JP2008309102A - Intake control device for engine - Google Patents

Intake control device for engine Download PDF

Info

Publication number
JP2008309102A
JP2008309102A JP2007159338A JP2007159338A JP2008309102A JP 2008309102 A JP2008309102 A JP 2008309102A JP 2007159338 A JP2007159338 A JP 2007159338A JP 2007159338 A JP2007159338 A JP 2007159338A JP 2008309102 A JP2008309102 A JP 2008309102A
Authority
JP
Japan
Prior art keywords
intake
valve body
trunnion
engine
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007159338A
Other languages
Japanese (ja)
Inventor
Itaru Noguchi
格 野口
Yorihiro Matsumoto
順博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Keihin Corp
Original Assignee
Honda Motor Co Ltd
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Keihin Corp filed Critical Honda Motor Co Ltd
Priority to JP2007159338A priority Critical patent/JP2008309102A/en
Publication of JP2008309102A publication Critical patent/JP2008309102A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake control device for an engine capable of effectively transmitting driving force of an operation lever to a valve element, capable of reducing a load on an actuator, and capable of achieving miniaturization. <P>SOLUTION: The sleeve type valve element 8 moving between a close position A fitted to one of confronting end parts 3b and 4a of first and second intake passages 3 and 4 slidably along an axial direction and abutted to the other and an open position B separated from the other is provided, a trunnion 16 is protruded on an outer side surface of the valve element 8, the operation lever 19 having a groove 22 engaged with the trunnion 16 is connected to a lever shaft 18 supported by an intake manifold M, and the trunnion 16 and the lever shaft 18 are arranged on or near a plane L orthogonal to an opening and closing direction D of the valve element 8 when the valve element 8 is in the close position A or the open position B, and confronting inner side surfaces 22a and 22b of the groove 22 are arranged along a pair of planes J and K crossing with each other at or near an axis Y of the lever shaft 18 and holding an outer peripheral surface of the trunnion 16 between them. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,空気入口に連通するサージ室と,このサージ室に上流端部及び下流端部を開口する第1吸気路と,この第1吸気路の下流端部に間隔を開けて対向するように上流端部を前記サージ室に開口すると共に下流端部をエンジンの吸気ポートに連ねる第2吸気路とで吸気マニフォルドを構成し,前記第1及び第2吸気路の対向端部の一方の第1端部に,他方の第2端部に接する閉じ位置及び該第2端部から離間する開き位置間を移動するスリーブ型の弁体を摺動自在に嵌合し,この弁体の外側面にトラニオンを突設し,前記吸気マニフォルドに回転自在に支持されるレバー軸に,前記トラニオンに係合する溝を有する作動レバーを連結し,この作動レバーに,それを介して前記弁体を開閉するアクチュエータを連結してなる,エンジンの吸気制御装置の改良に関する。   According to the present invention, a surge chamber that communicates with an air inlet, a first intake passage that opens an upstream end portion and a downstream end portion in the surge chamber, and a downstream end portion of the first intake passage are opposed to each other with a space therebetween. And an intake manifold having an upstream end portion opened to the surge chamber and a downstream end portion connected to the intake port of the engine to form an intake manifold, one of the opposed end portions of the first and second intake passages. A sleeve-type valve body that moves between a closed position in contact with the other second end section and an open position spaced apart from the second end section is slidably fitted to one end, and the outer surface of the valve body A trunnion is provided on the lever, and an operating lever having a groove engaging with the trunnion is connected to a lever shaft rotatably supported by the intake manifold, and the valve body is opened and closed via the operating lever. Engine suction that is connected to the actuator It relates to an improvement of the control device.

かゝるエンジン用吸気制御装置は,特許文献1に開示されているように,既に知られている。
特開平7−224670号公報
Such an intake control device for an engine is already known as disclosed in Patent Document 1.
Japanese Patent Laid-Open No. 7-224670

かゝるエンジン用吸気制御装置において,作動レバーの回動により弁体を開き位置から閉じ位置へ移動させる際,弁体の中間開度位置で,作動レバーがトラニオンに加える押圧力の方向と弁体の開閉方向とが一致するように,レバー軸及びトラニオンの位置を選定することが,作動レバーの駆動力を弁体に効率よく伝達することができて(図12の線G参照),アクチュエータの負担を極力軽減する上で有効であるが,レイアウト上の制約から,特許文献1に示すように,トラニオン及びレバー軸を,弁体が閉じ位置又は開き位置にあるとき,弁体の開閉方向と直交する平面上もしくはその近傍に配置せざるを得ない場合ある。そのような場合は,一般に,弁体の開き位置又は閉じ位置で,作動レバーがトラニオンに加える押圧力の方向と弁体の開閉方向とが一致するようにしており,作動レバーの駆動力の弁体への伝達は非効率的となり(図12の線H参照),アクチュエータの負担が必然的に増大することになる。   In such an engine intake control device, when the valve body is moved from the open position to the closed position by turning the operation lever, the direction of the pressing force applied to the trunnion by the operation lever at the intermediate opening position of the valve body and the valve Selecting the position of the lever shaft and trunnion so that the opening and closing direction of the body coincides can efficiently transmit the driving force of the operating lever to the valve body (see line G in FIG. 12). Although it is effective in reducing the load of the valve body, due to layout restrictions, as shown in Patent Document 1, when the valve body is in the closed position or the open position, the opening and closing direction of the valve body There is a case where it must be arranged on a plane perpendicular to or near the plane. In such a case, generally, at the opening or closing position of the valve body, the direction of the pressing force applied to the trunnion by the operating lever is made to coincide with the opening / closing direction of the valve body. Transmission to the body becomes inefficient (see line H in FIG. 12), and the burden on the actuator inevitably increases.

本発明は,かゝる事情に鑑みてなされたもので,レイアウト上の制約から,トラニオン及びレバー軸を,弁体が閉じ位置又は開き位置にあるとき,弁体の開閉方向と直交する平面上もしくはその近傍に配置せざるを得ない場合でも,作動レバーの駆動力を弁体に効率よく伝達することを可能にして,アクチュエータの負担を軽減し,その小型化を可能にする前記エンジンの吸気制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances. Due to layout restrictions, the trunnion and the lever shaft are arranged on a plane perpendicular to the opening / closing direction of the valve body when the valve body is in the closed position or the open position. Or, even if it must be arranged in the vicinity of the engine, it is possible to efficiently transmit the driving force of the actuating lever to the valve body, thereby reducing the burden on the actuator and reducing its size. An object is to provide a control device.

