JP2008511645A5 - - Google Patents

Download PDF

Info

Publication number
JP2008511645A5
JP2008511645A5 JP2007530223A JP2007530223A JP2008511645A5 JP 2008511645 A5 JP2008511645 A5 JP 2008511645A5 JP 2007530223 A JP2007530223 A JP 2007530223A JP 2007530223 A JP2007530223 A JP 2007530223A JP 2008511645 A5 JP2008511645 A5 JP 2008511645A5
Authority
JP
Japan
Prior art keywords
reaction zone
reactor
zone
less
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007530223A
Other languages
Japanese (ja)
Other versions
JP2008511645A (en
Filing date
Publication date
Priority claimed from US11/154,116 external-priority patent/US7507857B2/en
Priority claimed from US11/154,253 external-priority patent/US7692037B2/en
Priority claimed from US11/153,993 external-priority patent/US7589231B2/en
Application filed filed Critical
Priority claimed from PCT/US2005/030649 external-priority patent/WO2006028766A2/en
Publication of JP2008511645A publication Critical patent/JP2008511645A/en
Publication of JP2008511645A5 publication Critical patent/JP2008511645A5/ja
Pending legal-status Critical Current

Links

Claims (51)

初期酸化反応器の反応ゾーン中に含まれる多相反応媒体の液相中で被酸化性化合物を酸化させることを含んでなり、前記反応媒体の全容積を等容積の2,000個の別々の水平スライスに理論的に分割した場合に前記水平スライスの120個未満が時間平均及び容積平均基準で0.3未満のガスホールドアップを有するように、前記酸化を実施する方法。   Oxidizing the oxidizable compound in the liquid phase of the multiphase reaction medium contained in the reaction zone of the initial oxidation reactor, wherein the total volume of the reaction medium is equal to 2,000 separate volumes. The method of performing the oxidation such that when theoretically divided into horizontal slices, less than 120 of the horizontal slices have a gas holdup of less than 0.3 on a time average and volume average basis. 前記反応媒体の全容積が時間平均及び容積平均基準で少なくとも0.4のガスホールドアップを有する請求項1に記載の方法。 The method of claim 1 wherein the total volume of the reaction medium has a gas holdup of at least 0.4 on a time average and volume average basis. 前記水平スライスの80個未満が時間平均及び容積平均基準で0.3未満のガスホールドアップを有する請求項1に記載の方法。   The method of claim 1, wherein less than 80 of the horizontal slices have a gas holdup of less than 0.3 on a time average and volume average basis. 前記水平スライスの40個未満が時間平均及び容積平均基準で0.3未満のガスホールドアップを有し、前記反応媒体の全容積が時間平均及び容積平均基準で0.6〜0.9の範囲のガスホールドアップを有する請求項1に記載の方法。 Less than 40 of the horizontal slices have a gas holdup of less than 0.3 on a time average and volume average basis, and the total volume of the reaction medium ranges from 0.6 to 0.9 on a time average and volume average basis The method of claim 1 having a gas holdup of 前記初期酸化反応器が撹拌反応器である請求項1に記載の方法。   The method of claim 1, wherein the initial oxidation reactor is a stirred reactor. 前記初期酸化反応器が気泡塔型反応器である請求項1に記載の方法。   The method of claim 1, wherein the initial oxidation reactor is a bubble column reactor. 前記方法が、前記反応ゾーンとは別の脱気ゾーン中で前記反応媒体の一部を脱気させることによって、5容量%未満の気体を含む、実質的に脱気されたスラリーを生成せしめることを更に含み、前記反応媒体の固相及び液相中における前記反応媒体の気相の自然浮揚性によって前記脱気を主に引き起こす請求項6に記載の方法。 The method produces a substantially degassed slurry containing less than 5% by volume of gas by degassing a portion of the reaction medium in a degassing zone separate from the reaction zone. The method according to claim 6, further comprising the step of causing the degassing mainly by natural buoyancy of the gas phase of the reaction medium in a solid phase and a liquid phase of the reaction medium. 