JP2008308607A - Method for manufacturing heat storage material - Google Patents

Method for manufacturing heat storage material Download PDF

Info

Publication number
JP2008308607A
JP2008308607A JP2007158719A JP2007158719A JP2008308607A JP 2008308607 A JP2008308607 A JP 2008308607A JP 2007158719 A JP2007158719 A JP 2007158719A JP 2007158719 A JP2007158719 A JP 2007158719A JP 2008308607 A JP2008308607 A JP 2008308607A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
water
latent heat
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007158719A
Other languages
Japanese (ja)
Other versions
JP5328112B2 (en
Inventor
Yoshinao Kono
良直 光野
Koji Koyanagi
幸司 小柳
Hodaka Yamamuro
穂高 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007158719A priority Critical patent/JP5328112B2/en
Publication of JP2008308607A publication Critical patent/JP2008308607A/en
Application granted granted Critical
Publication of JP5328112B2 publication Critical patent/JP5328112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an inorganic matter-deposited heat storage material simply and inexpensively, without discharging a harmful matter, that permits controlling a temperature rise upon setting a hydraulic composition and being uniformly mixed with the hydraulic composition. <P>SOLUTION: This inorganic matter-deposited heat storage material of an average particle diameter of 5-100 μm, in which a water-insoluble inorganic fine particle is melt fixed on a surface of a latent heat storage material, is manufactured by way of mixing the latent heat storage material containing at least a ester-structural compound of a melting point of 40-80°C with the water-insoluble inorganic fine particle, at a temperature higher than a melting temperature of the latent heat storage material in presence of water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、住宅等の蓄熱構造に使用される蓄熱材の製造方法、および該製造方法により得られた蓄熱材を含有する水硬性組成物に関する。   The present invention relates to a method for producing a heat storage material used for a heat storage structure such as a house, and a hydraulic composition containing the heat storage material obtained by the production method.

物質や空間を冷却したり加温したりする時に使用される蓄熱材として、物質の相変化に伴う潜熱を利用して蓄熱を行う蓄熱材が広く利用されている。なかでも、相変化を起こし蓄熱を行う潜熱物質が粒子化されてなるものは、取り扱いが容易で、成形体等に配合してもより均一に分散できるという利点を有している。   2. Description of the Related Art As a heat storage material used when cooling or heating a substance or a space, a heat storage material that stores heat using latent heat accompanying a phase change of the substance is widely used. Among them, a material obtained by granulating a latent heat substance that causes phase change and stores heat has an advantage that it is easy to handle and can be dispersed more uniformly even if blended into a molded body or the like.

従来、この種の粒子化された潜熱蓄熱材の製法としては、例えば、特許文献1では、潜熱蓄熱物質であるパラフィンを適当な乳化剤と共に水中で分散させ、O/Wエマルジョンを調製する方法、パラフィンを融解点以上に加熱して液状となし、これを加熱した多孔質無機物質小球に含浸させて調製する方法、パラフィンビーズ表面に無機超微粉末を吸着固定させて調製する方法が挙げられている。更に特許文献2では、複合エマルジョン法やインサイチュ重合法といったマイクロカプセル化の製法などが挙げられている。
特許2740873号 特開2002−114553号公報
Conventionally, as a method for producing this type of particulate latent heat storage material, for example, Patent Document 1 discloses a method of preparing an O / W emulsion by dispersing paraffin, which is a latent heat storage material, in water together with an appropriate emulsifier. A method of preparing a liquid by heating it above the melting point and impregnating it with heated porous inorganic substance spheres, and a method of preparing by adsorbing and fixing inorganic ultrafine powder on the surface of paraffin beads are mentioned. Yes. Further, Patent Document 2 includes a microencapsulation method such as a composite emulsion method and an in situ polymerization method.
Patent 2740873 JP 2002-114553 A

しかしながら、前記O/Wエマルジョンや前記マイクロカプセル型蓄熱材は、蓄熱物質として主にパラフィン等の有機物質を用い、乳化剤やカプセル化物質(シェル物質)も有機系化合物が使用されていることが多い。これらの構成物からなる蓄熱材の粒子密度は水よりも軽く成形時に粒子が浮遊し、不均一分散となり粒子が局在化する傾向がある。それにより硬化成形体の強度低下や物性のばらつきが起こる傾向がある。また、これらの製造方法では、例えば、乳化剤の種類と濃度、乳化時の乳化液の温度、乳化比率(水相と油相との体積比率)、乳化機、分散機と称される微粒化装置の運転条件(回転数、処理時間)等の条件設定が必要となりうることから、これらの方法では、安定して製造することが技術的に難しく、製造コストが高くなり好ましくない。さらに、マイクロカプセル化にはコアとシェル部分から構成されているため、カプセル化の製法は一般に煩雑であり、製法によっては有害物質(ホルマリンなど)が残存し、これが成形体から放出されるという環境上の問題も懸念される。   However, the O / W emulsion and the microcapsule type heat storage material often use an organic material such as paraffin as the heat storage material, and the emulsifier and the encapsulated material (shell material) often use an organic compound. . The particle density of the heat storage material composed of these components is lighter than water, and particles tend to float at the time of molding, become non-uniformly dispersed, and the particles tend to localize. As a result, the strength of the cured molded body tends to decrease and the physical properties vary. In these production methods, for example, the type and concentration of the emulsifier, the temperature of the emulsified liquid during emulsification, the emulsification ratio (volume ratio of the aqueous phase to the oil phase), an atomizer called an emulsifier and a disperser Therefore, it is necessary to set conditions such as the operating conditions (the number of revolutions and the processing time), and it is technically difficult to stably manufacture these methods, which is not preferable because the manufacturing cost increases. Furthermore, since the microencapsulation consists of a core and a shell, the encapsulation process is generally complicated, and depending on the process, harmful substances (formalin, etc.) may remain and be released from the molded body. The above problems are also a concern.

本発明は、上記問題に鑑み、簡便且つ安価に粒径がほぼ均一な蓄熱材が製造でき、しかも、水硬性組成物の硬化時の温度上昇を抑制でき、且つ水硬性組成物に均一に配合でき、有害物質の放出もない蓄熱材が得られる製造方法を提供することを目的とするものである。   In view of the above problems, the present invention can produce a heat storage material having a substantially uniform particle size in a simple and inexpensive manner, and can suppress an increase in temperature when the hydraulic composition is cured, and is uniformly blended in the hydraulic composition. It is an object of the present invention to provide a production method capable of obtaining a heat storage material that is capable of producing no harmful substances.

本発明は、融点40〜80℃のエステル構造を有する化合物を少なくとも含有する潜熱蓄熱物質と水難溶性無機微粒子とを、前記潜熱蓄熱物質の融点又は固相転移温度以上の温度で、水の共存下で混合して、前記潜熱蓄熱物質の表面に前記水難溶性無機微粒子を付着させる工程を有する、平均粒径5〜100μmの粒子からなる蓄熱材の製造方法に関する。   In the present invention, the latent heat storage material containing at least a compound having an ester structure with a melting point of 40 to 80 ° C. and the hardly water-soluble inorganic fine particles are mixed with water at a temperature equal to or higher than the melting point or the solid phase transition temperature of the latent heat storage material. It is related with the manufacturing method of the heat storage material which consists of particle | grains with an average particle diameter of 5-100 micrometers which has the process of adhering to the surface of the said latent-heat thermal storage substance, and making the said water hardly soluble inorganic fine particle adhere.

また、本発明は、上記本発明の製造方法により製造された蓄熱材と水硬性粉体とを含有する水硬性組成物に関する。   Moreover, this invention relates to the hydraulic composition containing the thermal storage material manufactured by the manufacturing method of the said invention and hydraulic powder.

本発明に於ける蓄熱材は、例えば、潜熱蓄熱物質の融点又は固相転移温度が30〜90℃であるとともに、その潜熱蓄熱物質には融点40〜80℃のエステル構造を有する化合物を少なくとも含有することを必須としてなるコア物質を溶解させたものに、水難溶性の無機微粒子と水とをその潜熱蓄熱物質の融点又は固相転移温度以上の温度でよく分散させた溶液を加え、素早く剪断力を伴った分散処理を施して微粒化させると同時に、蓄熱物質の粒子表面に水難溶性の無機微粒子を融着固定させることで被覆化させて得られるものである。   The heat storage material in the present invention has, for example, a latent heat storage material having a melting point or solid phase transition temperature of 30 to 90 ° C., and the latent heat storage material contains at least a compound having an ester structure with a melting point of 40 to 80 ° C. To a solution in which the core material that is essential to be dissolved is added, a solution in which poorly water-soluble inorganic fine particles and water are well dispersed at a temperature equal to or higher than the melting point or solid phase transition temperature of the latent heat storage material is added, and a rapid shear force is added. In addition, the particles are obtained by carrying out a dispersion treatment accompanied with water and, at the same time, coating the surface of the heat storage material by fusing and fixing water-insoluble inorganic fine particles to the surface of the particles.

本発明により、簡便且つ安価に粒径がほぼ均一な蓄熱材が製造でき、しかも、水硬性組成物の硬化時の温度上昇を抑制でき、且つ水硬性組成物に均一に配合でき、有害物質の放出もない蓄熱材が得られる製造方法が提供される。   According to the present invention, a heat storage material having a substantially uniform particle size can be produced easily and inexpensively, and the temperature rise during curing of the hydraulic composition can be suppressed, and can be uniformly blended in the hydraulic composition. There is provided a production method capable of obtaining a heat storage material that is not released.