上記目的を達成するために,本発明は,空気入口に連通するサージ室と,このサージ室に上流端部及び下流端部を開口する第1吸気路と,この第1吸気路の下流端部に間隔を開けて対向するように上流端部を前記サージ室に開口すると共に下流端部をエンジンの吸気ポートに連ねる第2吸気路とで吸気マニフォルドを構成し,前記第1及び第2吸気路の対向端部の一方の第1端部に,他方の第2端部に接する閉じ位置及び該第2端部から離間する開き位置間を移動するスリーブ型の弁体を摺動自在に嵌合し,この弁体の外側面にトラニオンを突設し,前記吸気マニフォルドに回転自在に支持されるレバー軸に,前記トラニオンに係合する溝を有する作動レバーを連結し,この作動レバーに,それを介して前記弁体を開閉するアクチュエータを連結してなり,前記トラニオン及びレバー軸を,前記弁体が閉じ位置又は開き位置にあるとき,該弁体の開閉方向と直交する平面上もしくはその近傍に配置した,エンジンの吸気制御装置であって,前記溝の相対向する内側面を,前記レバー軸の軸線もしくはその近傍で交差すると共に,前記トラニオンの外周面を挟むように延びる一対の平面に沿って配置したことを第1の特徴とする。   To achieve the above object, the present invention provides a surge chamber that communicates with an air inlet, a first intake passage that opens an upstream end and a downstream end in the surge chamber, and a downstream end portion of the first intake passage. The first and second intake passages are configured by an intake manifold having an upstream end opened to the surge chamber so as to be opposed to each other and a second intake passage connected to the intake port of the engine at the downstream end. A sleeve-type valve body that moves between a closed position in contact with the other second end and an open position that is spaced apart from the second end is slidably fitted to one first end of the opposed ends. A trunnion projecting from the outer surface of the valve body, and an operating lever having a groove engaging with the trunnion is connected to a lever shaft rotatably supported by the intake manifold. An actuator for opening and closing the valve body via And an engine intake control device in which the trunnion and lever shaft are arranged on or near a plane perpendicular to the opening and closing direction of the valve body when the valve body is in the closed position or the open position. The inner surfaces of the grooves opposite to each other intersect at or near the axis of the lever shaft and are arranged along a pair of planes extending so as to sandwich the outer peripheral surface of the trunnion. To do.

また本発明は,空気入口に連通するサージ室と,このサージ室の一側壁を迂回して上流端部及び下流端部を該サージ室に開口する第1吸気路と,この第1吸気路の下流端部に間隔を開けて対向するように上流端部を前記サージ室に開口すると共に下流端部をエンジンの吸気ポートに連ねる第2吸気路とで吸気マニフォルドを構成し,前記第1及び第2吸気路の対向端部の一方の第1端部に,他方の第2端部に接する閉じ位置及び該第2端部から離間する開き位置間を移動するスリーブ型の弁体を摺動自在に嵌合し,この弁体の外側面にトラニオンを突設し,前記吸気マニフォルドに回転自在に支持されるレバー軸に,前記トラニオンに係合する溝を有する作動レバーを連結し,この作動レバーに,それを介して前記弁体を開閉するアクチュエータを連結してなる,エンジンの吸気制御装置であって,前記溝の相対向する内側面を,これら内側面の前記トラニオン外周面との接触面が,前記弁体の開閉位置に拘らず常に前記弁体の開閉方向と直交するように,連続曲面に形成したことを第2の特徴とする。   The present invention also provides a surge chamber that communicates with the air inlet, a first intake passage that bypasses one side wall of the surge chamber and opens an upstream end and a downstream end thereof, and the first intake passage. An intake manifold is configured with a second intake passage that opens the upstream end portion into the surge chamber so as to face the downstream end portion with a space therebetween and communicates the downstream end portion with the intake port of the engine. (2) A sleeve-type valve element that moves between a closed position in contact with the other second end and an open position separated from the second end is slidable at one first end of the opposite ends of the two air intake passages. A trunnion projecting from the outer surface of the valve body, and an operating lever having a groove engaging with the trunnion is connected to a lever shaft rotatably supported by the intake manifold. Actuator that opens and closes the valve body through it An intake air control device for an engine, in which the inner surfaces facing each other of the groove are always in contact with the outer surface of the trunnion regardless of the opening / closing position of the valve body. A second feature is that it is formed in a continuous curved surface so as to be orthogonal to the opening and closing direction of the valve body.

本発明第1の特徴によれば,レイアウト上の制約から,トラニオン及びレバー軸を,弁体が閉じ位置又は開き位置にあるとき,弁体の開閉方向と直交する平面上もしくはその近傍に配置することを余儀なくされた場合でも,前記溝の相対向する内側面を,前記レバー軸の軸線もしくはその近傍で交差すると共に,前記トラニオンの外周面を挟むように延びる一対の平面に沿って配置したことにより,弁体の或る中間開度位置において,作動レバーのトラニオンへの押圧力の方向を弁体の開閉方向と一致させることができ,その結果,弁体を閉じ位置から開き位置へ,又は開き位置から閉じ位置へ移動させる間,作動レバーから弁体のトラニオンに押圧力を総合的に効率良く伝達することができて,アクチュエータの負担を軽減し,その小型化を図ることができる。   According to the first aspect of the present invention, the trunnion and the lever shaft are arranged on or near a plane perpendicular to the opening / closing direction of the valve body when the valve body is in the closed position or the open position due to layout restrictions. Even when this is unavoidable, the opposing inner surfaces of the groove intersect with each other at or near the axis of the lever shaft and are arranged along a pair of planes extending so as to sandwich the outer peripheral surface of the trunnion Thus, at a certain intermediate opening position of the valve body, the direction of the pressing force to the trunnion of the actuating lever can be made coincident with the opening / closing direction of the valve body, so that the valve body is moved from the closed position to the open position, or While moving from the open position to the closed position, the operating force can be transmitted comprehensively and efficiently from the actuating lever to the trunnion of the valve body, reducing the burden on the actuator and reducing its size. It is possible to achieve.

しかも,前記溝は,結果的に作動レバーに末広り状に形成されることになるから,作動レバーの鋳造等による型成形時,溝からの離型が容易となり,その型成形性が良好である。その上,弁体の閉じ位置又は開き位置では,トラニオンが溝の比較的狭い部分に係合するようになるから,作動レバー及びトラニオン間のガタを防ぐことができる。   In addition, since the groove is formed in a divergent shape on the operating lever as a result, the mold can be easily released from the groove when the operating lever is cast, and the moldability is good. is there. In addition, in the closed or open position of the valve body, the trunnion comes into engagement with a relatively narrow portion of the groove, so that play between the actuating lever and the trunnion can be prevented.

本発明の第2の特徴によれば,作動レバーを回動したとき,作動レバーの溝の一内側面と弁体のトラニオンの外周面とが摺動しながら,弁体を開閉方向に移動させるが,その際,溝の相対向する内側面のトラニオン外周面との接触面が,前記弁体の開閉位置に拘らず常に前記弁体の開閉方向と直交するため,常に,作動レバーのトラニオンへの押圧力の方向を弁体の開閉方向と一致させることができ,したがって作動レバーからトラニオンに押圧力を常に高効率で伝達することができて,アクチュエータの負担を軽減し,その小型化を図ることができる。   According to the second feature of the present invention, when the operating lever is rotated, the valve body is moved in the opening and closing direction while the inner surface of the groove of the operating lever and the outer peripheral surface of the trunnion of the valve body slide. However, since the contact surface of the opposite inner surface of the groove with the outer periphery of the trunnion is always perpendicular to the opening / closing direction of the valve body regardless of the opening / closing position of the valve body, it always moves to the trunnion of the operating lever. The direction of the pressing force can be made to coincide with the opening and closing direction of the valve body, so that the pressing force can always be transmitted from the actuating lever to the trunnion with high efficiency, reducing the burden on the actuator and reducing its size. be able to.

