれることも得る。 The metal or metal ion can be incorporated into the framework of the zeolite by synthesizing the zeolite in the presence of the metal or metal ion. For example, the metal component may be added to the synthetic gel during the production of the zeolite. In the alternative, the metal or metal ion component is added along with other reaction reagents as components used in the synthesis of the zeolite, or one of the other reaction reagents such as aluminum ions used in the synthesis of the zeolite. Can be partially replaced or replaced. Stabilizing metal or metal ion, to form the NO x reduction compositions of the present invention, for example, ion-exchange, also obtained be incorporated into the pores of the zeolite using conventional methods such as impregnation.

典型的な固相交換は、微粉砕された金属塩をゼオライトとブレンドし、そして交換を起こすのに充分な時間および温度でこの2つの成分を一緒に加熱することにより行われ得る。次に、このブレンドは、いかなる非交換金属イオンおよび/またはいかなる残存塩も除去して、金属で交換されたゼオライトを提供するために水洗され得る。   A typical solid phase exchange can be performed by blending the pulverized metal salt with the zeolite and heating the two components together for a time and temperature sufficient to cause the exchange. The blend can then be washed with water to remove any non-exchanged metal ions and / or any residual salts to provide a metal exchanged zeolite.

安定化金属あるいは金属イオン成分は、含浸されるか、あるいは、通常、NO低減用ゼオライトを無機バインダーにより結合して、粒子を形成することにより形成される粒子状NO低減用組成物上に溶液交換により交換されることも得る。本発明は、粒子状組成物のいかなる特定の製造方法にも限定されるものでないが、通常、本発明の粒子状NO低減用組成物は、最終組成物中で少なくとも10.0重量パーセントのNO低減用ゼオライト成分と少なくとも5.0重量パーセントのバインダー材料を提供するのに充分な量で、NO低減用ゼオライト、無機バインダーおよび随意のマトリックス材料を含有する水性スラリーを形成し、その後で水性スラリーをスプレー乾燥して、粒子を形成することにより製造される。スプレー乾燥された粒子は、揮発物を除去するのに充分な温度で充分な時間、例えば約90℃〜約320℃で約0.5〜約24時間場合によっては乾燥される。本発明の好ましい態様においては、ゼオライト含有水性スラリーは、スラリー中に含有される材料の平均粒子寸法を10μm以下、好ましくは5μm以下、最も好ましくは3μm以下まで低減するために、スプレー乾燥の前にミル掛けされる。この水性スラリーは、バインダーおよび/またはマトリックス材料を所望のように組み込む前あるいは後にミル掛けされ得る。 The stabilizing metal or metal ion component is impregnated, or is usually formed on the particulate NO x reduction composition formed by binding the NO x reduction zeolite with an inorganic binder to form particles. It can also be exchanged by solution exchange. While the present invention is not limited to any particular method of making a particulate composition, typically the particulate NO x reduction composition of the present invention is at least 10.0 weight percent in the final composition. an amount sufficient to provide a NO x reducing zeolite component and at least 5.0 weight percent of the binder material, NO x reducing zeolite, forming an aqueous slurry containing the inorganic binder and optional matrix material, thereafter Manufactured by spray drying an aqueous slurry to form particles. The spray dried particles are optionally dried at a temperature sufficient to remove volatiles for a sufficient time, such as from about 90 ° C. to about 320 ° C. for about 0.5 to about 24 hours. In a preferred embodiment of the present invention, the zeolite-containing aqueous slurry is subjected to spray drying prior to spray drying to reduce the average particle size of the material contained in the slurry to 10 μm or less, preferably 5 μm or less, and most preferably 3 μm or less. Milled. This aqueous slurry can be milled before or after incorporating the binder and / or matrix material as desired.

このスプレー乾燥された組成物は、揮発物を除去し、FCC工程の条件下でFCCU中での使用に充分な硬さをバインダーにもたらすのに充分な温度および時間、好ましくは約320℃〜約900℃で約0.5〜約6時間焼成され得る。   The spray-dried composition has a temperature and time, preferably about 320 ° C. to about about 100 ° C., sufficient to remove volatiles and provide the binder with sufficient hardness for use in the FCCU under the conditions of the FCC process. It can be calcined at 900 ° C. for about 0.5 to about 6 hours.

場合によっては、この乾燥された、あるいは焼成された組成物は、仕上がった製品中のアルカリ金属、例えばナトリウムまたはカリウムの量を低減するために、アンモニアまたはアンモニウム塩(例えば、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、リン酸アンモニウムなど)または無機あるいは有機酸(例えば、硫酸、硝酸、リン酸、塩酸、酢酸、ギ酸など)の水溶液により洗浄あるいは交換される。   In some cases, this dried or calcined composition may be used to reduce the amount of alkali metals such as sodium or potassium in the finished product, such as ammonia or ammonium salts (eg, ammonium sulfate, ammonium nitrate, ammonium chloride). , Ammonium carbonate, ammonium phosphate, etc.) or an aqueous solution of an inorganic or organic acid (for example, sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid, acetic acid, formic acid, etc.).

粒子状NO低減用組成物の含浸は、通常、可溶性金属塩を水に溶解し、その後に粒子状組成物をこの溶液により含浸することにより行われ得る。 The impregnation of the particulate NO x reduction composition can usually be performed by dissolving a soluble metal salt in water and then impregnating the particulate composition with this solution.

安定化金属あるいは金属イオン成分が粒子状NO低減用組成物の製造時にフィードスラリーに添加され得るということも本発明の範囲内にある。すなわち、NO低減用ゼオライト、バインダーおよびいかなるマトリックス成分もフィードスラリーを形成し、続いて通常上述したようにスプレー乾燥により粒子状組成物を形成するために安定化金属成分と合体され得る。安定化金属あるいは金属イオン成分を含浸するか、あるいは、NO低減用ゼオライトを無機バインダーにより結合して、上述したように通常溶液交換によって粒子状NO低減用組成物を形成する前に粒子状NO低減用組成物上で交換され得るということは本発明の範囲内にある。 It is also within the scope of the present invention that a stabilizing metal or metal ion component can be added to the feed slurry during the production of the particulate NO x reduction composition. That, NO x reducing zeolite, binder and any matrix components also form a feed slurry, followed be typically combined with the stabilizing metal component to form a particulate composition by spray drying as described above. Before impregnating the stabilizing metal or metal ion component or binding the NO x reducing zeolite with an inorganic binder and forming the particulate NO x reducing composition by ordinary solution exchange as described above, are within the scope of the present invention that may be exchanged NO x reduction compositions Butsujo.

NO低減用組成物を接触分解触媒の一体の成分として使用する場合には、安定化金属あるいは金属イオンは、触媒の成分としてゼオライトを組み込む前後にNO低減用ゼオライト上で交換あるいは含浸され得る。分解触媒内のNO低減用ゼオライト成分の組み込みをいかなる特定の分解触媒の製造方法に限定するような意図なしで、通常、ゼオライト成分、任意の更なるゼオライト、通常USYあるいはREUSY−タイプの分解触媒のゼオライトおよび任意のマトリックス材料は水中でスラリー化される。このスラリーは、スラリー中の固体の平均粒子寸法を10μm以下、好ましくは5μm以下、最も好ましくは3μm以下まで低減するために、ミル掛けされる。ミル掛けされたスラリーは、好適なバインダー、すなわちシリカゾルバインダーと、随意のマトリックス材料、例えばクレイと合体される。次に、このスラリーは混合され、スプレー乾燥されて、触媒を形成する。スプレー乾燥された触媒は、望ましくない塩を除去するために、水酸化アンモニウム、アンモニウム塩、無機あるいは有機の酸の水溶液および水を使用して、場合によっては洗浄される。洗浄された触媒は、水溶性希土類塩、例えば、希土類塩化物、硝酸塩などにより交換され得る。 When the NO x reduction composition is used as an integral component of the catalytic cracking catalyst, the stabilizing metal or metal ion can be exchanged or impregnated on the NO x reduction zeolite before and after incorporation of the zeolite as a component of the catalyst. . Without intention to limit the incorporation of the NO x reduction zeolite component in the cracking catalyst to any particular cracking catalyst production process, usually the zeolite component, any further zeolite, usually a USY or REUSY-type cracking catalyst The zeolite and optional matrix material are slurried in water. This slurry is milled to reduce the average particle size of the solids in the slurry to 10 μm or less, preferably 5 μm or less, and most preferably 3 μm or less. The milled slurry is combined with a suitable binder, a silica sol binder, and an optional matrix material, such as clay. This slurry is then mixed and spray dried to form a catalyst. The spray dried catalyst is optionally washed using ammonium hydroxide, ammonium salts, aqueous solutions of inorganic or organic acids and water to remove unwanted salts. The washed catalyst can be replaced with a water-soluble rare earth salt, such as rare earth chloride, nitrate, and the like.

別法としては、NO低減用ゼオライト成分、随意の更なるゼオライト、分解触媒ゼオライト、任意のマトリックス材料、希土類の水溶性塩、クレイおよびアルミナゾルバインダーが水中でスラリー化され、ブレンドされる。このスラリーはミル掛けされ、スプレー乾燥される。スプレー乾燥された触媒は約250℃〜約900℃で焼成される。次に、スプレー乾燥された触媒は、望ましくない塩を除去するために、水酸化アンモニウム、アンモニウム塩、無機あるいは有機の酸の水溶液および水を使用して、場合によっては洗浄される。場合によっては、この触媒は、洗浄した後に、当分野で既知の方法のいずれかにより水溶性希土類塩により交換され得る。最終触媒組成物の形成のいかなる段階においても安定化金属成分が触媒フィードスラリーに添加され得るということは本発明の範囲内にある。 Alternatively, the NO x reduction zeolite component, optional further zeolite, cracking catalyst zeolite, optional matrix material, water-soluble salt of rare earth, clay and alumina sol binder are slurried in water and blended. This slurry is milled and spray dried. The spray dried catalyst is calcined at about 250 ° C to about 900 ° C. The spray-dried catalyst is then optionally washed using ammonium hydroxide, ammonium salts, inorganic or organic acid aqueous solutions and water to remove unwanted salts. In some cases, the catalyst can be replaced with a water-soluble rare earth salt after washing by any of the methods known in the art. It is within the scope of the present invention that the stabilizing metal component can be added to the catalyst feed slurry at any stage of formation of the final catalyst composition.

通常、安定化金属あるいは金属イオンは、溶液交換、固相交換または任意の他の慣用の方法を用いて、NO低減用ゼオライトまたはNO低減用ゼオライトを含有する最終触媒組成物上に交換あるいは含浸される。典型的な溶液相交換においては、このゼオライトは、所望の金属成分を含有する水溶液中でスラリー化される。溶液のpHおよび温度は、ゼオライト上での金属成分の交換を最大とするように制御される。次に、この材料は、いかなる非交換の金属イオンおよび/またはいかなる残存する塩も除去するために濾過および水洗され得る。金属を含浸により添加する場合には、可溶性金属塩が水に溶解され、そしてゼオライトがこの溶液により含浸される。加えて、アルカリ金属あるいはアルカリ土類金属のイオンを含有するNO低減用ゼオライトについて、あるいは水素形に転換されたゼオライトについて、交換または含浸が行われ得る。 Usually, the stabilizing metal or metal ion, solution exchange, using the method of solid-phase exchange or any other conventional, exchange or on the final catalyst composition containing the NO x reducing zeolite or NO x reducing zeolite Impregnated. In a typical solution phase exchange, the zeolite is slurried in an aqueous solution containing the desired metal component. The pH and temperature of the solution are controlled to maximize the exchange of metal components on the zeolite. This material can then be filtered and washed to remove any non-exchanged metal ions and / or any remaining salts. If the metal is added by impregnation, the soluble metal salt is dissolved in water and the zeolite is impregnated with this solution. In addition, the NO x reducing zeolite containing an alkali metal or alkaline earth metal ion, or for the conversion zeolite in hydrogen form, exchange or impregnation can take place.

本発明のNO低減用組成物中で使用されるNO低減用ゼオライトの量は、限定では
ないが、NO低減用ゼオライトを接触分解触媒と合体する方式および使用される分解触媒のタイプを含むいくつかの要素に依って変わる。本発明の組成物が別々の添加物組成物であり、そしてNO低減用ゼオライトの粒子を好適な無機バインダーと結合することにより形成される粒子状組成物を含んでなる場合には、粒子状組成物中に存在するNO低減用ゼオライト成分の量は、一般に、組成物の全重量基準で少なくとも10、好ましくは少なくとも30、最も好ましくは少なくとも40そしてなお更に好ましくは少なくとも50重量パーセントである。通常、この粒子状添加物組成物は、添加物組成物の全重量基準で約10〜約85の、好ましくは約30〜約80の、最も好ましくは約40〜約75重量パーセントのNO低減用ゼオライト成分を含有する。
The amount of the NO x reducing zeolite used in the NO x reduction compositions of the present invention include, but are not limited to, the type of cracking catalyst to be scheme and used to coalesce the catalytic cracking catalyst the NO x reducing zeolite It depends on several factors including. A composition separate additive compositions of the present invention, and when comprising a particulate composition formed by binding particles of the NO x reducing zeolite with a suitable inorganic binder, particulate The amount of NO x reducing zeolite component present in the composition is generally at least 10, preferably at least 30, most preferably at least 40 and even more preferably at least 50 weight percent based on the total weight of the composition. Typically, the particulate additive composition has a NO x reduction of from about 10 to about 85, preferably from about 30 to about 80, and most preferably from about 40 to about 75 weight percent, based on the total weight of the additive composition. Contains zeolite components for use.

本発明の粒子状NO低減用組成物の製造に有用なバインダー材料は、ゼオライト粉末を結合して、FCC工程の条件下でFCCU中での使用に好適な性質を有する粒子を形成する能力のある、いかなる無機バインダーも含む。本発明による組成物の製造に有用な典型的な無機バインダー材料は、限定ではないが、アルミナ、シリカ、シリカ−アルミナ、リン酸アルミニウムなど、およびこれらの混合物を含む。好ましくは、バインダーは、アルミナ、シリカ、シリカ−アルミナおよびこれらの混合物からなる群から選択される。更に好ましくは、バインダーはアルミナを含んでなる。なお更に好ましくは、バインダーは酸あるいは塩基で解膠されたアルミナを含んでなる。最も好ましくは、バインダーは、アルミナゾル、例えば、アルミニウムクロロヒドロールを含んでなる。一般に、特定の添加物組成物中に存在するバインダー材料の量は、本発明の添加物組成物の約5〜約50重量パーセント、好ましくは約10〜約30重量パーセント、最も好ましくは約15〜約25重量パーセントを含んでなる。 Binder materials useful in the production of the particulate NO x reduction composition of the present invention have the ability to bind zeolite powder to form particles having properties suitable for use in FCCU under the conditions of the FCC process. Contains any inorganic binder. Typical inorganic binder materials useful for making the compositions according to the present invention include, but are not limited to, alumina, silica, silica-alumina, aluminum phosphate, and the like, and mixtures thereof. Preferably, the binder is selected from the group consisting of alumina, silica, silica-alumina and mixtures thereof. More preferably, the binder comprises alumina. Even more preferably, the binder comprises alumina peptized with acid or base. Most preferably, the binder comprises an alumina sol, such as aluminum chlorohydrol. Generally, the amount of binder material present in a particular additive composition is about 5 to about 50 weight percent, preferably about 10 to about 30 weight percent, most preferably about 15 to about 50 weight percent of the additive composition of the present invention. About 25 weight percent.

