JP2008309412A - Heating unit protective tube - Google Patents

Heating unit protective tube Download PDF

Info

Publication number
JP2008309412A
JP2008309412A JP2007158434A JP2007158434A JP2008309412A JP 2008309412 A JP2008309412 A JP 2008309412A JP 2007158434 A JP2007158434 A JP 2007158434A JP 2007158434 A JP2007158434 A JP 2007158434A JP 2008309412 A JP2008309412 A JP 2008309412A
Authority
JP
Japan
Prior art keywords
tube
molten metal
protective tube
tubular body
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007158434A
Other languages
Japanese (ja)
Inventor
Kenichiro Shimizu
健一郎 清水
Shigeyuki Hamayoshi
繁幸 濱吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007158434A priority Critical patent/JP2008309412A/en
Publication of JP2008309412A publication Critical patent/JP2008309412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating unit protective tube, restraining radiation of heat from the surface of the protective tube into the air and to a fixed member provided on a furnace for fixing the protective tube on the upper part of the protective tube not dipped in molten metal, and achieving excellent heat efficiency of the heating unit to attain high output of heating energy on the lower part of the protective tube dipped in the molten metal. <P>SOLUTION: The protective tube for the heating unit dipped in the molten metal in the furnace to heat the molten metal is formed by joining a lower tube body having the bottom part dipped in the molten metal and closed and a hollow tubular upper tube body disposed on the upside of the lower tube body to each other through sintering. The lower tube body and the upper tube body are formed of ceramics, and the thermal conductivity of the lower tube body is larger than that of the upper tube body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加熱炉や溶解炉内のアルミニウムなどの溶湯に浸漬させて、溶湯を加熱する加熱体の保護管に関する。   The present invention relates to a protective tube for a heating body that is immersed in a heating furnace or a molten metal such as aluminum in a melting furnace to heat the molten metal.

アルミニウムなど非鉄金属の加熱炉や溶解炉には、材料を溶融させるために、中空管体の内部に電気ヒータやガスバーナーなどの加熱体を備えた加熱体保護管が用いられている。その中、耐溶損性等に優れている窒化ケイ素、サイアロン、炭化珪素、窒化硼素などのセラミックス焼結体からなる加熱体保護管が知られている。   In a heating furnace or melting furnace for a non-ferrous metal such as aluminum, a heating body protective tube provided with a heating body such as an electric heater or a gas burner is used inside a hollow tube body in order to melt the material. Among them, a heating element protective tube made of a ceramic sintered body such as silicon nitride, sialon, silicon carbide, boron nitride and the like, which has excellent resistance to melting damage, is known.

例えば、特許文献1には、セラミック系耐火材より成る有底中空状管体の内部に熱源が配されて成り、管体の上端を加熱炉頂壁に固定し、加熱炉中に保持された非鉄合金溶湯内に浸漬して鉛直に保持される浸漬管ヒータにおいて、管体の軸方向の中間部の、加熱炉中の操業中に変動する溶湯面に接する範囲を含む部分を、気孔率の小さい緻密質セラミックスにしてかつ、溶湯の所定の設定温度以上の高温の溶湯により還元される酸化物に変る物質の含有量が低いセラミックスで形成し、その他の部分を気孔率の大きいセラミックスで形成し、これらを一体に接続した浸漬管ヒータが記載されている。   For example, in Patent Document 1, a heat source is arranged inside a bottomed hollow tubular body made of a ceramic refractory material, and the upper end of the tubular body is fixed to a heating furnace top wall and held in the heating furnace. In a submerged tube heater that is immersed vertically in a non-ferrous alloy melt and is held vertically, the portion including the range in contact with the molten metal surface that fluctuates during operation in the heating furnace at the intermediate portion in the axial direction of the tube body It is made of small, dense ceramics and is made of ceramics with a low content of substances that can be reduced to oxides that are reduced by high-temperature molten metal above the set temperature of the molten metal, and other parts are made of ceramics with high porosity. A dip tube heater in which these are integrally connected is described.

また、特許文献2には、窒化ケイ素を主成分する窒化ケイ素質焼結体からなる溶湯用加熱体保護管であって、窒化ケイ素質焼結体の常温における熱伝導率が70W/(m・K)以上であり、窒化ケイ素質焼結体の常温における4点曲げ強度が600MPa以上である加熱体保護管が記載されている。   Patent Document 2 discloses a molten metal heating element protective tube made of a silicon nitride sintered body containing silicon nitride as a main component, wherein the silicon nitride sintered body has a thermal conductivity of 70 W / (m · K) or more, and a heated body protective tube is described in which the silicon nitride sintered body has a 4-point bending strength at room temperature of 600 MPa or more.

