JP2008522362A - 高密度高温プラズマの安定状態を形成する方法 - Google Patents
高密度高温プラズマの安定状態を形成する方法 Download PDFInfo
- Publication number
- JP2008522362A JP2008522362A JP2007542959A JP2007542959A JP2008522362A JP 2008522362 A JP2008522362 A JP 2008522362A JP 2007542959 A JP2007542959 A JP 2007542959A JP 2007542959 A JP2007542959 A JP 2007542959A JP 2008522362 A JP2008522362 A JP 2008522362A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- gravitational
- energy
- spectrum
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000005855 radiation Effects 0.000 claims abstract description 39
- 238000001228 spectrum Methods 0.000 claims abstract description 29
- 230000007704 transition Effects 0.000 claims abstract description 17
- 230000004927 fusion Effects 0.000 claims abstract description 16
- 230000006835 compression Effects 0.000 claims abstract description 14
- 238000007906 compression Methods 0.000 claims abstract description 14
- 238000010791 quenching Methods 0.000 claims abstract description 12
- 230000003321 amplification Effects 0.000 claims abstract description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 9
- 238000012546 transfer Methods 0.000 claims abstract description 8
- 230000002706 hydrostatic effect Effects 0.000 claims abstract description 7
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 230000000171 quenching effect Effects 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000005461 Bremsstrahlung Effects 0.000 description 14
- 230000005484 gravity Effects 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 11
- 238000005755 formation reaction Methods 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 230000005284 excitation Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000005255 beta decay Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000010584 magnetic trap Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052805 deuterium Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052743 krypton Inorganic materials 0.000 description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000005610 quantum mechanics Effects 0.000 description 2
- 230000000191 radiation effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 229910052722 tritium Inorganic materials 0.000 description 2
- 230000005428 wave function Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005290 field theory Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005288 gauge theory Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/05—Thermonuclear fusion reactors with magnetic or electric plasma confinement
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/16—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/22—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma for injection heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma Technology (AREA)
Abstract
Description
「高密度高温プラズマの安定状態」という定義は、ガスダイナミック圧力が磁場の圧力(又は、このケースにおいては、放射重力場の圧力)と釣り合っている際のプラズマの流体静力学的平衡状態を意味している。
適切な重力場内における電子の定常状態の帯状スペクトルを表す対象の数学的なモデルに関しては、2つの側面が重要である。第1に、アインシュタインの場の方程式においては、κは、方程式の基点がκ値の数値的な制限と結び付けられないように、空間/時間の幾何学的特性を物理的な事物の分布と関連させる定数である。ニュートンの古典重力理論との一致という要件のみが、小さなκ=8πG/c4に結びついている(ここで、G、cは、それぞれ、ニュートンの重力定数と光の速度である)。このような要件は、ニュートンの重力理論の相対性理論の一般化として、アインシュタインの一般相対性理論(GRT)の基礎概念から導出される。第2に、相対性理論の重力方程式の最も一般的な形態は、∧項を有する式である。弱い場への限定的な遷移は、次の式に結びついている。
前述の独自の場及びエネルギーレベル幅における定常状態にわたる遷移エネルギーの場合に、重力放射を大量現象として実現可能な唯一のオブジェクトは、後述する推定から導出されるように、高密度高温プラズマとなる。
Te=T1=(107−108)K、ne=ni=(1023−1025)m-3というプラズマパラメータの数値の場合には、電磁制動放射スペクトルは、基本的に、電子放射のコンプトン散乱に伴って変化することはなく、且つ、制動放射自体が高温プラズマの放射損失のソースである。この連続的なスペクトルの周波数は、(1018−1020)s-1のレベルであり、前述のプラズマパラメータにおけるプラズマ周波数は、(1013−1014)s-1である(又は、0.1eVの放射量子エネルギーである)。
Claims (3)
- 高密度高温プラズマの安定状態を形成する方法において、
(a)パルス大電流放電を利用して水素及びそのアイソトープから高密度高温プラズマを生成する段階と、
(b)帯状エネルギースペクトルを有する電子の重力放射の条件に対応したパラメータを有する磁場エリアから前記プラズマを注入する段階と、
(c)eVエネルギーの長波長領域内へのカスケード遷移によって実行される前記プラズマ内における前記重力放射のロッキング及び増幅状態への前記スペクトルに沿ったエネルギー移動と、流体静力学的平衡状態への同時圧縮と、の段階と、
を有し、
段階(c)に示されている前記状態の形成においては、適切な重力場内におけるkeVの領域の電子の基底エネルギーレベルからの自発重力放射をクエンチングするために、作動ガスの成分内において多電子原子が使用されている方法。 - 高密度高温プラズマの安定状態を得るために、水素及び多電子原子が使用されている、請求項1記載の方法。
- 核融合反応が進行するための条件を実現するために、水素及び炭素が使用されており、炭素は、keVエネルギーを有する前記重力放射の前記スペクトルをクエンチングするため、並びに、融合反応触媒として、の両方の目的で使用されている、請求項1記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004135022/06A RU2273968C1 (ru) | 2004-11-30 | 2004-11-30 | Способ формирования устойчивых состояний плотной высокотемпературной плазмы |