前記脱気ゾーンを脱気容器の1つ又はそれ以上の直立側壁の間に規定し、前記脱気ゾーンの最大水平断面積が前記反応ゾーンの最大水平断面積の25%未満である請求項7に記載の方法。 The degassing zone is defined between one or more upstanding side walls of a degassing vessel, and the maximum horizontal cross-sectional area of the degassing zone is less than 25% of the maximum horizontal cross-sectional area of the reaction zone. The method described in 1. 前記脱気ゾーンの少なくとも一部を前記反応器中に配置する請求項8に記載の方法。   The method of claim 8, wherein at least a portion of the degassing zone is disposed in the reactor. 前記脱気ゾーンの全てを前記反応器の外側に配置する請求項8に記載の方法。   The method of claim 8, wherein all of the degassing zone is located outside the reactor. 前記反応媒体が最大高さ(H)、最大幅(W)及び3:1のH:W比を有する請求項6に記載の方法。 The process according to claim 6, wherein the reaction medium has a maximum height (H), a maximum width (W) and an H: W ratio of 3: 1 . 前記H:W比が8:1〜20:1の範囲である請求項11に記載の方法。 The method of claim 11 wherein the H: W ratio is in the range of 8: 1 to 20: 1 . 前記方法が、分子状酸素を含む主に気相の酸化剤流を前記反応ゾーン中に導入することを更に含み、前記分子状酸素の大部分が前記反応ゾーンの底部の0.25W以内において前記反応ゾーンに入る請求項11に記載の方法。 The method further comprises introducing a predominantly gas phase oxidant stream comprising molecular oxygen into the reaction zone, wherein the majority of the molecular oxygen is within 0.25 W at the bottom of the reaction zone. The process of claim 11 entering the reaction zone. 前記分子状酸素の大部分が前記反応ゾーンの底部の0.2W及び0.02H以内において前記反応ゾーンに入る請求項13に記載の方法。 The method of claim 13, the majority of the molecular oxygen enters said reaction zone at less than 0.2W and 0.02H of the bottom of the reaction zone. 前記分子状酸素が、前記反応ゾーンを1対の公差垂直面によって等容積の4つの垂直クアドラント(quadrant)に理論的に分割する場合に前記分子状酸素の80重量%以下が前記垂直クアドラントの単一のクアドラントにおいて前記反応ゾーンに入る請求項13に記載の方法。 When the molecular oxygen theoretically divides the reaction zone into four equal quadrants of equal volume by a pair of tolerance vertical planes, no more than 80% by weight of the molecular oxygen is a single unit of the vertical quadrant. 14. The method of claim 13, wherein the reaction zone is entered in one quadrant. 前記反応ゾーンの少なくとも一部を前記反応器の1つ又はそれ以上の直立側壁によって規定し、前記分子状酸素の少なくとも25重量%が、前記直立側壁から内側に少なくとも0.05Dの間隔をあけて配置された1つ又はそれ以上の位置において前記反応ゾーンに入り、前記反応ゾーンが最大直径(D)を有する請求項13に記載の方法。 At least a portion of the reaction zone is defined by one or more upstanding sidewalls of the reactor, and at least 25% by weight of the molecular oxygen is spaced at least 0.05D inward from the upstanding sidewalls. 14. The method of claim 13, wherein the reaction zone is entered at one or more disposed locations, the reaction zone having a maximum diameter (D). 前記酸化剤流の第1の部分を1つ又はそれ以上の下部酸化剤用開口部を経て前記反応ゾーン中に導入し、前記酸化剤流の第2の部分を1つ又はそれ以上の上部酸化剤用開口部を経て前記反応ゾーン中に導入し、前記上部酸化剤用開口部を前記下部酸化剤用開口部の少なくとも1W上方に配置する請求項13に記載の方法。 A first portion of the oxidant stream is introduced into the reaction zone through one or more lower oxidant openings and a second portion of the oxidant stream is introduced into one or more upper oxidations. The method of claim 13, wherein the method is introduced into the reaction zone via an agent opening, and the upper oxidant opening is disposed at least 1 W above the lower oxidant opening. 前記酸化剤流の前記第1の部分及び第2の部分が、それぞれ、50モル%未満の分子状酸素を含む請求項17に記載の方法。 The method of claim 17, wherein the first and second portions of the oxidant stream each comprise less than 50 mol% molecular oxygen. 