より詳細には、本発明によれば以下の効果が得られる。
(1)水難溶性無機微粒子が付着した蓄熱材を用いることで、水硬性組成物であるセメントペースト、モルタル、コンクリート等の水和発熱が抑制できると共に、有機系のものと比べ凝結遅延への影響が少ない。例えば、蓄熱材をセメントに対して6%程度添加すると、硬化時の温度上昇を7〜9%程度低減できる。また、原材料に有害物質を用いる必要がないので、蓄熱材から有害物質の放出がない成形体が得られる。
(2)水難溶性無機微粒子を用いることで、粒径が10μm程度でほぼ均一な水より重い蓄熱材粒子が製造できる。この蓄熱材は成形体中の安定性の向上に寄与すると考えられ、このことにより、水硬性組成物中により均一に蓄熱材を分散できるため、硬化体の表面もプレーンと比べ損傷のないものができる。
(3)蓄熱材の蓄熱物質に、融点40〜80℃のエステル構造を有する化合物を少なくとも含有する潜熱蓄熱物質を用いることで、極性の低い炭化水素化合物の分散安定化が容易にできる。これにより、安価に水硬性組成物への適用性の高い潜熱蓄熱材を提供できることが可能になる。
More specifically, according to the present invention, the following effects can be obtained.
(1) By using a heat storage material to which poorly water-soluble inorganic fine particles are attached, it is possible to suppress the hydration heat generation of cement paste, mortar, concrete, etc., which are hydraulic compositions, and to affect the setting delay compared to organic ones. Less is. For example, if a heat storage material is added about 6% with respect to cement, the temperature rise at the time of hardening can be reduced about 7 to 9%. Moreover, since it is not necessary to use a toxic substance as a raw material, a molded body in which no toxic substance is released from the heat storage material can be obtained.
(2) By using poorly water-soluble inorganic fine particles, heat storage material particles having a particle size of about 10 μm and heavier than substantially uniform water can be produced. This heat storage material is considered to contribute to the improvement of the stability in the molded body, and this enables the heat storage material to be dispersed more uniformly in the hydraulic composition, so that the surface of the cured body is also less damaged than the plain. it can.
(3) By using a latent heat storage material containing at least a compound having an ester structure with a melting point of 40 to 80 ° C. as the heat storage material of the heat storage material, it is possible to easily stabilize the dispersion of a hydrocarbon compound having a low polarity. Thereby, it becomes possible to provide a latent heat storage material with high applicability to the hydraulic composition at low cost.

本発明の蓄熱材の製造方法に用いられる潜熱蓄熱物質は、融点40〜80℃のエステル構造を有する化合物(以下、エステル化合物という)を少なくとも含有する。   The latent heat storage material used in the method for manufacturing a heat storage material of the present invention contains at least a compound having an ester structure with a melting point of 40 to 80 ° C. (hereinafter referred to as an ester compound).

本発明に用いられる潜熱蓄熱物質は、融点又は固相転移温度が30〜90℃であることが好ましい。また、潜熱蓄熱物質は、親油性物質であることが好ましい。融点又は固相転移温度は、実施例に記載の方法で測定することができる。潜熱蓄熱物質に複数のエステル化合物を用いる場合や、エステル化合物と非エステル成分を併用した混合物の場合には、固相転移温度を用いる。潜熱蓄熱物質が、融点又は固相転移温度で固相から液相に変化することにより、成形体の温度上昇を抑制することができる。ここで、本発明における固相転移温度は、実施例に記載したDSC測定による融解温度のトップピークの値をいう。   The latent heat storage material used in the present invention preferably has a melting point or solid phase transition temperature of 30 to 90 ° C. The latent heat storage material is preferably a lipophilic material. The melting point or solid phase transition temperature can be measured by the method described in Examples. In the case of using a plurality of ester compounds as the latent heat storage material, or in the case of a mixture using both ester compounds and non-ester components, the solid phase transition temperature is used. When the latent heat storage material changes from the solid phase to the liquid phase at the melting point or the solid phase transition temperature, the temperature rise of the molded body can be suppressed. Here, the solid phase transition temperature in the present invention refers to the value of the top peak of the melting temperature by DSC measurement described in Examples.

エステル化合物を潜熱蓄熱物質とすることで、粒子の製造の際に粒子の合一を生じることなく、粒径分布がほぼ均一な粒子が得られる。また、エステル化合物により後述する炭化水素化合物を安定して含有させることができる。エステル化合物は、親油性物質であることが好ましい。また、エステル化合物の融点は40〜80℃である。また、エステル化合物の融解熱量は60J/g以上であることが好ましく、80J/g以上であることがさらに好ましい。本発明に係る潜熱蓄熱物質も融解熱量が60J/g以上であることが好ましく、80J/g以上であることがさらに好ましい。融解熱量は、実施例に記載の方法で測定することができる。エステル化合物としては、炭素数1〜18の1価アルコールと炭素数12〜28の1価カルボン酸とのエステルが挙げられ、具体的には、ミリスチン酸ミリスチル、ミリスチン酸パルミチル、ミリスチン酸ステアリル、パルミチン酸パルミチル、パルミチン酸ミリスチル、パルミチン酸ステアリル、ステアリン酸ミリスチル、ステアリン酸パルミチル、ステアリル酸ステアリル等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。エステル化合物の潜熱蓄熱物質中の含有量は、5〜100重量%、更に10〜100重量%が好ましい。   By using the ester compound as a latent heat storage material, particles having a substantially uniform particle size distribution can be obtained without causing coalescence of particles during the production of the particles. Moreover, the hydrocarbon compound mentioned later can be stably contained with an ester compound. The ester compound is preferably a lipophilic substance. Moreover, melting | fusing point of an ester compound is 40-80 degreeC. The heat of fusion of the ester compound is preferably 60 J / g or more, and more preferably 80 J / g or more. The latent heat storage material according to the present invention preferably has a heat of fusion of 60 J / g or more, and more preferably 80 J / g or more. The amount of heat of fusion can be measured by the method described in the Examples. Examples of the ester compound include esters of a monohydric alcohol having 1 to 18 carbon atoms and a monovalent carboxylic acid having 12 to 28 carbon atoms. Specifically, myristyl myristate, palmityl myristate, stearyl myristate, and palmitic acid. Examples include palmitic acid palmitate, myristyl palmitate, stearyl palmitate, myristyl stearate, palmityl stearate, stearyl stearate, and the like. These may be used alone or in combination of two or more. The content of the ester compound in the latent heat storage material is preferably 5 to 100% by weight, more preferably 10 to 100% by weight.

潜熱蓄熱物質は、前記エステル化合物以外の成分(以下、非エステル成分という)を含有することもできる。非エステル成分は、親油性物質のものが好ましく、また、融点又は固相転移温度が30〜90℃のものが好ましく、40〜80℃のものがさらに好ましい。また、融解熱量が60J/g以上であるものが好ましく、80J/g以上であるものがさらに好ましい。非エステル成分としては、潜熱が大きく、セメントスラリー等の強アルカリ中でも安定性が高い点で炭化水素化合物が好ましい。炭化水素化合物としては、炭素17〜30の直鎖又は分岐状の炭化水素化合物が挙げられ、例えばヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘンエイコサン、ドコサン、テトラコサン、ペンタコサン、トリアコンタン、ペンタトリアコンタン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。また、非エステル成分の潜熱蓄熱物質中の含有量は、0〜95重量%、更に0〜90重量%が好ましい。非エステル成分として炭化水素化合物を用いる場合、炭化水素化合物/エステル化合物の重量比は0/100〜95/5、更に0/100〜90/10が好ましい。   The latent heat storage material can also contain components other than the ester compound (hereinafter referred to as non-ester components). The non-ester component is preferably a lipophilic substance, preferably has a melting point or solid phase transition temperature of 30 to 90 ° C, more preferably 40 to 80 ° C. Further, those having a heat of fusion of 60 J / g or more are preferred, and those having a heat of fusion of 80 J / g or more are more preferred. The non-ester component is preferably a hydrocarbon compound because it has a large latent heat and is highly stable even in a strong alkali such as cement slurry. Examples of the hydrocarbon compound include linear or branched hydrocarbon compounds having 17 to 30 carbon atoms, such as heptadecane, octadecane, nonadecane, eicosan, heneicosan, docosan, tetracosan, pentacosan, triacontane, pentatriacontane and the like. It is done. These may be used alone or in combination of two or more. Further, the content of the non-ester component in the latent heat storage material is preferably 0 to 95% by weight, more preferably 0 to 90% by weight. When a hydrocarbon compound is used as the non-ester component, the weight ratio of hydrocarbon compound / ester compound is preferably 0/100 to 95/5, more preferably 0/100 to 90/10.

なお、エステル化合物、非エステル成分、いずれについても、親油性物質とは、水への溶解度が3重量%以下のものをいう。   In addition, for both the ester compound and the non-ester component, the lipophilic substance means one having a solubility in water of 3% by weight or less.

本発明に用いられる水難溶性無機微粒子を構成する化合物は、リン酸三カルシウム、ヒドロキシアパタイト、塩基性炭酸マグネシウム、酸化マグネシウム、酸化チタン、カオリン等が挙げられ、これらの中でも潜熱蓄熱物質への付着性の観点からリン酸三カルシウム、ヒドロキシアパタイト、及び塩基性炭酸マグネシウムから選ばれる一種以上の化合物を含む粒子が好ましい。これらは単独で用いてもよく、2種以上で併用してもよい。また、粒子は、前記無機化合物そのものの粒子(一次粒子)でも、それらが凝集等した二次粒子のいずれでもよい。ここで、水難溶性とは、20℃での水への溶解度が1重量%以下のものをいう。   Examples of the compound constituting the poorly water-soluble inorganic fine particles used in the present invention include tricalcium phosphate, hydroxyapatite, basic magnesium carbonate, magnesium oxide, titanium oxide, kaolin, etc. Among these, adhesion to latent heat storage materials From the above viewpoint, particles containing one or more compounds selected from tricalcium phosphate, hydroxyapatite, and basic magnesium carbonate are preferable. These may be used alone or in combination of two or more. The particles may be either particles of the inorganic compound itself (primary particles) or secondary particles in which they are aggregated. Here, poorly water-soluble means that the solubility in water at 20 ° C. is 1% by weight or less.