本発明の実施の形態を,添付図面に示す本発明の実施例に基づいて以下に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1は本発明の第1実施例に係る吸気制御装置を備える吸気マニフォルドの斜視図,図2は図1の2−2線断面図(制御弁の閉じ状態を示す。),図3は制御弁の開き状態を示す,図2との対応図,図4は図2の4−4線断面図,図5図4の5−5線断面図,図6は制御弁の開き状態を示す,図5との対応図,図7は図4の7−7線断面図,図8は図4の8−8線断面図,図9は図4の9−9線断面図,図10は弁体に付設される弾性シール部材の斜視図,図11は本発明の第2実施例を示す,図5との対応図,図12は弁体の開度と作動レバーのトルク(負荷)との関係を示す特性線図である。   1 is a perspective view of an intake manifold including an intake control device according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1 (showing a closed state of a control valve), and FIG. FIG. 4 is a sectional view taken along line 4-4 in FIG. 2, FIG. 5 is a sectional view taken along line 5-5 in FIG. 4, and FIG. 6 is a diagram showing the opened state of the control valve. FIG. 7 is a sectional view taken along line 7-7 in FIG. 4, FIG. 8 is a sectional view taken along line 8-8 in FIG. 4, FIG. 9 is a sectional view taken along line 9-9 in FIG. 11 is a perspective view of an elastic seal member attached to the body, FIG. 11 shows a second embodiment of the present invention, a correspondence diagram with FIG. 5, and FIG. 12 shows the opening of the valve body and the torque (load) of the operating lever. It is a characteristic diagram which shows a relationship.

先ず,図1〜図10に示す本発明の第1実施例の説明より始める。図1〜2において,符号Mは4気筒エンジンEの吸気マニフォルドであって,上端に空気入口1aを開口した空気導入路1を一端部に備えるサージ室2と,このサージ室2の下側壁の一部を迂回して上流端部3a及び下流端部3bをサージ室2に開口する並列4本の第1吸気路3と,サージ室2の上側壁を貫通して上流端部4aを上記第1吸気路3の下流端部3bに間隔を開けて対向させる並列4本の第2吸気路4と,これら第2吸気路4の下流端部4bを相互に一体に連結する取り付けフランジ5とで構成され,この取り付けフランジ5は,エンジンEのシリンダヘッドに複数の締結ボルト6により締結される。而して,各第2吸気路4の下流端部4bは,エンジンEの対応する吸気ポート(図示せず)に連通する。前記空気入口1aには,エンジンEの吸入空気量を調節するためのスロットルボディ(図示せず)が取り付けられる。   First, the description starts with the description of the first embodiment of the present invention shown in FIGS. 1 and 2, reference numeral M denotes an intake manifold of a four-cylinder engine E, and includes a surge chamber 2 provided at one end with an air introduction path 1 having an air inlet 1a opened at the upper end, and a lower wall of the surge chamber 2. Four first intake passages 3 in parallel bypassing a part and opening the upstream end 3a and the downstream end 3b into the surge chamber 2, and the upstream end 4a passing through the upper side wall of the surge chamber 2 are connected to the first end. The four second intake passages 4 arranged in parallel with the downstream end portion 3b of the one intake passage 3 at an interval and the mounting flange 5 that integrally connects the downstream end portions 4b of the second intake passages 4 to each other. The mounting flange 5 is configured to be fastened to the cylinder head of the engine E by a plurality of fastening bolts 6. Thus, the downstream end portion 4b of each second intake passage 4 communicates with a corresponding intake port (not shown) of the engine E. A throttle body (not shown) for adjusting the intake air amount of the engine E is attached to the air inlet 1a.

上記吸気マニフォルドMは,サージ室2の中央の分割面Pに沿って上部ブロックMaと下部ブロックMbとに分割される。上部ブロックMaは,空気導入路1,サージ室2の上半部及び第2吸気路4群を含んでいて合成樹脂製とされ,また下部ブロックMbは,サージ室2の下半部及び第1吸気路3群を含んでいて合成樹脂製とされ,これら両ブロックMa,Mbは前記分割面Pで相互に摩擦溶着される。   The intake manifold M is divided into an upper block Ma and a lower block Mb along the central dividing plane P of the surge chamber 2. The upper block Ma includes the air introduction path 1, the upper half of the surge chamber 2, and the second intake path 4 group, and is made of synthetic resin. The lower block Mb includes the lower half of the surge chamber 2 and the first half. The two blocks Ma and Mb are made of synthetic resin and include three groups of intake passages.

サージ室2では,間隔を開けて相対向する第1吸気路3の下流端部3bは上向き姿勢をとり,第2吸気路4の上流端部4aは下向き姿勢をとっていて,両者は互いに間隔を開けて対向配置される。以下,第1吸気路3の下流端部3bを第1端部3bと呼び,第2吸気路4上流端部4aを第2端部4aと呼ぶことにし,それぞれ隣接する2本の第1及び第2端部3b,4a;3b,4aは互いに近接して組をなし,これら2組の第1及び第2端部3b,4a;3b,4a間は広く開いている。各組の第1及び第2端部3b,4a,3b,4a間には,その間を導通させたり第2端部4aをサージ室2に開放したりする制御弁7が設けられる。第1端部3bは直線状に形成され,第2端部4aは,第1端部3bと同軸上に並ぶファンネル状に形成される。   In the surge chamber 2, the downstream end portion 3 b of the first intake passage 3 that is opposed to each other with a gap therebetween is in an upward posture, and the upstream end portion 4 a of the second intake passage 4 is in a downward posture. It is arranged opposite to open. Hereinafter, the downstream end portion 3b of the first intake passage 3 is referred to as a first end portion 3b, and the upstream end portion 4a of the second intake passage 4 is referred to as a second end portion 4a. The second ends 3b, 4a; 3b, 4a form a pair close to each other, and the two sets of the first and second ends 3b, 4a; 3b, 4a are widely open. A control valve 7 is provided between the first and second end portions 3b, 4a, 3b, and 4a of each set to conduct between them and to open the second end portion 4a to the surge chamber 2. The first end portion 3b is formed in a straight line shape, and the second end portion 4a is formed in a funnel shape arranged coaxially with the first end portion 3b.

上記制御弁7について,図2〜図10により説明する。   The control valve 7 will be described with reference to FIGS.

図2〜図4において,制御弁7は,各組の第1端部3bの外周面に軸方向摺動自在に嵌合する各1対のスリーブ型弁体8をブリッジ8bを介して相互に一体に連結してなる2連弁体8,8を2組備え,各弁体8には,前記ファンネル状の第2端部4a内周面に密接し得る,ゴム等の弾性材製の弾性シール部材9が付設される。この弾性シール部材9は,図9及び図10に示すように,各組のファンネル状の第2端部4a内周面に密接し得る一対のリング部9Rを,これらの周壁の一部を融合させるように一体に結合して構成される。この弾性シール部材9の各リング部9Rの外端面には,前記ファンネル状の第2端部4a内周面に密接し得る同心円状に並ぶ複数の環状リップ9aが一体に形成される。   2 to 4, the control valve 7 includes a pair of sleeve-type valve bodies 8 that are slidably fitted in the axial direction on the outer peripheral surface of the first end portion 3b of each pair, and are connected to each other via a bridge 8b. Two sets of double valve bodies 8, 8 integrally connected are provided, and each valve body 8 is made of an elastic material such as rubber that can be in close contact with the inner peripheral surface of the funnel-shaped second end 4 a. A seal member 9 is attached. As shown in FIGS. 9 and 10, the elastic seal member 9 is composed of a pair of ring portions 9R that can be in close contact with the inner peripheral surface of the funnel-shaped second end portion 4a, and a part of these peripheral walls. So as to be integrally coupled. A plurality of concentric annular lips 9a that can be in close contact with the inner peripheral surface of the funnel-shaped second end portion 4a are integrally formed on the outer end surface of each ring portion 9R of the elastic seal member 9.