前記反応ゾーン中に導入する分子状酸素の総量の少なくとも10モル%を前記下部酸化剤用開口部を経て導入し、前記反応ゾーン中に導入する分子状酸素の総量の少なくとも10モル%を前記上部酸化剤用開口部を経て導入する請求項17に記載の方法。 Wherein at least 10 mole% of the total amount of molecular oxygen introduced into the reaction zone is introduced through said for the lower oxidant opening, at least 10 mole% of the total amount of molecular oxygen is introduced into said reaction zone the upper The method according to claim 17, wherein the method is introduced through an opening for an oxidant. 前記上部酸化剤用開口部を前記下部酸化剤用開口部の少なくとも2D上方に配置し、前記酸化剤流の前記第1の部分及び第2の部分が、それぞれ、40モル%未満の分子状酸素を含む請求項17に記載の方法。 The upper oxidant opening is positioned at least 2D above the lower oxidant opening, and the first and second portions of the oxidant stream are each less than 40 mole% molecular oxygen The method of claim 17 comprising: 前記被酸化性化合物が芳香族化合物である請求項1に記載の方法。   The method according to claim 1, wherein the oxidizable compound is an aromatic compound. 前記被酸化性化合物がp−キシレンである請求項1に記載の方法。   The method according to claim 1, wherein the oxidizable compound is p-xylene. 前記酸化が前記反応媒体中で前記被酸化性化合物の少なくとも10重量%に固体を形成させる請求項1に記載の方法。 The method of claim 1, wherein the oxidation forms a solid in at least 10% by weight of the oxidizable compound in the reaction medium. 前記酸化を、コバルトを含む触媒系の存在下で、実施する請求項1に記載の方法。   The process according to claim 1, wherein the oxidation is carried out in the presence of a catalyst system comprising cobalt. 前記触媒系が臭素及びマンガンを更に含む請求項24に記載の方法。   The method of claim 24, wherein the catalyst system further comprises bromine and manganese. 前記初期酸化反応器中の酸化が前記反応媒体中においてテレフタル酸を形成させ、前記方法が少なくとも一部の前記テレフタル酸を二次酸化反応器中における酸化に供することを更に含む請求項1に記載の方法。   The oxidation in the initial oxidation reactor forms terephthalic acid in the reaction medium, and the method further comprises subjecting at least a portion of the terephthalic acid to oxidation in a secondary oxidation reactor. the method of. 前記二次酸化反応器中における酸化を、前記初期酸化反応器中における酸化よりも少なくとも10℃高い平均温度で実施する請求項26に記載の方法。 27. The method of claim 26, wherein the oxidation in the secondary oxidation reactor is carried out at an average temperature that is at least 10 [deg.] C higher than the oxidation in the initial oxidation reactor. 前記二次酸化反応器中における酸化を、前記初期酸化反応器中のの平均温度よりも20〜80℃高い範囲の平均温度で実施し、前記初期酸化反応器中における酸化を140〜180℃の範囲の平均温度において実施し、前記二次酸化反応器中における酸化を180〜220℃の範囲の平均温度において実施する請求項26に記載の方法。 The oxidation in the secondary oxidation reactor is carried out at an average temperature in the range of 20 to 80 ° C. higher than the average temperature in the initial oxidation reactor, and the oxidation in the initial oxidation reactor is performed at 140 to 180 ° C. 27. The process according to claim 26, wherein the process is carried out at an average temperature in the range and the oxidation in the secondary oxidation reactor is carried out at an average temperature in the range of 180-220 [deg.] C. 前記酸化が前記反応媒体中において粗製テレフタル酸粒子を形成させ、前記粗製テレフタル酸粒子の代表的なサンプルが以下の特性:
(i)12ppmw未満の4,4−ジカルボキシスチルベン(4,4−DCS)を含み、
(ii)800ppmw未満のイソフタル酸(IPA)を含み、
(iii)100ppmw未満の2,6−ジカルボキシフルオレノン(2,6−DCF)を含み、
(iv)340nmにおけるパーセント透過率(%T340)が25より高い
の1つ又はそれ以上を有する請求項1に記載の方法。
The oxidation forms crude terephthalic acid particles in the reaction medium, and a representative sample of the crude terephthalic acid particles has the following characteristics:
(I) containing less than 12 ppmw of 4,4-dicarboxystilbene (4,4-DCS),
(Ii) containing less than 800 ppmw isophthalic acid (IPA);
(Iii) comprising less than 100 ppmw 2,6-dicarboxyfluorenone (2,6-DCF);
The method of claim 1, wherein (iv) the percent transmission (% T 340 ) at 340 nm has one or more of greater than 25 .
(a)p−キシレンを含む供給流を気泡塔型反応器の反応ゾーン中に導入し;
(b)分子状酸素を含む酸化剤流を前記反応ゾーン中に導入し(前記反応ゾーンは最大直径(D)を有し、前記分子状酸素の大部分は前記反応ゾーンの底部の0.25D以内において前記反応ゾーン中に入る);そして
(c)前記反応ゾーンに含まれる三相反応媒体の液相中において前記p−キシレンの少なくとも一部分を酸化させ(前記酸化は前記反応媒体中で前記p−キシレンの少なくとも10重量%に固体粗製テレフタル酸粒子を形成させる)
ことを含んでなる方法。
(A) introducing a feed stream comprising p-xylene into the reaction zone of a bubble column reactor;
(B) An oxidant stream containing molecular oxygen is introduced into the reaction zone (the reaction zone has a maximum diameter (D), most of the molecular oxygen being 0.25D at the bottom of the reaction zone. (C) oxidizing at least a portion of the p-xylene in the liquid phase of the three-phase reaction medium contained in the reaction zone (the oxidation is the p in the reaction medium). -Solid crude terephthalic acid particles are formed in at least 10% by weight of xylene)
A method comprising that.
前記反応媒体が最大高さ(H)を有し、前記分子状酸素の大部分が前記反応ゾーンの底部の0.025H以内において前記反応ゾーンに入る請求項30に記載の方法。 31. The method of claim 30, wherein the reaction medium has a maximum height (H) and a majority of the molecular oxygen enters the reaction zone within 0.025H at the bottom of the reaction zone. 前記分子状酸素の大部分が前記反応ゾーンの底部の0.2D及び0.02H以内において前記反応ゾーンに入る請求項31に記載の方法。 The method of claim 31, the majority of the molecular oxygen enters said reaction zone at less than 0.2D and 0.02H of the bottom of the reaction zone. 前記分子状酸素の大部分が前記反応ゾーンの底部の0.15D及び0.015H以内において前記反応ゾーンに入る請求項31に記載の方法。   32. The method of claim 31, wherein a majority of the molecular oxygen enters the reaction zone within 0.15D and 0.015H at the bottom of the reaction zone. 前記方法が、前記反応ゾーンとは別の脱気ゾーン中で前記反応媒体の一部分を脱気することによって、5容量%未満の気体を含む、実質的に脱気されたスラリーを生成することを更に含み、前記三相反応媒体の固相及び液相中における前記三相反応媒体の気相の自然浮揚性によって前記脱気を主に引き起こす請求項30に記載の方法。 Said method producing a substantially degassed slurry comprising less than 5% by volume of gas by degassing a portion of said reaction medium in a degassing zone separate from said reaction zone. 31. The method of claim 30, further comprising causing the degassing primarily by the natural buoyancy of the gas phase of the three-phase reaction medium in the solid and liquid phases of the three-phase reaction medium. 前記脱気ゾーンを脱気容器の1つ又はそれ以上の直立側壁の間に規定し、前記脱気ゾーンの最大水平断面積が前記脱気ゾーンの最大水平断面積の25%未満である請求項34に記載の方法。 The degassing zone is defined between one or more upstanding sidewalls of a degassing vessel, and the maximum horizontal cross-sectional area of the degassing zone is less than 25% of the maximum horizontal cross-sectional area of the degassing zone. 34. The method according to 34. 前記反応媒体が時間平均及び容積平均基準で5〜40重量%の範囲の固形分を含む請求項30に記載の方法。 31. A process according to claim 30, wherein the reaction medium comprises a solids content in the range of 5 to 40% by weight on a time average and volume average basis. 前記酸化を、前記反応媒体の全容積を等容積の2,000個の別々の水平スライスに理論的に分割した場合に前記水平スライスの120個未満が時間平均及び容積平均基準で0.3未満のガスホールドアップを有するように、実施する請求項30に記載の方法。   When the oxidation is theoretically divided into 2,000 separate horizontal slices of equal volume of the reaction medium, less than 120 of the horizontal slices are less than 0.3 on a time average and volume average basis 32. The method of claim 30, wherein the method is carried out to have a gas holdup of 前記方法が、前記粗製テレフタル酸粒子の少なくとも一部を二次酸化反応器中における酸化に供することを更に含む請求項30に記載の方法。   32. The method of claim 30, wherein the method further comprises subjecting at least a portion of the crude terephthalic acid particles to oxidation in a secondary oxidation reactor. 前記粗製テレフタル酸粒子の代表的なサンプルが以下の特性:
(i)12ppmw未満の4,4−ジカルボキシスチルベン(4,4−DCS)を含み、
(ii)800ppmw未満のイソフタル酸(IPA)を含み、
(iii)100ppmw未満の2,6−ジカルボキシフルオレノン(2,6−DCF)を含み、
(iv)340nmにおけるパーセント透過率(%T340)が25より高い
の1つ又はそれ以上を有する請求項30に記載の方法。
A representative sample of the crude terephthalic acid particles has the following characteristics:
(I) containing less than 12 ppmw of 4,4-dicarboxystilbene (4,4-DCS),
(Ii) containing less than 800 ppmw isophthalic acid (IPA);
(Iii) comprising less than 100 ppmw 2,6-dicarboxyfluorenone (2,6-DCF);
32. The method of claim 30, wherein (iv) the percent transmission at 340 nm (% T340 ) has one or more of greater than 25 .
主に液相の流れと主に気相の流れとを反応させるための気泡塔型反応器において、中心軸に沿って細長い反応ゾーンを規定する容器シェル(前記反応ゾーンは、互いに最大軸距離(L)の間隔をあけて配置された常態での(垂直)下端及び常態での(垂直)上端を有し、前記反応ゾーンは最大直径(D)を有し、前記反応ゾーンは少なくとも6:1のL:D比を有する)、及び前記気相流を前記反応ゾーン中に放出するための1つ又はそれ以上の気体用開口部(前記気体用開口部の全てによって規定される累積孔面積の大部分を、前記反応ゾーンの前記の常態での下端の0.25D以内に配置する)を含んでなる点で改良された気泡塔型反応器。 In a bubble column reactor for reacting mainly a liquid phase stream and a mainly gas phase stream, a vessel shell that defines an elongated reaction zone along the central axis (the reaction zones have a maximum axial distance ( L) with a normal (vertical) lower end and a normal (vertical) upper end spaced apart, the reaction zone has a maximum diameter (D), and the reaction zone is at least 6: 1 And one or more gas openings (with a cumulative pore area defined by all of the gas openings) for releasing the gas stream into the reaction zone. A bubble column reactor improved in that it comprises a major portion within 0.25D of the normal bottom of the reaction zone. 前記気体用開口部の全てによって規定される累積孔面積の大部分を、前記反応ゾーンの前記の常態での下端の0.022L以内に、配置する請求項40に記載の気泡塔型反応器。 41. The bubble column reactor of claim 40, wherein a majority of the cumulative pore area defined by all of the gas openings is located within 0.022L of the normal lower end of the reaction zone. 前記気体用開口部の全てによって規定される累積孔面積の実質的に全てを、前記反応ゾーンの前記の常態での下端の0.25D及び0.022L以内に、配置する請求項40に記載の気泡塔型反応器。 Substantially all of the cumulative open area defined by all of said gas openings, said within the lower end of 0.25D and 0.022L in said normal state of the reaction zone, according to claim 40 to place Bubble column reactor. 前記気体用開口部の少なくとも2つを、互いに軸方向に少なくとも1Dの間隔をあけて、配置する請求項40に記載の気泡塔型反応器。 41. The bubble column reactor according to claim 40, wherein at least two of the gas openings are arranged at least 1D apart from each other in the axial direction. 前記気泡塔型反応器が、前記液相流を前記反応ゾーン中に排出するための1つ又はそれ以上の液体用開口部を更に含み、前記液体用開口部の全てによって規定される累積孔面積の少なくとも30%を、前記の常態での下端に最も近い位置の酸化剤用開口部の1.5D以内に配置する請求項40に記載の気泡塔型反応器。 The bubble column reactor further comprises one or more liquid openings for discharging the liquid phase stream into the reaction zone, the cumulative pore area defined by all of the liquid openings 41. The bubble column reactor according to claim 40, wherein at least 30% is disposed within 1.5D of the oxidant opening closest to the lower end in the normal state. 