特開平7−43075号公報JP 7-43075 A 特開2002−249381号公報Japanese Patent Laid-Open No. 2002-249381

従来の加熱体保護管のうち、反応焼結法により製造された窒化ケイ素焼結体からなるものは、反応焼結時の収縮が殆どなく寸法精度が高く得られるという利点がある。しかしながら、ケイ素を完全に窒化して得た製品でも、約20%の気孔率をもつ比較的低密度の焼結体であるため、曲げ強度が300MPa程度しかなく、使用中の機械的応力および衝撃に耐えるには不十分である。また、低密度なので焼結体の表面が粗く、溶湯が付着しやすい欠点がある。   Of the conventional heating element protective tubes, those made of a silicon nitride sintered body manufactured by the reactive sintering method have the advantage that there is almost no shrinkage during the reactive sintering and that high dimensional accuracy can be obtained. However, even a product obtained by completely nitriding silicon is a relatively low-density sintered body having a porosity of about 20%, so that the bending strength is only about 300 MPa, and mechanical stress and impact during use Is not enough to withstand. In addition, since the density is low, the surface of the sintered body is rough and the molten metal is liable to adhere.

特許文献1は、管体を炉内の溶湯面に接する中間部のみを設定温度以上の高温の溶湯により変質、破壊しないような材料で作り寿命を向上できる。これは、緻密質セラミックスで形成される中間部と、その上下の従来の材質の原管体とは、耐火性接着剤で接着される。しかしながら、この中間部は溶湯が最も揺動する位置にあるため、常に負荷がかかり耐火性接着剤による接着では接合強度が不十分である。また、保護管を長期間使用中に中間部の接着部分が傷み溶湯が保護管内部に浸入し、管体の破損に至りやすい。   Patent Document 1 can improve the service life by making only the middle part of the tube in contact with the molten metal surface in the furnace with a material that does not change or break with the molten metal at a set temperature or higher. In this method, an intermediate portion formed of a dense ceramic and the original pipe body of the conventional material above and below the intermediate portion are bonded with a fireproof adhesive. However, since the intermediate portion is at a position where the molten metal swings most, a load is always applied, and bonding strength with a refractory adhesive is insufficient. In addition, when the protective tube is used for a long period of time, the bonded portion of the intermediate portion is damaged, and the molten metal enters the protective tube, and the tube body is easily damaged.

特許文献2は、加熱体保護管を形成する窒化ケイ素を主成分する窒化ケイ素質焼結体の熱伝導率が高いため、保護管内部に設けた加熱体が発生する熱を迅速にかつ効率よく保護管の表面を経て溶湯へ伝達させることができ、加熱エネルギーの高出力化が可能となる。しかしながら、保護管全体の熱伝導率が高いため、溶湯に浸漬していない保護管の上部表面から空気中へ熱が逃げやすい。また保護管の上部から、炉に設けられた保護管を固定するための被固定部材を経由して熱が伝わり逃げやすく、結果的に加熱体の熱効率の低下を招く問題があった。   In Patent Document 2, since the thermal conductivity of the silicon nitride sintered body mainly composed of silicon nitride forming the heating body protective tube is high, the heat generated by the heating body provided inside the protective tube can be quickly and efficiently generated. It can be transmitted to the molten metal through the surface of the protective tube, and heating energy can be increased in output. However, since the thermal conductivity of the entire protective tube is high, heat easily escapes from the upper surface of the protective tube not immersed in the molten metal into the air. In addition, heat is easily transmitted from the upper part of the protective tube via a fixed member for fixing the protective tube provided in the furnace, so that there is a problem that the heat efficiency of the heating body is lowered.

したがって、本発明の目的は、セラミックス焼結体からなる加熱体保護管において、溶湯に浸漬していない保護管の上部では、保護管表面から空気中への放熱や、炉に設けられた保護管を固定するための被固定部材への放熱を抑えることができる。また、溶湯に浸漬される保護管の下部では、加熱エネルギーを高出力できる加熱体の熱効率に優れる加熱体保護管を提供することである。   Accordingly, an object of the present invention is to provide a heating element protective tube made of a ceramic sintered body, in the upper part of the protective tube not immersed in the molten metal, to dissipate heat from the surface of the protective tube to the air, or to a protective tube provided in the furnace. It is possible to suppress the heat radiation to the member to be fixed for fixing. Moreover, it is providing the heating body protective tube which is excellent in the thermal efficiency of the heating body which can output high heating energy in the lower part of the protective tube immersed in molten metal.