弾性シール部材9が付設される弁体8の上端部外周には,環状の鉤形突壁10が形成され,この鉤形突壁10の内側に画成される環状溝11に,弾性シール部材9に形成された環状突起12が圧入される。その際,その圧入部には必要に応じて接着剤が塗布される。また弁体8の端部には,環状溝11に連通する複数の位置決め溝13が形成され,これら位置決め溝13には,弾性シール部材9に一体に形成される複数の位置決め突起14が圧入される。この場合も,その圧入部には必要に応じて接着剤が塗布される。こうして,弾性シール部材9は弁体8に取り付けられる。   An annular hook-shaped protruding wall 10 is formed on the outer periphery of the upper end of the valve body 8 to which the elastic sealing member 9 is attached, and an elastic sealing member is formed in an annular groove 11 defined inside the hook-shaped protruding wall 10. An annular projection 12 formed on the sheet 9 is press-fitted. At that time, an adhesive is applied to the press-fitted portion as necessary. A plurality of positioning grooves 13 communicating with the annular groove 11 are formed at the end of the valve body 8, and a plurality of positioning protrusions 14 formed integrally with the elastic seal member 9 are press-fitted into the positioning grooves 13. The Also in this case, an adhesive is applied to the press-fitted portion as necessary. Thus, the elastic seal member 9 is attached to the valve body 8.

而して,弁体8は,弾性シール部材9をファンネル状の第2端部4a内周面に密接させて第1及び第2端部3b,4a間を導通させる閉じ位置A(図2及び図5参照)と,弾性シール部材9を第2端部4aから離間して第2端部4aをサージ室2に開放する開き位置B(図3参照及び図6)との間を移動し得るようになっており,各弁体8の開き位置Bを規定するために,各弁体8を受け止めるストッパ15が対応する第1吸気路3の外周に形成される。   Thus, the valve body 8 closes the elastic seal member 9 to the inner peripheral surface of the funnel-shaped second end 4a so as to conduct between the first and second ends 3b, 4a (see FIG. 2 and FIG. 2). 5) and the open position B (see FIG. 3 and FIG. 6) where the elastic seal member 9 is separated from the second end 4a and the second end 4a is opened to the surge chamber 2. In order to define the opening position B of each valve body 8, a stopper 15 for receiving each valve body 8 is formed on the outer periphery of the corresponding first intake passage 3.

図4〜図6及び図9に示すように,各2連弁体8,8の外側面には同軸上に並ぶ円柱状のトラニオン16が一体に突設される。一方,吸気マニフォルドMには,弁体8が開き位置Bにあるとき(図6参照),弁体8の開閉方向Dと直交する平面L上,もしくはその近傍に配置されるレバー軸18が支持され,このレバー軸18には,2組の2連弁体8,8の計4本のトラニオン16が摺動自在に係合する溝22を備える4本の作動レバー19が一体に形成される。図示例では,弁体8の開閉方向Dはやゝ斜めの上下方向になっており,且つその上昇位置が閉じ位置A,下降位置が開き位置Bとなっている。   As shown in FIGS. 4 to 6 and 9, a cylindrical trunnion 16 aligned coaxially is integrally projected on the outer surface of each of the double valve bodies 8 and 8. On the other hand, when the valve body 8 is in the open position B (see FIG. 6), the intake manifold M is supported by a lever shaft 18 disposed on or near the plane L perpendicular to the opening / closing direction D of the valve body 8. The lever shaft 18 is integrally formed with four actuating levers 19 each having a groove 22 in which a total of four trunnions 16 of the two pairs of double valve bodies 8 and 8 are slidably engaged. . In the illustrated example, the opening / closing direction D of the valve body 8 is slightly up and down, and the ascending position is the closing position A and the descending position is the opening position B.

図5及び図6より明らかなように,各作動レバー19における溝22の相対向する内側面22a,22bは,レバー軸18の軸線Yもしくはその近傍で交差すると共にトラニオン16の外周面を挟むように延びる一対の平面J,Kに沿って,相互に末広り状に配置される。また各作動レバー19には,溝22の一方の開放側面を閉じる補強壁19aが一体に形成される。   As apparent from FIGS. 5 and 6, the inner surfaces 22 a and 22 b facing each other of the groove 22 in each actuating lever 19 intersect at or near the axis Y of the lever shaft 18 and sandwich the outer peripheral surface of the trunnion 16. Are arranged in a divergent shape along a pair of planes J and K extending in the direction of the angle. Each actuating lever 19 is integrally formed with a reinforcing wall 19 a that closes one open side surface of the groove 22.

再び図4〜図6において,前記レバー軸18は,サージ室2の左右両端壁2a,2bにそれぞれ支持される第1及び第2外側軸部18a,18bと,サージ室2の内壁に一体に形成されて2組の弁体8間に突入する軸受壁2cで支持される中間軸部18cとに分かれており,第1外側軸部18aと中間軸部18c,第2外側軸部18bと中間軸部18cは,それぞれレバー軸18の軸線Yを挟んで前記トラニオン16と反対側に配置されるバランスウエイト20を介してそれぞれ一体に連結される。そして第2外側軸部18bには,これを正逆回転駆動するアクチュエータ21の出力部が連結される。アクチュエータ21は電動式,電磁式,負圧式等,何れの式のものも使用可能である。   4 to 6, the lever shaft 18 is integrated with the first and second outer shaft portions 18a and 18b supported by the left and right end walls 2a and 2b of the surge chamber 2 and the inner wall of the surge chamber 2, respectively. An intermediate shaft portion 18c that is formed and supported by a bearing wall 2c that enters between the two sets of valve bodies 8 is divided into a first outer shaft portion 18a, an intermediate shaft portion 18c, and a second outer shaft portion 18b. The shaft portions 18c are integrally connected to each other via balance weights 20 disposed on the opposite side of the trunnion 16 with the axis Y of the lever shaft 18 interposed therebetween. The second outer shaft portion 18b is connected to an output portion of an actuator 21 that rotates the forward and reverse rotations. The actuator 21 can be of any type, such as an electric type, an electromagnetic type, or a negative pressure type.

而して,アクチュエータ21によりレバー軸18を正転方向に駆動すれば,作動レバー19及び,その溝22に係合したトラニオン16を介して弁体8を前記閉じ位置Aに動かし,またレバー軸18を逆転方向に駆動すれば,弁体8を前記開き位置Bに動かすことができる。その際,レバー軸18には,作動レバー19及び弁体8の重量により負荷モーメントが作用する。前記バランスウエイト20は,上記負荷モーメントに対する略釣り合いモーメントを発生するように,その位置及び重量が設定される。   Thus, when the lever shaft 18 is driven in the forward rotation direction by the actuator 21, the valve body 8 is moved to the closed position A via the operating lever 19 and the trunnion 16 engaged with the groove 22, and the lever shaft By driving 18 in the reverse direction, the valve element 8 can be moved to the open position B. At that time, a load moment acts on the lever shaft 18 due to the weight of the operating lever 19 and the valve body 8. The balance weight 20 is set in position and weight so as to generate a substantially balanced moment with respect to the load moment.

次に,レバー軸18の支持構造及びアクチュエータ21の取り付け構造について説明する。   Next, the support structure of the lever shaft 18 and the mounting structure of the actuator 21 will be described.

