JP2008307587A - Method and apparatus for manufacturing corrugated plate with hole - Google Patents

Method and apparatus for manufacturing corrugated plate with hole Download PDF

Info

Publication number
JP2008307587A
JP2008307587A JP2007159221A JP2007159221A JP2008307587A JP 2008307587 A JP2008307587 A JP 2008307587A JP 2007159221 A JP2007159221 A JP 2007159221A JP 2007159221 A JP2007159221 A JP 2007159221A JP 2008307587 A JP2008307587 A JP 2008307587A
Authority
JP
Japan
Prior art keywords
hole
shape
corrugated
corrugated plate
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007159221A
Other languages
Japanese (ja)
Inventor
Teruhisa Kaneda
照久 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007159221A priority Critical patent/JP2008307587A/en
Publication of JP2008307587A publication Critical patent/JP2008307587A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To position end parts of slit holes provided on a corrugated plate at plane parts between mutual corrugated bent parts. <P>SOLUTION: The length of the slit hole 20 corresponding to a strip-shaped member 10 in the extending direction is made equal to the extended length by one pitch of a wave in the corrugated plate 10A. After closing up the pitch following the corrugate shaping by a pair of shaping rolls 11a, 11b, the shape of the slit hole 20 is recognized by an image sensor 14. When the recognized shape of the slit hole 20 is not a corresponding rectangular shape when positioning the ends of the slit hole 20 at the corrugated plane part, it is determined that the ends of the slit hole 20 are positioned at the corrugated bent parts, and the upper shaping roll 11a is moved in any of upper and lower directions, thereby varying the mutual interval between the pair of shaping rolls 11a, 11b. This positions the end parts of the slit hole 20 at the plane parts between mutual corrugated bent parts. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、貫通孔を備えた帯状部材を、外周部に成形歯を備えた一対の成形ロール間に供給して波板に成形する孔付波板の製造方法および製造装置に関する。   TECHNICAL FIELD The present invention relates to a corrugated plate manufacturing method and a manufacturing apparatus for supplying a band-shaped member having a through-hole between a pair of forming rolls having forming teeth on the outer peripheral portion to form a corrugated plate.

従来より、自動車における排出ガスを浄化する触媒コンバータのメタル担体や、熱交換器などのラジエータコアには、アルミやステンレスなどの金属製薄板からなるコルゲートフィン(以下、波板という)が用いられている。   Conventionally, corrugated fins (hereinafter referred to as corrugated plates) made of thin metal plates such as aluminum and stainless steel have been used for metal carriers of catalytic converters that purify exhaust gas in automobiles and radiator cores such as heat exchangers. Yes.

このうちメタル担体は、金属製薄板からなる波板と平板とを交互に多重に巻き回して断面略円形状としたコアと、このコアを装着する金属製の外筒とで構成され、上記波板と平板との間に形成された複数のセル通路内に排出ガスを通過させることによって、排出ガス中に含まれる有害成分を、コア表面に担持させた触媒層の触媒反応により除去するようにしたものである。   Among these, the metal carrier is composed of a core having a substantially circular cross section by alternately winding a corrugated plate and a flat plate made of a thin metal plate, and a metal outer cylinder on which the core is mounted. By passing the exhaust gas through a plurality of cell passages formed between the plates, harmful components contained in the exhaust gas are removed by the catalytic reaction of the catalyst layer supported on the core surface. It is what.

従来、メタル担体の排気浄化性能を向上させることを目的として、波板の表面に複数の貫通孔であるスリット孔を形成し、排出ガスがメタル担体内を通過する際に乱流を発生させて、排出ガスと触媒層とがより多く接触するようにしたものが提案されている(下記特許文献1,2参照)。   Conventionally, for the purpose of improving the exhaust purification performance of the metal carrier, slit holes, which are a plurality of through holes, are formed on the surface of the corrugated plate to generate turbulent flow when the exhaust gas passes through the metal carrier. There have been proposed those in which the exhaust gas and the catalyst layer are in contact with each other (see Patent Documents 1 and 2 below).

また、このような波板の製造装置として、コルゲート加工機により波板状に形成されたフィン材を、ピッチ詰め機、中間詰め機、およびピッチ出し機という順番で連続的に加工することによりフィンピッチを調整するようにしたものが提案されている(下記特許文献3参照)。
特開2002−143693号公報 特開2004−188328号公報 特開平11−147149号公報
Further, as such a corrugated sheet manufacturing apparatus, fin materials formed into corrugated form by a corrugating machine are processed in the order of a pitch filling machine, an intermediate filling machine, and a pitching machine to obtain fins. A device in which the pitch is adjusted has been proposed (see Patent Document 3 below).
JP 2002-143893 A JP 2004-188328 A JP 11-147149 A

上述したピッチ詰め前の帯状部材には、あらかじめ一定間隔でスリット孔が開けられている。この帯状部材は波形状に成形された後にピッチ詰めされるが、このピッチ詰めの際に波形状における曲面部にスリット孔の端部が位置していると、曲面部における頂部の稜線と直交する方向に加わる力に対して弱くなり、曲面部の捲れや寸法形状のばらつきなどの変形が生じやすくなる。   The band-shaped member before pitch filling described above has slit holes formed at predetermined intervals. The band-shaped member is formed into a wave shape and then packed into a pitch. When the end of the slit hole is located on the curved surface portion of the wave shape at the time of pitch packing, the belt-shaped member is orthogonal to the ridge line at the top of the curved surface portion. It becomes weak against the force applied in the direction, and deformation such as curling of the curved surface portion and variation in dimensional shape is likely to occur.

そして、このような変形が生じた波板を用いて組み立てたコアは波板と平板との間の拡散接合不良が起こりやすく、コア内部の熱伝達が悪化して排気浄化性能の向上が図れないという問題がある。   And the core assembled using the corrugated plate in which such deformation has occurred tends to cause a poor diffusion bonding between the corrugated plate and the flat plate, the heat transfer inside the core deteriorates, and the exhaust purification performance cannot be improved. There is a problem.

そこで、本発明は、波板に形成してある貫通孔の端部を、波板における曲面部相互間の平面部に位置させるようにすることを目的としている。   Therefore, an object of the present invention is to position the end portions of the through holes formed in the corrugated plate at the plane portions between the curved surface portions of the corrugated plate.