前記反応器が互いに少なくとも0.5Dの間隔をあけて配置された少なくとも2つの前記液体用開口部を含む請求項44に記載の気泡塔型反応器。 45. The bubble column reactor of claim 44, wherein the reactor comprises at least two liquid openings that are spaced at least 0.5D from each other. Lが20〜75mの範囲であり、Dが2〜10mの範囲であり且つ前記L:D比が8:1〜20:1の範囲である請求項40に記載の気泡塔型反応器。 41. The bubble column reactor according to claim 40, wherein L is in the range of 20 to 75 m , D is in the range of 2 to 10 m , and the L: D ratio is in the range of 8: 1 to 20: 1 . 前記反応器が入口及び出口を規定する脱気容器を更に含み、前記入口が前記反応ゾーンと流体連通し、前記出口を常態で前記入口の下方に配置し、前記脱気容器が少なくとも一部分が前記入口と前記出口との間に伸び且つ脱気ゾーンを規定する常態での直立側壁を含み、前記脱気ゾーンが前記反応ゾーンの最大水平断面積の25%未満の最大水平断面積を有する請求項40に記載の気泡塔型反応器。 The reactor further includes a degassing vessel defining an inlet and an outlet, wherein the inlet is in fluid communication with the reaction zone, the outlet is normally disposed below the inlet, and the degassing vessel is at least partially the A normal upstanding sidewall extending between the inlet and the outlet and defining a degassing zone, the degassing zone having a maximum horizontal cross-sectional area that is less than 25% of the maximum horizontal cross-sectional area of the reaction zone. 40. A bubble column reactor according to 40. 前記脱気ゾーンの少なくとも一部分を前記容器シェル中に配置した請求項47に記載の気泡塔型反応器。   48. The bubble column reactor of claim 47, wherein at least a portion of the degassing zone is disposed in the vessel shell. 前記脱気ゾーンを完全に前記容器シェルの外側に配置した請求項47に記載の気泡塔型反応器。   48. The bubble column reactor according to claim 47, wherein the degassing zone is located completely outside the vessel shell. 前記気体用開口部を、前記反応ゾーンを1対の公差垂直面によって等容積の4つの垂直クアドラントに理論的に分割した場合に、前記気体用開口部の全てによって規定される累積孔面積の80%以下を前記垂直クアドラントの共通の1つの中に配置するように、構築した請求項40に記載の気泡塔型反応器。 When the gas opening is theoretically divided into four equal quadrants of equal volume by a pair of tolerance vertical surfaces, the cumulative pore area defined by all of the gas openings is 80. 41. The bubble column reactor of claim 40, constructed so that no more than % is placed in a common one of the vertical quadrants. 前記反応ゾーンの少なくとも一部分を前記反応器の1つ又はそれ以上の直立側壁によって規定し、前記気体用開口部の全てによって規定される累積孔面積の少なくとも25%が前記垂直側壁から内側に少なくとも0.05Dの間隔をあけて配置された気体用開口部による請求項40に記載の気泡塔型反応器。 At least a portion of the reaction zone is defined by one or more upstanding sidewalls of the reactor, and at least 25% of the cumulative pore area defined by all of the gas openings is at least 0 inward from the vertical sidewalls. 41. The bubble column reactor of claim 40 with gas openings disposed at a spacing of .05D.
JP2007530223A 2004-09-02 2005-08-29 Optimized liquid phase oxidation Pending JP2008511645A (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US60661804P 2004-09-02 2004-09-02
US60661404P 2004-09-02 2004-09-02
US60680904P 2004-09-02 2004-09-02
US63132604P 2004-11-29 2004-11-29
US63138804P 2004-11-29 2004-11-29
US63149004P 2004-11-29 2004-11-29
US11/154,116 US7507857B2 (en) 2004-09-02 2005-06-16 Optimized liquid-phase oxidation
US11/154,253 US7692037B2 (en) 2004-09-02 2005-06-16 Optimized liquid-phase oxidation
US11/153,993 US7589231B2 (en) 2004-09-02 2005-06-16 Optimized liquid-phase oxidation
PCT/US2005/030649 WO2006028766A2 (en) 2004-09-02 2005-08-29 Optimized liquid-phase oxidation