先ず,図4において,第1外側軸部18aには球状端部25が形成され,この球状端部25が,サージ室2の左端壁2aに取り付けられる球状軸受26に首振り自在に嵌合される。   First, in FIG. 4, a spherical end 25 is formed in the first outer shaft portion 18a, and this spherical end 25 is fitted to a spherical bearing 26 attached to the left end wall 2a of the surge chamber 2 so as to be swingable. The

次に図4及び図7において,サージ室2の右端壁2bには,ベアリングホルダ27が取り付けられる。このベアリングホルダ27は,上記右端壁2bの開口部28にOリング29を介して嵌合される円筒部27aと,この円筒部27aの外端に一体に形成されるフランジ部27bとで構成され,そのフランジ部27bが上記右端壁2bにボルト30で固着される。円筒部27aの内周には,ボールベアリング31及びシール部材32が装置され,第2外側軸部18bは,このボールベアリング31によって回転自在に支承されると共に,シール部材32に外周面を密接させる。第2外側軸部18bには,上記ボールベアリング31の外側に隣接してディスタンスカラー34及び従動ギヤ33が嵌合されると共に,これらを固定すべくナット35が螺着される。上記従動ギヤ33に噛合する出力ピニオン(図示せず)を備えた前記アクチュエータ21が,前記フランジ部27bと共に前記ボルト30により前記右端壁2bに固着される。   Next, in FIGS. 4 and 7, a bearing holder 27 is attached to the right end wall 2 b of the surge chamber 2. The bearing holder 27 includes a cylindrical portion 27a fitted into the opening 28 of the right end wall 2b via an O-ring 29, and a flange portion 27b formed integrally with the outer end of the cylindrical portion 27a. The flange portion 27b is fixed to the right end wall 2b with a bolt 30. A ball bearing 31 and a seal member 32 are installed on the inner periphery of the cylindrical portion 27a, and the second outer shaft portion 18b is rotatably supported by the ball bearing 31 and closely contacts the outer peripheral surface of the seal member 32. . A distance collar 34 and a driven gear 33 are fitted to the second outer shaft portion 18b adjacent to the outer side of the ball bearing 31, and a nut 35 is screwed to fix them. The actuator 21 having an output pinion (not shown) meshing with the driven gear 33 is fixed to the right end wall 2b by the bolt 30 together with the flange portion 27b.

次に図4及び図8において,前記軸受壁2cには,中間軸部18cを回転自在に支承する2つ割りの軸受ブッシュ36と,この軸受ブッシュ36の外周面に接する2つ割りの,弾性材よりなるクッションリング37とが軸受ホルダ37より保持される。この軸受ホルダ37は合成樹脂製で,それに一体に形成されたリベット39により前記軸受壁2cに固定される。   Next, in FIGS. 4 and 8, the bearing wall 2c is divided into two bearing bushes 36 for rotatably supporting the intermediate shaft portion 18c, and two elastic bushings contacting the outer peripheral surface of the bearing bush 36. A cushion ring 37 made of a material is held by the bearing holder 37. The bearing holder 37 is made of synthetic resin and is fixed to the bearing wall 2c by a rivet 39 formed integrally therewith.

以上により,レバー軸18は,球状軸26,軸受ブッシュ36及びボールベアリング31の3点で安定良く支持され,第1,第2外側軸部18a,18b及び中間軸部18cの同軸性は,球状軸受26での第1外側軸部18aの首振りと,軸受ブッシュ36外周のクッションリング37の弾性変形により確保される。   As described above, the lever shaft 18 is stably supported at the three points of the spherical shaft 26, the bearing bush 36, and the ball bearing 31, and the coaxiality of the first and second outer shaft portions 18a, 18b and the intermediate shaft portion 18c is spherical. This is ensured by swinging the first outer shaft portion 18 a at the bearing 26 and elastic deformation of the cushion ring 37 on the outer periphery of the bearing bush 36.

次に,この実施例の作用について説明する。   Next, the operation of this embodiment will be described.

エンジンEの低速運転時には,アクチュエータ21によりレバー軸18を正転方向に駆動することにより弁体8を図2及び図5に示す閉じ位置Aに保持する。即ち,弁体8は,その弾性シール部材9をファンネル状の第2端部4a内周面に密接した状態に保持される。この2連スリーブ型弁体8によって第1及び第2吸気路3,4間は連続した導通状態とされるので,エンジンEの各気筒の吸気行程では,図示しないスロットルボディで流量を制御された空気は,空気入口1aからサージ室10に流入すると,第1,第2吸気路3,4及び弁体8よりなる長い管路を通してエンジンEに供給されることになる。したがって吸気マニフォルドMの内部は低速運転に適応する低速吸気モードとなり,エンジンEの低速出力性能を高めることができる。   During low-speed operation of the engine E, the valve shaft 8 is held at the closed position A shown in FIGS. 2 and 5 by driving the lever shaft 18 in the forward rotation direction by the actuator 21. That is, the valve body 8 is held in a state where the elastic seal member 9 is in close contact with the inner peripheral surface of the funnel-shaped second end portion 4a. Since the two-sleeve type valve element 8 makes the first and second intake passages 3 and 4 continuous, the flow rate is controlled by a throttle body (not shown) during the intake stroke of each cylinder of the engine E. When air flows into the surge chamber 10 from the air inlet 1a, the air is supplied to the engine E through a long pipe line including the first and second intake passages 3 and 4 and the valve body 8. Therefore, the inside of the intake manifold M becomes a low-speed intake mode adapted for low-speed operation, and the low-speed output performance of the engine E can be enhanced.

特に,弁体8がスリーブ型であるから,第1,第2吸気路3,4及び弁体8よりなる長い管路の管壁は,全体が連続的になって吸気の乱流を生じさせず,吸気抵抗の増加を防ぎ,エンジンEの低速出力性能の向上を図ることができる。   In particular, since the valve body 8 is a sleeve type, the pipe wall of the long pipe line made up of the first and second intake passages 3 and 4 and the valve body 8 is continuously continuous and causes turbulence of the intake air. Therefore, it is possible to prevent an increase in intake resistance and improve the low-speed output performance of the engine E.

また弁体8の弾性シール部材9がファンネル状の第2端部4a内周面に当接することにより,弁体8が第2端部4aに自動調心され,しかも,その際,同心円状の複数の環状リップ9aがファンネル状の第2端部4aに的確に密接するので,複数の環状リップ9aによるラビリンス効果により弁体8の閉鎖部の気密を保持し,サージ室2から前記管路への空気の侵入を確実に防ぐことができ,これもエンジンEの低速出力性能の向上に寄与する。   Further, the elastic sealing member 9 of the valve body 8 abuts on the inner peripheral surface of the funnel-shaped second end portion 4a, so that the valve body 8 is automatically aligned with the second end portion 4a. Since the plurality of annular lips 9a are accurately in close contact with the funnel-shaped second end 4a, the labyrinth effect of the plurality of annular lips 9a maintains the airtightness of the closed portion of the valve body 8, and the surge chamber 2 leads to the pipe line. The air can be reliably prevented from entering, which contributes to the improvement of the low-speed output performance of the engine E.

エンジンEの高速運転時には,アクチュエータ21によりレバー軸18を逆転方向に駆動することにより弁体8を図3及び図6に示す開き位置Bに保持する。即ち,弁体8は,ファンネル状の第2端部4aから離間した状態に保持される。その結果,第2吸気路4は,第2端部4aをサージ室2に直接開口させることになるから,エンジンEの各気筒の吸気行程では,図示しないスロットルボディで流量を制御された空気は,空気入口1aからサージ室10に流入すると,直ちに管路が短い第2吸気路4を通してエンジンEに吸入されることになる。したがって吸気マニフォルドMの内部は高速運転に適応する高速吸気モードとなり,エンジンEの高速出力性能を高めることができる。特に,第2吸気路4の入口,即ち第2端部4aはファンネル状をなしているから,第2吸気路4への吸気の流入がスムーズとなり,吸気効率を高め,エンジンEの高速出力性能の向上を図ることができる。このように第2吸気路4の入口をファンネル状に形成し得たことは,スリーブ型の弁体8の採用による。   During high-speed operation of the engine E, the valve body 8 is held at the open position B shown in FIGS. 3 and 6 by driving the lever shaft 18 in the reverse direction by the actuator 21. That is, the valve body 8 is held in a state of being separated from the funnel-shaped second end 4a. As a result, the second intake passage 4 opens the second end 4a directly into the surge chamber 2, so that in the intake stroke of each cylinder of the engine E, the air whose flow rate is controlled by a throttle body (not shown) When the air flows into the surge chamber 10 from the air inlet 1a, the engine E is immediately sucked into the engine E through the second intake passage 4 having a short pipeline. Therefore, the inside of the intake manifold M becomes a high-speed intake mode adapted to high-speed operation, and the high-speed output performance of the engine E can be enhanced. In particular, since the inlet of the second intake passage 4, that is, the second end 4 a has a funnel shape, the inflow of intake air into the second intake passage 4 is smooth, the intake efficiency is improved, and the high-speed output performance of the engine E Can be improved. The fact that the inlet of the second intake passage 4 can be formed in a funnel shape in this way is due to the adoption of the sleeve-type valve body 8.