水難溶性無機微粒子の平均粒径は、0.1〜20μm、更に0.2〜15μmが好ましい。この平均粒径は、実施例の方法で測定することができる。本発明で製造される蓄熱材は、潜熱蓄熱物質に水難溶性無機微粒子を付着させた構造を有するものである。潜熱蓄熱物質の融点又固相転移温度以上の温度で、水の共存下で混合することで、潜熱蓄熱物質が液状化し、その界面に水難溶性無機微粒子が接触、付着する。そして、常温に戻すと潜熱蓄熱物質が固化することで潜熱蓄熱物質と水難溶性無機微粒子が強固に付着する。そして、水難溶性無機微粒子が外側に配置された構造であることが、当該蓄熱材を水硬性組成物に添加した際の成形体中での安定性の向上に寄与しているものと考えられる。   The average particle diameter of the water-insoluble inorganic fine particles is preferably 0.1 to 20 μm, more preferably 0.2 to 15 μm. This average particle diameter can be measured by the method of an Example. The heat storage material produced in the present invention has a structure in which poorly water-soluble inorganic fine particles are adhered to a latent heat storage material. By mixing in the presence of water at a temperature equal to or higher than the melting point or solid phase transition temperature of the latent heat storage material, the latent heat storage material liquefies, and poorly water-soluble inorganic fine particles come into contact with and adhere to the interface. And if it returns to normal temperature, a latent heat storage material solidifies and a latent heat storage material and water hardly soluble inorganic fine particles adhere firmly. And it is thought that it is the structure where the poorly water-soluble inorganic fine particle is arrange | positioned on the outer side, and contributes to the improvement in the stability in a molded object at the time of adding the said thermal storage material to a hydraulic composition.

本発明の製造方法において、水難溶性無機微粒子は、成形体中の安定性の観点から潜熱蓄熱物質100重量部に対して、6〜100重量部、更に、10〜50重量部の割合で用いられることが好ましい。   In the production method of the present invention, the hardly water-soluble inorganic fine particles are used in a ratio of 6 to 100 parts by weight, and further 10 to 50 parts by weight with respect to 100 parts by weight of the latent heat storage material from the viewpoint of stability in the molded body. It is preferable.

本発明の製造方法では、潜熱蓄熱物質と水難溶性無機微粒子の混合に際して、温度条件以外の制約が少なく、従来法にあった微粒化装置の運転条件等の問題は解消される。   In the production method of the present invention, there are few restrictions other than the temperature condition when mixing the latent heat storage material and the poorly water-soluble inorganic fine particles, and problems such as the operating conditions of the atomization apparatus in the conventional method are solved.

本発明の製造方法では、潜熱蓄熱物質と水難溶性無機微粒子とを、前記潜熱蓄熱物質の融点又は固相転移温度以上の温度で、水の共存下で混合する。具体的には、芯となる潜熱蓄熱物質をその融点又は固相転移温度以上の温度に加熱して液状化(溶融)させ、これに水難溶性無機微粒子を含んだ温水を加えて懸濁分散液を調製する。潜熱蓄熱物質を液状化させることにより、粒径の制御や無機微粒子の潜熱蓄熱物質への付着を強固にすることができる。この懸濁分散液を素早く強力剪断分散機を用いて分散処理を施し、好ましくは粒径8〜50μm、より好ましくは粒径9〜40μmのO/W型の懸濁分散液を調製する。その際、溶融状態にある潜熱蓄熱物質の粒子表面には無機微粒子が付着しており、分散処理を施した分散液の温度を潜熱蓄熱物質の融点(又は固相転移温度)未満に下げることで、無機微粒子が粒子表面に融着固定でき、無機微粒子の壁膜が形成される。このことにより、個々の粒子が合一することなく無機物付着型蓄熱材が製造され、且つ水より重い懸濁粒子(蓄熱材)の分散液としての入手が可能となる。すなわち、この製法からは、無機物付着型蓄熱材が水中に分散したスラリーとして入手されるが、もちろん、水分散スラリーから水分を取り除き、粉末化した無機物付着型蓄熱材を得ることもできる。   In the production method of the present invention, the latent heat storage material and the poorly water-soluble inorganic fine particles are mixed in the presence of water at a temperature equal to or higher than the melting point or solid phase transition temperature of the latent heat storage material. Specifically, the latent heat storage material as a core is heated to a temperature equal to or higher than its melting point or solid phase transition temperature to be liquefied (melted), and hot water containing sparingly water-soluble inorganic fine particles is added to the suspension dispersion. To prepare. By liquefying the latent heat storage material, the particle size can be controlled and the adhesion of inorganic fine particles to the latent heat storage material can be strengthened. This suspension dispersion is quickly subjected to a dispersion treatment using a strong shearing disperser to prepare an O / W type suspension dispersion preferably having a particle size of 8 to 50 μm, more preferably 9 to 40 μm. At that time, inorganic fine particles are adhered to the particle surface of the latent heat storage material in a molten state, and the temperature of the dispersion subjected to the dispersion treatment is lowered below the melting point (or solid phase transition temperature) of the latent heat storage material. The inorganic fine particles can be fused and fixed to the particle surface, and a wall film of the inorganic fine particles is formed. This makes it possible to produce an inorganic substance-type heat storage material without uniting the individual particles, and to obtain a dispersion of suspended particles (heat storage material) heavier than water. That is, from this manufacturing method, the inorganic material-attached heat storage material is obtained as a slurry dispersed in water. Of course, water can be removed from the water-dispersed slurry to obtain a powdered inorganic material-attached heat storage material.

水の存在下での潜熱蓄熱物質と水難溶性無機微粒子との混合は、剪断力を伴った分散処理、特に、強力剪断分散機を用いて行うことが好ましい。ここでの強力剪断分散機は、分散液に対して強力な剪断力を作用し得る機構のものが用いられ、例えば、ホモミキサー、ホモジナイザー、コロイドミル等が挙げられる。また、混合条件は、分散粒径が10μm程度のものを得ることができる条件が好ましいが、分散液量、配合組成、処理温度、処理時間等の条件により異なるため適宜調整する。例えば、平均粒径を小さくするためには、攪拌の剪断力を大きくする、温度を上げる等の方法が挙げられる。特に、本発明により得られた無機物付着型蓄熱材は、平均粒径5〜100μm、好ましくは5〜70μm、より好ましくは7〜50μmであるため、この範囲となるように、前記の条件を調整することが好ましい。この平均粒径は、実施例の方法で測定することができる。   The mixing of the latent heat storage material and the poorly water-soluble inorganic fine particles in the presence of water is preferably performed using a dispersion treatment with a shearing force, particularly using a strong shearing disperser. The strong shearing disperser here has a mechanism capable of acting a strong shearing force on the dispersion, and examples thereof include a homomixer, a homogenizer, and a colloid mill. The mixing condition is preferably a condition that enables obtaining a dispersion particle size of about 10 μm, but is appropriately adjusted because it varies depending on conditions such as the amount of the dispersion, the composition, the processing temperature, and the processing time. For example, in order to reduce the average particle size, methods such as increasing the shearing force of stirring and raising the temperature can be mentioned. In particular, the inorganic material-attached heat storage material obtained by the present invention has an average particle diameter of 5 to 100 μm, preferably 5 to 70 μm, more preferably 7 to 50 μm. Therefore, the above-mentioned conditions are adjusted to be in this range. It is preferable to do. This average particle diameter can be measured by the method of an Example.

本発明によれば、融点40〜80℃のエステル構造を有する化合物を少なくとも含有する、潜熱蓄熱物質の表面に水難溶性無機微粒子が付着した、粒径分布が均一な平均粒径5〜100μmの蓄熱材が得られる。   According to the present invention, heat storage with an average particle size of 5 to 100 μm having a uniform particle size distribution in which hardly water-soluble inorganic fine particles adhere to the surface of a latent heat storage material containing at least a compound having an ester structure with a melting point of 40 to 80 ° C. A material is obtained.

本発明で製造される蓄熱材では、潜熱蓄熱物質の表面に付着させる粒子として無機微粒子を用いることで、該無機物付着型蓄熱材の比重が水より重くなり、水硬性組成物に加えた場合、母材(水硬性組成物)との比重差による材料分離が改善される。更には、水硬性組成物の硬化成形体中にも均一に分散することで、硬化成形体の物性低下を抑制できる。また、本来蓄熱材としての働きでもある水硬性組成物の水和熱の抑制にも、微粒化することで成形体中により均一に分散でき効果が高められる。このため、水硬性組成物用の無機物付着型蓄熱材として好適である。   In the heat storage material produced in the present invention, by using inorganic fine particles as particles to be adhered to the surface of the latent heat storage material, the specific gravity of the inorganic material-attached heat storage material becomes heavier than water, and when added to the hydraulic composition, Material separation due to specific gravity difference from the base material (hydraulic composition) is improved. Furthermore, the physical property fall of a hardening molded object can be suppressed by disperse | distributing uniformly also in the hardening molded object of a hydraulic composition. In addition, the suppression of the heat of hydration of the hydraulic composition, which is also a function as a heat storage material, can be dispersed more uniformly in the formed body by atomizing, and the effect is enhanced. For this reason, it is suitable as an inorganic substance adhesion type heat storage material for hydraulic compositions.

本発明の対象となる水硬性組成物は、水硬性粉体と水とを含有する。水硬性粉体としてはセメントまたは石膏等が使用できる。セメントとしては、普通、早強、中庸熱、低熱セメント等のポルトランドセメント、および高炉、シリカ、フライアッシュセメント等の混合セメント等が挙げられる。これらは単独で用いても良いし、混合して用いても良い。石膏としては、石膏ボード原料として使用できるレベルの純度があれば十分である。使用される石膏は、α型半水石膏、β型半水石膏の何れか、或いはこれらの混合物であっても良く、任意の配合比率で使用できる。   The hydraulic composition which is the subject of the present invention contains hydraulic powder and water. Cement or gypsum can be used as the hydraulic powder. Examples of cement include Portland cement such as ordinary, early strength, moderate heat, and low heat cement, and mixed cement such as blast furnace, silica, and fly ash cement. These may be used alone or in combination. It is sufficient that the gypsum has a level of purity that can be used as a gypsum board raw material. The gypsum used may be either α-type hemihydrate gypsum, β-type hemihydrate gypsum, or a mixture thereof, and can be used in any blending ratio.