本発明の加熱体保護管は、炉内の溶湯に浸漬させて溶湯を加熱する加熱体の保護管が、溶湯に浸漬され閉塞した底部を有する下部管体と、下部管体の上部に配置され中空管状の上部管体とを焼結により接合してなり、下部管体および上部管体はセラミックスから形成され、下部管体の熱伝導率が上部管体の熱伝導率より大きいことを特徴とする。   The heating element protective tube of the present invention is a heating element protective tube that is immersed in the molten metal in the furnace to heat the molten metal. A hollow tubular upper tube is joined by sintering. The lower tube and the upper tube are made of ceramics, and the thermal conductivity of the lower tube is larger than that of the upper tube. To do.

本発明の第2の加熱体保護管は、炉内の溶湯に浸漬させて溶湯を加熱する加熱体の保護管が、溶湯に浸漬され閉塞した底部を有する下部管体と、下部管体の上部に配置され中空管状の上部管体と、下部管体と上部管体との間に介在され両者の中間の熱膨張係数を有するセラミックスで形成した中間層とを焼結により接合してなり、下部管体および上部管体はセラミックスから形成され、下部管体の熱伝導率が上部管体の熱伝導率より大きいことを特徴とする。   The second heated body protective tube of the present invention includes a lower tubular body having a bottom portion in which a heated tubular protective tube that is immersed in molten metal in a furnace to heat the molten metal is closed by being immersed in the molten metal, and an upper portion of the lower tubular body A hollow tubular upper tube disposed between the lower tube and the upper tube, and an intermediate layer formed of ceramics having a thermal expansion coefficient between the lower tube and the upper tube. The tubular body and the upper tubular body are made of ceramics, and the thermal conductivity of the lower tubular body is larger than that of the upper tubular body.

前記本発明において、下部管体の常温における熱伝導率が50W/(m・K)以上であり、上部管体の常温における熱伝導率が20W/(m・K)以下であることが好ましい。   In the present invention, the lower pipe preferably has a thermal conductivity of 50 W / (m · K) or higher, and the upper pipe has a thermal conductivity of 20 W / (m · K) or lower.

下部管体が窒化ケイ素から形成され、上部管体がサイアロンから形成されることが好ましい。   Preferably, the lower tube is formed from silicon nitride and the upper tube is formed from sialon.

上部管体の熱伝導率が、炉に設けられた上部管体を固定するための被固定部材の熱伝導率より小さいことが好ましい。   It is preferable that the thermal conductivity of the upper tubular body is smaller than the thermal conductivity of a member to be fixed for fixing the upper tubular body provided in the furnace.

下部管体と上部管体の両者の熱膨張係数差が2.0×10-6/K以下であることが望ましい。 It is desirable that the difference in thermal expansion coefficient between the lower tube body and the upper tube body is 2.0 × 10 −6 / K or less.

下部管体の最上端位置が加熱される溶湯の湯面より下方にあることが望ましい。   It is desirable that the uppermost end position of the lower tubular body is below the molten metal surface to be heated.

本発明の加熱体保護管は、下部管体と上部管体を焼結一体化した2層構造であり、下部管体として熱伝導率が大きいセラミックスを配置し、上部管体として下部管体より熱伝導率が小さいセラミックスを配置する。この構成により、溶湯に浸漬された下部管体は加熱体から発生する熱を下部管体の表面を経て高出力に溶湯に伝導でき溶湯を所定の温度に維持する。   The heating body protective tube of the present invention has a two-layer structure in which the lower tube body and the upper tube body are integrated by sintering. Ceramics having a high thermal conductivity are arranged as the lower tube body, and the lower tube body is used as the upper tube body. Place ceramics with low thermal conductivity. With this configuration, the lower pipe immersed in the molten metal can conduct heat generated from the heating body to the molten metal through the surface of the lower tubular body with high output, and maintains the molten metal at a predetermined temperature.

この下部管体の作用に加え、下部管体の上部に熱伝導率が小さい上部管体が配置されているため、下部管体中の加熱体から発生する熱が下部管体から上部管体へ伝わるのを抑制し、溶湯に浸漬される下部管体における加熱エネルギーをロスが少なく安定して大きく出力できる。   In addition to the action of the lower pipe, an upper pipe having a low thermal conductivity is arranged on the upper part of the lower pipe, so that heat generated from the heating body in the lower pipe is transferred from the lower pipe to the upper pipe. It is possible to suppress the transmission and output the heating energy in the lower pipe immersed in the molten metal stably and greatly with little loss.