本発明の粒子状組成物中に場合によっては存在する更なる材料は、限定ではないが、充填剤(例えば、カオリンクレイ)またはマトリックス材料(例えば、アルミナ、シリカ、シリカ−アルミナ、イットリア、ランタナ、セリア、ネオジミア、サマリア、ユーロピア、ガドリニア、チタニア、ジルコニア、プラセオジミアおよびこれらの混合物)を含む。使用される場合、更なる材料は、FCC条件下でFCCU再生装置から放出されるNO排出物を低減するために組成物の性能、すなわち接触分解触媒の炭化水素のフィード転換率または生成物の収率に著しい悪影響を及ぼさない量で使用される。一般に、更なる材料は組成物の約70重量パーセント以下を占める。しかしながら、本発明の組成物は、本質的にNO低減用ゼオライトと無機バインダーからなるということが好ましい。 Additional materials optionally present in the particulate composition of the present invention include, but are not limited to, fillers (eg, kaolin clay) or matrix materials (eg, alumina, silica, silica-alumina, yttria, lantana, Ceria, neodymia, samaria, europia, gadolinia, titania, zirconia, praseodymia and mixtures thereof). When used, the further material is of a composition for reducing NO x emissions was released from the FCCU regenerator with FCC conditions performance, i.e. the feed conversion or product hydrocarbon catalytic cracking catalyst Used in an amount that does not significantly adversely affect the yield. In general, the additional material comprises no more than about 70 weight percent of the composition. However, the compositions of the present invention, it is preferable that consists essentially of NO x reducing zeolite and an inorganic binder.

本発明の粒子状添加物組成物は、組成物がFCC工程時に接触分解触媒の触媒粒子と同時にFCCU中を循環されるのに充分な粒子寸法を有しなければならない。通常、本発明の組成物は、45μm以上の平均粒子寸法を有する。好ましくは、平均粒子寸法は、約50〜約200μm、最も好ましくは約55〜約150μm、なお更に好ましくは約60〜約120μmである。本発明の組成物は、通常、約50未満の、好ましくは約20未満の、最も好ましくは約15未満のダビソン磨耗指数(DI)値を有する。   The particulate additive composition of the present invention must have a particle size sufficient for the composition to be circulated through the FCCU simultaneously with the catalytic cracking catalyst catalyst particles during the FCC process. Usually, the composition of the present invention has an average particle size of 45 μm or more. Preferably, the average particle size is from about 50 to about 200 μm, most preferably from about 55 to about 150 μm, and even more preferably from about 60 to about 120 μm. The compositions of the present invention typically have a Davison Wear Index (DI) value of less than about 50, preferably less than about 20, and most preferably less than about 15.

本発明の粒子状組成物は、主分解触媒と共に別々の粒子添加物の形でFCCU中を循環され得る。一般に、粒子状添加物組成物は、FCC触媒の触媒粒子の少なくとも0.1重量パーセントの量で使用される。好ましくは、使用される添加物組成物の量は、FCC触媒の触媒粒子の約0.1〜約80重量パーセント、最も好ましくは約1〜約75重量パーセントの範囲である。有利なこととしては、特別に配合された高活性の接触分解触媒、例えば引用により本明細書に組み込まれている、2001年4月13日出願の米国特許出願番号09/833,603で述べられ、そして開示されている高活性の接触分解触媒との組み合わせで使用される場合、80重量パーセントもの高いFCC触媒の触媒粒子の添加物レベルを使用することによって、分解触媒の触媒粒子の希釈による分解活性を喪失することなくFCCU再生装置からのNO排出物の有効な低減が可能となる。 The particulate composition of the present invention can be circulated through the FCCU in the form of a separate particulate additive along with the main cracking catalyst. Generally, the particulate additive composition is used in an amount of at least 0.1 weight percent of the FCC catalyst catalyst particles. Preferably, the amount of additive composition used ranges from about 0.1 to about 80 weight percent, most preferably from about 1 to about 75 weight percent of the catalyst particles of the FCC catalyst. Advantageously, a specially formulated high activity catalytic cracking catalyst such as described in US patent application Ser. No. 09 / 833,603 filed Apr. 13, 2001, which is incorporated herein by reference. And, when used in combination with the disclosed high activity catalytic cracking catalyst, cracking of the cracking catalyst by dilution of catalyst particles by using catalyst particle additive levels of FCC catalyst as high as 80 weight percent It is possible to effectively reduce NO x emissions from the FCCU regenerator without losing activity.

当分野の熟練者ならば判るように、本発明の別々の粒子状組成物は、FCCUに慣用の方法で、例えば再生装置への投入触媒と共に、あるいは任意の他の好都合な方法により添加され得る。   As will be appreciated by those skilled in the art, the separate particulate compositions of the present invention can be added in a manner conventional to FCCUs, for example, with the catalyst input to the regenerator, or by any other convenient method. .

FCC触媒粒子に集積化される場合には、NO低減成分は、通常、FCC触媒粒子の少なくとも0.1重量パーセントを占める。好ましくは、使用されるNO低減成分の量は、FCC触媒粒子の約0.1〜約70重量パーセント、最も好ましくは約1〜約50重量パーセントの範囲である。 When integrated into FCC catalyst particles, the NO x reducing component typically accounts for at least 0.1 weight percent of the FCC catalyst particles. Preferably, the amount of NO x reducing component used ranges from about 0.1 to about 70 weight percent, most preferably from about 1 to about 50 weight percent of the FCC catalyst particles.

上述したように、分解触媒を構成するためには、集積化FCC触媒は、通常、分解触媒のゼオライト、無機バインダー材料および場合によってはマトリックス、充填剤および金属トラップ(例えば、NiおよびVのトラップ)などの他の添加物成分と共にNO低減用ゼオライト成分を含んでなる。通常Y、USYあるいはREUSY−タイプの分解触媒ゼオライトは、活性の大部分をもたらし、通常、組成物の全重量基準で約10〜約75の、好ましくは約15〜約60の、そして最も好ましくは約20〜約50重量パーセントの範囲で存在する。本発明による集積化触媒組成物の製造に有用な無機バインダー材料は、集積化触媒の成分を結合して、FCC工程の条件下でのFCCU中での使用に好適な性質を有する粒子を形成する能力のあるいかなる無機材料も含む。通常、無機バインダー材料は、限定ではないが、アルミナ、シリカ、シリカ−アルミナ、リン酸アルミニウムなどおよびこれらの混合物を含む。好ましくは、バインダーは、アルミナ、シリカ、シリカ−アルミナからなる群から選択される。一般に、集積化触媒組成物中に存在するバインダー材料の量は、触媒組成物の全重量基準で50重量パーセント未満である。好ましくは、無機バインダー材料は、組成物の全重量基準で約5〜約45重量パーセントの、更に好ましくは約10〜約30重量パーセントのそして最も好ましくは約15〜約25重量パーセントの範囲の量で集積化触媒中に存在する。 As mentioned above, to construct a cracking catalyst, the integrated FCC catalyst is typically a cracking catalyst zeolite, an inorganic binder material and optionally a matrix, filler and metal traps (eg, Ni and V traps). comprising NO x reducing zeolite component along with other additives components such. Usually Y, USY or REUSY-type cracking catalyst zeolite provides the majority of the activity, usually from about 10 to about 75, preferably from about 15 to about 60, and most preferably, based on the total weight of the composition. It is present in the range of about 20 to about 50 weight percent. Inorganic binder materials useful in the manufacture of integrated catalyst compositions according to the present invention combine the components of the integrated catalyst to form particles having properties suitable for use in FCCU under FCC process conditions. Includes any capable inorganic material. Inorganic binder materials typically include, but are not limited to, alumina, silica, silica-alumina, aluminum phosphate, and the like and mixtures thereof. Preferably, the binder is selected from the group consisting of alumina, silica, silica-alumina. Generally, the amount of binder material present in the integrated catalyst composition is less than 50 weight percent based on the total weight of the catalyst composition. Preferably, the inorganic binder material is in an amount ranging from about 5 to about 45 weight percent, more preferably from about 10 to about 30 weight percent, and most preferably from about 15 to about 25 weight percent, based on the total weight of the composition. In the integrated catalyst.

本発明の集積化触媒組成物中に場合によっては存在するマトリックス材料は、限定ではないがアルミナ、シリカ−アルミナ、ランタナなどの希土類酸化物、チタニア、ジルコニアおよびマンガンの酸化物などの遷移金属酸化物、マグネシウムおよびバリウムの酸化物などの2A族酸化物、カオリンなどのクレイおよびこれらの混合物を含む。マトリックスおよび/または充填剤は、通常、一体の触媒中に触媒組成物の全重量基準で50重量パーセント未満の量で存在する。好ましくは、マトリックスおよび/または充填剤は、触媒組成物の全重量基準で約1〜約45重量パーセントの範囲の量で存在する。   Matrix materials optionally present in the integrated catalyst composition of the present invention include, but are not limited to, rare earth oxides such as alumina, silica-alumina, lantana, transition metal oxides such as oxides of titania, zirconia and manganese. 2A oxides such as magnesium and barium oxides, clays such as kaolin and mixtures thereof. The matrix and / or filler is typically present in the integral catalyst in an amount of less than 50 weight percent based on the total weight of the catalyst composition. Preferably, the matrix and / or filler is present in an amount ranging from about 1 to about 45 weight percent, based on the total weight of the catalyst composition.

一体の触媒の粒子寸法および磨耗性は、ユニット中の流動化の性質に影響を及ぼし、触媒が商用のFCCユニット中でいかによく保持されるかを決める。本発明の一体の触媒組成物は、通常、約45〜約200μmの、更に好ましくは約50μm〜約150μmの平均粒子寸法を有する。一体の触媒の磨耗性は、ダビソン磨耗指数(DI)により測定して、50未満の、更に好ましくは20未満の、そして最も好ましくは15未満のDI値を有する。   The particle size and wear characteristics of the integral catalyst affect the fluidization properties in the unit and determine how well the catalyst is retained in a commercial FCC unit. The monolithic catalyst composition of the present invention typically has an average particle size of about 45 to about 200 μm, more preferably about 50 μm to about 150 μm. The wearability of the integral catalyst has a DI value of less than 50, more preferably less than 20, and most preferably less than 15 as measured by the Davison Wear Index (DI).

本発明の好ましい態様においては、FCC接触分解触媒はY−タイプゼオライトを含有する。NO低減用ゼオライトは、別々の添加物粒子として接触分解触媒の循環触媒粒子に添加されるか、あるいは触媒の一体の成分としてY−タイプゼオライト含有接触分解触媒の中に直接に組み込まれ得る。いずれの場合にも、当分野の熟練者ならば容易に決められるように、Y−タイプゼオライトは、FCCU中で適切な分解活性をもたらすのに充分な量で存在する。好ましくは、Y−タイプゼオライトは、全触媒の触媒粒子中で2未満の、好ましくは1未満のY−タイプゼオライト対NO低減用ゼオライトの比をもたらすのに充分な量で存在する。 In a preferred embodiment of the present invention, the FCC catalytic cracking catalyst contains a Y-type zeolite. NO x reducing zeolite may be incorporated directly into separate additive or particles as added to the circulating catalyst particle catalytic cracking catalyst or Y- type zeolite-containing catalytic cracking catalyst as an integral component of the catalyst. In any case, the Y-type zeolite is present in an amount sufficient to provide adequate cracking activity in the FCCU, as readily determined by those skilled in the art. Preferably, the Y-type zeolite is present in an amount sufficient to provide a ratio of Y-type zeolite to NO x reduction zeolite of less than 2, preferably less than 1, in the catalyst particles of the total catalyst.

若干簡単に言うと、FCC法は、循環式触媒再循環分解工程においてフィードストックを約50〜約150μmの、好ましくは約60〜約120μmの範囲の平均寸法を有する粒子からなる循環する流動接触分解触の媒触媒粒子と接触することにより、重質炭化水素フィードストックを軽質生成物に分解することを伴う。これらの比較的高分子量の炭化水素フィードストックの触媒分解は、低分子量の炭化水素生成物を生成させる。循環式FCC法における著しい段階は、
(i)フィードを高温の再生された分解触媒源と接触させて、接触分解製品と、コークを含有する使用済の触媒およびストリッピング可能な炭化水素を含んでなる流出物を製造することにより、分解条件で運転される接触分解域、通常ライザー分解域中でフィードを接触分解し;
(ii)流出物を排出し、そして通常1つ以上のサイクロン中で接触分解製品リッチの蒸気相と、使用済の触媒を含んでなる固体リッチ相に分離し;
(iii)蒸気相を生成物として除去し、そしてFCCメインカラムと関連のサイドカラムで分留し、ガソリンを含む気体および液体の分解生成物を形成し;
(iv)通常、蒸気により使用済の触媒をストリッピングして、触媒から閉塞された炭化水素を除去し、その後で触媒再生域中でストリッピングされた触媒を酸化的に再生して、高温の再生触媒を生成させ、更なる量のフィードを分解するために分解域に再循環する
ものである。
Briefly stated, the FCC process involves circulating fluid catalytic cracking of feedstock consisting of particles having an average size in the range of about 50 to about 150 μm, preferably about 60 to about 120 μm, in a cyclic catalyst recycle cracking process. It involves cracking the heavy hydrocarbon feedstock into light products by contact with catalytic catalyst particles. Catalytic cracking of these relatively high molecular weight hydrocarbon feedstocks produces low molecular weight hydrocarbon products. A significant step in the cyclic FCC process is
(I) contacting the feed with a hot regenerated cracking catalyst source to produce a catalytic cracking product and an effluent comprising a spent catalyst containing coke and a strippable hydrocarbon; Catalytically cracking the feed in a catalytic cracking zone operated under cracking conditions, usually a riser cracking zone
(Ii) discharging the effluent and separating it into a vapor phase rich in catalytic cracking product, usually in one or more cyclones, and a solid rich phase comprising spent catalyst;
(Iii) removing the vapor phase as product and fractionating in the FCC main column and associated side columns to form gas and liquid cracking products including gasoline;
(Iv) usually stripping the spent catalyst with steam to remove clogged hydrocarbons from the catalyst, and then oxidatively regenerating the stripped catalyst in the catalyst regeneration zone, A regenerated catalyst is produced and recycled to the cracking zone to break down additional amounts of feed.