本発明は、貫通孔を備えた帯状部材をその延長方向に沿って、外周部に成形歯を備えた一対の成形ロール間に供給して波板に成形する孔付波板の製造方法であって、前記貫通孔の前記帯状部材の延長方向に対応する長さを、前記波板における波の1ピッチ分の展開長の1/2の整数倍に設定した上で、前記波板の表面に交差する方向から前記貫通孔の形状を認識し、この認識した前記貫通孔の形状が、該貫通孔の前記帯状部材の延長方向に対応する端部が前記波板の波形状の曲面部に位置するときに相当すると判断した場合に、前記貫通孔の端部を前記波形状の曲面部相互間の平面部に位置させるように、前記一対の成形ロール相互の間隔を変化させることを最も主要な特徴とする。   The present invention is a method for producing a corrugated plate with a hole that is formed into a corrugated sheet by supplying a band-shaped member having a through hole along a direction of extension between a pair of forming rolls having forming teeth on an outer peripheral portion, The length of the through hole corresponding to the extending direction of the band-shaped member is set to an integral multiple of 1/2 of the development length of one wave of the wave on the corrugated plate, and then intersects the surface of the corrugated plate. When the shape of the through hole is recognized from the direction and the end of the through hole corresponding to the extending direction of the band-shaped member is positioned on the corrugated curved surface of the corrugated plate The main feature is that the distance between the pair of forming rolls is changed so that the end portion of the through hole is positioned on the plane portion between the wavy curved surface portions. To do.

本発明によれば、貫通孔の端部を波形状の曲面部相互間の平面部に位置させるようにしたので、曲面部における頂部の稜線と直交する方向に加わる力に対して強くなり、曲面部の捲れや寸法形状のばらつきなどの変形を抑え、所望の波形状に成形することができる。これによって、曲面部の拡散接合不良を防止し、この波板を用いて組み立てたコアの熱伝導性が向上して浄化性能の向上を図ることができる。   According to the present invention, since the end portion of the through hole is positioned in the plane portion between the wavy curved surface portions, the end portion of the through hole becomes strong against the force applied in the direction perpendicular to the ridge line of the top portion of the curved surface portion, and the curved surface It is possible to form a desired wave shape while suppressing deformations such as part curling and dimensional variation. As a result, the diffusion bonding failure of the curved surface portion can be prevented, and the thermal conductivity of the core assembled using this corrugated sheet can be improved to improve the purification performance.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態を示す、孔付波板の製造装置(以下、波板製造装置という)100の概略構成図であり、この波板製造装置100は、図2に示すような、貫通孔としてのスリット孔20が形成された帯状部材10に対し、ロール成形によって孔付の波板10Aとするものである。   FIG. 1 is a schematic configuration diagram of a corrugated plate manufacturing apparatus (hereinafter referred to as a corrugated sheet manufacturing apparatus) 100 according to an embodiment of the present invention. The corrugated sheet manufacturing apparatus 100 is configured as shown in FIG. A corrugated plate 10A with a hole is formed by roll forming on the belt-like member 10 in which the slit hole 20 as a through hole is formed.

本実施形態に係わる波板製造装置100は、図1に示すように、成形ロール部11、ピッチ詰めロール部12、および形状出しロール部13を備え、さらにピッチ詰めロール部12と形状出しロール部13との間に、波板10Aの表面に交差する方向(図1中で上方)から、スリット孔20の形状を認識する孔形状認識手段としての画像センサ14を設置している。   As shown in FIG. 1, the corrugated sheet manufacturing apparatus 100 according to the present embodiment includes a forming roll unit 11, a pitch filling roll unit 12, and a shaping roll unit 13, and further includes a pitch filling roll unit 12 and a shaping roll unit. 13 is provided with an image sensor 14 as hole shape recognition means for recognizing the shape of the slit hole 20 from the direction intersecting the surface of the corrugated plate 10A (upward in FIG. 1).

また、図示していないが、成形ロール部11の上流側(図1中で左側)には、成形方向(帯状部材10の送り方向)に沿って図2のように複数列のスリット孔20が形成された帯状部材10が巻き取られた供給ローラが配置されている。   Further, although not shown, a plurality of rows of slit holes 20 are formed on the upstream side (left side in FIG. 1) of the forming roll portion 11 along the forming direction (feed direction of the belt-like member 10) as shown in FIG. A supply roller around which the formed belt-like member 10 is wound is disposed.

そして、この供給ローラにセットした帯状部材10が、図示しない送りロールなどにより引き出され、連続して成形ロール部11へ順次供給される。なお、図1では、本波板製造装置100を構成する主要部分のみを示し、その他の部分(例えば駆動機構など)については図示を省略している。   The belt-like member 10 set on the supply roller is pulled out by a feed roll (not shown) and continuously supplied to the forming roll unit 11 sequentially. In FIG. 1, only main parts constituting the corrugated sheet manufacturing apparatus 100 are shown, and other parts (for example, a drive mechanism) are not shown.

成形ロール部11は、上下一対の成形ロール11a,11bからなり、これら成形ロール11a,11bのロール外周部表面には、図3に示すように、複数の成形歯110a,110bがそれぞれ円周に沿って形成されている。この成形歯110a,110b相互を所定間隔で嵌合させ、矢印方向に回転駆動させながらロール間に帯状部材10を供給して成形することで、帯状部材10は図3に示すような波形状(以下、第1波形状という)の波板10Aとなる。   The forming roll part 11 is composed of a pair of upper and lower forming rolls 11a and 11b, and a plurality of forming teeth 110a and 110b are arranged on the circumference of the roll outer peripheral surface of the forming rolls 11a and 11b, respectively, as shown in FIG. Are formed along. The band-shaped member 10 is formed into a corrugated shape as shown in FIG. 3 by fitting the formed teeth 110a and 110b at a predetermined interval and supplying the band-shaped member 10 between the rolls while being driven to rotate in the direction of the arrow. Hereinafter, the corrugated sheet 10A is referred to as a first wave shape.

この成形歯110a,110bは、成形時に帯状部材10が破断しないように、目標とする波板高さ、波板ピッチの波形状(以下、目標波形状という)に比べて波板の高さが低く、また山のピッチが広くなるように設定される。   The forming teeth 110a and 110b have a corrugated plate height that is higher than a target corrugated plate height and corrugated pitch wave shape (hereinafter referred to as a target corrugated shape) so that the band-shaped member 10 does not break during molding. It is set so that it is low and the pitch of the mountain is wide.

図4は、上記した成形ロール11a,11b周辺における、帯状部材10の送り方向から見た正面図で、成形ロール11a,11bは、軸方向両端に突出している回転支持軸111a,111bが、それぞれ軸受112a,112bに回転可能に支持されている。   FIG. 4 is a front view of the periphery of the above-described forming rolls 11a and 11b as seen from the feeding direction of the band-shaped member 10. The forming rolls 11a and 11b are respectively provided with rotation support shafts 111a and 111b protruding at both axial ends. The bearings 112a and 112b are rotatably supported.

ここで、下部の軸受112bは、本成形ロール部11のベース板15上に固定してあるブロック16上に、ハウジング30を介して固定し、該下部の軸受112bのハウジング30と上部の軸受112aのハウジング31との間には弾性体となる圧縮コイルスプリング17を介装している。このとき上部の軸受112aは、圧縮コイルスプリング17によりハウジング31を介して上方に向けて常時押し付けられた状態であり、かつハウジング31とともに、下部の軸受112bに対して接近離反する方向に移動可能である。   Here, the lower bearing 112b is fixed on the block 16 fixed on the base plate 15 of the main forming roll part 11 via the housing 30, and the housing 30 and the upper bearing 112a of the lower bearing 112b are fixed. A compression coil spring 17 serving as an elastic body is interposed between the housing 31 and the housing 31. At this time, the upper bearing 112a is always pressed upward by the compression coil spring 17 through the housing 31, and can move together with the housing 31 in a direction approaching and separating from the lower bearing 112b. is there.