通常、加熱体保護管の上端部にはフランジ部を設ける。また、溶湯を容れた炉は加熱体保護管を取り付けるための金型等の被固定部材を備える。加熱体保護管はそのフランジ部を被固定部材にボルト等で固定して鉛直方向に吊下固定される。フランジ部と被固定部材は接触するため、加熱体から発生する熱は、保護管上端部のフランジ部およびその周辺部から前記被固定部材へ移動しやすい。   Usually, a flange part is provided in the upper end part of a heating body protective tube. Moreover, the furnace filled with the molten metal is provided with a member to be fixed such as a mold for attaching the heating element protection tube. The heating element protection tube is suspended and fixed in the vertical direction by fixing its flange portion to a fixed member with a bolt or the like. Since the flange portion and the fixed member are in contact with each other, the heat generated from the heating body easily moves from the flange portion at the upper end of the protective tube and its peripheral portion to the fixed member.

本発明の場合、上部管体は熱伝導率が小さいため、上部管体の上端部のフランジ部およびその周辺部から炉側の被固定部材への放熱は少なくなり加熱体から発生する熱の損失を減らせる。また、上部管体の溶湯に浸漬していない部分の表面から炉内の空気中へ逃げる熱量を抑え、加熱体から発生する熱の損失を減らせる。以上のような下部管体および上部管体の効果が重畳されて加熱体の熱効率が向上し得る。   In the case of the present invention, since the upper pipe body has a low thermal conductivity, heat loss from the heating body is reduced because heat dissipation from the flange part at the upper end of the upper pipe body and its peripheral part to the fixed member on the furnace side is reduced. Can be reduced. In addition, the amount of heat that escapes from the surface of the portion of the upper tube that is not immersed in the molten metal to the air in the furnace can be suppressed, and the loss of heat generated from the heater can be reduced. The thermal efficiency of the heating body can be improved by superimposing the effects of the lower tubular body and the upper tubular body as described above.

また、下部管体と上部管体とを焼結により一体接合するため、高い接合強度を確保できる。焼結による強固な接合部なので接合部から溶湯が保護管体内部に浸入せず、保護管体の破損を防止できる。   Further, since the lower tube body and the upper tube body are integrally joined by sintering, a high bonding strength can be ensured. Since it is a strong joint by sintering, the molten metal does not enter the protective tube from the joint, and the breakage of the protective tube can be prevented.

本発明の第2の加熱体保護管は、下部管体と中間層と上部管体を焼結一体化した3層構造である。中間層は下部管体と上部管体との間に介在され両者の中間の熱膨張係数を有するセラミックスで形成される。中間層はいわゆる傾斜機能材料であり、下部管体と上部管体の両者の熱膨張係数差が比較的大きい場合、十分な接合強度を確保するのに用いる。中間層は熱膨張係数を調整しやすい、材質の異なる2種以上のセラミックスを混合した混合物が望ましい。また、中間層は熱膨張係数を徐々に傾斜させるために2層以上介在させても構わない。   The second heated body protective tube of the present invention has a three-layer structure in which a lower tube, an intermediate layer, and an upper tube are integrated by sintering. The intermediate layer is formed of ceramics interposed between the lower tube body and the upper tube body and having an intermediate thermal expansion coefficient. The intermediate layer is a so-called functionally graded material, and is used to ensure sufficient bonding strength when the difference in thermal expansion coefficient between the lower tube and the upper tube is relatively large. The intermediate layer is preferably a mixture in which two or more kinds of ceramics of different materials are easily mixed and the thermal expansion coefficient can be easily adjusted. Further, two or more intermediate layers may be interposed in order to gradually incline the thermal expansion coefficient.

本発明の効果を十分に得るためには、下部管体と上部管体とは熱伝導率差が適当にあるのが望ましい。本発明の望ましい熱伝導率の組合せは、下部管体は常温における熱伝導率が50W/(m・K)以上であり、上部管体は常温における熱伝導率が20W/(m・K)以下である。   In order to sufficiently obtain the effects of the present invention, it is desirable that the lower tube body and the upper tube body have an appropriate difference in thermal conductivity. The desirable thermal conductivity combination of the present invention is that the lower tube has a thermal conductivity of 50 W / (m · K) or more at room temperature, and the upper tube has a thermal conductivity of 20 W / (m · K) or less at room temperature. It is.