慣用のFCC触媒は、例えばVenuto and Habib,「Fluid Catalytic Cracking with Zeolite Catalysts」,Marcel Dekker,New York1979,ISBN 0−8247−6870−1によるセミナー総説で述べられているフォージャサイト分解成分を含むゼオライトベースの触媒、ならびにSadeghbeigi,「Fluid Catalytic Cracking Handbook」,Gulf Publ.Co.Houston,1995,ISBN 0−88415−290−1などの多数の他の情報源を含む。好ましくは、このFCC触媒は、Y−タイプゼオライト活性分解成分を含んでなる触媒である。本発明の特に好ましい態様においては、FCC触媒は、バインダー、通常シリカ、アルミナまたはシリカ−アルミナ、Y−タイプゼオライト活性成分、1つ以上のマトリックスのアルミナおよび/またはシリカ−アルミナおよびカオリンクレイなどの充填剤からなる。Y−タイプゼオライトは1つ以上の形で存在し得、そして希土類のいずれかなどの安定化カチオンにより超安定化および/または処理されたものであり得る。   Conventional FCC catalysts are described in, for example, a zeolite component including a seminar review by Venuto and Habb, “Fluid Catalytic Cracking with Zeolites Catalysts”, Marcel Dekker, New York 1979, ISBN 0-8247-6870-1. As well as Sadeghbeigi, “Fluid Catalytic Cracking Handbook”, Gulf Publ. Co. Including many other sources of information such as Houston, 1995, ISBN 0-88415-290-1. Preferably, the FCC catalyst is a catalyst comprising a Y-type zeolite active cracking component. In a particularly preferred embodiment of the invention, the FCC catalyst is packed with a binder, usually silica, alumina or silica-alumina, a Y-type zeolite active ingredient, one or more matrix alumina and / or silica-alumina and kaolin clay. It consists of an agent. Y-type zeolites can exist in one or more forms and can be super-stabilized and / or treated with stabilizing cations such as any of the rare earths.

典型的なFCC法は、600℃〜800℃の触媒再生温度で480℃〜600℃の反応温度で行われる。当分野でよく知られているように、触媒再生域は単一あるいは多数の反応器容器からなり得る。本発明の組成物は、いかなる典型的な炭化水素フィードストックのFCC処理でも使用され得る。好適なフィードストックは、接触分解されて、ガソリンまたは他の石油製品を提供する、約150℃〜約900℃、好ましくは、約200℃〜約800℃の沸点範囲を有する石油蒸留物または粗油の残渣を含む。石炭、タールサンドまたはシェールオイルからのオイルなどの約200℃〜約800℃の沸点を有する合成フィードも包含可能である。   A typical FCC process is carried out at a catalyst regeneration temperature of 600 ° C to 800 ° C and a reaction temperature of 480 ° C to 600 ° C. As is well known in the art, the catalyst regeneration zone can consist of a single or multiple reactor vessels. The compositions of the present invention can be used in FCC processing of any typical hydrocarbon feedstock. Suitable feedstocks are petroleum distillates or crude oils having a boiling range of about 150 ° C. to about 900 ° C., preferably about 200 ° C. to about 800 ° C., which are catalytically cracked to provide gasoline or other petroleum products. Of residue. Synthetic feeds having a boiling point of about 200 ° C. to about 800 ° C., such as oil from coal, tar sand or shale oil, can also be included.

触媒からコークを除去するために、酸素または空気が再生域に添加される。これは、再生域の底部の好適な散布器具により行われるか、あるいは所望ならば、更なる酸素が再生域の希薄なあるいは濃密な相に添加される。   Oxygen or air is added to the regeneration zone to remove coke from the catalyst. This is done with a suitable sprinkler at the bottom of the regeneration zone, or if desired, additional oxygen is added to the lean or dense phase of the regeneration zone.

本発明による添加物組成物は、分解触媒から得られる接触分解製品、例えば、ガソリンおよび軽質オレフィンの炭化水素フィード転換率または収率を実質的に維持する一方で、触媒再生時のFCCU再生装置の排ガス中のNOの排出物を劇的に、すなわち、少なく
とも10%、好ましくは、少なくとも20%低減する。ある場合には、本発明の組成物および方法を用い、接触分解製品の収率またはフィード転換率に著しく影響を及ぼさずに、70%以上のNO低減が容易に達成可能である。しかしながら、FCC技術における熟練者ならば理解するように、NO低減の程度は、例えば、使用される添加物の組成および量;限定ではないが、再生装置中の酸素レベルおよび空気の分布、再生装置中の触媒床深さ、ストリッピング装置の運転および再生装置温度、分解炭化水素フィードストックの性質および再生装置の化学および運転に影響を及ぼし得る他の触媒添加物の存在を含む、接触分解ユニットを運転する設計および方法などの要素に依存する。このように、各FCCUはこれらの点の一部あるいは全部で異なるので、本発明の方法の有効性はユニットごとに変わると予期される。本発明のNO低減用組成物はFCC工程時のコークの生成の著しい増加も防止する。
The additive composition according to the present invention substantially maintains the hydrocarbon feed conversion or yield of catalytic cracking products obtained from cracking catalysts, such as gasoline and light olefins, while maintaining the FCCU regenerator during catalyst regeneration. Reduces NO x emissions in the exhaust gas dramatically, ie at least 10%, preferably at least 20%. In some cases, using the compositions and methods of the present invention, without significantly affecting the yield or feed conversion in catalytic cracking products, it is easily achievable NO x reduction of 70% or more. However, as will be understood by those skilled in the FCC art, the degree of the NO x reduction, for example, composition and amount of additives used; but are not limited to, oxygen levels and air distribution in the regenerator, regeneration Catalytic cracking unit including catalyst bed depth in the unit, stripping unit operation and regenerator temperature, cracked hydrocarbon feedstock properties and presence of other catalyst additives that may affect the regenerator chemistry and operation Depends on factors such as the design and method of driving. Thus, since each FCCU differs in some or all of these points, the effectiveness of the method of the present invention is expected to vary from unit to unit. NO x reduction compositions of the present invention also prevents a significant increase in the production of coke during the FCC process.

本発明のNO低減用組成物が単独で、あるいは組成物のいずれかを単独で使用するよりも効率的にNO低減を達成するために、1つ以上の更なるNO低減成分との組み合わせで使用され得るということも本発明の範囲内にある。好ましくは、この更なるNO低減成分は、非ゼオライト型材料、すなわちゼオライトを含有しないか、あるいは実質的に含有しない(すなわち、5重量パーセント未満、好ましくは1重量パーセント未満)材料である。 In order for the NO x reduction composition of the present invention to achieve NO x reduction more efficiently than using either the composition alone or alone, with one or more additional NO x reduction components It is within the scope of the present invention that it can be used in combination. Preferably, this further NO x reducing component is a non-zeolitic material, ie, a material that does not contain or is substantially free of zeolite (ie, less than 5 weight percent, preferably less than 1 weight percent).

例えば、SOx低減添加物、ガソリン−イオウ低減添加物、CO燃焼促進剤、軽質オレフィンの製造のための添加物などのFCC法で慣用的に使用される他の添加物との組み合わせで本発明による添加物組成物が使用され得るということも本発明の範囲内で意図される。   For example, in combination with other additives conventionally used in FCC processes such as SOx reducing additives, gasoline-sulfur reducing additives, CO combustion promoters, additives for the production of light olefins It is also contemplated within the scope of the present invention that additive compositions can be used.

本発明の範囲は下記に述べられる実施例によりいかなる形であれ限定されるように意図されていない。実施例は、接触分解環境においてNOを低減するための本発明の方法において有用な添加物の製造および本発明の方法の評価を含む。実施例は請求されている発明の特定の例示として示されている。しかしながら、本発明は、実施例で述べられている特定の詳細に限定されないということを理解するべきである。 It is not intended that the scope of the invention be limited in any way by the examples described below. Examples include the evaluation of the method of manufacture and the present invention useful additives in the methods of the present invention for reducing the NO x in the catalytic cracking environment. The examples are presented as specific illustrations of the claimed invention. However, it should be understood that the invention is not limited to the specific details set forth in the examples.

固体組成物あるいは濃度を指す、実施例ならびに明細書の残り中のすべての部数およびパーセントは、特記しない限り重量によるものである。気体混合物の濃度は特記しない限り容積によるものである。   All parts and percentages in the examples and the rest of the specification, which refer to solid compositions or concentrations, are by weight unless otherwise specified. The concentration of the gas mixture is by volume unless otherwise specified.

更には、特別の性質の組、測定単位、条件、物理的状態またはパーセントを表すものなどのこの明細書または特許請求の範囲中で述べられている任意の数の範囲は、このように述べられている任意の範囲内の数の任意の下位組を含む、このような範囲内に入る任意の数を参照あるいは他により明白に文字どおりに組み込むように意図されている。   Furthermore, any number of ranges stated in this specification or claims, such as those representing a particular set of properties, units of measure, conditions, physical states or percentages, are thus stated. Any number falling within such a range, including any sub-set of numbers within that range, is intended to be incorporated literally by reference or otherwise explicitly.

DCRを使用することにより、FCCユニットからのNO排出物を低減するための添加物A〜Hの性能評価を行った。この実験の各々においては、再生装置に添加される空気量が再生装置を出る前に使用済のFCC触媒上のすべてのコーク種をCOに変換するのに充分である条件として定義される、「フルバーン」再生条件下でDCRを運転した。再生装置中1%過剰のOで、そして705℃で運転される再生装置でこの試験を行った。 The performance evaluation of the additives A to H for reducing NO emissions from the FCC unit was performed by using DCR. In each experiment, the amount of air added is defined as a sufficient condition to convert all the coke species on the FCC catalyst spent before exiting the reproducing apparatus to CO 2 to the reproducing apparatus, The DCR was operated under “full burn” regeneration conditions. This test was performed on a regenerator operating at 705 ° C. with 1% excess O 2 in the regenerator.

実施例1
75%のフェリエライトと25%のアルミナゾルを含んでなる組成物を次のように製造した:アルミニウムクロロヒドロール溶液(23%固体)、75%のフェリエライト(SiO/Al=20、NaO+KO=6〜10重量%)および約42〜44%
の固体を含有するスラリーを製造するのに充分な追加の水から、25%Alを含有する水性スラリーを製造した。このスラリーを3.0μm未満の平均粒子寸法までミル掛けし、次にスプレー乾燥した。スプレー乾燥生成物を400〜450℃で20〜40分間焼成した。焼成された触媒を硫酸アンモニウム溶液により、続いて水により洗浄して、KOレベルを1.0重量%未満まで減少させた。この触媒を添加物Aと命名し、性質を下記の表1に示す。
Example 1
A composition comprising 75% ferrierite and 25% alumina sol was prepared as follows: aluminum chlorohydrol solution (23% solids), 75% ferrierite (SiO 2 / Al 2 O 3 = 20 Na 2 O + K 2 O = 6-10 wt%) and about 42-44%
An aqueous slurry containing 25% Al 2 O 3 was made from enough additional water to make a slurry containing This slurry was milled to an average particle size of less than 3.0 μm and then spray dried. The spray-dried product was baked at 400-450 ° C. for 20-40 minutes. The calcined catalyst was washed with ammonium sulfate solution followed by water to reduce the K 2 O level to less than 1.0 wt%. This catalyst is named Additive A and the properties are shown in Table 1 below.

実施例2
73%のフェリエライト、2.5%ZnOおよび24.5%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(23%固体)、4500g(乾燥基準)のフェリエライト(SiO/Al=20、NaO+KO<0.5重量%)、250gのZnClおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒を添加物Bと命名し、性質を下記の表1に示す。
Example 2
A composition comprising 73% ferrierite, 2.5% ZnO and 24.5% alumina sol was prepared as follows: 6520 g aluminum chlorohydrol solution (23% solids), 4500 g (dry basis) Of ferrierite (SiO 2 / Al 2 O 3 = 20, Na 2 O + K 2 O <0.5 wt%), 250 g ZnCl 2 and enough additional to produce a slurry containing about 44% solids An aqueous slurry containing water was prepared. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst is named Additive B and the properties are shown in Table 1 below.

実施例3
72.1%のフェリエライト、3.9%ZnOおよび24%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(23%固体)、4500g(乾燥基準)のフェリエライト(SiO/Al=20、NaO+KO<0.5重量%)、400gのZnClおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒を添加物Cと命名し、性質を下記の表1に示す。
Example 3
A composition comprising 72.1% ferrierite, 3.9% ZnO and 24% alumina sol was prepared as follows: 6520 g aluminum chlorohydrol solution (23% solids), 4500 g (dry basis) Of ferrierite (SiO 2 / Al 2 O 3 = 20, Na 2 O + K 2 O <0.5 wt%), 400 g ZnCl 2 and enough additional to produce a slurry containing about 44% solids An aqueous slurry containing water was prepared. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst is named Additive C and the properties are shown in Table 1 below.

実施例4
70.7%のフェリエライト、5.8%ZnOおよび23.5%のアルミナゾルを含んでなる組成物を次のように製造した。6520gのアルミニウムクロロヒドロール溶液(23%固体)、4500g(乾燥基準)のフェリエライト(SiO/Al=20、NaO+KO<0.5重量%)、600gのZnClおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒を添加物Dと命名し、性質を下記の表1に示す。
Example 4
A composition comprising 70.7% ferrierite, 5.8% ZnO and 23.5% alumina sol was prepared as follows. 6520 g aluminum chlorohydrol solution (23% solids), 4500 g (dry basis) ferrierite (SiO 2 / Al 2 O 3 = 20, Na 2 O + K 2 O <0.5 wt%), 600 g ZnCl 2 and An aqueous slurry was made containing sufficient additional water to produce a slurry containing about 44% solids. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst is named Additive D and the properties are shown in Table 1 below.

実施例5
69.5%のフェリエライト、7.4%ZnOおよび23.1%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(23%固体)、4500g(乾燥基準)のフェリエライト(SiO/Al=20、NaO+KO<0.5重量%)、800gのZnClおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒を添加物Eと命名し、性質を下記の表1に示す。
Example 5
A composition comprising 69.5% ferrierite, 7.4% ZnO and 23.1% alumina sol was prepared as follows: 6520 g aluminum chlorohydrol solution (23% solids), 4500 g (dry) Standard) ferrierite (SiO 2 / Al 2 O 3 = 20, Na 2 O + K 2 O <0.5 wt%), sufficient to produce a slurry containing 800 g ZnCl 2 and about 44% solids. An aqueous slurry containing additional water was prepared. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst is named Additive E and the properties are shown in Table 1 below.

実施例6
67%のフェリエライト、10.7%ZnOおよび22.3%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(2
3%固体)、4500g(乾燥基準)のフェリエライト(SiO/Al=20、NaO+KO<0.5重量%)、1200gのZnClおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒を添加物Fと命名し、性質を下記の表1に示す。
Example 6
A composition comprising 67% ferrierite, 10.7% ZnO and 22.3% alumina sol was prepared as follows: 6520 g aluminum chlorohydrol solution (2
3% solids), 4500 g (dry basis) ferrierite (SiO 2 / Al 2 O 3 = 20, Na 2 O + K 2 O <0.5 wt%), containing 1200 g ZnCl 2 and about 44% solids An aqueous slurry containing enough additional water to produce a slurry was made. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst is named Additive F and the properties are shown in Table 1 below.