Publications (2)

Publication Number Publication Date
JP2008511645A JP2008511645A (en) 2008-04-17
JP2008511645A5 true JP2008511645A5 (en) 2008-10-16

Family

ID=35504394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007530223A Pending JP2008511645A (en) 2004-09-02 2005-08-29 Optimized liquid phase oxidation

Country Status (8)

Country Link
EP (1) EP1786746A2 (en)
JP (1) JP2008511645A (en)
KR (1) KR20070048251A (en)
CN (2) CN101010267B (en)
BR (1) BRPI0514773A (en)
CA (1) CA2576246A1 (en)
MX (1) MX2007002283A (en)
WO (1) WO2006028766A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910769B2 (en) * 2004-09-02 2011-03-22 Eastman Chemical Company Optimized liquid-phase oxidation
US8936767B2 (en) * 2010-01-29 2015-01-20 Grupo Petrotemex. S.A. de C.V. Oxidation system with sidedraw secondary reactor
US8790601B2 (en) * 2010-01-29 2014-07-29 Grupo Petrotemex, S.A. De C.V. Oxidation system with sidedraw secondary reactor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL282031A (en) * 1961-08-14
IT1129759B (en) * 1980-01-23 1986-06-11 Montedison Spa METHOD TO RECOVER IN ACTIVE FORM THE COMPONENTS OF THE CATALYTIC SYSTEM OF THE SYNTHESIS OF TEREPHTHALIC ACID
JPH07278048A (en) * 1994-04-01 1995-10-24 Mitsui Petrochem Ind Ltd Production of aromatic carboxylic acid and device therefor
ID19133A (en) * 1996-12-12 1998-06-18 Praxair Technology Inc FILLING OXYGEN DIRECTLY INTO THE BULLET ROOM REACTORS
DE19843573A1 (en) * 1998-09-23 2000-03-30 Degussa Bubble column and its use
US6949673B2 (en) * 2000-01-12 2005-09-27 E.I. Du Pont De Nemours And Company Process for producing carboxylic acids
EP1349825B1 (en) * 2001-01-10 2005-10-19 E.I. Du Pont De Nemours And Company Improved process for producing carboxylic acids
US7196215B2 (en) * 2001-06-04 2007-03-27 Eastman Chemical Company Process for the production of purified terephthalic acid
JP2006509044A (en) * 2002-12-09 2006-03-16 イーストマン ケミカル カンパニー Method for purifying crude carboxylic acid slurry

Similar Documents

Publication Publication Date Title
JP2008511649A5 (en)
JP2008511650A5 (en)
JP2008511640A5 (en)
RU2007111928A (en) OPTIMIZED LIQUID PHASE OXIDATION
US7615663B2 (en) Optimized production of aromatic dicarboxylic acids
TWI331991B (en) Apparatus for and method of producing aromatic carboxylic acids
JP2008511664A5 (en)
JP2008511646A5 (en)
MX2008010936A (en) Oxidation system with sidedraw secondary reactor.
JP2008511645A5 (en)
KR102150777B1 (en) Oxidation system with sidedraw secondary reactor
JP2008511638A5 (en)
RU2007111900A (en) OPTIMIZED LIQUID PHASE OXIDATION IN A BARBATING COLUMN OF A REACTOR TYPE
JP2008511648A5 (en)
KR102115688B1 (en) Oxidation system with sidedraw secondary reactor
RU2007111898A (en) OPTIMIZED LIQUID PHASE OXIDATION
JP2008511641A5 (en)
RU2007111959A (en) OPTIMIZED LIQUID PHASE OXIDATION
KR20180067734A (en) Oxidation system with sidedraw secondary reactor
RU2007111943A (en) OPTIMIZED LIQUID PHASE OXIDATION IN A BARBATING COLUMN OF A REACTOR TYPE
RU2007111921A (en) OPTIMIZED LIQUID PHASE OXIDATION
US20070155987A1 (en) Oxidative digestion with optimized agitation
RU2007111926A (en) OPTIMIZED LIQUID PHASE OXIDATION
RU2007111927A (en) OPTIMIZED LIQUID PHASE OXIDATION
RU2007111961A (en) OPTIMIZED LIQUID PHASE OXIDATION