下部管体および上部管体においては、下部管体の熱伝導率が上部管体のそれより大きいという条件を満足すれば各種のセラミックスの組合せが有効である。なかでも下部管体は耐溶損性および耐熱衝撃性に優れる窒化ケイ素で形成し、上部管体は耐溶損性および耐熱性に優れるサイアロンで形成する組合せが望ましい。   In the lower tube and the upper tube, combinations of various ceramics are effective if the condition that the thermal conductivity of the lower tube is higher than that of the upper tube is satisfied. In particular, the lower tube is preferably formed of silicon nitride having excellent resistance to melting and thermal shock, and the upper tube is preferably formed of sialon having excellent resistance to melting and heat.

上部管体の熱伝導率が、炉に設けられた上部管体を固定するための被固定部材の熱伝導率より小さい場合、保温性が高まり、上部管体の上端部のフランジ部およびその周辺部から炉側の被固定部材への放熱は少なくなり加熱体から発生する熱の損失を減らせるので好ましい。   When the thermal conductivity of the upper tube is smaller than the thermal conductivity of the member to be fixed for fixing the upper tube provided in the furnace, the heat retention is improved, and the flange portion at the upper end of the upper tube and its surroundings This is preferable because the heat radiation from the section to the fixed member on the furnace side is reduced and the loss of heat generated from the heating body can be reduced.

下部管体と上部管体の高い接合強度を得るには、両者の熱膨張係数差が2.0×10-6/K以下であることが望ましい。より望ましくは1.0×10-6/K以下である。 In order to obtain a high joint strength between the lower tube body and the upper tube body, it is desirable that the difference in thermal expansion coefficient between them is 2.0 × 10 −6 / K or less. More desirably, it is 1.0 × 10 −6 / K or less.

熱伝度率が高い下部管体は、できる限り加熱エネルギーを溶湯に供給できるように、また炉内の空気中や被固定部材への加熱エネルギーの放出を少なくするために、下部管体全体を加熱される溶湯の湯面より下方に位置させるのが望ましい。言い換えれば、下部管体の最上端位置が加熱される溶湯の湯面より下方にあることが望ましい。   The lower tubular body with a high thermal conductivity is designed so that the heating energy can be supplied to the molten metal as much as possible, and in order to reduce the release of the heating energy into the air in the furnace and to the fixed member, It is desirable to position it below the surface of the molten metal to be heated. In other words, it is desirable that the uppermost end position of the lower tubular body is below the molten metal surface to be heated.

図1は本発明実施例の加熱体保護管の概略断面図である。図1において、加熱体保護管は鉛直軸方向に分かれ、ほぼ同一の外径および内径をもつ下部管体1と上部管体2を焼結一体化した。   FIG. 1 is a schematic cross-sectional view of a heating element protective tube according to an embodiment of the present invention. In FIG. 1, the heating body protective tube is divided in the vertical axis direction, and the lower tube 1 and the upper tube 2 having substantially the same outer diameter and inner diameter are sintered and integrated.

下部管体1はその内部にヒータなどの加熱体3が挿入されて収まる中空部11を有し、その下端は閉塞した底部12を有する。下部管体1の最上端位置13は上部管体2の下端面と接合される。   The lower tubular body 1 has a hollow portion 11 in which a heating body 3 such as a heater is inserted and accommodated therein, and a lower end thereof has a closed bottom portion 12. The uppermost end position 13 of the lower tube 1 is joined to the lower end surface of the upper tube 2.

下部管体1は窒化ケイ素を主成分とする焼結体で形成した。窒化ケイ素を主成分とする焼結体は、室温で熱膨張係数が3.0×10-6/K、相対密度が99.6%、常温における熱伝導率が51W/(m・K)、常温における4点曲げ強度が900MPaである。 The lower tubular body 1 was formed of a sintered body mainly composed of silicon nitride. The sintered body mainly composed of silicon nitride has a thermal expansion coefficient of 3.0 × 10 −6 / K at room temperature, a relative density of 99.6%, and a thermal conductivity of 51 W / (m · K) at room temperature. The 4-point bending strength at room temperature is 900 MPa.

上部管体2はヒータなどの加熱体3が挿入されて収まる中空部21を有し、上端部にフランジ部22を設けた。上部管体2のフランジ部22は炉に設けた被固定部材4にボルトなどで取付け固定される。   The upper tubular body 2 has a hollow portion 21 into which a heating body 3 such as a heater is inserted, and a flange portion 22 is provided at the upper end portion. The flange portion 22 of the upper tubular body 2 is attached and fixed to a fixed member 4 provided in the furnace with a bolt or the like.