実施例7
添加物Gを次のように製造した:実施例4に示したように製造した、732.2g乾燥基準の添加物Dの試料を172.9gの酢酸Zn・2HO、281mlのHOおよび209.4mlの30%NHOH溶液により製造された溶液により含浸した。これを287℃で4時間オーブン乾燥し、同一組成物の溶液により再含浸し、そして287℃で4時間乾燥した。次に、この試料を593℃で2時間焼成した。添加物Gは表1に示す性質を有するものであった。
Example 7
Additive G was prepared as follows: A sample of Additive D, 732.2 g dry basis, prepared as shown in Example 4, was prepared from 172.9 g Zn acetate · 2H 2 O, 281 ml H 2 O And impregnated with a solution prepared with 209.4 ml of 30% NH 4 OH solution. This was oven dried at 287 ° C. for 4 hours, re-impregnated with a solution of the same composition, and dried at 287 ° C. for 4 hours. The sample was then fired at 593 ° C. for 2 hours. Additive G had the properties shown in Table 1.

Figure 2008539302
Figure 2008539302

実施例8
62.5%のフェリエライト、10.7%のZnO、4.5%のCatapal Cアルミナおよび22.3%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(23%固体)、4200g(乾燥基準)のフェリエライト(SiO/Al=20、NaO+KO<0.5重量%)、300g(乾燥基準)のCatapal Cアルミナ、1200gのZnClおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒を添加物Hと命名し、性質を下記の表2に示す。
Example 8
A composition comprising 62.5% ferrierite, 10.7% ZnO, 4.5% Catapal C alumina and 22.3% alumina sol was prepared as follows: 6520 g aluminum chlorohydrol. Solution (23% solids), 4200 g (dry basis) of ferrierite (SiO 2 / Al 2 O 3 = 20, Na 2 O + K 2 O <0.5 wt%), 300 g (dry basis) of Catapal C alumina, 1200 g An aqueous slurry containing enough additional water to produce a slurry containing about 44% solids of ZnCl 2 was prepared. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst is named Additive H and the properties are shown in Table 2 below.

実施例9
65%のフェリエライト、15%のクレイおよび20%のアルミナゾルを含んでなる組成物を次のように製造した:4344gのアルミニウムクロロヒドロール溶液(23%固体)、3250g(乾燥基準)のフェリエライト、650g(乾燥基準)のクレイおよび約40%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。性質を下記の表2に示す、この触媒を添加物Iと命名した。
Example 9
A composition comprising 65% ferrierite, 15% clay and 20% alumina sol was prepared as follows: 4344 g aluminum chlorohydrol solution (23% solids), 3250 g (dry basis) ferrierite. An aqueous slurry was made containing sufficient water to produce a slurry containing 650 g (dry basis) of clay and about 40% solids. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst, whose properties are shown in Table 2 below, was named Additive I.

実施例10
固相交換法を次のように用いて、フェリエライトを亜鉛イオンにより交換した:塩化亜鉛(228g)を微粉末に磨砕し、次に2500gのフェリエライト粉末とブレンドした。このブレンドを325℃で2時間焼成した。この焼成されたブレンドを80℃で維持された9000gの水の中にスラリーとし、0.16時間混合し、次に濾過した。次に、このフィルターケーキを80℃で維持された水により3回洗浄し、乾燥し、次に593℃で1.5時間焼成した。最終の亜鉛で固相交換された生成物は2.80%のZnOを含有していた。
Example 10
Ferrierite was exchanged with zinc ions using solid phase exchange as follows: Zinc chloride (228 g) was ground to a fine powder and then blended with 2500 g of ferrierite powder. The blend was fired at 325 ° C. for 2 hours. This calcined blend was slurried in 9000 g of water maintained at 80 ° C., mixed for 0.16 hours, and then filtered. The filter cake was then washed 3 times with water maintained at 80 ° C., dried and then calcined at 593 ° C. for 1.5 hours. The final zinc solid phase exchanged product contained 2.80% ZnO.

65%のZn/フェリエライト、15%のクレイおよび20%のアルミナゾルを含んでなる組成物を次のように製造した:2608gのアルミニウムクロロヒドロール溶液(23%固体)、1950g(乾燥基準)の亜鉛で固相交換されたフェリエライトおよび約40%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒を添加物Jと命名し、性質を下記の表2に示す。   A composition comprising 65% Zn / ferrierite, 15% clay and 20% alumina sol was prepared as follows: 2608 g of aluminum chlorohydrol solution (23% solids), 1950 g (dry basis) of An aqueous slurry was made containing ferrilite which was solid phase exchanged with zinc and sufficient additional water to produce a slurry containing about 40% solids. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst was named additive J and the properties are shown in Table 2 below.

実施例11
次の方法を用いてシリカゾルにより結合されたフェリエライト触媒を製造した:29%のフェリエライト(SiO/Al=20)を含有する水性スラリーをドライスミル中でミル掛けした。このミル掛けされたフェリエライトスラリー(4160g)を1200gのNatkaクレイ(乾燥基準)および6000gのシリカゾルバインダー(10%固体)と合体した。このシリカゾルバインダーをケイ酸ナトリウムと酸ミョウバンから製造した。次に、触媒スラリーをボーエンスプレー乾燥機中でスプレー乾燥した。得られたスプレー乾燥生成物を硫酸アンモニウム溶液、続いて水により洗浄して、0.1重量%未満のNaOレベルの触媒を得た。この触媒は添加物Jと命名され、下記の表2に示す性質を有していた。
Example 11
The following method was used to prepare a ferrierite catalyst bound by silica sol: an aqueous slurry containing 29% ferrierite (SiO 2 / Al 2 O 3 = 20) was milled in a dry smill. This milled ferrierite slurry (4160 g) was combined with 1200 g Natka clay (dry basis) and 6000 g silica sol binder (10% solids). This silica sol binder was prepared from sodium silicate and acid alum. The catalyst slurry was then spray dried in a Bowen spray dryer. The resulting spray-dried product was washed with ammonium sulfate solution followed by water to give a catalyst with a Na 2 O level of less than 0.1% by weight. This catalyst was named Additive J and had the properties shown in Table 2 below.

実施例12
実施例11で製造した添加物Kを次の方法により亜鉛イオンにより交換した:150gのスプレー乾燥された触媒を12.4gのZn(NO.6HOを1500gの水中に含有する硝酸亜鉛溶液に添加することにより、Zn交換を行った。この混合物を70℃で0.5時間攪拌した。次に、このスラリーを濾過し、そしてこの触媒を70℃で維持された水により3回洗浄して、過剰の硝酸亜鉛を除去した。この触媒は添加物Lと命名され、下記の表2に示す性質を有していた。
Example 12
Additive K prepared in Example 11 was exchanged with zinc ions by the following method: 150 g of spray dried catalyst was converted to 12.4 g of Zn (NO 3 ) 2 . Zn exchange was performed by adding 6H 2 O to a zinc nitrate solution containing 1500 g of water. The mixture was stirred at 70 ° C. for 0.5 hour. The slurry was then filtered and the catalyst was washed three times with water maintained at 70 ° C. to remove excess zinc nitrate. This catalyst was named additive L and had the properties shown in Table 2 below.

Figure 2008539302
Figure 2008539302

実施例13
添加物A〜HをDCR中で評価して、FCCユニットから放出されるNO排出物を低減するための添加物の有効性を求めた。この実験の各々において、再生装置に添加される空気量が使用済のFCC触媒上のすべてのコーク種をCOに変換するのに充分である条件として定義される、「フルバーン」再生条件下でDCRを運転した。再生装置中1%過剰のOで、そして705℃で運転される再生装置でこの試験を行った。
Example 13
Additives A-H were evaluated in the DCR to determine the effectiveness of the additive to reduce NO emissions released from the FCC unit. In each of these experiments, under “full-burn” regeneration conditions, defined as conditions where the amount of air added to the regenerator is sufficient to convert all coke species on the spent FCC catalyst to CO 2. The DCR was operated. This test was performed on a regenerator operating at 705 ° C. with 1% excess O 2 in the regenerator.

下記の表3に示す性質を有する商用のFCCフィードを試験に使用した。表4に示す性質を有するほぼ1596gの平衡接触分解触媒と、循環式プロピレンスチーミング法(CPS)を用いてNiまたはV無添加で788℃で20時間失活させたPtベースの燃焼促進剤(CP(登録商標)−3、Grace Davisonから入手)の4gの商用の試料のブレンドをDCRに装填した。CPS法は、L.T.Boock,T.F.Petti,and J.A.Rudesill,「Contaminant−Metal Deactivation and Metal−Dehydrogenation Effects During Cyclic Propylene Steaming of
Fluid Catalytic Cracking Catalysts」,Deactivation and Testing of Hydrocarbon Processing Catalysts,ACS Symposium Series 634,p.171(1996),ISBN 0−8412−3411−6に記述されている。
A commercial FCC feed having the properties shown in Table 3 below was used for the test. Approximately 1596 g of an equilibrium catalytic cracking catalyst having the properties shown in Table 4 and a Pt-based combustion accelerator deactivated for 20 hours at 788 ° C. without addition of Ni or V using a cyclic propylene steaming method (CPS) ( A blend of 4 g of a commercial sample of CP®-3 (obtained from Grace Davison) was loaded into the DCR. The CPS method is described in L.C. T.A. Book, T .; F. Petti, and J.M. A. Rudesill, “Continant-Metal Deactivation and Metal-Dehyrogenation Effects Duric Cyclic Propylene Steaming of
Fluid Catalytic Cracking Catalysts ", Deactivation and Testing of Hydrocarbon Processing Catalysts, ACS Symposium Series 634, p. 171 (1996), ISBN 0-8412-3411-6.

ユニットを安定化した後、オンラインMultigas2030FTIR気体分析器を用いて、ベースラインNO排出物データを収集した。引き続いて、この添加物を含有する第2のブレンドをDCRの中に注入する。添加物A、E、F、GおよびHに対しては、このブレンドは、流動床反応器中でNiまたはV無添加でN中20%の蒸気により760℃で24時間水熱的に不活性化されたほぼ86gのこの添加物と、0.215gのCPSで不活性化されたCP(登録商標)−3を含有していた。添加物B、CおよびDに対しては、このブレンドは、流動床反応器中でNiまたはV無添加でN中20%の蒸気により760℃で24時間水熱的に不活性化されたほぼ90gの添加物、109.5gの平衡接触分解触媒および0.25gのCPSで不活性化されたCP(登録商標)−3を含有していた。表5で見られるように、添加物B〜Hは、DCR中で類似の量で添加物Aよりも良好なNO低減性能を示す。これは、不活性化後Znのフェリエライトへの添加がNO低減性能を改善するということを確かなものとする。NO低減性能は、10%のZnOの範囲において最大に達するまでZnレベルの増加と共に増加する。 After the unit was stabilized, baseline NO emissions data was collected using an on-line Multigas 2030 FTIR gas analyzer. Subsequently, a second blend containing this additive is injected into the DCR. For Additives A, E, F, G and H, this blend was hydrothermally non-added in a fluidized bed reactor with 20% steam in N 2 with no Ni or V added at 760 ° C. for 24 hours. It contained approximately 86 g of this additive activated and CP®-3 deactivated with 0.215 g CPS. For Additives B, C and D, this blend was hydrothermally deactivated at 760 ° C. for 24 hours with 20% steam in N 2 with no Ni or V added in a fluid bed reactor. It contained approximately 90 g of additive, 109.5 g of equilibrium catalytic cracking catalyst and 0.25 g of CPS deactivated with CPS. As seen in Table 5, Additives B~H exhibit good NO x reduction performance than Additive A at similar amounts in DCR. This is added to ferrierite deactivation after Zn is assumed credible that improve NO x reduction performance. NO x reduction performance increases with increasing Zn levels until a maximum in the range of 10% ZnO.

添加物A、EおよびFによるランに対する収率を下記の表6に示して、これらのNO低減添加物のいずれもFCC収率に影響を及ぼさないという点を例示する。 Additives A, the yield for the run by E and F are shown in Table 6 below illustrate the point that none affect FCC yields of these of the NO x reduction additive.

Figure 2008539302
Figure 2008539302

Figure 2008539302
Figure 2008539302

Figure 2008539302
Figure 2008539302

Figure 2008539302
Figure 2008539302

実施例14
FCCユニットからのNO排出物を低減するために、添加物IおよびJをDCR中で評価した。実施例13と同一の条件、平衡触媒およびフィード下で運転されるDCRによりこの試験を行った。最初に、ほぼ1895.25gの平衡接触分解触媒と4.75gのCPSで不活性化されたCP(登録商標)−3のブレンドをDCRに装填した。ユニットを安定化した後、オンラインMultigas2030FTIR気体分析器を用いて、ベースラインNO排出物データを収集した。引き続いて、ほぼ105gの添加物IあるいはJ、94.5gの平衡触媒および0.5gのCPSで不活性化されたCPI(登録商標)−3のブレンドをDCRの中に注入し、そしてランを添加物上でほぼ10時間続けた。表7に示すように、添加物Jは、1時間後NO排出物の低減において添加物Iよりも若干有効であるだけであったが、7時間後大きなNO低減性能の利点を示す。このデータから、予め交換されたZnのフェリエライトへの添加がNO低減活性を安定化し、そして非安定化添加物と比較して改善されたNO低減性能をもたらすということを結論することができる。
Example 14
To reduce NO x emissions of the FCC unit, the additives I and J were evaluated in DCR. This test was performed with DCR operating under the same conditions, equilibrium catalyst and feed as Example 13. Initially, the DCR was charged with a blend of approximately 1895.25 g of equilibrium catalytic cracking catalyst and 4.75 g of CPS deactivated CP®-3. After the unit was stabilized, baseline NO emissions data was collected using an on-line Multigas 2030 FTIR gas analyzer. Subsequently, approximately 105 g of Additive I or J, 94.5 g of equilibrium catalyst and 0.5 g of CPS deactivated CPI®-3 blend were injected into the DCR and the run was run. Continued on additive for approximately 10 hours. As shown in Table 7, additives J is was the only are somewhat more effective than the additive I in reducing 1 hour after NO x emissions, shows the advantages of the large NO x reduction performance after 7 hours. From this data, it can be concluded that the addition of pre-exchanged Zn to ferrierite stabilizes NO x reduction activity and results in improved NO x reduction performance compared to unstabilized additives. it can.