PCT/RU2005/000284 WO2005109970A1 (en) | 2004-11-30 | 2005-05-24 | Method of forming stable states of dense high-temperature plasma |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012202531A Division JP2013016507A (ja) | 2004-11-30 | 2012-09-14 | 高密度高温プラズマの安定状態を形成する方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008522362A true JP2008522362A (ja) | 2008-06-26 |
Family
ID=35320612
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007542959A Withdrawn JP2008522362A (ja) | 2004-11-30 | 2005-05-24 | 高密度高温プラズマの安定状態を形成する方法 |
JP2012202531A Withdrawn JP2013016507A (ja) | 2004-11-30 | 2012-09-14 | 高密度高温プラズマの安定状態を形成する方法 |
JP2014263119A Pending JP2015092495A (ja) | 2004-11-30 | 2014-12-25 | 高密度高温プラズマの安定状態を形成する方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012202531A Withdrawn JP2013016507A (ja) | 2004-11-30 | 2012-09-14 | 高密度高温プラズマの安定状態を形成する方法 |
JP2014263119A Pending JP2015092495A (ja) | 2004-11-30 | 2014-12-25 | 高密度高温プラズマの安定状態を形成する方法 |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP1673966A4 (ja) |
JP (3) | JP2008522362A (ja) |
KR (1) | KR100877367B1 (ja) |
CN (1) | CN1954391B (ja) |
AU (1) | AU2005242054B2 (ja) |
BR (1) | BRPI0506556A (ja) |
CA (1) | CA2538368A1 (ja) |
NZ (1) | NZ548650A (ja) |
RU (1) | RU2273968C1 (ja) |
WO (1) | WO2005109970A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015092495A (ja) * | 2004-11-30 | 2015-05-14 | ザクリートエ アクツィオネルノエ オブシエストボ ルスターモシンテツ | 高密度高温プラズマの安定状態を形成する方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2054895A2 (en) * | 2006-08-18 | 2009-05-06 | Unified Gravity Corporation | Hydrogen-lithium fusion device, method and applications |
RU2007105087A (ru) * | 2007-02-12 | 2008-08-20 | Борис Федорович Полторацкий (RU) | Плазменный преобразователь энергии и электромагнитный вихревой реактор для его осуществления |
US20150380113A1 (en) | 2014-06-27 | 2015-12-31 | Nonlinear Ion Dynamics Llc | Methods, devices and systems for fusion reactions |
WO2014210519A2 (en) * | 2013-06-27 | 2014-12-31 | Nonlinear Ion Dynamics, Llc. | Methods, devices and systems for fusion reactions |
RU2710865C1 (ru) * | 2019-06-19 | 2020-01-14 | Акционерное общество "Концерн воздушно-космической обороны "Алмаз - Антей" | Плазменный источник излучения |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS613083A (ja) * | 1984-06-18 | 1986-01-09 | 松永 誠子 | ホログラフイ−の技術を利用して物質にエネルギ−を与える方法、及び、その装置 |
JPH11238947A (ja) * | 1998-02-18 | 1999-08-31 | Matsunaga Shigeko | 半導体レーザーアレイ可変発振ホログラムによる半導体レーザーアレイ可変発振ホログラムビンを利用した重力波併用ホログラフィー核融合炉ビンと重力波ホログラフィーの方法、及び、その装置。 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4292125A (en) * | 1978-08-21 | 1981-09-29 | Massachusetts Institute Of Technology | System and method for generating steady state confining current for a toroidal plasma fusion reactor |
SU1216805A1 (ru) * | 1984-03-15 | 1986-03-07 | Предприятие П/Я В-8851 | Способ создани стационарного тока в плазме |
RU2067360C1 (ru) * | 1994-01-25 | 1996-09-27 | Михаил Агеевич Поломарчук | Способ получения высокотемпературной плазмы |
RU2096934C1 (ru) * | 1995-11-29 | 1997-11-20 | Милья Аркадьевич Маргулис | Способ получения высокотемпературной плазмы и осуществления термоядерных реакций |
RU2273968C1 (ru) * | 2004-11-30 | 2006-04-10 | Закрытое акционерное общество "Рустермосинтез" | Способ формирования устойчивых состояний плотной высокотемпературной плазмы |
-
2004
- 2004-11-30 RU RU2004135022/06A patent/RU2273968C1/ru not_active IP Right Cessation
-
2005
- 2005-05-24 NZ NZ548650A patent/NZ548650A/xx not_active IP Right Cessation
- 2005-05-24 KR KR1020067015446A patent/KR100877367B1/ko not_active IP Right Cessation
- 2005-05-24 CA CA002538368A patent/CA2538368A1/en not_active Abandoned
- 2005-05-24 WO PCT/RU2005/000284 patent/WO2005109970A1/en active Application Filing
- 2005-05-24 CN CN2005800071699A patent/CN1954391B/zh not_active Expired - Fee Related
- 2005-05-24 JP JP2007542959A patent/JP2008522362A/ja not_active Withdrawn
- 2005-05-24 BR BRPI0506556-9A patent/BRPI0506556A/pt not_active IP Right Cessation
- 2005-05-24 AU AU2005242054A patent/AU2005242054B2/en not_active Ceased
- 2005-05-24 EP EP05749491A patent/EP1673966A4/en not_active Ceased
-
2012
- 2012-09-14 JP JP2012202531A patent/JP2013016507A/ja not_active Withdrawn
-
2014
- 2014-12-25 JP JP2014263119A patent/JP2015092495A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS613083A (ja) * | 1984-06-18 | 1986-01-09 | 松永 誠子 | ホログラフイ−の技術を利用して物質にエネルギ−を与える方法、及び、その装置 |