ところで,弁体8の開閉作動は,アクチュエータ21がレバー軸18を正転又は逆転させ,作動レバー19が溝22の内側面22a,22bの一方を弁体8のトラニオン16に摺動させながらトラニオン16を弁体8の開閉方向Dに移動させることにより行われる。この場合,作動レバー19の,トラニオン16が摺動する溝22の相対向する内側面22a,22bは,図5及び図6に示すように,前記レバー軸18の軸線Yもしくはその近傍で交差すると共に,前記トラニオン16の外周面を挟むように延びる一対の平面J,Kに沿って相互に末広り状に配置されるので,図6に示すように,作動レバー19が弁体8を開き位置Bから閉じ位置Aへ回動しようとするときは,作動レバー19のトラニオン16への押力Fが,弁体8の開閉方向Dに対して斜め左側を向き,また図5に示すように,作動レバー19が弁体8を閉じ位置Aに押しつけるときは,作動レバー19のトラニオン16への押力Fが,弁体8の開閉方向D対して斜め右側を向くことになる。したがって,弁体8の或る中間開度位置において,作動レバー19のトラニオン16への押力Fの方向は,弁体8の開閉方向Dと一致することになり,このとき,作動レバー19の押力Fが弁体8に最も効率良く伝達し,アクチュエータ21の作動レバー19に対する駆動トルクは最小となる(図12の線G参照)。   By the way, the opening and closing operation of the valve body 8 is performed by the trunnion while the actuator 21 rotates the lever shaft 18 forward or backward and the operating lever 19 slides one of the inner side surfaces 22a and 22b of the groove 22 on the trunnion 16 of the valve body 8. This is performed by moving 16 in the opening / closing direction D of the valve body 8. In this case, the opposed inner side surfaces 22a and 22b of the groove 22 in which the trunnion 16 slides of the actuating lever 19 intersect at or near the axis Y of the lever shaft 18, as shown in FIGS. At the same time, they are arranged in a divergent shape along a pair of planes J, K extending so as to sandwich the outer peripheral surface of the trunnion 16, so that the actuating lever 19 opens the valve body 8 as shown in FIG. When attempting to rotate from B to the closed position A, the pushing force F of the actuating lever 19 to the trunnion 16 is directed obliquely to the left and right with respect to the opening / closing direction D of the valve body 8, and as shown in FIG. When the operating lever 19 presses the valve body 8 to the closed position A, the pressing force F of the operating lever 19 on the trunnion 16 is directed diagonally to the right with respect to the opening / closing direction D of the valve body 8. Therefore, at a certain intermediate opening position of the valve body 8, the direction of the pressing force F to the trunnion 16 of the operating lever 19 coincides with the opening / closing direction D of the valve body 8. The pressing force F is most efficiently transmitted to the valve body 8, and the driving torque of the actuator 21 with respect to the operating lever 19 is minimized (see the line G in FIG. 12).

かくして,レイアウト上の制約から,トラニオン16及びレバー軸18を,弁体8が開き位置Bにあるとき,弁体8の開閉方向Dと直交する平面L上もしくはその近傍に配置したにも拘らず,弁体8を開き位置Bから閉じ位置Aへ移動させる間,作動レバー19から弁体8のトラニオン16に押圧力を総合的に効率良く伝達することができて,アクチュエータ21の負担を軽減し,その小型化を図ることができる。   Thus, due to layout constraints, the trunnion 16 and the lever shaft 18 are arranged on or near the plane L perpendicular to the opening / closing direction D of the valve body 8 when the valve body 8 is in the open position B. During the movement of the valve body 8 from the open position B to the closed position A, the pressing force can be transmitted comprehensively and efficiently from the actuating lever 19 to the trunnion 16 of the valve body 8, thereby reducing the burden on the actuator 21. , It can be downsized.

しかも,前記溝22は,作動レバー19に末広り状に形成されるので,作動レバー19の鋳造等による型成形時,溝22からの離型が容易となり,その型成形性が良好である。その上,弁体8の開き位置Bでは,トラニオン16が溝22の比較的狭い部分に係合するようになるから,作動レバー19及びトラニオン16間のガタを防ぐことができる。   Moreover, since the groove 22 is formed in a divergent shape on the operating lever 19, it is easy to release from the groove 22 when the operating lever 19 is molded by casting or the like, and its moldability is good. In addition, since the trunnion 16 engages with a relatively narrow portion of the groove 22 at the opening position B of the valve body 8, backlash between the actuating lever 19 and the trunnion 16 can be prevented.

またレバー軸18には,作動レバー19及び弁体8の重量による負荷モーメントが作用するが,レバー軸18には,上記負荷モーメントに対する釣いモーメントを発生するバランスウエイト20が設けられるので,アクチュエータ21は,レバー軸18を軽快に作動することができ,これによってもアクチュエータ21の小出力化,延いては小型化を図ることができる。   In addition, a load moment due to the weight of the operating lever 19 and the valve body 8 acts on the lever shaft 18, but the lever shaft 18 is provided with a balance weight 20 that generates a fishing moment with respect to the load moment. The lever shaft 18 can be operated lightly, and this also makes it possible to reduce the output of the actuator 21 and to reduce the size.

しかもレバー軸18は,サージ室2の左右両側壁2a,2bと,サージ室2の内壁に一体に形成されて2組の弁体8間に突入する軸受壁2cとの3点でそれぞれ支持される第1及び第2外側軸部18a,18bと中間軸部18cと3分割されると共に,これらは前記バランスウエイト20を介してそれぞれ一体に連結されるので,レバー軸18の安定した支持を図りつゝ,レバー軸18の軽量化,延いては制御弁7の軽量化を図ることができる。   Moreover, the lever shaft 18 is supported at three points: left and right side walls 2a, 2b of the surge chamber 2 and a bearing wall 2c that is formed integrally with the inner wall of the surge chamber 2 and enters between the two sets of valve bodies 8. The first and second outer shaft portions 18a, 18b and the intermediate shaft portion 18c are divided into three parts, and these are integrally connected via the balance weight 20, so that the lever shaft 18 is stably supported. In other words, it is possible to reduce the weight of the lever shaft 18 and thus the control valve 7.

さらに上記3点で支持されるレバー軸18の第1,第2外側軸部18a,18b及び中間軸部18cの同軸性は,球状軸受26での第1外側軸部18aの首振りと,軸受ブッシュ36外周のクッションリング37の弾性変形により確保されるので,レバー軸18の回転摩擦抵抗の増加を抑えことができ,これもアクチュエータ21の小出力化,延いては小型化に寄与する。   Further, the coaxiality of the first and second outer shaft portions 18a and 18b and the intermediate shaft portion 18c of the lever shaft 18 supported at the three points described above is determined by the swing of the first outer shaft portion 18a in the spherical bearing 26 and the bearing. Since it is ensured by elastic deformation of the cushion ring 37 on the outer periphery of the bush 36, an increase in rotational frictional resistance of the lever shaft 18 can be suppressed, which also contributes to a reduction in the output of the actuator 21 and a reduction in size.