Figure 2008539302
Figure 2008539302

実施例15
実施例13および14と同一の運転条件を用いて、DCR中でのNO低減性能について添加物KおよびLを評価した。商用のFCCフィードを試験に使用し、そしてその性質を下記の表8に示す。流動床反応器中でNiまたはV無添加で100%蒸気により816℃で4時間水熱的に不活性化された、ほぼ1800gの市販の接触分解触媒、Grace Davisonから入手されるSuperNova(登録商標)DMR+のブレンドをDCRに装填した。ユニットを安定化した後、オンラインLear−Siegler SO/NO分析器(SM8100A)を用いて、ベースラインNO排出物データを収集した。引き続いて、95.25gの水熱的に不活性化されたSuperNova(登録商標)DMR+触媒と4.75gのCPS−CP(登録商標)−3からなる100gの触媒のブレンドをDCRに添加した。NO排出物をこの時間枠の間連続的に収集し、そしてユニットを再度安定化したならば、105gの添加物KあるいはLおよび105gの不活性化されたSuperNova(登録商標)DMR+触媒と共に0.525gの不活性化されたCP−3(登録商標)を含有するブレンドをDCRに添加した。表9において見られるように、添加物Lは、DCRからのNO排出物の低減の点で添加物Kよりも良好であった。これは、シリカゾルバインダーにより粒子中に含有されるフェリエライトへのZnの後交換がフェリエライトのNO低減性能を改善するということを示す。
Example 15
Using the same operating conditions as in Example 13 and 14 were evaluated additive K and L for NO x reduction performance in a DCR. A commercial FCC feed was used for testing and its properties are shown in Table 8 below. Approximately 1800 g of a commercial catalytic cracking catalyst, SuperNova (registered trademark), obtained from Grace Davison, hydrothermally deactivated at 816 ° C. for 4 hours with 100% steam without addition of Ni or V in a fluid bed reactor. ) The DMR + blend was loaded into the DCR. After stabilizing the unit, using online Lear-Siegler SO 2 / NO Analyzer (SM8100A), were collected baseline NO emissions data. Subsequently, a blend of 100 g catalyst consisting of 95.25 g hydrothermally deactivated SuperNova® DMR + catalyst and 4.75 g CPS-CP®-3 was added to the DCR. If NO emissions were collected continuously during this time frame and the unit was re-stabilized, 0.1 g with 105 g of additive K or L and 105 g of deactivated SuperNova® DMR + catalyst. A blend containing 525 g of deactivated CP-3® was added to the DCR. As can be seen in Table 9, Additive L was better than Additive K in terms of reducing NO emissions from the DCR. This indicates that post exchange of Zn to ferrierite contained in the particles by the silica sol binder improves the NO reduction performance of the ferrierite.

Figure 2008539302
Figure 2008539302

Figure 2008539302
Figure 2008539302

実施例16
75%のクレイおよび25%のアルミナゾルを含んでなる組成物を次のように製造した:2174gのアルミニウムクロロヒドロール溶液(23%固体)、1500g(乾燥基準)のクレイおよび約40%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒は添加物Mと命名され、そして下記の表10に示す性質を有していた。
Example 16
A composition comprising 75% clay and 25% alumina sol was prepared as follows: 2174 g aluminum chlorohydrol solution (23% solids), 1500 g (dry basis) clay and about 40% solids. An aqueous slurry was made containing sufficient additional water to make the containing slurry. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst was named Additive M and had the properties shown in Table 10 below.

実施例17
71%のクレイ、6%のZnOおよび23%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(23%固体)、45
00g(乾燥基準)のクレイ、620gのZnClおよび約45%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒は添加物Nと命名され、そして下記の表10に示す性質を有していた。
Example 17
A composition comprising 71% clay, 6% ZnO and 23% alumina sol was prepared as follows: 6520 g aluminum chlorohydrol solution (23% solids), 45
An aqueous slurry was made containing enough water to make a slurry containing 00 g (dry basis) clay, 620 g ZnCl 2 and about 45% solids. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst was named Additive N and had the properties shown in Table 10 below.

実施例18
アルミナ上に担持されているZnOを次のように製造した:1000g(乾燥基準)のHiQアルミナ(Alcoaから入手された)を水に溶解された165gのZnClによりインシピエントウエットネスまで含浸した。次に、この材料を593℃で2時間焼成した。この触媒は添加物0と命名され、そして下記の表10に示す性質を有していた。
Example 18
ZnO supported on alumina was prepared as follows: 1000 g (dry basis) of HiQ alumina (obtained from Alcoa) was impregnated to 165 g ZnCl 2 dissolved in water to incipient wetness. . The material was then fired at 593 ° C. for 2 hours. This catalyst was named Additive 0 and had the properties shown in Table 10 below.

実施例19
FCCユニット中での不活性化時のZnO/アルミナ触媒のSiOおよびナトリウムイオンの吸収をシミュレーションするために、この触媒を最初にSiO化合物により、次にナトリウム塩により含浸した。500g(乾燥基準)の添加物Oをエタノールに溶解された85gのオルトケイ酸テトラエチルによりインシピエントウエットネスまで含浸した。この触媒を室温で一夜乾燥し、次に4.3gの炭酸ナトリウムを含有する水溶液により含浸した。次に、この材料を593℃で2時間焼成した。引き続いて、この試料を流動床反応器中で100%蒸気により816℃で4時間水熱的不活性化にかけた。この触媒は添加物Pと命名され、そして下記の表10に示す性質を有していた。
Example 19
In order to simulate the absorption of SiO 2 and sodium ions of the ZnO / alumina catalyst upon deactivation in the FCC unit, the catalyst was first impregnated with the SiO 2 compound and then with the sodium salt. 500 g (dry basis) of Additive O was impregnated with 85 g of tetraethyl orthosilicate dissolved in ethanol to an incipient wetness. The catalyst was dried overnight at room temperature and then impregnated with an aqueous solution containing 4.3 g of sodium carbonate. The material was then fired at 593 ° C. for 2 hours. Subsequently, this sample was subjected to hydrothermal deactivation in a fluidized bed reactor with 100% steam at 816 ° C. for 4 hours. This catalyst was named Additive P and had the properties shown in Table 10 below.

Figure 2008539302
Figure 2008539302

実施例20
実施例13および14で示すのと同一の条件、フィードおよび触媒を用いて、NO排出物を低減するためのHiQAlおよび添加物M〜Pの性能をDCR中で評価した。最初に、1596gの平衡接触分解触媒と4gのCPSで不活性化されたCP(登録商標)−3のブレンドによりこのDCRを装填した。ユニットを安定化したならば、85.12の添加物と0.215gの不活性化されたCP(登録商標)−3のブレンドをDCRに装填し、そしてランを各添加物上でほぼ2時間続けた。結果を下記の表11に記した。
Example 20
Using the same conditions, feed and catalyst as shown in Examples 13 and 14, the performance of HiQAl 2 O 3 and additives MP to reduce NO emissions was evaluated in DCR. Initially, this DCR was charged with a blend of 1596 g of equilibrium catalytic cracking catalyst and CP®-3 deactivated with 4 g of CPS. Once the unit was stabilized, a blend of 85.12 additive and 0.215 g of deactivated CP®-3 was charged to the DCR, and the run was run on each additive for approximately 2 hours. Continued. The results are shown in Table 11 below.

表11に示すように、ZnOの異なる担体への添加はDCRにおけるNO低減活性を改善せず、現実的なFCC条件下でZnの固有のNO低減活性が極めて低いということを意味するということを推測することができる。このデータは、実施例13および14に
おいてZnのフェリエライトへの添加により見られるNO低減活性の増加が主としてフェリエライト上のZnの安定化効果によるということを示す。
As shown in Table 11, the addition of the different ZnO carrier does not improve NO x reduction activity in DCR, that under realistic FCC conditions specific of the NO x reduction activity of Zn means that extremely low I can guess that. This data shows that the increase in NO x reduction activity seen by addition of Zn to ferrierite in Examples 13 and 14 is mainly due to the stabilizing effect of Zn on ferrierite.

Figure 2008539302
Figure 2008539302

実施例21
75%のフェリエライト、25%のアルミナゾルを含んでなる組成物を実施例1で述べたように製造した。スプレー乾燥生成物を593℃で1.5時間焼成した。引き続いて、約125gのこの材料を100mlの脱イオン水に溶解された、17.7gのYCl・6H0により含浸し、287℃で一夜オーブン乾燥し、次に538℃で2時間焼成した。得られた試料は添加物Qと命名され、そして下記の表12に示す性質を有していた。
Example 21
A composition comprising 75% ferrierite and 25% alumina sol was prepared as described in Example 1. The spray dried product was calcined at 593 ° C. for 1.5 hours. Subsequently, the material of about 125g were dissolved in deionized water 100 ml, was impregnated with YCl 3 · 6H 2 0 in 17.7 g, overnight oven drying at 287 ° C., and calcined for 2 hours and then at 538 ° C. . The resulting sample was named Additive Q and had the properties shown in Table 12 below.

実施例22
75%のフェリエライト、25%のアルミナゾルを含んでなる組成物を実施例1で述べたように製造した。スプレー乾燥生成物を593℃で1.5時間焼成した。引き続いて、約125gのこの材料を87mlの脱イオン水に溶解された33.2gのMgCl・6HOにより含浸し、287℃で一夜オーブン乾燥し、次に538℃で2時間焼成した。得られた試料は添加物Rと命名され、そして下記の表12に示す性質を有していた。
Example 22
A composition comprising 75% ferrierite and 25% alumina sol was prepared as described in Example 1. The spray dried product was calcined at 593 ° C. for 1.5 hours. Subsequently, about 125 g of this material was impregnated with 33.2 g MgCl 2 .6H 2 O dissolved in 87 ml deionized water, oven dried at 287 ° C. overnight and then calcined at 538 ° C. for 2 hours. The resulting sample was named Additive R and had the properties shown in Table 12 below.

実施例23
73%のフェリエライト、3%のFeおよび24%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(23%固体)、4500g(乾燥基準)のクレイ(SiO/Al=20、KO<0.5wt%)、445gのFeCl・4HOおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒は添加物Sと命名され、そして下記の表12に示す性質を有していた。
Example 23
A composition comprising 73% ferrierite, 3% Fe 2 O 3 and 24% alumina sol was prepared as follows: 6520 g aluminum chlorohydrol solution (23% solids), 4500 g (dry basis) Of clay (SiO 2 / Al 2 O 3 = 20, K 2 O <0.5 wt%), sufficient to produce a slurry containing 445 g FeCl 2 .4H 2 O and about 44% solids An aqueous slurry containing water was prepared. This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst was named Additive S and had the properties shown in Table 12 below.

実施例24
67%のフェリエライト、11%のFeおよび22%のアルミナゾルを含んでなる組成物を次のように製造した:6520gのアルミニウムクロロヒドロール溶液(23
%固体)、4500g(乾燥基準)のクレイ(SiO/Al=20、KO<0.5wt%)、1782gのFeCl・4HOおよび約44%の固体を含有するスラリーを製造するのに充分な追加の水を含有する水性スラリーを製造した。このスラリーをドライスミル中で2.5μm未満の平均粒子寸法までミル掛けし、次にボーエンスプレー乾燥機中でスプレー乾燥した。スプレー乾燥生成物を593℃で1.5時間焼成した。この触媒は添加物Tと命名され、そして下記の表12に示す性質を有していた。
Example 24
A composition comprising 67% ferrierite, 11% Fe 2 O 3 and 22% alumina sol was prepared as follows: 6520 g of an aluminum chlorohydrol solution (23
% Solids), slurry containing 4500 g (dry basis) of clay (SiO 2 / Al 2 O 3 = 20, K 2 O <0.5 wt%), 1782 g of FeCl 2 .4H 2 O and about 44% solids. An aqueous slurry was prepared containing sufficient additional water to produce This slurry was milled in a dry mill to an average particle size of less than 2.5 μm and then spray dried in a Bowen spray dryer. The spray dried product was calcined at 593 ° C. for 1.5 hours. This catalyst was named Additive T and had the properties shown in Table 12 below.

Figure 2008539302
Figure 2008539302

実施例25
実施例13で示すのと同一の条件、フィードおよび触媒を用いて、DCRにおいてNO排出物を低減するための添加物Q〜Tの性能を評価した。最初に、1596gの平衡接触分解触媒と4gのCPSで不活性化されたCP(登録商標)−3のブレンドをDCRに装填した。ユニットを安定化したならば、流動床反応器中でNiまたはV無添加でN中の20%の蒸気により760℃で24時間水熱的に不活性化された、85.12gの添加物QあるいはRあるいはSと、0.215gの不活性化されたCP(登録商標)−3のブレンドをDCRに装填し、そしてランを各添加物上でほぼ2時間続けた。添加物Tを評価するために、第2のブレンドは、85gの水熱的に不活性化された添加物、14.75gの平衡触媒および0.25gの不活性化されたCP(登録商標)−3を含有していた。表13から推測することができるように、安定化金属の一定モル数において、ZnおよびFeはフェリエライト上で類似のNO低減性能を呈し、そして安定化されたフェリエライト中のMgまたはYを超える改善されたNO低減性能を示した。
Example 25
Using the same conditions, feed and catalyst as shown in Example 13, the performance of the additives Q-T to reduce NO emissions in the DCR was evaluated. First, a blend of 1596 g of equilibrium catalytic cracking catalyst and 4 g of CPS deactivated CP®-3 was charged to the DCR. Once the unit was stabilized, 85.12 g of additive was hydrothermally deactivated at 760 ° C. for 24 hours with 20% steam in N 2 without addition of Ni or V in a fluid bed reactor. A blend of Q or R or S and 0.215 g of deactivated CP®-3 was charged to the DCR and the run was continued on each additive for approximately 2 hours. To evaluate additive T, the second blend was made up of 85 g hydrothermally deactivated additive, 14.75 g equilibrium catalyst and 0.25 g deactivated CP®. -3. As can be inferred from Table 13, at a fixed mole number of stabilizing metal, Zn and Fe exhibit similar NO x reduction performance on ferrierite, and Mg or Y in the stabilized ferrierite Improved NO x reduction performance was demonstrated.