上部の軸受112aの上部にはナット部材113を取り付け、ナット部材113に螺合するねじ部を先端に備えるシャフト114を上下方向に延長して設け、このシャフト114の基端部(上端部)を、成形ロール移動手段としての正逆回転可能なモータ18に連結する。モータ18は、成形ロール部11の例えばベース板15上に立設した図示しないスタンドなどに固定した状態とする。   A nut member 113 is attached to the upper portion of the upper bearing 112a, and a shaft 114 having a threaded portion that is screwed into the nut member 113 at its distal end is extended in the vertical direction. A base end portion (upper end portion) of the shaft 114 is provided. Then, it is connected to a motor 18 that can rotate forward and reverse as a forming roll moving means. The motor 18 is fixed to, for example, a stand (not shown) standing on the base plate 15 of the forming roll unit 11.

したがって、モータ18を駆動することでシャフト114が回転し、シャフト114のねじ部が螺合するナット部材113と一体の上部の軸受112aおよびハウジング31が、回転支持軸111aおよび成形ロール11aとともに上下方向に移動し、これにより一対の成形ロール11a,11b相互の間隔が変化することになる。   Accordingly, when the motor 18 is driven, the shaft 114 rotates, and the upper bearing 112a and the housing 31 integral with the nut member 113 into which the threaded portion of the shaft 114 is screwed together with the rotation support shaft 111a and the forming roll 11a. As a result, the distance between the pair of forming rolls 11a and 11b changes.

前記図1に戻り、ピッチ詰めロール部12は、上下一対のピッチ詰めロール12a,12bからなり、これらピッチ詰めロール12a,12bのロール表面には、図5に示すように、複数の成形歯120a,120bがそれぞれ円周に沿って形成されている。上流の成形ロール部11から排出された波板10Aは、ピッチ詰めロール部12の入口側で一時的に堰き止められることで波板の曲面部10Ab同士が圧接された波形状となる(以下、第2波形状という)。この第2波形状において、曲面部10Abはほぼ半円形となっている。この状態でピッチ詰めロール12a,12bを矢印方向に回転駆動すると、成形歯120a,120bの山部分が圧接された曲面部10Ab間に入り込み、谷部分が曲面部10Abを全面で押さえながら曲面部10Ab同士を分離する。これにより、出口側では曲面部10Ab同士が分離して、第2波形状よりも波板ピッチの広い波形状となる(以下、第3波形状という)。   Returning to FIG. 1, the pitch filling roll unit 12 includes a pair of upper and lower pitch filling rolls 12a and 12b. On the roll surface of these pitch filling rolls 12a and 12b, as shown in FIG. 120b are formed along the circumference. The corrugated sheet 10A discharged from the upstream forming roll unit 11 is temporarily corrugated on the inlet side of the pitch filling roll unit 12 to have a corrugated shape in which the curved surface parts 10Ab of the corrugated sheets are in pressure contact with each other (hereinafter, Called second wave shape). In the second wave shape, the curved surface portion 10Ab is substantially semicircular. When the pitch filling rolls 12a and 12b are rotationally driven in the direction of the arrow in this state, the crest portions of the forming teeth 120a and 120b enter between the press-contacted curved surface portions 10Ab, and the trough portions press the curved surface portion 10Ab over the entire surface and the curved surface portion 10Ab. Separate each other. Thereby, curved surface part 10Ab isolate | separates in an exit side, and becomes a wave shape with a wider corrugated plate pitch than a 2nd wave shape (henceforth a 3rd wave shape).

なお、波形状における曲面部10Abを部分的に押さえながら移動させると、波板10Aの変形を引き起こすおそれがある。しかしながら本実施形態では、図5に示すように、曲面部10Abを全面で押さえながら曲面部10Ab同士を分離しているため、波板10Aの変形を防止することができる。   If the curved surface portion 10Ab in the wave shape is moved while being partially pressed, the corrugated plate 10A may be deformed. However, in the present embodiment, as shown in FIG. 5, since the curved surface portions 10Ab are separated from each other while holding the curved surface portion 10Ab over the entire surface, deformation of the corrugated plate 10A can be prevented.

形状出しロール部13は、上下一対の形状出しロール13a,13bからなり、これら形状出しロール13a,13bの表面には、図6に示すように、複数の成形歯130a,130bがそれぞれ円周に沿って形成されている。この成形歯130a,130bの山部分は第3波形状に成形された波板10Aの曲面部10Ab間に入り込み、波板10Aを搬送方向に引っ張る。   The shaping roll unit 13 is composed of a pair of upper and lower shaping rolls 13a and 13b. On the surface of these shaping rolls 13a and 13b, as shown in FIG. 6, a plurality of forming teeth 130a and 130b are arranged on the circumference. Are formed along. The crest portions of the forming teeth 130a and 130b enter between the curved surface portions 10Ab of the corrugated plate 10A formed in the third wave shape, and pull the corrugated plate 10A in the conveying direction.

すなわち、ピッチ詰めロール部12から排出された段階で第3波形状となっている波板10Aは、各ロール部が同期駆動されることによってピッチ詰めロール部12と形状出しロール部13との間で引っ張られ、最終的に形状出しロール13a,13bに形成された成形歯130a,130bのピッチとほぼ同じピッチまで伸ばされた状態で搬送される。   That is, the corrugated sheet 10 </ b> A having the third wave shape when discharged from the pitch filling roll unit 12 is driven between the pitch filling roll unit 12 and the shaping roll unit 13 by synchronously driving each roll unit. And finally transported in a state of being stretched to substantially the same pitch as that of the forming teeth 130a and 130b formed on the shaping rolls 13a and 13b.

これにより、成形ロール部11、ピッチ詰めロール部12および形状出しロール部13を同期駆動したときに、ピッチ詰めロール部12から波板10Aが1山排出されることになる。そして、形状出しロール部13から排出された波板10Aは、引っ張られたフィンピッチがバネ復元力により縮まって、最終的な目標波形状に成形される。   Accordingly, when the forming roll unit 11, the pitch filling roll unit 12, and the shape forming roll unit 13 are driven synchronously, the corrugated sheet 10 </ b> A is discharged from the pitch filling roll unit 12. Then, the corrugated sheet 10A discharged from the shape forming roll unit 13 is formed into a final target wave shape by the pulled fin pitch being contracted by the spring restoring force.

このように、形状出しロール部13では、波板10Aの弾性域を利用して、フィンピッチが目標値よりも広くなるように引っ張っている。   As described above, the shaping roll unit 13 uses the elastic region of the corrugated plate 10A to pull the fin pitch so as to be wider than the target value.