上部管体2はサイアロン焼結体で形成した。サイアロン焼結体は、室温で熱膨張係数が3.0×10-6/K、相対密度が99.6%、常温における熱伝導率が17W/(m・K)、常温における4点曲げ強度が880MPaである。 The upper tube body 2 was formed of a sialon sintered body. The sialon sintered body has a thermal expansion coefficient of 3.0 × 10 −6 / K at room temperature, a relative density of 99.6%, a thermal conductivity of 17 W / (m · K) at room temperature, and a four-point bending strength at room temperature. Is 880 MPa.

下部管体1と上部管体2を焼結で接合した加熱体保護管の中空部11および21に電気ヒータなどの加熱体3を入れる。そして、アルミニウムなどの溶湯5の中に加熱体保護管を浸漬した。下部管体1の最上端位置13が加熱される溶湯5の湯面51より下方になるように浸漬した。そして、加熱体3を発熱させることによりその熱を加熱体保護管の表面を経て溶湯5へ伝え、溶湯を所定の温度に維持する。   A heating body 3 such as an electric heater is placed in the hollow portions 11 and 21 of the heating body protection tube in which the lower tube body 1 and the upper tube body 2 are joined by sintering. And the heating body protection tube was immersed in molten metal 5 such as aluminum. It was immersed so that the uppermost end position 13 of the lower tubular body 1 was below the molten metal surface 51 of the molten metal 5 to be heated. And by making the heating body 3 generate | occur | produce heat, the heat is transmitted to the molten metal 5 through the surface of a heating body protection tube, and a molten metal is maintained at predetermined | prescribed temperature.

矢印Qaは溶湯へ供給される加熱エネルギー、矢印Qbは上部管体2の溶湯に浸漬していない部分の表面から炉内の空気中へ出る熱エネルギー、矢印Qcは上部管体2のフランジ部22およびその周辺部から炉に設けた被固定部材22へ出る熱エネルギー、矢印の大きさは出力の大きさを表わす。本発明の構成により、Qaが大きく、QbおよびQcの損失が小さいことを表わした。   The arrow Qa is the heating energy supplied to the molten metal, the arrow Qb is the thermal energy emitted from the surface of the upper tube 2 not immersed in the molten metal into the air in the furnace, and the arrow Qc is the flange portion 22 of the upper tube 2. Further, the thermal energy and the magnitude of the arrow appearing from the peripheral portion to the fixed member 22 provided in the furnace represent the magnitude of the output. By the structure of this invention, it showed that Qa was large and the loss of Qb and Qc was small.

次に加熱体保護管の製造方法について説明する。内径60mmのゴム型の中に外径40mmの芯金を配置し、ゴム型と芯金との間で形成された空隙の下層部に下部管体となる前記窒化ケイ素の原料粉末を充填し、次いで上層部に上部管体となる前記サイアロンの原料粉末を充填し、静水圧により冷間静水圧プレス(CIP)を行い、加熱体保護管となる管状の成形体を作製した。この成形体を1800℃、9気圧の窒素ガス雰囲気中で10時間焼成し、本発明の下部管体と上部管体を焼結で接合した加熱体保護管を得た。下部管体と上部管体の境界強度は600MPaであった。   Next, the manufacturing method of a heating body protection tube is demonstrated. A core metal having an outer diameter of 40 mm is disposed in a rubber mold having an inner diameter of 60 mm, and the raw material powder of the silicon nitride serving as a lower tubular body is filled in a lower layer portion of a gap formed between the rubber mold and the core metal, Next, the upper layer portion was filled with the sialon raw material powder serving as the upper tube, and cold isostatic pressing (CIP) was performed by hydrostatic pressure to produce a tubular molded body serving as a heating body protective tube. This molded body was fired in a nitrogen gas atmosphere at 1800 ° C. and 9 atm for 10 hours to obtain a heated body protective tube in which the lower tube body and the upper tube body of the present invention were joined by sintering. The boundary strength between the lower tube and the upper tube was 600 MPa.

図2は本発明第2実施例の加熱体保護管の概略断面図である。図2は、図1の実施例と同様の構成であるが、下部管体1と上部管体2との間に両者の中間の熱膨張係数を有するセラミックスで形成した中間層6が焼結により接合されている点が特徴である。中間層6は窒化ケイ素に別種のセラミックスを混合した混合物である。   FIG. 2 is a schematic cross-sectional view of a heating element protective tube according to a second embodiment of the present invention. FIG. 2 shows a configuration similar to that of the embodiment of FIG. 1, except that an intermediate layer 6 formed of ceramics having a thermal expansion coefficient intermediate between the lower tubular body 1 and the upper tubular body 2 is sintered. It is characterized by being joined. The intermediate layer 6 is a mixture obtained by mixing different types of ceramics with silicon nitride.