また、水硬性組成物は、分散剤、遅延剤、AE剤、消泡剤、補強繊維材料等、通常のコンクリート構造物やボード状建材を製造する際に使用される各種材料を含有することが可能である。水硬性組成物は、用途にもよるが、水/水硬性粉体の比〔水硬性組成物中の水と水硬性粉体の重量百分率(重量%)、通常W/Pと略記されるが、粉体がセメントの場合、W/Cと略記される。〕が23〜100重量%、更に30〜70重量%であることが好ましい。なお、このW/PのPには本発明に係る蓄熱材の量も含む。また、Wの量として、混合物等を含む水硬性組成物調製用の練り水の量を用いることができる(後述の試験例1等)。   Moreover, a hydraulic composition may contain various materials used when manufacturing a normal concrete structure and board-shaped building materials, such as a dispersing agent, a retarder, AE agent, an antifoamer, and a reinforcing fiber material. Is possible. Although the hydraulic composition depends on the application, the ratio of water / hydraulic powder [weight percentage (% by weight) of water and hydraulic powder in the hydraulic composition, usually abbreviated as W / P. When the powder is cement, it is abbreviated as W / C. ] Is preferably 23 to 100% by weight, more preferably 30 to 70% by weight. Note that P of the W / P includes the amount of the heat storage material according to the present invention. Moreover, the quantity of the kneading water for hydraulic composition preparation containing a mixture etc. can be used as the quantity of W (after-mentioned Test example 1 etc.).

水硬性組成物の配合物の混練機は特に限定しないが、コンクリート配合物の場合には傾胴形ミキサー、一軸または二軸強制練りミキサー、パン形ミキサー等、ボード状建材には強制攪拌ミキサー、アイリッヒミキサー等を用いることができる。本発明の無機物付着型蓄熱材の添加時期も特に制限されない。また、本発明の無機物付着型蓄熱材は、水硬性組成物の用途にもよるが、成形体の強度と蓄熱性能の観点から水硬性粉体100重量部に対して1〜30重量部、更に5〜20重量部の割合で用いられることが好ましい。   The kneading machine for the composition of the hydraulic composition is not particularly limited. However, in the case of a concrete composition, a tilted barrel mixer, a uniaxial or biaxial forced kneader mixer, a bread mixer, etc. An Eirich mixer or the like can be used. There is no particular limitation on the timing of addition of the inorganic material-based heat storage material of the present invention. Further, the inorganic material adhesion type heat storage material of the present invention is 1-30 parts by weight with respect to 100 parts by weight of the hydraulic powder from the viewpoint of the strength and heat storage performance of the molded body, although depending on the use of the hydraulic composition. It is preferably used in a proportion of 5 to 20 parts by weight.

本発明の無機物付着型蓄熱材を含有する水硬性組成物は、例えば通常のコンクリート構造物やボード状建材等の成形体の製造に用いられる成形方法、および養生方法に適用できる。   The hydraulic composition containing the inorganic material-attached heat storage material of the present invention can be applied to, for example, a molding method and a curing method used for manufacturing a molded body such as a normal concrete structure or a board-shaped building material.

〔実施例1〕
ビーカーにミリスチン酸ミリスチル(花王(株)製、エキセパールMY−M、融点45.0℃)104.3gを計りとり加熱融解し、その中にリン酸三カルシウム(太平化学産業製)31.3gを水664.3gに分散させた65℃の分散液を加え、得られた混合液を素早く強力剪断分散機(特殊機化工業製“T・KホモミキサーM型”)を用いた10000rpm、3分間の分散処理を施し、懸濁分散液を得た。懸濁分散液をスターラーで軽く攪拌しながら室温まで冷却した後、目開き300μmの金網でろ過し暫く静置した。その後、底に沈降した懸濁分散粒子から上澄み液434gを取り除き、固形分39%(重量基準、以下、特記しない限り同様である)に濃縮された懸濁分散液334gを得た。
[Example 1]
In a beaker, measure 104.3 g of myristyl myristate (Exepar MY-M, Kao Corp., melting point: 45.0 ° C.) 104.3 g and heat and melt it. 31.3 g of tricalcium phosphate (manufactured by Taihei Chemical Industry) A dispersion at 65 ° C. dispersed in 664.3 g of water was added, and the obtained mixed solution was quickly used at 10,000 rpm for 3 minutes using a strong shear disperser (“TK homomixer M type” manufactured by Tokushu Kika Kogyo Co., Ltd.). A suspension dispersion was obtained. The suspension dispersion was cooled to room temperature while stirring gently with a stirrer, then filtered through a wire mesh with an opening of 300 μm and left to stand for a while. Thereafter, 434 g of the supernatant liquid was removed from the suspended dispersion particles settled at the bottom to obtain 334 g of a suspension dispersion concentrated to a solid content of 39% (weight basis, hereinafter the same unless otherwise specified).

なお、実施例1で得られた無機物付着型蓄熱材の電子顕微鏡写真を図1、粒径分布を図3に示す。図1の電子顕微鏡写真は、(株)日立ハイテクノロジーズ製日立超高性能電界放出形走査電子顕微鏡“S−4800”を用いて撮影(倍率は×3K)したものであり、これにより、当該粒子は無機物質で被覆化されていること確認した。更に、図3の粒径分布により、1つのピークでほぼ正規分布を示していることから、粒子間の凝集がないことを確認した。   In addition, the electron micrograph of the inorganic substance adhesion type heat storage material obtained in Example 1 is shown in FIG. 1, and the particle size distribution is shown in FIG. The electron micrograph shown in FIG. 1 was taken using a Hitachi ultra-high performance field emission scanning electron microscope “S-4800” manufactured by Hitachi High-Technologies Corporation (magnification is × 3K). Was confirmed to be coated with an inorganic substance. Furthermore, since the particle size distribution in FIG. 3 shows almost normal distribution at one peak, it was confirmed that there was no aggregation between particles.

〔実施例2〕
実施例1と同操作で、ミリスチン酸ミリスチルの代わりにステアリン酸ステアリル(花王(株)製、エキセパールSS、融点62.6℃)に変更し、固形分39%に濃縮された懸濁分散液337gを得た。
[Example 2]
In the same operation as in Example 1, instead of myristyl myristate, stearyl stearate (Exepar SS, melting point 62.6 ° C., manufactured by Kao Corporation) was changed to 337 g of a suspension dispersion concentrated to a solid content of 39%. Got.

〔実施例3〕
実施例1と同操作で、ミリスチン酸ミリスチル104.3gの代わりにミリスチン酸ミリスチル52.2g、パラフィンワックス115(日本精蝋(株)製、融点51.0℃)52.2gに変更し、固形分39%に濃縮された懸濁分散液330gを得た。なお、実施例3で得られた無機物付着型蓄熱材の電子顕微鏡写真(条件は実施例1と同じ)を図2、粒径分布パターンを図3に示す。これにより、当該粒子は無機物質に被覆化されていること確認した。
Example 3
In the same operation as in Example 1, instead of 104.3 g of myristyl myristate, 52.2 g of myristyl myristate and paraffin wax 115 (manufactured by Nippon Seiwa Co., Ltd., melting point 51.0 ° C.) 52.2 g were changed to a solid. Thus, 330 g of a suspension dispersion concentrated to 39% was obtained. In addition, the electron micrograph (conditions are the same as Example 1) of the inorganic substance adhesion type heat storage material obtained in Example 3 is shown in FIG. 2, and the particle size distribution pattern is shown in FIG. This confirmed that the particles were coated with an inorganic substance.

〔実施例4〕
実施例1と同操作で、ミリスチン酸ミリスチル104.3gの代わりにミリスチン酸ミリスチル10.4g、パラフィンワックス115 93.9gに変更し、固形分39%に濃縮された懸濁分散液313gを得た。
Example 4
In the same manner as in Example 1, instead of 104.3 g of myristyl myristate, 10.4 g of myristyl myristate and 93.9 g of paraffin wax 115 were obtained, and 313 g of a suspension dispersion concentrated to a solid content of 39% was obtained. .

〔実施例5〕
実施例1と同操作で、ミリスチン酸ミリスチル104.3gの代わりにステアリン酸ステアリル10.4g、パラフィンワックス115 93.9gに変更し、固形分39%に濃縮された懸濁分散液320gを得た。
Example 5
In the same manner as in Example 1, instead of 104.3 g of myristyl myristate, stearyl stearate was changed to 10.4 g and paraffin wax 115 93.9 g to obtain 320 g of a suspension dispersion concentrated to a solid content of 39%. .

〔比較例1〕
実施例1と同操作で、ミリスチン酸ミリスチルの代わりにパラフィンワックス115(日本精蝋(株)製、融点51.0℃)に変更した。懸濁分散液をスターラーで軽く攪拌しながら室温まで冷却中に1〜15mm程度のパラフィンワックスの塊(凝集物)が界面に浮遊してきた。その後、懸濁分散液を目開き300μmの金網でろ過したが、大量の凝集物が金網の上に残存した。
[Comparative Example 1]
In the same manner as in Example 1, instead of myristyl myristate, paraffin wax 115 (manufactured by Nippon Seiwa Co., Ltd., melting point 51.0 ° C.) was used. While the suspension dispersion was lightly stirred with a stirrer and cooled to room temperature, a lump (aggregate) of paraffin wax of about 1 to 15 mm floated at the interface. Thereafter, the suspension dispersion was filtered through a wire mesh having an opening of 300 μm, but a large amount of aggregates remained on the wire mesh.

〔比較例2〕
実施例1と同操作で、セチルアルコール(花王(株)製、カルコール6098、融点51.2℃)に変更した。懸濁分散液をスターラーで軽く攪拌しながら室温まで冷却中に1〜5mm程度のセシルアルコールの塊(凝集物)が界面に浮遊してきた。その後、懸濁分散液を目開き300μmの金網でろ過したが、大量の凝集物が金網の上に残存した。
[Comparative Example 2]
The operation was changed to cetyl alcohol (Kao Co., Ltd., Calcoal 6098, melting point 51.2 ° C.) by the same operation as in Example 1. While the suspension dispersion was lightly stirred with a stirrer, a cecil alcohol mass (aggregate) of about 1 to 5 mm floated on the interface while cooling to room temperature. Thereafter, the suspension dispersion was filtered through a wire mesh having an opening of 300 μm, but a large amount of aggregates remained on the wire mesh.

〔比較例3〕
実施例1と同操作で、ミルスチン酸(花王(株)製、ルナックMY−98、融点56.6℃)に変更した。分散液を強力剪断分散機(特殊機化工業製“T・KホモミキサーM型”)を用いて10000rpm、3分間の分散処理を行うとしたが、剪断分散中に脂肪酸のカルシウム塩ができ、全体が白色のゲル状になり分散状態を呈しなくなった。
[Comparative Example 3]
By the same operation as Example 1, it changed to myristic acid (the Kao Co., Ltd. make, Lunac MY-98, melting | fusing point 56.6 degreeC). The dispersion was subjected to a dispersion treatment at 10,000 rpm for 3 minutes using a strong shear disperser (“TK homomixer M type” manufactured by Tokushu Kika Kogyo Co., Ltd.). The whole became a white gel and no longer showed a dispersed state.