次に、上記のように構成された波板製造装置100を用いて波板10Aを製造する手順について説明する。   Next, a procedure for manufacturing the corrugated sheet 10A using the corrugated sheet manufacturing apparatus 100 configured as described above will be described.

まず、図7に示すように、帯状板材10の先端を成形ロール11aの1つの成形歯110aの先端に接触させるとともに、片面(下面)をこの接触させた成形歯110aの上流側に隣接する成形ロール11bの成形歯110bの先端と接するようにセットする。そして、成形ロール11a,11bを矢印方向に回転駆動する。これにより、図3に示すように、帯状板材10は第1波形状の波板10Aに成形される(一次成形工程)。   First, as shown in FIG. 7, the tip of the belt-like plate member 10 is brought into contact with the tip of one molding tooth 110a of the molding roll 11a, and one side (lower surface) is adjacent to the upstream side of the molding tooth 110a in contact with the molding tooth 11a. The roll 11b is set so as to be in contact with the tip of the formed tooth 110b. Then, the forming rolls 11a and 11b are rotationally driven in the arrow direction. Thereby, as shown in FIG. 3, the strip | belt-shaped board | plate material 10 is shape | molded by the corrugated sheet 10A of a 1st wave shape (primary shaping | molding process).

なお、上記のように帯状板材10をセットする際には、図4に示したモータ18を駆動して上部の成形ロール11aを下部の成形ロール11bに対して定位置よりも離れた状態とすることで、セット作業が容易となる。   When the belt-like plate member 10 is set as described above, the motor 18 shown in FIG. 4 is driven so that the upper forming roll 11a is separated from the lower forming roll 11b from a fixed position. This facilitates the setting work.

この後、第1波形状に形成された波板材10Aはピッチ詰めロール部12に達し、ピッチ詰めロール12a,12b間に突き当たる。さらに、成形ロール11a,11bを回転駆動すると、第1波形状に成形された波板10Aはピッチ詰めロール部12の入口側で一時的に堰き止められ、成形ロール部11からの波板排出力により波板の曲面部10Ab同士が圧接されて第2波形状となる(この工程をピッチ詰めという)。このとき、第2波形状の部分がピッチ詰めロール12a,12bの成形歯120a,120bと噛み合うように、ピッチ詰めロール12a,12bを矢印方向に所定角度だけ回転駆動してもよい。   Thereafter, the corrugated sheet material 10A formed in the first corrugated shape reaches the pitch filling roll portion 12 and abuts between the pitch filling rolls 12a and 12b. Further, when the forming rolls 11a and 11b are rotationally driven, the corrugated sheet 10A formed in the first corrugated shape is temporarily dammed on the inlet side of the pitch filling roll section 12 and the corrugated sheet discharging force from the forming roll section 11 is obtained. As a result, the curved surface portions 10Ab of the corrugated plates are pressed together to form a second wave shape (this process is referred to as pitch packing). At this time, the pitch filling rolls 12a and 12b may be rotationally driven by a predetermined angle in the direction of the arrow so that the second wave-shaped portion meshes with the forming teeth 120a and 120b of the pitch filling rolls 12a and 12b.

この後、成形ロール11a,11bを回転駆動し続けると、第2波形状の部分が成形ロール部11とピッチ詰めロール部12との間に溜まることになる。そして、第2波形状の部分が成形ロール部11の出口付近まで溜まった時点で、成形ロール部11、ピッチ詰めロール部12および形状出しロール部13を互いに同期駆動して、上記各ロール部から波板10Aを1山ずつ下流側に排出させる。この同期駆動を開始した後は、波板10Aを成形ロール部11とピッチ詰めロール部12との間に一時的に堰き止める必要はなく、成形ロール部11から排出される第1波形状の1山が成形ロール部11とピッチ詰めロール部12との間で順に圧接され、1山ずつ第2波形状に成形される。   Thereafter, when the forming rolls 11 a and 11 b are continuously driven to rotate, the second wave-shaped portion is accumulated between the forming roll portion 11 and the pitch filling roll portion 12. Then, when the second wave-shaped portion is collected up to the vicinity of the exit of the forming roll unit 11, the forming roll unit 11, the pitch filling roll unit 12 and the shaping roll unit 13 are driven in synchronization with each other, The corrugated plate 10A is discharged to the downstream side one by one. After starting this synchronous drive, it is not necessary to temporarily dam the corrugated sheet 10A between the forming roll part 11 and the pitch filling roll part 12, and the first wave shape 1 discharged from the forming roll part 11 The crests are press-contacted in order between the forming roll unit 11 and the pitch filling roll unit 12 and formed into a second wave shape one by one.

上記同期駆動により、図5に示すように、ピッチ詰めロール12a,12bに形成された成形歯120a,120bでは、山部分が波板10Aの圧接された曲面部10Ab間に入り込み、谷部分が曲面部10Abを全面で押さえながら曲面部10Ab同士を分離して、第2波形状よりも波板ピッチの広い第3波形状に成形される(二次成形工程)。このとき、本実施形態では、第3波形状とした波板10Aを画像センサ14により撮像するが、その点については後述する。   As shown in FIG. 5, by the synchronous drive, as shown in FIG. 5, in the forming teeth 120a and 120b formed on the pitch filling rolls 12a and 12b, the crests enter between the curved surface portions 10Ab pressed against the corrugated plate 10A, and the trough portions are curved surfaces. The curved surface portions 10Ab are separated from each other while pressing the portion 10Ab over the entire surface, and formed into a third wave shape having a corrugated plate pitch wider than the second wave shape (secondary forming step). At this time, in the present embodiment, the corrugated plate 10A having the third wave shape is imaged by the image sensor 14, which will be described later.

続いて、図6に示すように、波板10Aは形状出しロール13a,13bの成形歯130a,130bにより、第3波形状に成形された波板10Aの曲面部10Ab間が目標値より広くなるように引っ張られる。その後、形状出しロール部13から排出された波板10Aは波板ピッチが縮まり、目標波形状となる(三次成形工程)。   Subsequently, as shown in FIG. 6, the corrugated sheet 10 </ b> A is wider than the target value between the curved surface portions 10 </ b> Ab of the corrugated sheet 10 </ b> A formed into the third corrugated shape by the forming teeth 130 a and 130 b of the shaping rolls 13 a and 13 b. To be pulled. Thereafter, the corrugated sheet 10A discharged from the shaping roll unit 13 has a corrugated sheet pitch reduced to a target corrugated shape (tertiary forming step).

なお、特に図示していないが、成形ロール部11とピッチ詰めロール部12の間、並びにピッチ詰めロール部12と形状出しロール部13との間には、波板10Aの厚み方向および幅方向への斜行を抑制するフィンガイドが配置されているものとする。   Although not particularly illustrated, between the forming roll part 11 and the pitch filling roll part 12 and between the pitch filling roll part 12 and the shaping roll part 13 in the thickness direction and the width direction of the corrugated sheet 10A. It is assumed that a fin guide that suppresses the skew is arranged.