本発明の加熱体保護管を680℃のアルミニウム溶湯に浸漬し溶湯加熱に供したところ、アルミニウム溶湯による侵食は殆どみられず、使用中の衝撃荷重や熱衝撃による破損、き裂を生じなかった。また、従来の単体構造の窒化ケイ素製加熱体保護管に比べ、溶湯に浸漬していない保護管の上部では、保護管表面から空気中への放熱や、炉に設けられた保護管を固定するための被固定部材への放熱を抑えることができる。また、溶湯に浸漬される保護管の下部では、加熱エネルギーを高出力でき、加熱体の熱効率に優れることを確認できた。   When the heating element protective tube of the present invention was immersed in molten aluminum at 680 ° C. and subjected to molten metal heating, almost no erosion by the molten aluminum was observed, and no damage or cracking occurred due to impact load or thermal shock during use. . Also, compared to the conventional silicon nitride protective tube made of silicon nitride, heat is released from the surface of the protective tube to the air and the protective tube provided in the furnace is fixed at the top of the protective tube that is not immersed in the molten metal. Therefore, it is possible to suppress heat dissipation to the fixed member. In addition, it was confirmed that heating energy can be output at a lower portion of the protective tube immersed in the molten metal, and the thermal efficiency of the heating body is excellent.

本発明の加熱体保護管によれば、加熱体の熱効率に優れて加熱エネルギーのロスを抑え省エネルギーに寄与できる。   According to the heating body protective tube of the present invention, it is possible to contribute to energy saving by suppressing the loss of heating energy with excellent thermal efficiency of the heating body.

本発明実施例の加熱体保護管の概略断面図である。It is a schematic sectional drawing of the heating body protective tube of this invention Example. 本発明第2実施例の加熱体保護管の概略断面図である。It is a schematic sectional drawing of the heating body protection tube of 2nd Example of this invention.

符号の説明Explanation of symbols

1 下部管体、 2 上部管体、 3 加熱体、 4 被固定部材、 5 溶湯、 6 中間層   DESCRIPTION OF SYMBOLS 1 Lower pipe body, 2 Upper pipe body, 3 Heating body, 4 Fixed member, 5 Molten metal, 6 Middle layer

Claims (7)