次に,図11に示す本発明の第2実施例について説明する。   Next, a second embodiment of the present invention shown in FIG. 11 will be described.

この第2実施例においても,前実施例と同様に,レイアウト上の制約から,トラニオン16及びレバー軸18は,弁体8が開き位置Bにあるとき,弁体8の開閉方向Dと直交する平面L上もしくはその近傍に配置される。作動レバー19の,トラニオン16が係合する溝22の形状が前実施例とは相違する。   Also in the second embodiment, due to layout restrictions, the trunnion 16 and the lever shaft 18 are orthogonal to the opening / closing direction D of the valve body 8 when the valve body 8 is in the open position B, as in the previous embodiment. It arrange | positions on the plane L or its vicinity. The shape of the groove 22 of the operating lever 19 with which the trunnion 16 engages is different from that of the previous embodiment.

即ち,作動レバー19の溝22の相対向する内側面22a,22bは,これら内側面22a,22bのトラニオン16外周面との接触面が,前記弁体8の開閉位置に拘らず常に弁体8の開閉方向Dと直交するように,連続曲面に形成される。   That is, the inner surfaces 22a and 22b of the groove 22 of the actuating lever 19 facing each other are always in contact with the outer peripheral surface of the trunnion 16 of the inner surfaces 22a and 22b regardless of the opening / closing position of the valve body 8. It is formed in a continuous curved surface so as to be orthogonal to the opening / closing direction D.

その他の構成は,前実施例と同様であるので,図11中,前実施例との対応部分には,同一の参照符号を付して,重複する説明を省略する。   Since the other configuration is the same as that of the previous embodiment, portions corresponding to those of the previous embodiment in FIG. 11 are denoted by the same reference numerals, and redundant description is omitted.

この第2実施例によれば,作動レバー19を回動したとき,作動レバー19の溝22の相対向する内側面22a,22bの何れか一方と弁体8のトラニオン16の外周面とが摺動しながら,弁体8を開閉方向Dに移動させるが,その際,溝22の内側面22a,22bのトラニオン16外周面との接触面が,前記弁体8の開閉位置に拘らず常に前記弁体8の開閉方向Dと直交するため,常に,作動レバー19のトラニオン16への押力Fの方向を弁体8の開閉方向Dと一致させることができ,したがって作動レバー19からトラニオン16に押圧力を常に高効率で伝達することができて,アクチュエータ21の負担を軽減し,その小型化を図ることができる。   According to the second embodiment, when the operating lever 19 is rotated, one of the opposed inner side surfaces 22a and 22b of the groove 22 of the operating lever 19 and the outer peripheral surface of the trunnion 16 of the valve body 8 slide. While moving, the valve body 8 is moved in the opening / closing direction D. At this time, the contact surfaces of the inner surfaces 22a and 22b of the groove 22 with the outer peripheral surface of the trunnion 16 are always the above-mentioned regardless of the opening / closing position of the valve body 8. Since it is orthogonal to the opening / closing direction D of the valve body 8, the direction of the pressing force F of the actuating lever 19 to the trunnion 16 can always coincide with the opening / closing direction D of the valve body 8, so The pressing force can always be transmitted with high efficiency, the load on the actuator 21 can be reduced, and the size can be reduced.

本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば,本発明は,上記4気筒以外の多気筒エンジン用にも適用することができる。また前記第1実施例においては,トラニオン16及びレバー軸18を,弁体8が閉じ位置にあるとき,該弁体8の開閉方向Dと直交する平面L上もしくはその近傍に配置するように設計変更することも可能である。   The present invention is not limited to the above embodiment, and various design changes can be made without departing from the scope of the invention. For example, the present invention can be applied to a multi-cylinder engine other than the above-described four cylinders. Further, in the first embodiment, the trunnion 16 and the lever shaft 18 are designed to be arranged on or near the plane L perpendicular to the opening / closing direction D of the valve body 8 when the valve body 8 is in the closed position. It is also possible to change.

本発明の第1実施例に係る吸気制御装置を備える吸気マニフォルドの斜視図。1 is a perspective view of an intake manifold including an intake control device according to a first embodiment of the present invention.


図1の2−2線断面図(制御弁の閉じ状態を示す。)。FIG. 2 is a sectional view taken along line 2-2 in FIG. 1 (showing a closed state of the control valve). 制御弁の開き状態を示す,図2との対応図。FIG. 3 is a view corresponding to FIG. 2 showing an open state of the control valve. 図2の4−4線断面図。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 図5図4の5−5線断面図。5 is a sectional view taken along line 5-5 in FIG. 制御弁の開き状態を示す,図5との対応図。FIG. 6 is a view corresponding to FIG. 5 showing an open state of the control valve. 図4の7−7線断面図。FIG. 7 is a cross-sectional view taken along line 7-7 in FIG. 図4の8−8線断面図。FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. 4. 図4の9−9線断面図。FIG. 9 is a sectional view taken along line 9-9 in FIG. 4. 弁体に付設される弾性シール部材の斜視図。The perspective view of the elastic seal member attached to a valve body. 本発明の第2実施例を示す,図5との対応図。FIG. 6 is a view corresponding to FIG. 5 showing a second embodiment of the present invention. 弁体の開度と作動レバーのトルク(負荷)との関係を示す特性線図。The characteristic diagram which shows the relationship between the opening degree of a valve body, and the torque (load) of an action | operation lever.

符号の説明Explanation of symbols

D・・・・・弁体の開閉方向
E・・・・・エンジン
J,K,L・・・平面
M・・・・・吸気マニフォルド
Y・・・・・レバー軸の軸線
1a・・・・空気入口
2・・・・・サージ室
3・・・・・第1吸気路
3a・・・・同上流端部
3b・・・・同下流端部(第1端部)
4・・・・・第2吸気路
4a・・・・同上流端部(第2端部)
4b・・・・同下流端部
8・・・・・弁体
16・・・・トラニオン
18・・・・レバー軸
19・・・・作動レバー
21・・・・アクチュエータ
22・・・・溝
22a,22b・・・溝の内側面
D ... Opening / closing direction of valve body E ... Engines J, K, L ... Plane M ... Intake manifold Y ... Lever shaft axis 1a ... Air inlet 2... Surge chamber 3... First intake passage 3 a... Upstream end 3 b... Downstream end (first end)
4... Second intake passage 4 a... Upstream end (second end)
4b ... downstream end 8 ... valve body 16 ... trunnion 18 ... lever shaft 19 ... actuating lever 21 ... actuator 22 ... groove 22a , 22b ... inner surface of the groove

Claims (2)