〔比較例4〕
実施例1と同操作で、ステアリン酸ブチル(花王(株)製、エキセパールBS、融点38℃)に変更した。懸濁分散液をスターラーで軽く攪拌しながら室温まで冷却中に1〜5mm程度のステアリン酸ブチルの塊(凝集物)が界面に浮遊してきた。その後、懸濁分散液を目開き300μmの金網でろ過したが、大量の凝集物が金網の上に残存した。
[Comparative Example 4]
The operation was changed to butyl stearate (manufactured by Kao Corporation, Exepearl BS, melting point 38 ° C.) by the same operation as in Example 1. While the suspension dispersion was lightly stirred with a stirrer and cooled to room temperature, a lump of butyl stearate (aggregate) of about 1 to 5 mm floated at the interface. Thereafter, the suspension dispersion was filtered through a wire mesh having an opening of 300 μm, but a large amount of aggregates remained on the wire mesh.

〔比較例5〕
ビーカーにステアリン酸メチル(花王(株)製、エキセパールMS、融点28℃)104.3gを計りとり加熱融解し、その中にリン酸三カルシウム(太平化学産業製)31.3g、水664.3gが混ざった65℃の分散液を加え、素早く得られた分散液を強力剪断分散機(特殊機化工業製“T・KホモミキサーM型”)を用いて10000rpm、3分間の分散処理を施した。その後、懸濁分散液をスターラーで軽く攪拌しながら室温まで冷却した。冷却中に1〜5mm程度のステアリン酸メチルの塊(凝集物)が界面に浮遊してきた。その後、懸濁分散液を目開き300μmの金網でろ過したが、大量の凝集物が金網の上に残存した。
[Comparative Example 5]
In a beaker, 104.3 g of methyl stearate (manufactured by Kao Corporation, Exepearl MS, melting point 28 ° C.) is weighed and melted, and in this, 31.3 g of tricalcium phosphate (manufactured by Taihei Chemical Industry), 664.3 g of water. Add a dispersion at 65 ° C. mixed with, and quickly disperse the obtained dispersion at 10,000 rpm for 3 minutes using a powerful shearing disperser (“TK homomixer M type” manufactured by Tokushu Kika Kogyo Co., Ltd.). did. Thereafter, the suspension dispersion was cooled to room temperature while gently stirring with a stirrer. During cooling, a lump (aggregate) of about 1 to 5 mm of methyl stearate floated at the interface. Thereafter, the suspension dispersion was filtered through a wire mesh having an opening of 300 μm, but a large amount of aggregates remained on the wire mesh.

<粒子性状と分散特性の評価>
実施例1〜5と比較例1〜5で得られた、無機物付着型蓄熱材を含む懸濁分散液について、分散特性(分散安定性、粒子性状)を以下の方法で評価した。また、各物質の特性値、並びに懸濁分散液の特性に関しても下記の方法により測定した。結果を表1に示す。
<Evaluation of particle properties and dispersion characteristics>
The dispersion characteristics (dispersion stability, particle properties) of the suspension dispersions containing the inorganic material-attached heat storage material obtained in Examples 1 to 5 and Comparative Examples 1 to 5 were evaluated by the following methods. Further, the characteristic values of each substance and the characteristics of the suspension dispersion were also measured by the following method. The results are shown in Table 1.

(1−1)融点、固相転移温度及び融解熱量
潜熱蓄熱物質の融点、固相転移温度及び融解熱量は、Perkin Elmer製“Pyris6 DSC”型の示差走査熱量測定にて求めた。固相転移温度は、融解温度のトップピークの値とする。尚、測定条件は、Heat 1stは3℃/分で−10℃から100℃に昇温、Coolは3℃/分で100℃から−30℃に冷却、Heat 2ndは3℃/分で−30℃から100までの昇温の繰り返し操作を行い、Heat 2ndの値を採用した。
(1-1) Melting point, solid phase transition temperature and heat of fusion The melting point, solid phase transition temperature and heat of fusion of the latent heat storage material were determined by differential scanning calorimetry of “Pyris 6 DSC” type manufactured by Perkin Elmer. The solid phase transition temperature is the top peak value of the melting temperature. The measurement conditions were Heat 1st at 3 ° C./min to -10 ° C. to 100 ° C., Cool 3 ° C./min to 100 ° C. to −30 ° C., Heat 2nd 3 ° C./min to −30 The heating was repeated from 100 ° C. to 100, and the value of Heat 2nd was adopted.

(1−2)平均粒径
平均粒径は、(株)堀場製作所製“レーザ回析/散乱式粒度分布測定装置 LA−300”を用いて、懸濁分散液中に含まれる粒子の粒径(体積基準、メジアン径)を測定した。その際、水難溶性無機微粒子の粒径は超音波2分間処理により水に分散させて測定し、懸濁分散液中の懸濁粒子(無機物付着型蓄熱材)の粒径は、目開き300μmの金網通過品を対象として測定した。
(1-2) Average particle diameter The average particle diameter is the particle diameter of the particles contained in the suspension dispersion using “Laser diffraction / scattering particle size distribution analyzer LA-300” manufactured by Horiba, Ltd. (Volume basis, median diameter) was measured. At that time, the particle size of the hardly water-soluble inorganic fine particles was measured by dispersing in water by ultrasonic treatment for 2 minutes, and the particle size of the suspended particles in the suspension dispersion (inorganic-attached heat storage material) was 300 μm. Measurements were made on a wire mesh product.

(1−3)凝集物量
凝集物量は、冷却後の懸濁分散液を目開き300μmの金網にてろ過し、その金網残留物の乾燥重量を計り下式にて求めた。
凝集物量(重量%)=目開き300μmの金網残留物の乾燥重量(g)÷{潜熱蓄熱物質(g)+水難溶性無機微粒子(g)}×100
(1-3) Aggregate amount The aggregate amount was obtained by filtering the suspension dispersion after cooling through a wire mesh having a mesh size of 300 μm and measuring the dry weight of the wire mesh residue by the following equation.
Aggregate amount (% by weight) = Dry weight (g) of wire mesh residue with mesh opening of 300 μm ÷ {Latent heat storage material (g) + Slightly water-soluble inorganic fine particles (g)} × 100

懸濁分散液の懸濁粒子の平均粒径と凝集物量から、懸濁分散液の分散安定性を評価できる。平均粒径が100μm以下であり凝集物量が10%以下であれば実用上問題のない分散安定性を有する。   The dispersion stability of the suspension dispersion can be evaluated from the average particle diameter and the amount of aggregates of the suspension dispersion. When the average particle size is 100 μm or less and the aggregate amount is 10% or less, the dispersion stability has no practical problem.

表中、水難溶性無機微粒子の添加量は、潜熱蓄熱物質100重量部に対する重量部である(以下同様)。   In the table, the amount of the slightly water-soluble inorganic fine particles added is 100 parts by weight of the latent heat storage material (hereinafter the same).

表1および図1、2の結果から、実施例および比較例より、潜熱蓄熱物質として一般的に用いられるパラフィン系のものは殆ど極性がないので本発明の製造法でもカプセル化は困難であった。しかしながら、本発明では融点が40℃以上のエステル構造を有する物質が、凝集物量が少ないこと、10μm程度の粒径を呈していることから、本発明の製造に適した潜熱蓄熱物質であることが分かった。更に、実施例および比較例1より、融点が40℃以上のエステル構造を有する物質を必須成分にすることで、パラフィン等の他の蓄熱物質を併用使用しても安定な分散粒子を製造できることが分かった。また、これらを電子顕微鏡写真で観察すると、実施例1の粒子形状はほぼ真球、実施例3のパラフィン併用系はやや異形ではあったが、両者の粒子表面には細かい無機微粒子が均一に付着し、上手く被覆化していることを示している。更に、図3の実施例1、3の粒径分布から、両者は1つのピークでほぼ正規分布を示していることから、粒子間の合一はないことを示している。   From the results shown in Table 1 and FIGS. 1 and 2, it is difficult to encapsulate even in the production method of the present invention because paraffinic materials generally used as latent heat storage materials have almost no polarity from the examples and comparative examples. . However, in the present invention, a substance having an ester structure with a melting point of 40 ° C. or higher has a small amount of aggregates and has a particle size of about 10 μm. Therefore, it may be a latent heat storage material suitable for the production of the present invention. I understood. Furthermore, from Examples and Comparative Example 1, by using a substance having an ester structure with a melting point of 40 ° C. or more as an essential component, stable dispersed particles can be produced even when other heat storage materials such as paraffin are used in combination. I understood. Moreover, when these were observed with an electron micrograph, the particle shape of Example 1 was almost a sphere, and the paraffin combination system of Example 3 was slightly deformed, but fine inorganic fine particles uniformly adhered to both particle surfaces. However, it is shown that it is well coated. Furthermore, from the particle size distributions of Examples 1 and 3 in FIG. 3, both of them show a normal distribution with one peak, which indicates that there is no coalescence between the particles.

〔実施例6〕
実施例1と同操作で、リン酸三カルシウムの代わりにヒドロキシアパタイト(太平化学産業製、医薬部外品原料規格、平均粒径4.7μm)に変更し、固形分39%に濃縮された懸濁分散液337gを得た。
Example 6
In the same operation as in Example 1, instead of tricalcium phosphate, hydroxyapatite (manufactured by Taihei Chemical Sangyo Co., Ltd., quasi-drug material standard, average particle size 4.7 μm) was changed to a solid content of 39%. 337 g of a turbid dispersion was obtained.

〔実施例7〕
実施例1と同操作で、リン酸三カルシウムの代わりに塩基性炭酸マグネシウム(和光純薬工業(株)製、1級試薬、平均粒径12.1μm)に変更し、固形分39%に濃縮された懸濁分散液338gを得た。
Example 7
In the same manner as in Example 1, instead of tricalcium phosphate, basic magnesium carbonate (manufactured by Wako Pure Chemical Industries, Ltd., first grade reagent, average particle size 12.1 μm) was changed to a solid content of 39%. 338 g of the resulting suspension dispersion was obtained.