次に、上述したような波板製造過程において、波形状の曲面部10Abにスリット孔20の端部が位置しないようにする製造方法について説明する。   Next, a manufacturing method for preventing the end of the slit hole 20 from being positioned on the corrugated curved surface portion 10Ab in the corrugated plate manufacturing process as described above will be described.

図2は、スリット孔20が形成された帯状部材10の平面図である。本実施形態の帯状部材10には、幅方向(y方向)に3つのスリット孔20を寸法2Pの間隔をおいて配置し、この3つのスリット孔20を、帯状部材10の搬送方向(x方向)に連続して形成し、この際、隣接する3つのスリット孔20同士を幅方向に寸法Pだけずらした状態とする。   FIG. 2 is a plan view of the belt-like member 10 in which the slit hole 20 is formed. In the belt-like member 10 of the present embodiment, three slit holes 20 are arranged in the width direction (y direction) with an interval of a dimension 2P, and these three slit holes 20 are arranged in the transport direction (x direction) of the belt-like member 10. In this case, the three adjacent slit holes 20 are shifted by a dimension P in the width direction.

幅方向に寸法Pだけずらした3つのスリット孔20同士は、互いに近接する側の端部が幅方向に延びる同一線上に位置し、各スリット孔20の搬送方向(帯状部材10の延長方向)の長さ寸法をLとしている。   The three slit holes 20 shifted by the dimension P in the width direction are located on the same line with the end portions close to each other extending in the width direction, and in the conveying direction of each slit hole 20 (extension direction of the strip member 10). The length dimension is L.

先に説明したように、帯状部材10をピッチ詰めするときに波形状の曲面部10Abにスリット孔20の端部が位置していると、ピッチ詰めされた際に波形状の曲面部10Abに捲れなどの変形を生じてしまう。このため本実施形態では、スリット孔20の長さLと位置とを所定値に設定することにより、波形状の曲面部10Abにスリット孔20の端部が位置しないようにしている。   As described above, if the end portion of the slit hole 20 is positioned on the corrugated curved surface portion 10Ab when pitching the belt-like member 10, the corrugated curved surface portion 10Ab is dripped when the pitch is compacted. Such deformation will occur. For this reason, in the present embodiment, the length L and the position of the slit hole 20 are set to predetermined values so that the end of the slit hole 20 is not positioned on the wave-like curved surface portion 10Ab.

まず、本実施形態におけるスリット20の長さLは、波形状における1ピッチ分の展開長と同等、すなわち同展開長の1/2の2倍に設定している。図8は、波板10Aのピッチ詰めした後の波形状を示す1ピッチ分の概略側面図である。図8に示すように、1ピッチ分を波形状の曲面部10Ab間とすると、展開長は2C+2Rπとなる。ここで、Cは波形状の平面部10Aaの長さであり、後述するスリット孔端部許容範囲を示している。Rは曲面部10Abの半径を示し、この半径Rで描かれる円周の長さは2Rπとなる。Hは波形状高さを示している。   First, the length L of the slit 20 in this embodiment is set to be equal to the development length of one pitch in the wave shape, that is, twice the development length of 1/2. FIG. 8 is a schematic side view of one pitch showing the wave shape after the corrugated plate 10A is pitch-packed. As shown in FIG. 8, when one pitch is between the wave-shaped curved surface portions 10Ab, the developed length is 2C + 2Rπ. Here, C is the length of the corrugated flat portion 10Aa, and indicates the allowable range of the slit hole end, which will be described later. R indicates the radius of the curved surface portion 10Ab, and the length of the circumference drawn by this radius R is 2Rπ. H indicates the wave height.

また、本実施形態におけるスリット孔20の位置は、少なくとも製造開始時には、スリット孔20の帯状部材10の搬送方向の両端部が、波板材10Aの平面部10Aaに位置するように設定している。このために、本実施形態では、図2に示す帯状部材10の搬送方向前方側の板材端部10aから最初のスリット孔20の端部までの距離Xを、
a+b<X<a+b+c …(1)
の範囲となるように設定している。ここで、「a」は帯状部材10の板材端部10aから成形ロールによる折り曲げ開始位置までの距離、「b」は波形状の曲面部10Abにおける半径Rで描かれる円周の1/4の長さ(図8)、「c」は図8の波形状高さH−2R(=C)をそれぞれ示している。また、帯状板材10の板材端部10aは、以下に記載するように、波板を製造開始する際に最初に成形ロール11aの成形歯110aに接する部位を示す。以下、図7とともに説明する。
Moreover, the position of the slit hole 20 in this embodiment is set so that both ends of the slit hole 20 in the transport direction of the band-shaped member 10 are positioned on the flat surface portion 10Aa of the corrugated sheet material 10A at least at the start of manufacture. For this reason, in the present embodiment, the distance X from the plate material end 10a on the front side in the transport direction of the band-shaped member 10 shown in FIG. 2 to the end of the first slit hole 20 is
a + b <X <a + b + c (1)
It is set to be in the range. Here, “a” is the distance from the plate material end portion 10a of the belt-like member 10 to the bending start position by the forming roll, and “b” is the length of ¼ of the circumference drawn by the radius R of the wave-shaped curved surface portion 10Ab. (FIG. 8), “c” indicates the waveform height H-2R (= C) in FIG. In addition, as described below, the plate material end portion 10a of the belt-shaped plate material 10 indicates a portion that first contacts the forming teeth 110a of the forming roll 11a when manufacturing the corrugated sheet is started. Hereinafter, it will be described with reference to FIG.

図7は、帯状部材10を成形ロール11a,11bにセットしたときの部分拡大図である。図7に示すように、帯状部材10の板材端部10aが成形ロール11aの成形歯110aの先端に接し、かつ帯状部材10の片面(下面)が成形ロール11bの成形歯110bの先端と接する地点(折り曲げ開始地点O)から波形状の成形が開始される。   FIG. 7 is a partially enlarged view when the belt-like member 10 is set on the forming rolls 11a and 11b. As shown in FIG. 7, the plate material end portion 10a of the belt-like member 10 is in contact with the tip of the forming tooth 110a of the forming roll 11a, and one surface (lower surface) of the belt-like member 10 is in contact with the tip of the forming tooth 110b of the forming roll 11b. Waveform shaping starts from (folding start point O).

帯状部材10の材料となるメタル材は伸びが殆どないため、成形ロール11a,11bによる一次成形後にピッチ詰め(二次成形)を行っても、折り曲げ開始地点Oの位置は変化しない。このため、帯状部材10の板材端部10aから最初のスリット孔20の端部までの距離Xが上記式(1)の範囲となるように設定し、帯状部材10を図7のように成形ロール11a,11bの間にセットして成形を行うことにより、成形された波形状の平面部10Aaにスリット孔20の端部を位置させることができる。   Since the metal material used as the material of the belt-shaped member 10 hardly stretches, the position of the folding start point O does not change even if pitch filling (secondary forming) is performed after the primary forming by the forming rolls 11a and 11b. Therefore, the distance X from the plate material end portion 10a of the strip member 10 to the end portion of the first slit hole 20 is set to be in the range of the above formula (1), and the strip member 10 is formed as shown in FIG. By setting between 11a and 11b and performing the molding, the end of the slit hole 20 can be positioned on the shaped corrugated flat surface portion 10Aa.