空気入口(1a)に連通するサージ室(2)と,このサージ室(2)に上流端部(3a)及び下流端部(3b)を開口する第1吸気路(3)と,この第1吸気路(3)の下流端部(3b)に間隔を開けて対向するように上流端部(4a)を前記サージ室(2)に開口すると共に下流端部(4b)をエンジン(E)の吸気ポートに連ねる第2吸気路(4)とで吸気マニフォルド(M)を構成し,前記第1及び第2吸気路(3,4)の対向端部(3b,4a)の一方の第1端部(3b)に,他方の第2端部(4a)に接する閉じ位置(A)及び該第2端部(4a)から離間する開き位置(B)間を移動するスリーブ型の弁体(8)を摺動自在に嵌合し,この弁体(8)の外側面にトラニオン(16)を突設し,前記吸気マニフォルド(M)に回転自在に支持されるレバー軸(18)に,前記トラニオン(16)に係合する溝(22)を有する作動レバー(19)を連結し,この作動レバー(19)に,それを介して前記弁体(8)を開閉するアクチュエータ(21)を連結してなり,前記トラニオン(16)及びレバー軸(18)を,前記弁体(8)が閉じ位置(A)又は開き位置(B)にあるとき,該弁体(8)の開閉方向(D)と直交する平面(L)上もしくはその近傍に配置した,エンジンの吸気制御装置であって,
前記溝(22)の相対向する内側面(22a,22b)を,前記レバー軸(18)の軸線(Y)もしくはその近傍で交差すると共に,前記トラニオン(16)の外周面を挟むように延びる一対の平面(J,K)に沿って配置したことを特徴とする,エンジンの吸気制御装置。
A surge chamber (2) communicating with the air inlet (1a), a first intake passage (3) opening the upstream end (3a) and the downstream end (3b) into the surge chamber (2), and the first The upstream end (4a) is opened to the surge chamber (2) so as to face the downstream end (3b) of the intake passage (3) with a space therebetween, and the downstream end (4b) is connected to the engine (E). An intake manifold (M) is constituted by the second intake passage (4) connected to the intake port, and one of the first ends of the opposed end portions (3b, 4a) of the first and second intake passages (3, 4). A sleeve-type valve body (8) that moves between a closed position (A) in contact with the other second end (4a) and an open position (B) that is spaced apart from the second end (4a). ) Is slidably fitted, and a trunnion (16) is projected from the outer surface of the valve body (8) and rotated to the intake manifold (M). An operating lever (19) having a groove (22) that engages with the trunnion (16) is connected to a lever shaft (18) that is currently supported, and the valve is connected to the operating lever (19) via the operating lever (19). The actuator (21) for opening and closing the body (8) is connected, and the valve body (8) is in the closed position (A) or the open position (B) with respect to the trunnion (16) and the lever shaft (18). An engine intake control device disposed on or near a plane (L) perpendicular to the opening and closing direction (D) of the valve body (8),
The inner surfaces (22a, 22b) facing each other of the groove (22) intersect at or near the axis (Y) of the lever shaft (18) and extend so as to sandwich the outer peripheral surface of the trunnion (16). An intake control device for an engine, which is arranged along a pair of planes (J, K).
空気入口(1a)に連通するサージ室(2)と,このサージ室(2)の一側壁を迂回して上流端部(3a)及び下流端部(3b)を該サージ室(2)に開口する第1吸気路(3)と,この第1吸気路(3)の下流端部(3b)に間隔を開けて対向するように上流端部(4a)を前記サージ室(2)に開口すると共に下流端部(4b)をエンジン(E)の吸気ポートに連ねる第2吸気路(4)とで吸気マニフォルド(M)を構成し,前記第1及び第2吸気路(3,4)の対向端部(3b,4a)の一方の第1端部(3b)に,他方の第2端部(4a)に接する閉じ位置(A)及び該第2端部(4a)から離間する開き位置(B)間を移動するスリーブ型の弁体(8)を摺動自在に嵌合し,この弁体(8)の外側面にトラニオン(16)を突設し,前記吸気マニフォルド(M)に回転自在に支持されるレバー軸(18)に,前記トラニオン(16)に係合する溝(22)を有する作動レバー(19)を連結し,この作動レバー(19)に,それを介して前記弁体(8)を開閉するアクチュエータ(21)を連結してなる,エンジンの吸気制御装置であって,
前記溝(22)の相対向する内側面(22a,22b)を,これら内側面(22a,22b)の前記トラニオン(16)外周面との接触面が,前記弁体(8)の開閉位置に拘らず常に前記弁体(8)の開閉方向(D)と直交するように,連続曲面に形成したことを特徴とする,エンジンの吸気制御装置。
A surge chamber (2) communicating with the air inlet (1a) and an upstream end (3a) and a downstream end (3b) are opened to the surge chamber (2) by bypassing one side wall of the surge chamber (2). The upstream end (4a) is opened to the surge chamber (2) so as to face the first intake path (3) and the downstream end (3b) of the first intake path (3) with a space therebetween. In addition, an intake manifold (M) is formed by the second intake passage (4) connecting the downstream end (4b) to the intake port of the engine (E), and the first and second intake passages (3, 4) are opposed to each other. A closed position (A) in contact with the other second end (4a) on one first end (3b) of the ends (3b, 4a) and an open position (separated from the second end (4a)) B) A sleeve-type valve element (8) moving between them is slidably fitted, and a trunnion (16) is projected from the outer surface of the valve element (8). An operating lever (19) having a groove (22) engaged with the trunnion (16) is connected to a lever shaft (18) rotatably supported by the intake manifold (M), and the operating lever (19) In addition, an intake control device for an engine, which is connected to an actuator (21) for opening and closing the valve body (8) via it,
The contact surfaces of the inner surfaces (22a, 22b) facing each other of the groove (22) and the outer surface of the trunnion (16) of the inner surfaces (22a, 22b) are at the open / close position of the valve body (8) Regardless of this, the intake control device for an engine is characterized by being formed in a continuous curved surface so as to be always orthogonal to the opening / closing direction (D) of the valve body (8).
JP2007159338A 2007-06-15 2007-06-15 Intake control device for engine Pending JP2008309102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159338A JP2008309102A (en) 2007-06-15 2007-06-15 Intake control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159338A JP2008309102A (en) 2007-06-15 2007-06-15 Intake control device for engine

Publications (1)

Publication Number Publication Date
JP2008309102A true JP2008309102A (en) 2008-12-25

Family

ID=40236916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159338A Pending JP2008309102A (en) 2007-06-15 2007-06-15 Intake control device for engine

Country Status (1)

Country Link
JP (1) JP2008309102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079733A (en) * 2016-11-14 2018-05-24 トヨタ自動車株式会社 On-vehicle structure of electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079733A (en) * 2016-11-14 2018-05-24 トヨタ自動車株式会社 On-vehicle structure of electronic apparatus

Similar Documents

Publication Publication Date Title
JP4987971B2 (en) Turbocharger with dual Westgate
JP6460012B2 (en) Valve device
JPH08240123A (en) Suction system
US7418937B2 (en) Engine air intake arrangement for a vehicle
US9109713B2 (en) Control device and use thereof
JP2009114997A (en) Bypass-intake-flow control apparatus
KR970703485A (en) EGR VALVE WITH FORCE BALANCED PINTLE WITH POWER BALANCE PINLE
JP2006002601A (en) Intake manifold and its manufacturing method
EP2336527B1 (en) Air intake apparatus for internal combustion engine
JP2008309102A (en) Intake control device for engine
US7997247B2 (en) Engine intake control system
JP4719716B2 (en) Engine intake control device
JP2008298056A (en) Engine air-intake- controller
US6196178B1 (en) Air intake apparatus for internal combustion engine
JP2006161885A (en) Bearing structure and intake device
JP4790665B2 (en) Engine intake control device
JP2008309101A (en) Intake control device for engine
JP2008309100A (en) Intake control device for engine
JP4869799B2 (en) Idle air flow control device
JP2007332789A (en) Intake air throttling device
JP2008309104A (en) Intake control device for engine
JP7083746B2 (en) Intake device
JP2008309105A (en) Intake control device for engine
JP2023023165A (en) valve device
JP5610217B2 (en) Intake device for internal combustion engine