Figure 2008539302
Figure 2008539302

Claims (41)

a)約2〜約7.2オングストロームの範囲の細孔寸法と、約500未満のAlに対するSiOのモル比を有するNO低減用ゼオライトを含んでなる有効なNO低減量のNO低減用組成物の存在において、炭化水素フィードストックをFCC接触分解触媒の循環する触媒粒子とFCCU中で接触させ、前記ゼオライトが亜鉛、鉄およびこれらの混合物からなる群から選択される安定化量の金属または金属イオンにより安定化され、そしてFCC工程時にNO排出物を低減する能力を有し、そして前記FCCUが再生域を有し、そしてFCC工程の条件下で運転され;そして
b)NO低減用組成物の不在下で放出されるNO排出物の量と比較して、FCCUの再生域から放出されるNO排出物の量を低減する
ことを含んでなる、炭化水素フィードストックを低分子量成分に流動接触分解(FCC)する時の流動接触分解ユニット(FCCU)の再生域からのNO排出物の改善された低減方法。
a) an effective NO x reduction amount comprising a NO x reduction zeolite having a pore size in the range of about 2 to about 7.2 angstroms and a molar ratio of SiO 2 to Al 2 O 3 of less than about 500; in the presence of the NO x reduction composition, the hydrocarbon feedstock is contacted with the catalyst particles and FCCU in the circulation of FCC catalytic cracking catalyst, the stabilizing said zeolite zinc, is selected from the group consisting of iron and mixtures thereof stabilized by the amount of metal or metal ion, and have the ability to reduce NO x emissions was during FCC process and said FCCU having a regeneration zone, and is operated under the conditions of the FCC process; and b) compared to the amount of the NO x emissions released in the absence of the NO x reduction composition, child reduce the amount of the NO x emissions released from the regeneration zone of the FCCU Comprising a, improved reduction method of the NO x emissions of hydrocarbons feedstock from regeneration zone of a fluid catalytic cracking unit (FCCU) at which the fluid catalytic cracking to low molecular weight component (FCC).
FCC分解触媒がY−タイプゼオライトを含んでなる、請求項1に記載の方法。   The process of claim 1 wherein the FCC cracking catalyst comprises a Y-type zeolite. 接触分解触媒単独から得られる炭化水素フィードストックの転換率または接触分解炭化水素の収率と比較して、炭化水素フィードストック転換率または接触分解炭化水素の収率の実質的な変化無しで段階(b)が実施される、請求項1に記載の方法。   Stage without substantial change in hydrocarbon feedstock conversion or catalytic cracking hydrocarbon yield compared to hydrocarbon feedstock conversion or catalytic cracking hydrocarbon yield obtained from catalytic cracking catalyst alone ( The method of claim 1, wherein b) is performed. NO低減用ゼオライトがフェリエライト、ZSM−11、ベータ、MCM−49、モルデナイト、MCM−56、ゼオライト−L、ゼオライトロー、エリオナイト、シャバザイト、クリノプチロライト、MCM−22、MCM−35、MCM−61、オフレタイト、A、ZSM−12、ZSM−23、ZSM−18、ZSM−22、ZSM−57、ZSM−61、ZK−5、NaJ、Nu−87、Cit−1、SSZ−35、SSZ−48、SSZ−44、SSZ−23、ダキアルダイト、メルリノイト、ロブダライト、レビン、ローモンタイト、エピスチルバイト、グメリナイト、ジスモンディン、カンクリナイト、ブリューステライト、スチルバイト、ポーリンジャイト、グースクリーカイト、ナトロライト、オメガまたはこれらの混合物からなる群から選択される、請求項1に記載の方法。 NO x reducing zeolite is ferrierite, ZSM-11, beta, MCM-49, mordenite, MCM-56, zeolite -L, zeolite low, erionite, Shabazaito, clinoptilolite, MCM-22, MCM-35 , MCM-61, offretite, A, ZSM-12, ZSM-23, ZSM-18, ZSM-22, ZSM-57, ZSM-61, ZK-5, NaJ, Nu-87, Cit-1, SSZ-35, SSZ-48, SSZ-44, SSZ-23, dachaldite, merlinoite, lobdarite, levin, lomontite, epistilbite, gmelinite, dysmondin, cancrinite, brewsterite, stilbite, porinite, goosecreekite, natrolite, omega or These blends The method of claim 1, wherein the method is selected from the group consisting of compounds. NO低減用ゼオライトがフェリエライト、ベータ、MCM−49、モルデナイト、MCM−56、ゼオライト−L、ゼオライトロー、エリオナイト、シャバザイト、クリノプチロライト、MCM−22、オフレタイト、A、ZSM−12、ZSM−23、オメガおよびこれらの混合物である、請求項4に記載の方法。 NO x reducing zeolite is ferrierite, beta, MCM-49, mordenite, MCM-56, zeolite -L, zeolite low, erionite, Shabazaito, clinoptilolite, MCM-22, offretite, A, ZSM-12, 5. The method of claim 4, wherein the method is ZSM-23, omega and mixtures thereof. NO低減用ゼオライトがフェリエライトである、請求項5に記載の方法。 NO x reducing zeolite is ferrierite, A method according to claim 5. NO低減用組成物が別々の粒子状添加物として存在する、請求項1に記載の方法。 The method of claim 1, wherein the NO x reduction composition is present as a separate particulate additive. 粒子状NO低減用組成物が45μm以上の平均粒子寸法を有する、請求項7に記載の方法。 The method according to claim 7, wherein the particulate NO x reduction composition has an average particle size of 45 μm or more. NO低減用組成物がアルミナ、シリカ、シリカ−アルミナ、リン酸アルミナおよびこれらの混合物からなる群から選択される、約5〜約50重量パーセントの無機バインダーを更に含んでなる、請求項8に記載の方法。 NO x reduction compositions are alumina, silica, silica - alumina, it is selected from phosphoric acid alumina and mixtures thereof, further comprising from about 5 to 50 weight percent of an inorganic binder, in claim 8 The method described. 粒子状NO低減用組成物中に存在するNO低減用ゼオライトの量が組成物の少なくとも30重量パーセントである、請求項9に記載の方法。 The amount of the NO x reducing zeolite present in the particulate NO x reduction composition is at least 30 weight percent of the composition, The method of claim 9. 粒子状NO低減用組成物中に存在するNO低減用ゼオライトの量が組成物の少なくとも40重量パーセントである、請求項10に記載の方法。 The amount of the NO x reducing zeolite present in the particulate NO x reduction composition is at least 40 weight percent of the composition, The method of claim 10. 粒子状NO低減用組成物中に存在するNO低減用ゼオライトの量が組成物の少なくとも50重量パーセントである、請求項11に記載の方法。 The amount of the NO x reducing zeolite present in the particulate NO x reduction composition is at least 50 weight percent of the composition, The method of claim 11. 粒子状NO低減用組成物中に存在するNO低減用ゼオライトの量が組成物の約10〜約85重量パーセントの範囲である、請求項9に記載の方法。 The amount of the NO x reducing zeolite present in the particulate NO x reduction composition ranges from about 10 to about 85 weight percent of the composition, The method of claim 9. 粒子状NO低減用組成物中に存在するNO低減用ゼオライトの量が組成物の約30〜約80重量パーセントの範囲である、請求項13に記載の方法。 The amount of the NO x reducing zeolite present in the particulate NO x reduction composition ranges from about 30 to about 80 weight percent of the composition, The method of claim 13. 粒子状NO低減用組成物中に存在するNO低減用ゼオライトの量が組成物の約40〜約75重量パーセントの範囲である、請求項14に記載の方法。 The amount of the NO x reducing zeolite present in the particulate NO x reduction composition ranges from about 40 to about 75 weight percent of the composition, The method of claim 14. 無機バインダーがアルミナである、請求項9に記載の方法。   The method according to claim 9, wherein the inorganic binder is alumina. アルミナが酸あるいは塩基で解膠されたアルミナである、請求項16に記載の方法。   The process according to claim 16, wherein the alumina is peptized with acid or base. アルミナがアルミニウムクロロヒドロールである、請求項17に記載の方法。   The process according to claim 17, wherein the alumina is aluminum chlorohydrol. NO低減用組成物中に存在する無機バインダーの量が組成物の約10〜約30重量パーセントの範囲である、請求項9に記載の方法。 The amount of inorganic binder present in the NO x in the reduction composition ranges from about 10 to about 30 weight percent of the composition, The method of claim 9. NO低減用組成物中に存在する無機バインダーの量が組成物の約15〜約25重量パーセントの範囲である、請求項19に記載の方法。 The method of claim 19, wherein the amount of inorganic binder present in the NO x reduction composition ranges from about 15 to about 25 weight percent of the composition. NO低減用ゼオライト成分が250未満のAlに対するSiOのモル比を有する、請求項1に記載の方法。 The method of claim 1, wherein the NO x reducing zeolite component has a SiO 2 to Al 2 O 3 molar ratio of less than 250. アルミナ、シリカ、シリカ−アルミナ、チタニア、ジルコニア、イットリア、ランタナ、セリア、ネオジミア、サマリア、ユーロピア、ガドリニア、プラセオジミアおよびこれらの混合物からなる群から選択されるマトリックス材料を更に含んでなる、請求項9に記載の方法。   Claim 9 further comprising a matrix material selected from the group consisting of alumina, silica, silica-alumina, titania, zirconia, yttria, lantana, ceria, neodymia, samaria, europia, gadolinia, praseodymia and mixtures thereof. The method described. マトリックス材料が70重量パーセント未満の量で存在する、請求項22に記載の方法。   24. The method of claim 22, wherein the matrix material is present in an amount less than 70 weight percent. 分解触媒を前記接触段階から回収し、そして使用済の触媒を再生域中で処理して、前記触媒を再生することを更に含んでなる、請求項1あるいは3に記載の方法。   4. A process according to claim 1 or 3, further comprising recovering the cracking catalyst from the contacting step and treating the spent catalyst in a regeneration zone to regenerate the catalyst. 分解触媒および粒子状添加物組成物が前記炭化水素フィードストックとの接触時に流動化される、請求項1あるいは3に記載の方法。   4. A process according to claim 1 or 3 wherein the cracking catalyst and particulate additive composition are fluidized upon contact with the hydrocarbon feedstock. 炭化水素フィードを少なくとも1つの更なるNO低減用組成物と接触させることを更に含んでなる、請求項1あるいは3に記載の方法。 Further comprising Naru The method of claim 1 or 3 to be contacted with the hydrocarbon feed at least one further NO x reduction composition. NO低減用組成物が約50〜約200μmの平均粒子寸法を有する、請求項8に記載の方法。 The method of claim 8, wherein the NO x reduction composition has an average particle size of about 50 to about 200 μm. NO低減用組成物が約55〜約150μmの平均粒子寸法を有する、請求項27に記載の方法。 NO x reduction compositions has a mean particle size of about 55 to about 150 [mu] m, method according to claim 27. 粒子状NO低減用組成物が50未満のダビソン磨耗指数(DI)値を有する、請求項8に記載の方法。 The method of claim 8, wherein the particulate NO x reducing composition has a Davison Wear Index (DI) value of less than 50. 粒子状NO低減用組成物が20未満のダビソン磨耗指数(DI)値を有する、請求項29に記載の方法。 Particulate NO x reduction composition has a Davison wear index (DI) value of less than 20, The method of claim 29. 粒子状NO低減用組成物が15未満のダビソン磨耗指数(DI)値を有する、請求項30に記載の方法。 Particulate NO x reduction composition has a Davison wear index (DI) value of less than 15, The method of claim 30. FCC接触分解触媒がY−タイプゼオライトを含んでなり、そして触媒の触媒粒子中のNO低減用組成物の量が全触媒の触媒粒子中で2未満のY−タイプゼオライトに対するNO低減用ゼオライト成分の比をもたらすのに充分な量である、請求項7に記載の方法。 FCC cracking catalyst comprises a Y- type zeolite, and NO x reducing zeolite amount of the NO x reduction composition is for less than 2 Y- type zeolite in the catalyst particles of the total catalyst in the catalyst particles of the catalyst The method of claim 7, wherein the amount is sufficient to provide a ratio of components. 全触媒の触媒粒子中のY−タイプゼオライトに対するNO低減用ゼオライト成分の比が1未満である、請求項32に記載の方法。 The ratio of the NO x reducing zeolite component to Y- type zeolite in the catalyst particles of the total catalyst is less than 1, The method of claim 32. 分解触媒単独から得られる炭化水素フィードストックの転換率または接触分解炭化水素の収率と比較して、炭化水素フィードストックの転換率または接触分解炭化水素の収率の実質的な変化無しで段階(b)が実施される、請求項33に記載の方法。   Stage without substantial change in hydrocarbon feedstock conversion or catalytic cracking hydrocarbon yield compared to hydrocarbon feedstock conversion or catalytic cracking hydrocarbon yield obtained from cracking catalyst alone ( 34. The method of claim 33, wherein b) is performed. NO低減用組成物が分解触媒の成分としてFCC分解触媒の中に組み込まれる、請求項1に記載の方法。 The method of claim 1, wherein the NO x reduction composition is incorporated into the FCC cracking catalyst as a component of the cracking catalyst. FCC分解触媒中に存在するNO低減用組成物の量が分解触媒の少なくとも0.1重量パーセントである、請求項35に記載の方法。 The amount of the NO x reduction composition present in the FCC cracking catalyst is at least 0.1 weight percent of the cracking catalyst, the method of claim 35. FCC分解触媒中に存在するNO低減用組成物の量が分解触媒の約0.1〜約70重量%の範囲である、請求項36に記載の方法。 The amount of the NO x reduction composition present in the FCC cracking catalyst ranges from about 0.1 to about 70 wt.% Of cracking catalyst A method according to claim 36. FCC分解触媒中に存在するNO低減用組成物の量が分解触媒の約1〜約50重量%の範囲である、請求項37に記載の方法。 The amount of the NO x reduction composition present in the FCC cracking catalyst ranges from about 1 to about 50 wt.% Of cracking catalyst A method according to claim 37. 炭化水素フィードを少なくとも1つの更なるNO低減用組成物と接触させることを更に含んでなる、請求項35に記載の方法。 Furthermore comprising The method of claim 35 that is contacted with the hydrocarbon feed at least one further NO x reduction composition. NO低減用ゼオライトが亜鉛金属または亜鉛イオンにより安定化されている、請求項7あるいは35に記載の方法。 NO x reducing zeolite is stabilized by zinc metal or zinc ions, the method according to claim 7 or 35. NO低減用ゼオライトが亜鉛金属または亜鉛イオンにより安定化されている、請求項6に記載の方法。 The method according to claim 6, wherein the NO x reduction zeolite is stabilized by zinc metal or zinc ions.
JP2008508858A 2005-04-27 2006-03-24 Compositions and methods for reducing NOx emissions during fluid catalytic cracking Active JP5383184B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67515005P 2005-04-27 2005-04-27
US60/675,150 2005-04-27
PCT/US2006/010843 WO2006115665A1 (en) 2005-04-27 2006-03-24 Compositions and processes for reducing nox emissions during fluid catalytic cracking

Publications (3)

Publication Number Publication Date
JP2008539302A true JP2008539302A (en) 2008-11-13
JP2008539302A5 JP2008539302A5 (en) 2012-07-12
JP5383184B2 JP5383184B2 (en) 2014-01-08

Family

ID=36652877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008508858A Active JP5383184B2 (en) 2005-04-27 2006-03-24 Compositions and methods for reducing NOx emissions during fluid catalytic cracking

Country Status (17)

Country Link
US (1) US7918991B2 (en)
EP (1) EP1888231A1 (en)
JP (1) JP5383184B2 (en)
KR (1) KR101382014B1 (en)
CN (1) CN101166574B (en)
AR (1) AR056648A1 (en)
AU (1) AU2006240437B2 (en)
BR (1) BRPI0610326B1 (en)
CA (1) CA2606249C (en)
IL (1) IL186525A0 (en)
MX (1) MX2007012265A (en)
NO (1) NO20075962L (en)
RU (1) RU2007143987A (en)
SG (1) SG169976A1 (en)
TW (1) TWI444463B (en)
WO (1) WO2006115665A1 (en)
ZA (1) ZA200709702B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528744A (en) * 2012-07-23 2015-10-01 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Magnesium stabilized ultra-low soda decomposition catalyst

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
CA2939726C (en) * 2007-04-26 2019-06-18 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
CN101993374A (en) * 2009-08-31 2011-03-30 中国石油化工股份有限公司上海石油化工研究院 Method for preparing C1-C4 alkyl nitrites
SG188753A1 (en) * 2011-09-30 2013-04-30 Bharat Petroleum Corp Ltd Sulphur reduction catalyst additive composition in fluid catalytic cracking and method of preparation thereof
WO2014016764A1 (en) * 2012-07-24 2014-01-30 Indian Oil Corporation Limited Catalyst composition for fluid catalytic cracking, process for preparing the same and use thereof
CN104742144B (en) * 2015-04-09 2016-08-24 安徽理工大学 A kind of manipulator
TWI786147B (en) 2017-07-05 2022-12-11 中國大陸商中國石油化工科技開發有限公司 Composition capable of reducing CO and NOx emissions, its preparation method and application, and fluidized catalytic cracking method
EP3689441A1 (en) * 2019-02-01 2020-08-05 Casale Sa Process for removing nitrogen oxides from a gas