図9は、図2の距離Xをa+b+(c/2)として成形したときの波板10Aの波形状を示す断面図である。図9において、α−β間(白抜き線)はスリット孔20を設けた区間を示し、β−γ間(黒塗り線)はスリット孔20を設けていない区間を示している。この例では、スリット孔20の端部が波板10Aの区間Cで示す平面部10Aaの中央に位置しているが、スリット孔20の端部はスリット孔端部許容範囲Cの範囲であればどの位置にあってもよい。   FIG. 9 is a cross-sectional view showing the wave shape of the corrugated sheet 10A when the distance X in FIG. 2 is formed as a + b + (c / 2). In FIG. 9, the interval between α and β (outlined line) indicates a section where the slit hole 20 is provided, and the interval between β and γ (black line) indicates a section where the slit hole 20 is not provided. In this example, the end portion of the slit hole 20 is located at the center of the flat surface portion 10Aa indicated by the section C of the corrugated plate 10A, but the end portion of the slit hole 20 is within the slit hole end portion allowable range C. It can be in any position.

そして、本実施形態では、前記図1,図4に示してある画像センサ14が、図10のフローチャートで示すように、スリット孔20の形状を撮像して認識すると(ステップ101)、孔形状判断手段としての制御回路19が、スリット孔20の形状が矩形状(口形状)であるかどうかを判断する(ステップ102)。   In this embodiment, when the image sensor 14 shown in FIGS. 1 and 4 captures and recognizes the shape of the slit hole 20 as shown in the flowchart of FIG. 10 (step 101), the hole shape determination is performed. The control circuit 19 as means determines whether the shape of the slit hole 20 is rectangular (mouth shape) (step 102).

図11は、画像センサ14による認識画像を模式化して示したもので、スリット孔20の端部が波形状の平面部10Aaに位置しているときは、図11中で左側に示すようにスリット孔20はOK形状として示す矩形状(口形状)に認識される。一方、スリット孔20の端部が波形状の曲面部10Abに位置しているときは、図11中で右側に示すようにスリット孔20はNG形状として示すように、矩形状(口形状)とはならず崩れた形状に認識される。   FIG. 11 schematically shows a recognition image obtained by the image sensor 14, and when the end of the slit hole 20 is positioned on the wave-shaped flat portion 10Aa, as shown on the left side in FIG. The hole 20 is recognized as a rectangular shape (mouth shape) shown as an OK shape. On the other hand, when the end portion of the slit hole 20 is positioned on the wave-shaped curved surface portion 10Ab, as shown on the right side in FIG. 11, the slit hole 20 has a rectangular shape (mouth shape) as shown as an NG shape. It is recognized as a broken shape.

このような崩れた形状となる理由は、図12に示すように、同図(a)のように成形ロール部11にて帯状部材10を波形状に成形する際に、スリット孔20の両端部が波形状の折り曲げ部(曲面部10Ab)に位置した状態で、同図(b)のようにピッチ詰めを行うと、上記両端部が破線で示すように捲れ上がることによる。   As shown in FIG. 12, the reason for such a collapsed shape is that when the band-shaped member 10 is formed into a wave shape by the forming roll portion 11 as shown in FIG. When the pitch is filled as shown in FIG. 5B in a state where is positioned at the wavy bent portion (curved surface portion 10Ab), the both end portions are rolled up as indicated by broken lines.

これに対して図13に示すように、同図(a)のように成形ロール部11にて帯状部材10を波形状に成形する際に、スリット孔20の両端部が波形状の平面部(曲面部10Ab相互間)10Aaに位置した状態で、同図(b)のようにピッチ詰めを行った場合には、上記両端部が捲れ上がることはなく、したがって画像センサ14による認識画像が図11のOK形状のような矩形状となる。   On the other hand, as shown in FIG. 13, when the belt-like member 10 is formed into a wave shape by the forming roll portion 11 as shown in FIG. When the pitch is narrowed as shown in FIG. 10B in a state where the curved surface portion 10Ab is located between the curved surfaces 10Ab, the both end portions are not rolled up, so that the recognition image by the image sensor 14 is shown in FIG. It becomes a rectangular shape like the OK shape.

したがって、前記図10に戻り、ステップ102で制御回路19がスリット孔20の形状を矩形状(口形状)であると判断したときには、スリット孔20の両端部が波形状の平面部10Aaに位置していることになるので、該両端部が図12(b)のように捲れ上がることがなく、そのまま成形作業を継続する(ステップ103)。   Therefore, returning to FIG. 10, when the control circuit 19 determines in step 102 that the shape of the slit hole 20 is rectangular (mouth shape), both ends of the slit hole 20 are positioned on the corrugated flat portion 10Aa. Therefore, the both ends are not rolled up as shown in FIG. 12B, and the molding operation is continued as it is (step 103).

逆に、ステップ102で制御回路19がスリット孔20の形状を矩形状(口形状)でないと判断したときには、モータ18を正逆いずれかの方向に回転駆動して図4のシャフト114を回転させ、シャフト114のねじ部が螺合するナット部材113と一体の上部の軸受112aが、回転支持軸111aおよび成形ロール11aとともに上下いずれかの方向に移動し(ステップ104)、これにより一対の成形ロール11a,11b相互の間隔が変化する。   Conversely, when the control circuit 19 determines in step 102 that the shape of the slit hole 20 is not rectangular (mouth shape), the motor 18 is rotated in either the forward or reverse direction to rotate the shaft 114 in FIG. The upper bearing 112a integral with the nut member 113 into which the threaded portion of the shaft 114 is screwed moves together with the rotation support shaft 111a and the forming roll 11a in either the upper or lower direction (step 104), thereby a pair of forming rolls. The distance between 11a and 11b changes.

このとき、成形ロール11aを上昇させて下部の成形ロール11bとの間隔を広げる場合には、圧縮コイルスプリング17が伸張し、逆に成形ロール11aを下降せて成形ロール11bとの間隔を狭める場合には、圧縮コイルスプリング17が圧縮される。   At this time, when the forming roll 11a is raised to increase the distance from the lower forming roll 11b, the compression coil spring 17 is extended, and conversely, the forming roll 11a is lowered to narrow the distance from the forming roll 11b. The compression coil spring 17 is compressed.