〔実施例8〕
実施例1と同操作で、リン酸三カルシウムの代わりに酸化マグネシウム(関東化学(株)、1級試薬、平均粒径3.3μm)に変更し、固形分39%に濃縮された懸濁分散液288gを得た。
Example 8
In the same manner as in Example 1, instead of tricalcium phosphate, magnesium oxide (Kanto Chemical Co., Ltd., first grade reagent, average particle size 3.3 μm) was changed to a suspension dispersion concentrated to a solid content of 39%. 288 g of liquid was obtained.

〔実施例9〕
実施例1と同操作で、リン酸三カルシウムの代わりに酸化チタン(和光純薬工業(株)製、特級試薬、ルチル型、平均粒径0.2μm)に変更し、固形分39%に濃縮された懸濁分散液263gを得た。
Example 9
In the same manner as in Example 1, instead of tricalcium phosphate, titanium oxide (made by Wako Pure Chemical Industries, Ltd., special grade reagent, rutile type, average particle size 0.2 μm) was changed to a solid content of 39%. 263 g of the resulting suspension dispersion was obtained.

〔実施例10〕〕
実施例1と同操作で、リン酸三カルシウムの代わりにカオリン(キシダ化学(株)製、試薬、300mesh、平均粒径6μm)に変更し、固形分39%に濃縮された懸濁分散液211gを得た。
[Example 10]
In the same manner as in Example 1, instead of tricalcium phosphate, kaolin (made by Kishida Chemical Co., Ltd., reagent, 300 mesh, average particle size 6 μm) was changed to 211 g of a suspension dispersion concentrated to a solid content of 39%. Got.

<粒子性状と分散特性の評価>
実施例6〜10で得られた、無機物付着型蓄熱材を含む懸濁分散液について、分散特性や各物質の特性値等を実施例1等と同様に評価した。結果を表2に示す。なお、参考のため、実施例1の結果も表2に併せて示した。
<Evaluation of particle properties and dispersion characteristics>
About the suspension dispersion liquid containing the inorganic substance adhesion type heat storage material obtained in Examples 6 to 10, the dispersion characteristics, the characteristic values of each substance, and the like were evaluated in the same manner as in Example 1 and the like. The results are shown in Table 2. For reference, the results of Example 1 are also shown in Table 2.

表2の結果から実施例1、6〜10より、本発明の製造に適した水難溶性無機微粒子には、粒径が十数μ以下の水難溶性の無機微粒子が有用ではあるが、より分散安定性や高い生産性(不要である凝集物量を減らし収率を高めること)を追及すると、リン酸三カルシウム、ヒドロキシアパタイト、塩基性炭酸マグネシウム等が有効であることが分かった。   From the results of Table 2, from Examples 1 and 6 to 10, the hardly water-soluble inorganic fine particles having a particle diameter of 10 μm or less are useful as the hardly water-soluble inorganic fine particles suitable for the production of the present invention. It was found that tricalcium phosphate, hydroxyapatite, basic magnesium carbonate, and the like are effective when pursuing high productivity and high productivity (reducing the amount of unnecessary aggregates and increasing the yield).

<試験例>
〔1〕比較用の蓄熱材の製造
〔比較製造例1〕
ビーカーにパラフィンワックス115(日本精蝋(株)製、融点51.0℃)75.0g、ソルビタンモノステアレート(花王(株)レオドールSP−S10V)12.0gを計りとり加熱融解し、その中にポリオキシエチレンソルビタンモノステアレート(花王(株)製、レオドールTW−S120)8.0g及びポリオキシエチレンラウリルエーテル(花王(株)製、エマルゲン120)5.0gを水400gに分散させた75℃の分散液を加え、得られた混合液を素早く強力剪断分散機(特殊機化工業製“T・KホモミキサーM型”)を用いた6000rpm、3分間の分散処理を施し、懸濁分散液を得た。そして、懸濁分散液をスターラーで軽く攪拌しながら室温まで冷却した後、目開き300μmの金網でろ過し、固形分20.8%、平均粒径4.9μmの乳化物を得た。
<Test example>
[1] Production of heat storage material for comparison [Comparative Production Example 1]
In a beaker, 75.0 g of paraffin wax 115 (manufactured by Nippon Seiwa Co., Ltd., melting point 51.0 ° C.) and 12.0 g of sorbitan monostearate (Kao Co., Ltd. Rheodor SP-S10V) were weighed and melted. In addition, 8.0 g of polyoxyethylene sorbitan monostearate (manufactured by Kao Corporation, Rhedol TW-S120) and 5.0 g of polyoxyethylene lauryl ether (manufactured by Kao Corporation, Emulgen 120) were dispersed in 400 g of water. A dispersion at ℃ was added, and the resulting mixture was quickly subjected to a dispersion treatment at 6000 rpm for 3 minutes using a strong shear disperser ("TK homomixer M type" manufactured by Tokushu Kika Kogyo Co., Ltd.) A liquid was obtained. The suspension dispersion was cooled to room temperature with light stirring with a stirrer, and then filtered through a wire mesh having an opening of 300 μm to obtain an emulsion having a solid content of 20.8% and an average particle size of 4.9 μm.

〔比較製造例2〕
ビーカーにパラフィンワックス115(日本精蝋(株)製、融点51.0℃)138.9gを計りとり加熱融解し、その中にスチレン−無水マレイン酸コポリマー(BASF製、固形分30%)18.5g及び10%ポバール水溶液(日本合成化学製、ゴーセノールGL−05)55.6gを水287gに分散させた70℃の分散液を加え、得られた混合液を素早く強力剪断分散機(特殊機化工業製“T・KホモミキサーM型”)を用いた6000rpm、3分間の分散処理を施し、懸濁分散液を得た。そして、懸濁分散液をスターラーで軽く攪拌しながら室温まで冷却した後、目開き300μmの金網でろ過し、固形分28.5%、平均粒径11.9μmの乳化物を得た。
[Comparative Production Example 2]
13. 138.9 g of paraffin wax 115 (manufactured by Nippon Seiwa Co., Ltd., melting point 51.0 ° C.) was weighed and melted in a beaker, and styrene-maleic anhydride copolymer (manufactured by BASF, solid content 30%) was added therein. Add 5g and 10% aqueous solution of PVA (Nippon Gosei Chemical Co., Ltd., Gohsenol GL-05) at 55.6g in 287g of water and add 70 ° C dispersion. Dispersion treatment was performed at 6000 rpm for 3 minutes using “TK homomixer M type” manufactured by Kogyo Co., Ltd. to obtain a suspension dispersion. The suspension dispersion was cooled to room temperature with light stirring with a stirrer, and then filtered through a wire mesh having an opening of 300 μm to obtain an emulsion having a solid content of 28.5% and an average particle size of 11.9 μm.

〔比較製造例3〕
他の潜熱蓄熱材として、市販のパラフィンワックスエマルジョン〔日本精蝋(株)製、EMUSTAR−1015、融点47℃、アニオン性、平均粒径0.32μm〕から、固形分40%の乳化物を準備した。
[Comparative Production Example 3]
As another latent heat storage material, an emulsion with a solid content of 40% is prepared from a commercially available paraffin wax emulsion (manufactured by Nippon Seiwa Co., Ltd., EMUSTAR-1015, melting point 47 ° C., anionic, average particle size 0.32 μm). did.

〔比較製造例4〕
他の潜熱蓄熱材として、市販のポリエチレンワックスエマルジョン〔日本精蝋(株)製、EMUSTAR−5555、融点55℃、アニオン性、平均粒径0.56μm〕から、固形分42%の乳化物を準備した。
[Comparative Production Example 4]
As another latent heat storage material, an emulsion having a solid content of 42% is prepared from a commercially available polyethylene wax emulsion (manufactured by Nippon Seiwa Co., Ltd., EMUSTAR-5555, melting point 55 ° C., anionic, average particle size 0.56 μm). did.

〔試験例1〕
実施例1で得られた無機物付着型蓄熱材の39%懸濁分散液208gに、セメント混和剤(花王(株)製、マイテイ3000S)7g(有姿)を含む水278gを加え調製練り水を準備した。その調製練り水486g〔蓄熱材(固形分)81.1g、水404.9g(混和剤7gを含む)〕をセメント(太平洋セメント(株)製、普通ポルトランドセメント)1000gに加え、素早く混練機にてかき混ぜセメントペーストを調製した。素早くセメントペーストをコーンに詰め、調整直後及び調整から20分後のフローを測定した〔これを分散性試験(詳細は後述する)とした。〕。また、前記と同じ操作で調製練り水を381.1g〔蓄熱材(固形分)81.1g、水300g(混和剤7gを含む)〕に変更した以外は、分散性試験の場合と同様にしてセメントペーストを調整し、このものの硬化時における簡易断熱温度上昇試験(詳細は後述する)を行い、最高発熱温度を求めた。これらの結果を表3に示した。
[Test Example 1]
278 g of water containing 7 g (solid form) of cement admixture (manufactured by Kao Co., Ltd., Mighty 3000S) was added to 208 g of 39% suspension dispersion of the inorganic substance-type heat storage material obtained in Example 1, and the prepared kneaded water was added. Got ready. 486 g of the prepared kneaded water [heat storage material (solid content) 81.1 g, water 404.9 g (including 7 g of admixture)] was added to 1000 g of cement (ordinary Portland cement, manufactured by Taiheiyo Cement Co., Ltd.) and quickly added to the kneader. A stir-mixed cement paste was prepared. The cement paste was quickly packed into the cone, and the flow immediately after the adjustment and 20 minutes after the adjustment was measured [this was taken as a dispersibility test (details will be described later). ]. Further, the same procedure as described above was used except that the prepared kneading water was changed to 381.1 g [heat storage material (solid content) 81.1 g, water 300 g (including 7 g of admixture)]. A cement paste was prepared, and a simple adiabatic temperature rise test during curing (details will be described later) was performed to obtain the maximum exothermic temperature. These results are shown in Table 3.