炉内の溶湯に浸漬させて溶湯を加熱する加熱体の保護管が、溶湯に浸漬され閉塞した底部を有する下部管体と、下部管体の上部に配置され中空管状の上部管体とを焼結により接合してなり、下部管体および上部管体はセラミックスから形成され、下部管体の熱伝導率が上部管体の熱伝導率より大きいことを特徴とする加熱体保護管。 A protective tube of a heating body that is immersed in the molten metal in the furnace and heats the molten metal is fired into a lower tubular body that has a closed bottom that is immersed in the molten metal, and a hollow tubular upper tubular body that is disposed above the lower tubular body. A heating body protective tube, wherein the lower tube body and the upper tube body are formed of ceramics, and the thermal conductivity of the lower tube body is greater than the thermal conductivity of the upper tube body. 炉内の溶湯に浸漬させて溶湯を加熱する加熱体の保護管が、溶湯に浸漬され閉塞した底部を有する下部管体と、下部管体の上部に配置され中空管状の上部管体と、下部管体と上部管体との間に介在され両者の中間の熱膨張係数を有するセラミックスで形成した中間層とを焼結により接合してなり、下部管体および上部管体はセラミックスから形成され、下部管体の熱伝導率が上部管体の熱伝導率より大きいことを特徴とする加熱体保護管。 A protective tube of a heating body that is immersed in the molten metal in the furnace and heats the molten metal, a lower tubular body having a closed bottom portion immersed in the molten metal, a hollow tubular upper tubular body disposed on the upper portion of the lower tubular body, and a lower portion An intermediate layer formed by ceramics interposed between the tube and the upper tube and having an intermediate thermal expansion coefficient between them is joined by sintering, and the lower tube and the upper tube are formed of ceramics, A heating body protective tube, characterized in that the thermal conductivity of the lower tubular body is larger than that of the upper tubular body. 前記下部管体の常温における熱伝導率が50W/(m・K)以上であり、上部管体の常温における熱伝導率が20W/(m・K)以下であることを特徴とする請求項1または2に記載の加熱体保護管。 The thermal conductivity of the lower tubular body at room temperature is 50 W / (m · K) or more, and the thermal conductivity of the upper tubular body at room temperature is 20 W / (m · K) or less. Or the heating body protective tube of 2. 前記下部管体が窒化ケイ素から形成され、上部管体がサイアロンから形成されることを特徴とする請求項1〜3のいずれかに記載の加熱体保護管。 The heating body protective tube according to any one of claims 1 to 3, wherein the lower tube body is formed of silicon nitride, and the upper tube body is formed of sialon. 前記上部管体の熱伝導率が、炉に設けられた上部管体を固定するための被固定部材の熱伝導率より小さいことを特徴とする請求項1〜4のいずれかに記載の加熱体保護管。 The heating body according to any one of claims 1 to 4, wherein the thermal conductivity of the upper tubular body is smaller than the thermal conductivity of a member to be fixed for fixing the upper tubular body provided in the furnace. Protective tube. 前記下部管体と上部管体の両者の熱膨張係数差が2.0×10-6/K以下であることを特徴とする請求項1〜5のいずれかに記載の加熱体保護管。 The heating body protective tube according to any one of claims 1 to 5, wherein a difference in thermal expansion coefficient between the lower tubular body and the upper tubular body is 2.0 × 10 -6 / K or less. 前記下部管体の最上端位置が加熱される溶湯の湯面より下方にあることを特徴とする請求項1または2に記載の加熱体保護管。 The heating body protective tube according to claim 1 or 2, wherein an uppermost end position of the lower tubular body is below a molten metal surface to be heated.
JP2007158434A 2007-06-15 2007-06-15 Heating unit protective tube Pending JP2008309412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158434A JP2008309412A (en) 2007-06-15 2007-06-15 Heating unit protective tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158434A JP2008309412A (en) 2007-06-15 2007-06-15 Heating unit protective tube

Publications (1)

Publication Number Publication Date
JP2008309412A true JP2008309412A (en) 2008-12-25

Family

ID=40237171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158434A Pending JP2008309412A (en) 2007-06-15 2007-06-15 Heating unit protective tube

Country Status (1)

Country Link
JP (1) JP2008309412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207905A (en) * 2011-03-15 2012-10-25 Mitsui Mining & Smelting Co Ltd Coffin support tool for cinerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207905A (en) * 2011-03-15 2012-10-25 Mitsui Mining & Smelting Co Ltd Coffin support tool for cinerator

Similar Documents

Publication Publication Date Title
JP4499024B2 (en) Hot water supply pipe for aluminum die casting and method for manufacturing the same
JP5500077B2 (en) Molten glass conveying equipment element and glass manufacturing apparatus
JP4914970B2 (en) Discharge lamp electrode and manufacturing method thereof
JP2014094855A (en) Silicon carbide ceramic joined body, and manufacturing method for the same
JP5851404B2 (en) Osako ceiling structure
IT9020327A1 (en) METAL-CERAMIC STRUCTURE WITH INTERIOR LAYER OF BARIER AGAINST HIGH TEMPERATURE REACTIONS
FR2671796A1 (en) INSULATING MONOLITHLY REFRACTORY MATERIAL - METHOD OF MAKING AND PIECE ACCORDING TO THE METHOD
JP4798791B2 (en) Brittle materials-metal structures
JP2008309412A (en) Heating unit protective tube
JP2017072430A (en) Fuel clad, fuel rod and fuel rod manufacturing method
JP5399291B2 (en) Temperature measuring probe
KR101944582B1 (en) Heater tube
JP5764829B2 (en) Molten metal container
CN100571929C (en) Elongated stopper device
KR101819923B1 (en) Heater tube for molten metal immersion
JP2017161132A (en) Crucible for induction heating furnace
JP2017199515A (en) Manufacturing method of heater device and heater device
JP2005142033A (en) Immersion heater tube
EP1492639B1 (en) Thermal shock resistant casting element and manufacturing process thereof
JP7064689B2 (en) Intermediate stalk
JP2009154181A (en) Composite material and manufacturing method thereof
JP4452586B2 (en) Lance pipe
JP2006027946A (en) Silicon carbide-based joined structure, and method and apparatus for manufacturing silicon carbide-based joined structure
JPH09300060A (en) Sprue member for casting and manufacture thereof
JP2004224594A (en) Silicon nitride joined body and its joining method