一対の成形ロール11a,11b相互の間隔が変化すると、一次成形後の波板10Aの1ピッチ分の展開長が変化するが、スリット孔20の長手方向の長さLは一定であるため、スリット孔20の端部の位置が曲面部10Abから平面部10Aaに移動する。これにより、スリット孔20の端部が波板形状の曲面部10Abに位置することによる端部の捲れ現象を防止することができる。   When the distance between the pair of forming rolls 11a and 11b changes, the development length of one pitch of the corrugated sheet 10A after the primary forming changes, but since the length L in the longitudinal direction of the slit hole 20 is constant, the slit The position of the end of the hole 20 moves from the curved surface portion 10Ab to the flat surface portion 10Aa. Thereby, it is possible to prevent the end portion from being bent due to the end portion of the slit hole 20 being positioned on the corrugated curved surface portion 10Ab.

なお、成形ロール11aを上方もしくは下方に移動させる量の限界値は、スリット孔20の端部が、曲面部10Abの長さ分、すなわち図8において、半円形の曲面部10Abの長さに相当する「Rπ」の距離を移動するような値とする。こうすることで、スリット孔20の端部が、半円弧部分の曲面部10Abのどの位置にあったとしても、成形ロール11aを上下いずれかの方向に移動させた場合に、スリット孔20の端部が平面部10Aaに移動することになる。ただし、この場合の上記「Rπ」の長さは、平面部10Aaの長さCよりも充分短いものとする。   The limit value of the amount by which the forming roll 11a is moved upward or downward corresponds to the length of the curved surface portion 10Ab at the end of the slit hole 20, that is, the length of the semicircular curved surface portion 10Ab in FIG. The value of “Rπ” is set to a value that moves. By doing so, the end of the slit hole 20 can be obtained when the forming roll 11a is moved in either the upper or lower direction regardless of the position of the curved surface portion 10Ab of the semicircular arc portion. The part moves to the plane part 10Aa. However, the length of “Rπ” in this case is sufficiently shorter than the length C of the planar portion 10Aa.

上記した成形ロール11aを移動させる際の限界値は、成形ロール11aを上下に移動させる作業を適宜行うことによってあらかじめ求めておく。   The limit value for moving the molding roll 11a is determined in advance by appropriately performing the operation of moving the molding roll 11a up and down.

また、成形ロール11aの移動により、スリット孔20の形状がOK形状の口形状となった後に、再度NG形状となった場合には、成形ロール11aの移動方向を前回NG形状となった場合と逆方向とする。これにより、成形ロール11a,11bによる帯状部材10に対する波形状が規定の大きさ(波高さ)となるよう確保する。   In addition, when the shape of the slit hole 20 is changed to the NG shape after the shape of the slit hole 20 is changed to the NG shape by the movement of the forming roll 11a, the movement direction of the forming roll 11a is changed to the previous NG shape. The reverse direction. Thereby, it ensures that the wave shape with respect to the strip | belt-shaped member 10 by the forming rolls 11a and 11b becomes a regulation magnitude | size (wave height).

図14は、スリット孔20の端部の捲れ現象が、端部が波形状における半円形の曲面部10Abにて発生する状態を示す実験結果である。これによれば、スリット孔20の端部が曲面部10Abの中心(頂点)に位置する(b),(e)で最も波高さ方向に捲れ寸法tとして大きく突出し、(a),(c)および(d),(f)のように、スリット孔20の端部が中心からほぼ30度傾斜した位置では、捲れ部分が波高さよりも突出することがなく、この場合には平板との拡散接合時には特に問題となることはない。ここで、曲面部10Abの半径R=0.32mmとすると、曲面部10Abの中心(頂点)から曲面部10Abの周長0.16mmの位置以内に端部が位置していると、捲れる結果となる。   FIG. 14 is an experimental result showing a state in which the end portion of the slit hole 20 is bent at the semicircular curved surface portion 10Ab having a wave shape at the end portion. According to this, the end portion of the slit hole 20 is located at the center (vertex) of the curved surface portion 10Ab and protrudes greatly in the wave height direction as the size t at (b), (e), and (a), (c) In addition, as shown in (d) and (f), at the position where the end of the slit hole 20 is inclined by approximately 30 degrees from the center, the bent portion does not protrude beyond the wave height. In this case, diffusion bonding with the flat plate Sometimes it doesn't matter. Here, assuming that the radius R of the curved surface portion 10Ab is 0.32 mm, if the end portion is located within the position of the circumferential length of 0.16 mm of the curved surface portion 10Ab from the center (vertex) of the curved surface portion 10Ab, the result of curling It becomes.

なお、図14中で「始点」とは、スリット孔20の帯状部材10の搬送方向前方側の端部で、「終点」とは、スリット孔20の帯状部材10の搬送方向後方側の端部である。   In FIG. 14, the “start point” is the end of the slit hole 20 on the front side in the transport direction of the strip-shaped member 10, and the “end point” is the end of the slit hole 20 on the rear side in the transport direction of the strip-shaped member 10. It is.

本実施形態では、NG領域を、スリット孔20の端部が、半円形の曲面部10Abの中心(頂点)を中心として左右に30度移動した位置を含む半円形の曲面部10Abの全域にあるときとし、このときにスリット孔20の端部を平面部10Aaに移動させるようにすることで、捲れ現象を確実に防止するようにしている。   In the present embodiment, the NG region is located in the entire area of the semicircular curved surface portion 10Ab including the position where the end of the slit hole 20 moves 30 degrees left and right around the center (vertex) of the semicircular curved surface portion 10Ab. Occasionally, at this time, the end of the slit hole 20 is moved to the flat surface portion 10Aa, so that the drooling phenomenon is surely prevented.

上記したように、本実施形態では、スリット孔20の端部が波板形状の曲面部10Abに位置しないようにできるので、ピッチ詰めの際に曲面部10Abの稜線と直交する方向に加わる力に対して強くなり、曲面部10Abの捲れや寸法形状のばらつきなどの変形が生じにくく、所望の波形状に成形することができる。   As described above, in the present embodiment, since the end of the slit hole 20 can be prevented from being positioned on the corrugated curved surface portion 10Ab, the force applied in the direction perpendicular to the ridgeline of the curved surface portion 10Ab when pitching is performed. On the other hand, it becomes strong, and deformation such as curling of the curved surface portion 10Ab and variation in dimensional shape is unlikely to occur, and it can be formed into a desired wave shape.

また、このような波板10Aを使用して例えばメタル担体のコアを製造する際には、波板10Aと図示しない平板部材との間での拡散接合不良が起こりにくく、コアの熱伝導性が良好になるため、浄化性能の向上を図ることができる。   Further, when a corrugated plate 10A is used to manufacture a metal carrier core, for example, a poor diffusion bonding between the corrugated plate 10A and a flat plate member (not shown) hardly occurs, and the thermal conductivity of the core is reduced. Since it becomes favorable, the purification performance can be improved.

さらに、ピッチ詰めの際に波板10Aの曲面部10Abに変形が生じにくくなるため、波板10Aがピッチ詰めロール12a,12bから外れにくく、成形不良を減少することができる。   Further, since the curved surface portion 10Ab of the corrugated sheet 10A is less likely to be deformed during pitch packing, the corrugated sheet 10A is unlikely to come off from the pitch packing rolls 12a and 12b, and molding defects can be reduced.