〔試験例2〜4〕
実施例1で得られた無機物付着型蓄熱材の代わりに実施例2、3、5の蓄熱材を使用した。他の試験操作は試験例1と同じことを行い、結果を表3に示した。
[Test Examples 2 to 4]
Instead of the inorganic material adhesion type heat storage material obtained in Example 1, the heat storage materials of Examples 2, 3, and 5 were used. Other test operations were the same as in Test Example 1, and the results are shown in Table 3.

〔比較試験例1〕
セメント混和剤(花王(株)製、マイテイ3000S)7g(有姿)を含む水375gをセメント1000gに加え、素早く混練機にてかき混ぜセメントペーストを調製し、試験例1と同様に分散性試験を行った。また、前記と同じ操作で混和剤を含む水300gに変更した以外は、分散性試験の場合と同様にして、セメントペーストを調製し、試験例1と同様に簡易断熱温度上昇試験を行い、最高発熱温度を求めた。これらの結果を表3に示した。尚、この比較試験例1で示した最高発熱温度を、簡易断熱温度上昇試験におけるプレーン(基準)とする。
[Comparative Test Example 1]
Add 375 g of water containing 7 g of cement admixture (manufactured by Kao Corporation, Mighty 3000S) to 1000 g of cement, and quickly stir with a kneader to prepare a cement paste. went. A cement paste was prepared in the same manner as in the dispersibility test except that the water was changed to 300 g containing an admixture by the same operation as described above, and a simple adiabatic temperature rise test was conducted in the same manner as in Test Example 1. The exothermic temperature was determined. These results are shown in Table 3. The maximum exothermic temperature shown in Comparative Test Example 1 is used as a plane (reference) in the simple adiabatic temperature rise test.

〔比較試験例2〕
比較製造例1で得られたパラフィンワックスエマルジョン(固形分20.8%の乳化物)400gに、セメント混和剤(花王(株)製、マイテイ3000S)7g(有姿)を含む水89.4gを加え調製練り水489.4g〔パラフィンワックスエマルジョン(固形分)83.2g、水406.2g(混和剤7gを含む)〕を準備した。その調製練り水をセメント1000gに加え、素早く混練機にてかき混ぜセメントペーストを調製し、試験例1と同様に分散性試験を行った。この結果を表3に示した。
[Comparative Test Example 2]
89.4 g of water containing 7 g (solid form) of cement admixture (manufactured by Kao Corporation, Mighty 3000S) is added to 400 g of the paraffin wax emulsion (emulsion having a solid content of 20.8%) obtained in Comparative Production Example 1. In addition, 489.4 g of prepared and kneaded water [83.2 g of paraffin wax emulsion (solid content), 406.2 g of water (including 7 g of admixture)] was prepared. The prepared kneading water was added to 1000 g of cement, and quickly mixed with a kneader to prepare a cement paste. The dispersibility test was conducted in the same manner as in Test Example 1. The results are shown in Table 3.

〔比較試験例3〕
比較製造例2で得られたパラフィンワックスエマルジョン(固形分28.5%の乳化物)236.7gに、セメント混和剤(花王(株)製、マイテイ3000S)7g(有姿)を含む水231.1gを調製加え練り水467.8g〔パラフィンワックスエマルジョン(固形分)67.5g、水400.3g(混和剤7gを含む)〕を準備した。その調製練り水をセメント1000gに加え、素早く混練機にてかき混ぜセメントペーストを調製し、試験例1と同様に分散性試験を行った。この結果を表3に示した。
[Comparative Test Example 3]
233.1 g of paraffin wax emulsion obtained in Comparative Production Example 2 (emulsion having a solid content of 28.5%) and 7 g of cement admixture (manufactured by Kao Corporation, Mighty 3000S) 231. 17.8 g of prepared and kneaded water 467.8 g [paraffin wax emulsion (solid content) 67.5 g, water 400.3 g (including 7 g of admixture)] was prepared. The prepared kneading water was added to 1000 g of cement, and quickly mixed with a kneader to prepare a cement paste. The dispersibility test was conducted in the same manner as in Test Example 1. The results are shown in Table 3.

〔比較試験例4〕
比較製造例3で得られたパラフィンワックスエマルジョン〔日本精蝋(株)製、EMUSTAR−1015から調製した固形分40%の乳化物〕156gに、セメント混和剤(花王(株)製、マイテイ3000S)7g(有姿)を含む水305gを加え調製練り水461g〔パラフィンワックスエマルジョン(固形分)62.5g、水398.5g(混和剤7gを含む)〕を準備した。その調製練り水をセメント1000gに加え、素早く混練機にてかき混ぜセメントペーストを調製し、試験例1と同様に分散性試験を行った。また、調製練り水を362.5g〔パラフィンワックスエマルジョン(固形分)62.5g、水300g(混和剤7gを含む)〕に変更した以外は、分散性試験の場合と同様にしてセメントペーストを調整し、試験例1と同様に簡易断熱温度上昇試験を行った。これらの結果を表3に示した。
[Comparative Test Example 4]
Paraffin wax emulsion obtained in Comparative Production Example 3 (manufactured by Nippon Seiwa Co., Ltd., 40% solid emulsion prepared from EMUSTAR-1015), 156 g, cement admixture (Kao Co., Ltd., Mighty 3000S) 305 g of water containing 7 g (solid) was added to prepare 461 g of prepared kneaded water [62.5 g of paraffin wax emulsion (solid content), 398.5 g of water (including 7 g of admixture)]. The prepared kneading water was added to 1000 g of cement, and quickly mixed with a kneader to prepare a cement paste. The dispersibility test was conducted in the same manner as in Test Example 1. The cement paste was prepared in the same manner as in the dispersibility test, except that the prepared kneading water was changed to 362.5 g (paraffin wax emulsion (solid content) 62.5 g, water 300 g (including 7 g of admixture)). In the same manner as in Test Example 1, a simple adiabatic temperature rise test was performed. These results are shown in Table 3.

〔比較試験例5〕
比較製造例4で得られたポリエチレンワックスエマルジョン〔日本精蝋(株)製、EMUSTAR−5555から調製した固形分42%の乳化物〕149gに、セメント混和剤(花王(株)製、マイテイ3000S)7g(有姿)を含む水312gを加え、調製練り水461g〔ポリエチレンワックスエマルジョン(固形分)62.5g、水398.5g(混和剤7gを含む)〕を準備した。その調製練り水をセメント1000gに加え、素早く混練機にてかき混ぜセメントペーストを調製し、試験例1と同様に分散性試験を行った。この結果を表3に示した
[Comparative Test Example 5]
149 g of the polyethylene wax emulsion obtained in Comparative Production Example 4 (manufactured by Nippon Seiwa Co., Ltd., 42% solid emulsion prepared from EMUSTAR-5555) and cement admixture (manufactured by Kao Corporation, Mighty 3000S) 312 g of water containing 7 g (solid) was added to prepare 461 g of prepared kneaded water [62.5 g of polyethylene wax emulsion (solid content), 398.5 g of water (including 7 g of admixture)]. The prepared kneading water was added to 1000 g of cement, and quickly mixed with a kneader to prepare a cement paste. The dispersibility test was conducted in the same manner as in Test Example 1. The results are shown in Table 3.

〔2〕セメントペーストの分散性試験と簡易断熱温度上昇試験
試験例1〜4と比較試験例1〜5で得られたセメントペーストについて、分散性試験と簡易断熱温度上昇試験を以下の方法により行った。結果を表3に示す。
[2] Dispersibility test of cement paste and simple adiabatic temperature rise test For the cement pastes obtained in Test Examples 1 to 4 and Comparative Test Examples 1 to 5, a dispersibility test and a simple adiabatic temperature rise test were conducted by the following methods. It was. The results are shown in Table 3.

(2−1)分散性試験
分散性試験は、混練機に(株)ダルトン製“DALTON万能混合攪拌機 5dm−03−γ”を用い、各材料を添加後低速60秒で練まぜ一旦かきとり、更に低速60秒で攪拌した後、ペーストコーン(底内径φ85mm×上内径φ76mm×高さ40mm)にペーストを流し素早くコーンを持ち上げ、初期フローの広がりを測定した。また、20分後のフローは、前記製法のセメントペーストを20分間静置後、測定前に低速10秒で攪拌してから同操作で測定した。
(2-1) Dispersibility test The dispersibility test was performed by using a “DALTON universal mixing stirrer 5dm-03-γ” manufactured by Dalton Co., Ltd. as a kneading machine, kneading at a low speed of 60 seconds after adding each material, and then scraping. After stirring at a low speed of 60 seconds, the paste was poured into a paste cone (bottom inner diameter φ85 mm × upper inner diameter φ76 mm × height 40 mm), the cone was quickly lifted, and the initial flow spread was measured. Further, the flow after 20 minutes was measured by the same operation after stirring the cement paste of the above production method for 20 minutes and stirring at a low speed of 10 seconds before measurement.

(2−2)簡易断熱温度上昇試験
簡易断熱温度上昇試験は、発泡ウレタンで断熱処理を施した断熱箱に、前記と同じ操作でこの試験用に調製したセメントペーストを500mlの容器に1150gを計りとり断熱箱に埋め込み、セメントペーストの硬化時の発熱温度を追跡記録した。尚、温度の追跡情報は、ペースト中に差し込んだ熱電対から、(株)テクノ・セブン製“パソコン用データ集録システム ソフトサーモE830”で処理し水和発熱による最高温度を求めた。試験環境は、20℃、60%RHの恒温室で行った。
(2-2) Simple adiabatic temperature rise test The simple adiabatic temperature rise test measures 1150 g of cement paste prepared for this test in a 500 ml container in a heat-insulated box subjected to heat insulation treatment with foamed urethane. It was embedded in a heat insulation box, and the exothermic temperature at the time of hardening of the cement paste was recorded. The temperature tracking information was obtained from the thermocouple inserted into the paste by “Technology Seven Co., Ltd.” “PC data acquisition system soft thermo E830” to obtain the maximum temperature due to hydration heat generation. The test environment was a constant temperature room at 20 ° C. and 60% RH.