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438492A (en) * 1987-05-07 1989-02-08 Union Oil Co Catalytic decomposition of crude oil containing nitrogen at high level
JPH02113090A (en) * 1988-08-26 1990-04-25 Shell Internatl Res Maatschappij Bv Catalytic thermal cracking of hydrocarbon feed
JPH03505601A (en) * 1989-04-10 1991-12-05 モービル・オイル・コーポレイション Heavy oil catalytic cracking method and equipment
JPH06210177A (en) * 1986-04-07 1994-08-02 Katalistiks Internatl Inc Catalytic composition for hydrocarbon conversion
JPH08299794A (en) * 1995-05-05 1996-11-19 W R Grace & Co Combustion promoting composition by reducing nox by fcc process
JPH09508571A (en) * 1994-02-02 1997-09-02 モービル オイル コーポレーション Improved MCM-22 catalyst composition
JP2006503699A (en) * 2002-10-21 2006-02-02 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット NOx reduction composition used in FCC process
JP2007510782A (en) * 2003-11-06 2007-04-26 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
JP2007523217A (en) * 2003-06-24 2007-08-16 エクソンモービル リサーチ アンド エンジニアリング カンパニー NOx reduction in low-CO partial combustion operation using additive for complete combustion regenerator
JP2007532764A (en) * 2004-04-15 2007-11-15 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Compositions and methods for reducing NOx emissions during fluid catalytic cracking

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892801A (en) * 1955-12-13 1959-06-30 Gen Electric Catalysts
US3036973A (en) * 1958-11-21 1962-05-29 Hoffmann La Roche Racemization catalyst and process for the manufacture thereof
US3364136A (en) * 1965-12-10 1968-01-16 Mobil Oil Corp Novel cyclic catalytic process for the conversion of hydrocarbons
US3129252A (en) * 1960-12-29 1964-04-14 Gen Aniline & Fihn Corp Purification of butynediol
US3184417A (en) * 1960-12-29 1965-05-18 Gen Aniline & Film Corp Method of preparing a copper modified nickel catalyst composition
SE331321B (en) * 1968-09-20 1970-12-21 Asea Ab
US3617488A (en) * 1969-12-19 1971-11-02 Sigmund M Csicsery Hydrotreating catalyst comprising clay-type aluminosilicate component and a crystalline zeolitic molecular sieve component, and process using said catalyst
US3804780A (en) * 1972-03-15 1974-04-16 Mobil Oil Corp Catalyst of zinc-rare earth exchanged zeolite
US4473658A (en) * 1973-09-20 1984-09-25 Mobil Oil Corporation Moving bed catalytic cracking process with platinum group metal or rhenium supported directly on the cracking catalyst
US3894940A (en) * 1973-11-15 1975-07-15 Grace W R & Co Hydrocarbon cracking catalysts with promoter mixtures
US6042797A (en) 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US4170571A (en) * 1977-12-27 1979-10-09 Union Carbide Corporation Novel combustion catalyst
US4839026A (en) * 1978-09-11 1989-06-13 Atlantic Richfield Company Catalytic cracking with reduced emissions of sulfur oxides
US4199435A (en) * 1978-12-04 1980-04-22 Chevron Research Company NOx Control in cracking catalyst regeneration
US4290878A (en) * 1978-12-08 1981-09-22 Chevron Research Company NOx control in platinum-promoted complete combustion cracking catalyst regeneration
US4309279A (en) * 1979-06-21 1982-01-05 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4377502A (en) * 1979-12-26 1983-03-22 Standard Oil Company (Indiana) Synthesis of crystalline aluminosilicate molecular sieves
US4521298A (en) * 1980-07-18 1985-06-04 Mobil Oil Corporation Promotion of cracking catalyst octane yield performance
JPS5761085A (en) * 1980-07-29 1982-04-13 Atlantic Richfield Co Conversion of hydrocarbon
US4472267A (en) * 1980-07-29 1984-09-18 Atlantic Richfield Company Catalyst and process for conversion of hydrocarbons
US4495305A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4758418A (en) * 1980-07-29 1988-07-19 Union Carbide Corporation Process for combusting solid sulfur-containing material
US4957892A (en) 1980-07-29 1990-09-18 Uop Process for combusting solid sulfur containing material
US4642178A (en) * 1980-07-29 1987-02-10 Katalistiks, Inc. Process for conversion of hydrocarbons
US4495304A (en) * 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4368057A (en) * 1980-10-14 1983-01-11 Matthews Ronald D Method for reducing ammonia concentration in pre-combusted fuel gas using nitric oxide
GB2100075B (en) * 1981-05-19 1984-07-18 Tokyo Shibaura Electric Co Rectifier circuit
US4434147A (en) 1981-10-05 1984-02-28 Chevron Research Company Simultaneous sulfur oxide and nitrogen oxide control in FCC units using cracking catalyst fines with ammonia injection
US4513091A (en) * 1983-02-14 1985-04-23 Mobil Oil Corporation Hydrothermal zeolite activation
US4427536A (en) * 1982-02-02 1984-01-24 Chevron Research Company Promoter for the oxidation of SO2 in an FCC process
US4522937A (en) * 1982-11-29 1985-06-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4472532A (en) * 1982-11-29 1984-09-18 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4471070A (en) * 1982-11-29 1984-09-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4476245A (en) * 1982-11-29 1984-10-09 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4428827A (en) * 1983-01-24 1984-01-31 Uop Inc. FCC Sulfur oxide acceptor
US4818509A (en) * 1984-03-23 1989-04-04 Mobil Oil Corporation Continuous process for manufacturing crystalline zeolites in continuously stirred backmixed crystallizers
US4582815A (en) * 1984-07-06 1986-04-15 Mobil Oil Corporation Extrusion of silica-rich solids
GB8420205D0 (en) * 1984-08-09 1984-09-12 British Petroleum Co Plc Selective dealumination of zeolites
US4735927A (en) * 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4778664A (en) * 1986-03-10 1988-10-18 The Dow Chemical Company Process for the removal of NO from fluid streams using a water soluble polymeric chelate of a polyvalent metal
US5102530A (en) 1986-03-21 1992-04-07 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4898846A (en) * 1986-03-21 1990-02-06 W. R. Grace & Co.-Conn. Cracking catalysts with octane enhancement
US4708786A (en) * 1986-03-26 1987-11-24 Union Oil Company Of California Process for the catalytic cracking of nitrogen-containing feedstocks
US4747935A (en) * 1986-03-26 1988-05-31 Union Oil Company Of California Process for the catalytic cracking of feedstocks containing nitrogen
US4728635A (en) * 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4798813A (en) * 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
CA1295598C (en) * 1986-07-29 1992-02-11 Makoto Imanari Process for removing nitrogen oxides from exhaust gases
US4797266A (en) * 1986-08-07 1989-01-10 Shell Oil Company Method of preparation of a combined ZSM-5-ferrierite aluminosilicate
US4778665A (en) * 1986-09-09 1988-10-18 Mobil Oil Corporation Abatement of NOx in exhaust gases
FR2607128B1 (en) * 1986-11-21 1989-04-28 Inst Francais Du Petrole NEW FERRIERITES, THEIR PREPARATION PROCESS AND THEIR USE
US4866019A (en) 1987-01-13 1989-09-12 Akzo N.V. Catalyst composition and absorbent which contain an anionic clay
US4904627A (en) * 1987-03-13 1990-02-27 Uop Alkaline earth metal spinel/kaolin clays and processes for making
US4830840A (en) * 1987-03-13 1989-05-16 Uop Process for removing sulfur oxide and nitrogen oxide
US4880521A (en) * 1987-05-07 1989-11-14 Union Oil Company Of California Process for the cracking of feedstocks containing high levels of nitrogen
US4744962A (en) * 1987-07-22 1988-05-17 Shell Oil Company Process for the reduction of ammonia in regeneration zone off gas by select addition of NOx to the regeneration zone or to the regeneration zone off gas
US4755282A (en) * 1987-07-22 1988-07-05 Shell Oil Company Process for the reduction of NH3 in regeneration zone off gas by select recycle of certain-sized NH3 decomposition catalysts
US4812430A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control during multistage combustion
US4812431A (en) * 1987-08-12 1989-03-14 Mobil Oil Corporation NOx control in fluidized bed combustion
US4957718A (en) 1987-11-24 1990-09-18 Uop Process for reducing emissions of sulfur oxides and composition useful in same
US4895994A (en) * 1988-04-14 1990-01-23 W. R. Grace & Co.-Conn. Shaped catalysts and processes
US4826799A (en) * 1988-04-14 1989-05-02 W. R. Grace & Co.-Conn. Shaped catalyst and process for making it
JPH0763631B2 (en) 1988-04-18 1995-07-12 トヨタ自動車株式会社 Exhaust gas purification catalyst manufacturing method
US5057205A (en) 1988-06-10 1991-10-15 Mobil Oil Corporation Additive for vanadium and sulfur oxide capture in catalytic cracking
GB8904409D0 (en) 1989-02-27 1989-04-12 Shell Int Research Process for the conversion of a hydrocarbonaceous feedstock
US5371055A (en) 1988-07-07 1994-12-06 W. R. Grace & Co.-Conn. Increasing metal-tolerance of FCC catalyst by sulfur oxide removal
US4923842A (en) 1988-10-11 1990-05-08 Allied-Signal Inc. Lanthanum containing catalyst for treating automotive exhaust
US4980052A (en) 1988-12-05 1990-12-25 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US4889615A (en) * 1988-12-06 1989-12-26 Mobil Oil Corporation Additive for vanadium capture in catalytic cracking
US5021144A (en) 1989-02-28 1991-06-04 Shell Oil Company Process for the reduction of NOX in an FCC regeneration system by select control of CO oxidation promoter in the regeneration zone
US5145815A (en) 1989-08-10 1992-09-08 Uop Regeneration of zeolitic molecular sieves with sulfur oxide absorption on soda-lime bed
CA2024154C (en) 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
US4973399A (en) 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
JPH07106300B2 (en) 1989-12-08 1995-11-15 財団法人産業創造研究所 Method for removing nitrogen oxides in combustion exhaust gas
CA2032799C (en) 1989-12-21 1996-01-30 Akinori Eshita Catalyst for and method of purifying oxygen-excess exhaust gas
US4986897A (en) 1989-12-28 1991-01-22 Mobil Oil Corporation Catalytic conversion of NOx with NH3
US4988432A (en) * 1989-12-28 1991-01-29 Mobil Oil Corporation Reducing NOx emissions with antimony additive
US5015362A (en) 1989-12-28 1991-05-14 Mobil Oil Corporation Catalytic conversion of NOx over carbonaceous particles
US5002654A (en) 1989-12-28 1991-03-26 Mobil Oil Corporation Reducing NOx emissions with zinc catalyst
US4988654A (en) 1989-12-29 1991-01-29 Chevron Research Company Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance
US5002653A (en) 1989-12-29 1991-03-26 Chevron Research Company Catalytic cracking process with vanadium passivation and improved
US5260240A (en) 1989-12-29 1993-11-09 Chevron Research And Technology Company Process for the demetallization of FCC catalyst
US5114691A (en) 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Process using sorbents for the removal of SOx from flue gas
US5114898A (en) 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams
US5037538A (en) 1990-02-26 1991-08-06 Mobil Oil Corporation Catalytic cracking process with isolated catalyst for conversion of NO.sub.x
CA2044893C (en) 1990-06-20 1998-11-03 Senshi Kasahara Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
CA2057510C (en) 1990-12-18 1998-12-01 Masao Nakano Catalyst for purifying exhaust gas
US5208198A (en) 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
JP2973524B2 (en) 1990-12-18 1999-11-08 東ソー株式会社 Exhaust gas purification catalyst
US5130012A (en) 1991-01-24 1992-07-14 Mobil Oil Corporation Process and apparatus for reducing NOx emissions from high-efficiency FFC regenerators
US5173278A (en) 1991-03-15 1992-12-22 Mobil Oil Corporation Denitrification of flue gas from catalytic cracking
US5260043A (en) 1991-08-01 1993-11-09 Air Products And Chemicals, Inc. Catalytic reduction of NOx and carbon monoxide using methane in the presence of oxygen
JP3086015B2 (en) 1991-08-07 2000-09-11 トヨタ自動車株式会社 Exhaust gas purification catalyst
US5374349A (en) 1991-09-11 1994-12-20 Union Oil Company Of California Hydrocracking process employing catalyst containing zeolite beta and a pillared clay
US5174980A (en) 1991-10-04 1992-12-29 Mobil Oil Corp. Synthesis of crystalline ZSM-35
US5190736A (en) 1991-10-18 1993-03-02 Mobil Oil Corporation Synthesis of crystalline ZSM-35
JPH05123578A (en) 1991-11-06 1993-05-21 Nippon Oil Co Ltd Manufacture of hydrocarbon conversion catalyst
US5171553A (en) 1991-11-08 1992-12-15 Air Products And Chemicals, Inc. Catalytic decomposition of N2 O
EP0613450B1 (en) 1991-11-20 1996-10-02 The Dow Chemical Company Process of growing crystalline microporous solids in a fluoride-containing, substantially non-aqueous growth medium
US5785947A (en) 1991-12-18 1998-07-28 Chevron U.S.A. Inc. Preparation of zeolites using organic template and amine
US5328590A (en) 1992-02-27 1994-07-12 Union Oil Company Of California Hydrocracking process using a catalyst containing zeolite beta and a layered magnesium silicate
US5547648A (en) 1992-04-15 1996-08-20 Mobil Oil Corporation Removing SOx, NOX and CO from flue gases
US5240690A (en) 1992-04-24 1993-08-31 Shell Oil Company Method of removing NH3 and HCN from and FCC regenerator off gas
US5268089A (en) 1992-06-24 1993-12-07 Mobil Oil Corporation FCC of nitrogen containing hydrocarbons and catalyst regeneration
US5316661A (en) 1992-07-08 1994-05-31 Mobil Oil Corporation Processes for converting feedstock organic compounds
EP0585025B1 (en) 1992-08-25 1998-01-14 Idemitsu Kosan Company Limited Exhaust gas purifying catalyst
US5382352A (en) 1992-10-20 1995-01-17 Mobil Oil Corporation Conversion of NOx in FCC bubbling bed regenerator
US5294332A (en) 1992-11-23 1994-03-15 Amoco Corporation FCC catalyst and process
US5364517A (en) 1993-02-19 1994-11-15 Chevron Research And Technology Company Perovskite-spinel FCC NOx reduction additive
US5372706A (en) 1993-03-01 1994-12-13 Mobil Oil Corporation FCC regeneration process with low NOx CO boiler
JP3185448B2 (en) 1993-03-11 2001-07-09 日産自動車株式会社 Exhaust gas purification catalyst
US5744113A (en) 1993-05-27 1998-04-28 Siemens Aktiengesellschaft Process and catalyst for decomposing oxides of nitrogen
EP0630680B1 (en) 1993-06-25 1996-12-04 Tosoh Corporation Method for removal of nitrogen oxides
US5407652A (en) 1993-08-27 1995-04-18 Engelhard Corporation Method for decomposing N20 utilizing catalysts comprising calcined anionic clay minerals
US5413699A (en) 1993-10-14 1995-05-09 Mobil Oil Corporation FCC process with fines tolerant SCR reactor
EP0655277A1 (en) 1993-11-01 1995-05-31 Csir Amorphous aluminosilicate catalyst
US5510306A (en) 1993-12-29 1996-04-23 Shell Oil Company Process for isomerizing linear olefins to isoolefins
DE69519243T2 (en) 1994-02-15 2001-03-08 Tokyo Gas Co. Ltd., Tokio/Tokyo Process and catalyst for cleaning NOx-containing exhaust gases
US6114265A (en) 1994-03-15 2000-09-05 Exxon Research And Engineering Company Combustion control in a fluid catalytic cracking regenerator
US5426083A (en) 1994-06-01 1995-06-20 Amoco Corporation Absorbent and process for removing sulfur oxides from a gaseous mixture
US5689000A (en) 1994-07-01 1997-11-18 Monsanto Company Process for preparing carboxylic acid salts and catalysts useful in such process
US5552129A (en) 1994-07-07 1996-09-03 Mobil Oil Corporation Catalytic system for the reduction of nitrogen oxides
US5589147A (en) 1994-07-07 1996-12-31 Mobil Oil Corporation Catalytic system for the reducton of nitrogen oxides
CA2156464C (en) 1994-09-30 1999-07-20 Raghu K. Menon Reduction of emissions from fcc regenerators
US5599520A (en) 1994-11-03 1997-02-04 Garces; Juan M. Synthesis of crystalline porous solids in ammonia
KR0136893B1 (en) 1994-11-03 1998-04-25 강박광 Selective catalytic reduction of nitrogen oxide
AU4737896A (en) 1994-11-23 1996-06-17 Exxon Chemical Patents Inc. Hydrocarbon conversion process using a zeolite bound zeolite catalyst
US5741468A (en) 1994-12-28 1998-04-21 Kabushiki Kaisha Riken Exhaust gas cleaner and method for cleaning exhaust gas
US20020120169A1 (en) * 1995-01-13 2002-08-29 Michel Spagnol Process facilitating the regeneration of a catalyst based on a zeolite used in an acylation reaction, catalyst and use
DE19505579A1 (en) 1995-02-18 1996-08-22 Sued Chemie Ag Adsorbent for the treatment of oils and / or fats
US6165933A (en) 1995-05-05 2000-12-26 W. R. Grace & Co.-Conn. Reduced NOx combustion promoter for use in FCC processes
US6129834A (en) 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
US5968466A (en) 1995-06-07 1999-10-19 Asec Manufacturing Copper-silver zeolite catalysts in exhaust gas treatment
US6471924B1 (en) 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
US5716514A (en) 1995-08-30 1998-02-10 Mobil Oil Corporation FCC NOx reduction by turbulent/laminar thermal conversion
US5705053A (en) 1995-08-30 1998-01-06 Mobil Oil Corporation FCC regenerator NOx reduction by homogeneous and catalytic conversion
US5830346A (en) 1995-08-30 1998-11-03 Mobil Oil Corporation FCC regenerator in partial CO burn with downstream air addition
US5744686A (en) 1995-09-20 1998-04-28 Uop Process for the removal of nitrogen compounds from an aromatic hydrocarbon stream
EP0766992B1 (en) 1995-10-06 2003-07-30 ENITECNOLOGIE S.p.a. Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas
JPH11513662A (en) 1995-10-24 1999-11-24 ザ ダウ ケミカル カンパニー Method for modifying porosity of aluminosilicate and silica and mesoporous composition derived therefrom
US5827793A (en) 1996-04-11 1998-10-27 Exxon Research And Engineering Company Controlled FCC catalyst regeneration using a distributed air system
US6033641A (en) 1996-04-18 2000-03-07 University Of Pittsburgh Of The Comonwealth System Of Higher Education Catalyst for purifying the exhaust gas from the combustion in an engine or gas turbines and method of making and using the same
JP2000511107A (en) 1996-05-29 2000-08-29 エクソン・ケミカル・パテンツ・インク Metal-containing zeolite catalyst, its preparation and use for the conversion of hydrocarbons
JP3889467B2 (en) 1996-09-25 2007-03-07 日本特殊陶業株式会社 Nitrogen oxide removing catalyst material, nitrogen oxide treatment apparatus using the material, and nitrogen oxide removing method
US6027696A (en) 1997-04-11 2000-02-22 Indian Oil Corporation Ltd. Fluidized catalytic cracking apparatus
US6103949A (en) 1997-04-14 2000-08-15 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
US5958818A (en) 1997-04-14 1999-09-28 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
DE19723949A1 (en) * 1997-06-06 1998-12-10 Basf Ag Process for the regeneration of a zeolite catalyst
US6090271A (en) 1997-06-10 2000-07-18 Exxon Chemical Patents Inc. Enhanced olefin yields in a catalytic process with diolefins
US6028023A (en) 1997-10-20 2000-02-22 Bulldog Technologies U.S.A., Inc. Process for making, and use of, anionic clay materials
EP1044068A1 (en) * 1997-12-03 2000-10-18 Exxon Chemical Patents Inc. Catalyst comprising a zeolite partially coated with a second zeolite, its use for hydrocarbon conversion
US6143261A (en) 1997-12-15 2000-11-07 Exxon Research And Engineering Company Catalytic reduction of nitrogen oxide emissions with MCM-49 and MCM-56
JPH11300208A (en) 1998-04-21 1999-11-02 Idemitsu Kosan Co Ltd Catalytically cracking catalyst
US6106697A (en) 1998-05-05 2000-08-22 Exxon Research And Engineering Company Two stage fluid catalytic cracking process for selectively producing b. C.su2 to C4 olefins
US6908604B2 (en) * 1999-05-17 2005-06-21 Exxonmobil Chemical Patents Inc. Macrostructures of porous inorganic material and process for their preparation
US6143681A (en) 1998-07-10 2000-11-07 Northwestern University NOx reduction catalyst
US6037307A (en) 1998-07-10 2000-03-14 Goal Line Environmental Technologies Llc Catalyst/sorber for treating sulfur compound containing effluent
CZ297773B6 (en) 1998-08-03 2007-03-28 Shell Internationale Research Maatschappij B.V. Process for preparing catalyst composition
US6110258A (en) 1998-10-06 2000-08-29 Matheson Tri-Gas, Inc. Methods for removal of water from gases using superheated zeolites
US6177381B1 (en) * 1998-11-03 2001-01-23 Uop Llc Layered catalyst composition and processes for preparing and using the composition
US20020003103A1 (en) * 1998-12-30 2002-01-10 B. Erik Henry Fluid cat cracking with high olefins prouduction
KR100284936B1 (en) 1998-12-31 2001-04-02 김충섭 Method for producing a catalytically active noble metal-supported zeolite denitrification catalyst
US6309758B1 (en) 1999-05-06 2001-10-30 W. R. Grace & Co.-Conn. Promoted porous catalyst
DE19936135A1 (en) 1999-07-31 2001-02-15 Degussa Fixed bed catalyst for hydrogenation of saturated or unsaturated esters to mono- or multiple hydroxy alcohols, is obtained by doping rhenium to Raney metal type metal fixed bed catalyst
TW553772B (en) * 1999-07-31 2003-09-21 Degussa Fixed bed catalysts
AU1235501A (en) * 1999-10-28 2001-05-08 Regents Of The University Of California, The Catalysts for lean burn engine exhaust abatement
CN1171676C (en) * 1999-12-28 2004-10-20 康宁股份有限公司 Zeolite/alumina catalyst support compositions and method of making the same
US6555492B2 (en) * 1999-12-29 2003-04-29 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same
US20020038051A1 (en) * 2000-02-18 2002-03-28 Degussa-Huls Ag Raney copper
US6376708B1 (en) 2000-04-11 2002-04-23 Monsanto Technology Llc Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts
DE10020100A1 (en) * 2000-04-22 2001-10-31 Dmc2 Degussa Metals Catalysts Process and catalyst for the reduction of nitrogen oxides
US6585952B1 (en) * 2000-05-25 2003-07-01 Board Of Trustees Operating Michigan State University Ultrastable hexagonal, cubic and wormhole aluminosilicate mesostructures
JP4703818B2 (en) 2000-06-20 2011-06-15 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
DE60126515T2 (en) * 2000-06-22 2007-11-22 Mitsubishi Jidosha Kogyo K.K. Catalyst for exhaust gas purification
DE60122243T2 (en) 2000-06-28 2007-06-28 Ict Co. Ltd. purifying catalyst
EP1174173B1 (en) * 2000-07-17 2013-03-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifying catalyst
CN1156555C (en) * 2000-08-10 2004-07-07 中国石油化工集团公司 Assistant for calalytic cracking and its preparing process
US6538169B1 (en) 2000-11-13 2003-03-25 Uop Llc FCC process with improved yield of light olefins
US20020094314A1 (en) * 2000-11-27 2002-07-18 National Institute Of Advanced Industrial Science And Technology Method for the reduction and removal of nitrogen oxides
JP2002253967A (en) * 2001-02-28 2002-09-10 Showa Denko Kk Nitrous oxide decomposing catalyst, manufacturing method therefor and method of decomposing nitrous oxide
US6632768B2 (en) * 2001-03-12 2003-10-14 University Of Missouri-Columbia Adsorbent for HC in exhaust gas, and process for producing the same
JP3981915B2 (en) * 2001-04-03 2007-09-26 日産自動車株式会社 Exhaust gas purification system
US6884744B2 (en) 2001-04-13 2005-04-26 W. R. Grace & Co.-Conn. Zeolite based catalyst of ultra-high kinetic conversion activity
US6558533B2 (en) * 2001-04-13 2003-05-06 W.R. Grace & Co.-Conn Process for sulfur removal from hydrocarbon liquids
DE10132890A1 (en) * 2001-07-06 2003-01-16 Daimler Chrysler Ag Solid used for adsorption and desorption of nitrogen oxides found in internal combustion engine exhaust gases comprises a porous support; a metal component selected from alkali metals, alkaline earth
US6759358B2 (en) * 2001-08-21 2004-07-06 Sud-Chemie Inc. Method for washcoating a catalytic material onto a monolithic structure
US20030073566A1 (en) * 2001-10-11 2003-04-17 Marshall Christopher L. Novel catalyst for selective NOx reduction using hydrocarbons
US6800586B2 (en) * 2001-11-23 2004-10-05 Engelhard Corporation NOx reduction composition for use in FCC processes
US6912847B2 (en) * 2001-12-21 2005-07-05 Engelhard Corporation Diesel engine system comprising a soot filter and low temperature NOx trap
US6858556B2 (en) * 2002-02-25 2005-02-22 Indian Oil Corporation Limited Stabilized dual zeolite single particle catalyst composition and a process thereof
WO2004000731A2 (en) * 2002-06-25 2003-12-31 Akzo Nobel N.V. Use of cationic layered materials, compositions comprising these materials, and the preparation of cationic layered materials
CN1688508A (en) 2002-08-13 2005-10-26 英特凯特公司 Flue gas treatments to reduce NOx and CO emissions
US7045056B2 (en) * 2002-10-10 2006-05-16 Engelhard Corporation CO oxidation promoters for use in FCC processes
US7304011B2 (en) 2004-04-15 2007-12-04 W.R. Grace & Co. -Conn. Compositions and processes for reducing NOx emissions during fluid catalytic cracking