JPH11238947A (ja) * | 1998-02-18 | 1999-08-31 | Matsunaga Shigeko | 半導体レーザーアレイ可変発振ホログラムによる半導体レーザーアレイ可変発振ホログラムビンを利用した重力波併用ホログラフィー核融合炉ビンと重力波ホログラフィーの方法、及び、その装置。 |
Non-Patent Citations (1)
Title |
---|
JPN6010054986, S.I. Fisenko, ""Anomalies In The β decay Processes And The Pulse Strong−Current Discharges As Consequence Of Elect", [Online], 20010324, gr−qc/0105035v2, pp.1−20, US, コーネル大学図書館 arXiv.org * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015092495A (ja) * | 2004-11-30 | 2015-05-14 | ザクリートエ アクツィオネルノエ オブシエストボ ルスターモシンテツ | 高密度高温プラズマの安定状態を形成する方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2005242054B2 (en) | 2008-11-27 |
EP1673966A4 (en) | 2009-08-12 |
EP1673966A1 (en) | 2006-06-28 |
WO2005109970A1 (en) | 2005-11-17 |
CN1954391A (zh) | 2007-04-25 |
CN1954391B (zh) | 2012-07-04 |
AU2005242054A1 (en) | 2005-11-17 |
CA2538368A1 (en) | 2005-11-17 |
RU2273968C1 (ru) | 2006-04-10 |
NZ548650A (en) | 2012-09-28 |
KR20070050003A (ko) | 2007-05-14 |
JP2013016507A (ja) | 2013-01-24 |
JP2015092495A (ja) | 2015-05-14 |
KR100877367B1 (ko) | 2009-01-09 |
BRPI0506556A (pt) | 2007-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015092495A (ja) | 高密度高温プラズマの安定状態を形成する方法 | |
Winfrey et al. | A study of plasma parameters in a capillary discharge with calculations using ideal and nonideal plasma models for comparison with experiment | |
US20090152094A1 (en) | Method of forming stable states of dense high-temperature plasma | |
Kostyukov et al. | Magneto-inertial fusion with laser compression of a magnetized spherical target | |
US20070058770A1 (en) | Method of forming stable states of sense high-temperature plasma | |
Zhu et al. | Relativistic quantum corrections to laser wakefield acceleration | |
Garanin et al. | Physical Processes in the MAGO/MFT Systems | |
US20160027533A1 (en) | Method of forming stable states of dense high-temperature plasma | |
Ivanov et al. | Formation of Starting Plasma Flow in an Open Trap Using Arc Plasma Gun | |
Zakharov et al. | Plasma dynamics in a hollow cathode triggered discharge with the influence of fast electrons on ionization phenomena and EUV emission | |
Fisenko et al. | The Conception of Thermonuclear Reactor on the Principle of Gravitational Confinement of Dense High-temperature Plasma | |
Dubinov et al. | A gas-discharge vircator: Results of simulation | |
Liu et al. | Fast ignition by a laser-accelerated deuteron beam | |
Bandyopadhyay | Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments | |
Surrey et al. | An ion species model for positive ion sources: I. Description of the model | |
Chen et al. | Analysis of effects of the arc voltage on arc discharges in a cathode ion source of neutral beam injector | |
Fisenko et al. | Method of Forming Stable States of Dense High-Temperfature Plasma | |
Kitajima et al. | Total cross sections for electron scattering from noble-gas atoms in near-and below-thermal energy collisions | |
Chng et al. | Nanosecond Plasma: Peculiarities of Kinetics and Diagnostics | |
Kurutz | Investigations on Cs-free alternative materials for negative hydrogen ion formation | |
Cui et al. | A numerical model for lithium plasma process in a hybrid microwave ion source | |
Wu et al. | Characteristics of a RF‐Driven Ion Source for a Neutron Generator Used for Associated Particle Imaging | |
Wang et al. | Simulation of the impact of particle recycling on the plasma in MPS‐LD device based on the BOUT++ LPD module | |
Kuşoğlu Sarikaya | Derivation of the parallel PIC/MCC numerical code and its application to the kinetic analysis of photoresonance plasma and the problem of identification of impurities within the PLES method | |
Fisenko et al. | Can there be a connection between the asymmetry of angular distribution of electrons in the beta-decay processes and the controlled nuclear fusion? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20101220 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20101228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110712 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111007 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111017 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120914 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121024 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20121206 |