表中、分散性試験用のセメントペーストにおいて、W/Pは、Wとして蓄熱材懸濁分散液の水の量を含めて、また、Pとして蓄熱材懸濁分散液の蓄熱材の量(固形分)を含めて算出したものである。また、簡易断熱温度上昇試験用のセメントペーストにおいて、W/Cは、Wとして蓄熱材懸濁分散液の水の量を含めて算出したものである。   In the table, in the cement paste for the dispersibility test, W / P includes the amount of water in the heat storage material suspension dispersion as W, and P represents the amount of the heat storage material in the heat storage material suspension dispersion (solid Min)). Moreover, in the cement paste for a simple adiabatic temperature rise test, W / C is calculated including the amount of water of the heat storage material suspension dispersion as W.

表3の結果から、比較試験例2〜5より、一般的な潜熱蓄熱物質であるパラフィンおよびポリエチレンワックスの乳化物は、セメントペーストの初期フローが殆どフローを示さなかったり、20分後フロー保持が著しく低下したりして、セメント等への適正が著しく悪化した。一方、試験例1〜4より、本発明の水難溶性の無機微粒子による無機物付着型蓄熱材を添加すると、セメントペーストの初期フロー値はプレーンに対して25〜30%と低下したが、20分後のフロー値の保持性はほぼ横ばいであることから、本材がセメントへの適用性が優れていることが分かる。また、簡易断熱温度上昇試験においても、最高発熱温度はプレーンに対して5〜8℃抑制することができ、蓄熱材として性能を発揮している。なお、比較試験例2、3、5は硬化遅延が強く硬化時の温度上昇の抑制について適正に評価できないため、簡易断熱温度上昇試験の結果を示さなかった。   From the results of Table 3, from Comparative Test Examples 2 to 5, the emulsion of paraffin and polyethylene wax, which is a general latent heat storage material, shows almost no initial flow of the cement paste, or the flow retention after 20 minutes. The suitability to cement etc. deteriorated remarkably. On the other hand, from Test Examples 1 to 4, when the inorganic material-attached heat storage material by the water-insoluble inorganic fine particles of the present invention was added, the initial flow value of the cement paste decreased to 25 to 30% with respect to the plain, but after 20 minutes Since the retention of the flow value is almost flat, it can be seen that this material is excellent in applicability to cement. Moreover, also in the simple heat insulation temperature rise test, the maximum exothermic temperature can be suppressed 5-8 degreeC with respect to a plane, and the performance is demonstrated as a heat storage material. Since Comparative Test Examples 2, 3, and 5 have a strong curing delay and cannot be appropriately evaluated for suppression of temperature rise during curing, the results of a simple adiabatic temperature rise test were not shown.

実施例1で得られた本発明の無機物付着型蓄熱材の表面状態を示す走査電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph showing the surface state of the inorganic material-attached heat storage material of the present invention obtained in Example 1. FIG. 実施例3で得られた本発明の無機物付着型蓄熱材の表面状態を示す走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph which shows the surface state of the inorganic substance adhesion type heat storage material of this invention obtained in Example 3. FIG. 実施例1、3で得られた本発明の無機物付着型蓄熱材の粒径分布パターンであるIt is a particle size distribution pattern of the inorganic substance adhesion type heat storage material of the present invention obtained in Examples 1 and 3.

Claims (4)

融点40〜80℃のエステル構造を有する化合物を少なくとも含有する潜熱蓄熱物質と水難溶性無機微粒子とを、前記潜熱蓄熱物質の融点又は固相転移温度以上の温度で、水の共存下で混合して、前記潜熱蓄熱物質の表面に前記水難溶性無機微粒子を付着させる工程を有する、平均粒径5〜100μmの粒子からなる蓄熱材の製造方法。 A latent heat storage material containing at least a compound having an ester structure with a melting point of 40 to 80 ° C. and a hardly water-soluble inorganic fine particle are mixed in the presence of water at a temperature equal to or higher than the melting point or solid phase transition temperature of the latent heat storage material. The manufacturing method of the heat storage material which consists of a particle | grain with an average particle diameter of 5-100 micrometers which has the process of making the said water hardly soluble inorganic fine particle adhere to the surface of the said latent heat storage material. 前記潜熱蓄熱物質の融点又は固相転移温度が30〜90℃である、請求項1記載の蓄熱材の製造方法。 The manufacturing method of the heat storage material of Claim 1 whose melting | fusing point or solid-phase transition temperature of the said latent heat storage material is 30-90 degreeC. 前記水難溶性無機微粒子が、リン酸三カルシウム、ヒドロキシアパタイト、及び塩基性炭酸マグネシウムから選ばれる一種以上の化合物を含む粒子である、請求項1又は2記載の蓄熱材の製造方法。 The method for producing a heat storage material according to claim 1 or 2, wherein the poorly water-soluble inorganic fine particles are particles containing one or more compounds selected from tricalcium phosphate, hydroxyapatite, and basic magnesium carbonate. 請求項1〜3の何れか1項記載の製造方法により製造された蓄熱材と水硬性粉体とを含有する水硬性組成物。 The hydraulic composition containing the thermal storage material manufactured by the manufacturing method of any one of Claims 1-3, and hydraulic powder.
JP2007158719A 2007-06-15 2007-06-15 Method for producing heat storage material and hydraulic composition Active JP5328112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158719A JP5328112B2 (en) 2007-06-15 2007-06-15 Method for producing heat storage material and hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158719A JP5328112B2 (en) 2007-06-15 2007-06-15 Method for producing heat storage material and hydraulic composition

Publications (2)

Publication Number Publication Date
JP2008308607A true JP2008308607A (en) 2008-12-25
JP5328112B2 JP5328112B2 (en) 2013-10-30

Family

ID=40236494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158719A Active JP5328112B2 (en) 2007-06-15 2007-06-15 Method for producing heat storage material and hydraulic composition

Country Status (1)

Country Link
JP (1) JP5328112B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181694A (en) * 2012-03-01 2013-09-12 Hitachi Plant Technologies Ltd Heat conveying system
CN106244116A (en) * 2016-08-17 2016-12-21 宜华生活科技股份有限公司 A kind of preparation method of composite shape-stabilized phase change energy storage material
KR20220021956A (en) * 2020-08-13 2022-02-23 명지대학교 산학협력단 Phase transition emulsion and preparation method thereof
WO2022071182A1 (en) * 2020-09-29 2022-04-07 エスケー化研株式会社 Heat storage material, heat storage material composition, and heat storage molded body
CN115448670A (en) * 2022-10-12 2022-12-09 上海交通大学 Packaged molten salt high-temperature heat storage concrete and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369542A (en) * 1989-08-04 1991-03-25 Shimizu Corp Inhibitor for heat of hydration of cement and method for inhibiting temperature rise due to heat of hydration of cement
JPH11152466A (en) * 1997-09-17 1999-06-08 Mitsubishi Paper Mills Ltd Heat storage microcapsule
JP2003090124A (en) * 2001-09-18 2003-03-28 Mitsubishi Paper Mills Ltd Heat storage material for floor heating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369542A (en) * 1989-08-04 1991-03-25 Shimizu Corp Inhibitor for heat of hydration of cement and method for inhibiting temperature rise due to heat of hydration of cement
JPH11152466A (en) * 1997-09-17 1999-06-08 Mitsubishi Paper Mills Ltd Heat storage microcapsule
JP2003090124A (en) * 2001-09-18 2003-03-28 Mitsubishi Paper Mills Ltd Heat storage material for floor heating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181694A (en) * 2012-03-01 2013-09-12 Hitachi Plant Technologies Ltd Heat conveying system
CN106244116A (en) * 2016-08-17 2016-12-21 宜华生活科技股份有限公司 A kind of preparation method of composite shape-stabilized phase change energy storage material
CN106244116B (en) * 2016-08-17 2019-03-19 宜华生活科技股份有限公司 A kind of preparation method of composite shape-stabilized phase change energy storage material
KR20220021956A (en) * 2020-08-13 2022-02-23 명지대학교 산학협력단 Phase transition emulsion and preparation method thereof
KR102489312B1 (en) * 2020-08-13 2023-01-17 명지대학교 산학협력단 Phase transition emulsion and preparation method thereof
WO2022071182A1 (en) * 2020-09-29 2022-04-07 エスケー化研株式会社 Heat storage material, heat storage material composition, and heat storage molded body
CN115448670A (en) * 2022-10-12 2022-12-09 上海交通大学 Packaged molten salt high-temperature heat storage concrete and preparation method thereof

Also Published As

Publication number Publication date
JP5328112B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US20110121246A1 (en) Heat storage compositions and their manufacture
JP5328112B2 (en) Method for producing heat storage material and hydraulic composition
US5766323A (en) Cementitious materials
JP5276822B2 (en) Anti-curing composition for unvulcanized rubber
Sanfelix et al. Effect of microencapsulated phase change materials on the flow behavior of cement composites
JPH10508049A (en) Compositions comprising airgel, methods for their preparation and their use
WO2016070012A1 (en) Phase-change materials from wax-based colloidal dispersions and their process of making
JP5134887B2 (en) Heat storage material
JP6826789B2 (en) Manufacturing method of premix cement composition
CA2959739C (en) Powders from wax-based colloidal dispersions and their process of making
NO342672B1 (en) Microsilica slurry and method for producing such slurry
US11293508B2 (en) Calcium silicate powders
JPH0367736B2 (en)
JPH10297950A (en) Concrete for accumulating cold heat
JP6204481B2 (en) Wetting and hydrophobizing additives
JP7386610B2 (en) PTFE aqueous dispersion and dust suppression treatment agent composition comprising the aqueous dispersion
JP2005289718A (en) Admixture for cement, and its production process
JPS61141613A (en) Slurry of fine silica powder having excellent storage stability, and method for producing same
JP5423188B2 (en) Release agent for water-soluble die casting and method for producing the same
JPH09241387A (en) Process for granulating particulate polytetrafluoroethylene powder
JPH0661458B2 (en) Composition having delayed reactivity or solubility with water or aqueous acid / alkali solution and method for producing the same
JPH07110214B2 (en) Method for producing a quality improver for frozen fish surimi
García Sanfélix et al. Effect of Microencapsulated Phase Change Materials on the Flow Behavior of Cement Composites
JPS6131460A (en) Preparation of solid silicone oil
JP2020117409A (en) Granulated material, granulating method, dust control method, and granulating agent for powder for concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R151 Written notification of patent or utility model registration

Ref document number: 5328112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250