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210177A (en) * 1986-04-07 1994-08-02 Katalistiks Internatl Inc Catalytic composition for hydrocarbon conversion
JPS6438492A (en) * 1987-05-07 1989-02-08 Union Oil Co Catalytic decomposition of crude oil containing nitrogen at high level
JPH02113090A (en) * 1988-08-26 1990-04-25 Shell Internatl Res Maatschappij Bv Catalytic thermal cracking of hydrocarbon feed
JPH03505601A (en) * 1989-04-10 1991-12-05 モービル・オイル・コーポレイション Heavy oil catalytic cracking method and equipment
JPH09508571A (en) * 1994-02-02 1997-09-02 モービル オイル コーポレーション Improved MCM-22 catalyst composition
JPH08299794A (en) * 1995-05-05 1996-11-19 W R Grace & Co Combustion promoting composition by reducing nox by fcc process
JP2006503699A (en) * 2002-10-21 2006-02-02 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット NOx reduction composition used in FCC process
JP2007523217A (en) * 2003-06-24 2007-08-16 エクソンモービル リサーチ アンド エンジニアリング カンパニー NOx reduction in low-CO partial combustion operation using additive for complete combustion regenerator
JP2007510782A (en) * 2003-11-06 2007-04-26 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
JP2007532764A (en) * 2004-04-15 2007-11-15 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Compositions and methods for reducing NOx emissions during fluid catalytic cracking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015528744A (en) * 2012-07-23 2015-10-01 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Magnesium stabilized ultra-low soda decomposition catalyst

Also Published As

Publication number Publication date
SG169976A1 (en) 2011-04-29
CN101166574A (en) 2008-04-23
RU2007143987A (en) 2009-06-10
CN101166574B (en) 2011-09-21
JP5383184B2 (en) 2014-01-08
AU2006240437A1 (en) 2006-11-02
IL186525A0 (en) 2008-01-20
TWI444463B (en) 2014-07-11
US7918991B2 (en) 2011-04-05
EP1888231A1 (en) 2008-02-20
CA2606249C (en) 2013-07-23
BRPI0610326A2 (en) 2010-06-15
CA2606249A1 (en) 2006-11-02
MX2007012265A (en) 2007-12-07
NO20075962L (en) 2007-11-22
TW200704766A (en) 2007-02-01
WO2006115665A1 (en) 2006-11-02
ZA200709702B (en) 2008-11-26
AR056648A1 (en) 2007-10-17
US20090057199A1 (en) 2009-03-05
BRPI0610326B1 (en) 2015-07-21
KR20080013939A (en) 2008-02-13
KR101382014B1 (en) 2014-04-04
AU2006240437B2 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5383184B2 (en) Compositions and methods for reducing NOx emissions during fluid catalytic cracking
JP4974883B2 (en) Compositions and methods for reducing NOx emissions during fluid catalytic cracking
US9931595B2 (en) Ferrierite composition for reducing NOx emissions during fluid catalytic cracking
JP5345386B2 (en) NOx reduction composition used in partial combustion FCC process
ZA200608953B (en) Compositions and processes for reducing NOx emissions during catalytic cracking
US20050100493A1 (en) Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
TWI395614B (en) Ferrierite compositions for reducing nox emissions during fluid catalytic cracking
MXPA06005000A (en) FERRIERITE COMPOSITIONS FOR REDUCING NOx

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130517

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130619

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250