図15は、図5のA部を拡大した図で、波板10Aの半円形の曲面部10Abに対する、ピッチ詰めロール12a(12b)の成形歯120a(120b)の引掛かり代hを0.2mmとしている。この場合、前述したように一対の成形ロール11a,11b相互の間隔を変化させて波形状の1ピッチ分の展開長が最大で0.16mm短くなったとしても、波高さは計算上0.08mm低くなるだけであり、ピッチ詰めロール12a,12bから波板10Aの外れを回避することができる。   FIG. 15 is an enlarged view of part A of FIG. 5, and the hooking h of the forming teeth 120 a (120 b) of the pitch filling rolls 12 a (12 b) with respect to the semicircular curved surface part 10 Ab of the corrugated sheet 10 A is 0.2 mm. It is said. In this case, as described above, even if the distance between the pair of forming rolls 11a and 11b is changed and the development length for one pitch of the wave shape is reduced by 0.16 mm at the maximum, the wave height is calculated to be 0.08 mm. It is only lowered, and the detachment of the corrugated sheet 10A from the pitch filling rolls 12a and 12b can be avoided.

なお、上記実施形態では、スリット長Lを波形状における1ピッチ分の展開長、すなわち展開長の1/2の2倍に設定した例について示したが、展開長の1/2である半ピッチの展開長の整数倍としても同じ効果を得られる。また、各列のスリット孔20を、図2のx方向にスリット長Lの間隔(1ピッチの展開長)でスリット孔20を設けない区間と交互に配置した例について示したが、スリット孔20を設けない区間を半ピッチの展開長の整数倍の区間設けるようにしてもよい。   In the above embodiment, the slit length L is shown as an example of setting the development length for one pitch in the wave shape, that is, twice the development length to ½, but the half pitch that is ½ of the development length is shown. The same effect can be obtained even if it is an integral multiple of the expansion length of. Moreover, although the slit hole 20 of each row | line | column was shown about the example arrange | positioned alternately with the area which does not provide the slit hole 20 by the space | interval of the slit length L in the x direction of FIG. A section that is not provided may be provided as a section that is an integral multiple of the half-pitch development length.

また、本実施形態では、メタル担体のコアに用いられる孔付波板の製造方法について説明したが、本発明はこれらの用途に限定されるものではなく、例えば熱交換器等のラジエータコアなどに用いられる孔付波板のほか、孔付波板を用いた他の工業製品一般に適用することができる。   Moreover, although this embodiment demonstrated the manufacturing method of the corrugated board used for the core of a metal support | carrier, this invention is not limited to these uses, For example, it uses for radiator cores, such as a heat exchanger. In addition to the corrugated plate, it can be applied to other industrial products using the corrugated plate.

本発明の一実施形態を示す、孔付波板の製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus of a corrugated board with a hole which shows one Embodiment of this invention. 図1の製造装置による成形前のスリット孔が形成された帯状部材の平面図である。It is a top view of the strip | belt-shaped member in which the slit hole before shaping | molding by the manufacturing apparatus of FIG. 1 was formed. 図1の製造装置における成形ロールの部分拡大図である。It is the elements on larger scale of the forming roll in the manufacturing apparatus of FIG. 図1の製造装置の成形ロール周辺における、帯状部材の送り方向から見た正面図である。It is the front view seen from the feed direction of the strip | belt-shaped member in the periphery of the forming roll of the manufacturing apparatus of FIG. 図1の製造装置におけるピッチ詰めロールの部分拡大図である。It is the elements on larger scale of the pitch packing roll in the manufacturing apparatus of FIG. 図1の製造装置における形状出しロールの部分拡大図である。It is the elements on larger scale of the shaping roll in the manufacturing apparatus of FIG. 帯状部材を成形ロールにセットしたときの部分拡大図である。It is a partial enlarged view when a strip | belt-shaped member is set to a forming roll. ピッチ詰めした後の波形状を示す概略側面図である。It is a schematic side view which shows the wave shape after pitch-packing. 図2の距離Xをa+b+(c/2)として成形した波板の波形状を示す断面図である。It is sectional drawing which shows the wave shape of the corrugated sheet shape | molded by making distance X of FIG. 2 into a + b + (c / 2). 図1の製造装置による成形動作を示すフローチャートである。It is a flowchart which shows the shaping | molding operation | movement by the manufacturing apparatus of FIG. 図1の製造装置の画像センサによる認識画像の模式図である。It is a schematic diagram of the recognition image by the image sensor of the manufacturing apparatus of FIG. スリット孔の両端部が波形状の折り曲げ部(曲面部)に位置した状態を示す波板の正面図で、(a)は図1の製造装置の成形ロール部にて波形状に成形した状態、(b)はピッチ詰めを行った状態をそれぞれ示す。It is the front view of the corrugated sheet which shows the state where the both ends of the slit hole are located in the corrugated bent part (curved surface part), (a) is a state formed into a corrugated shape by the forming roll part of the manufacturing apparatus of FIG. (B) shows the state after pitch filling. スリット孔の両端部が波形状の平面部に位置した状態を示す波板の正面図で、(a)は図1の製造装置の成形ロール部にて波形状に成形した状態、(b)はピッチ詰めを行った状態をそれぞれ示す。It is a front view of the corrugated sheet which shows the state where the both ends of the slit hole are located on the corrugated flat part, (a) is the state formed into a corrugated shape by the forming roll part of the manufacturing apparatus of FIG. Each state after pitch filling is shown. スリット孔の端部が波形状の折り曲げ部(曲面部)に位置したときの端部の捲れ状態を示す説明図である。It is explanatory drawing which shows the bending state of an edge part when the edge part of a slit hole is located in a wavy bent part (curved surface part). 図5のA部の拡大図である。It is an enlarged view of the A section of FIG.

符号の説明Explanation of symbols

10 帯状部材
10A 波板
10Aa 波板の平面部
10Ab 波板の曲面部
11a,11b 一対の成形ロール
14 画像センサ(孔形状認識手段)
18 モータ(成形ロール移動手段)
19 制御回路(孔形状判断手段)
20 スリット孔(貫通孔)
110a,110b 成形ロールの成形歯
DESCRIPTION OF SYMBOLS 10 Strip-shaped member 10A Corrugated plate 10Aa Plane part of corrugated sheet 10Ab Curved part of corrugated sheet 11a, 11b A pair of forming rolls 14 Image sensor (hole shape recognition means)
18 Motor (Molding roll moving means)
19 Control circuit (hole shape judging means)
20 Slit hole (through hole)
110a, 110b Molding teeth of molding roll

Claims (3)

貫通孔(20)を備えた帯状部材(10)をその延長方向に沿って、外周部に成形歯(110a,110b)を備えた一対の成形ロール(11a,11b)間に供給して波板(10A)に成形する孔付波板の製造方法であって、前記貫通孔(20)の前記帯状部材(10)の延長方向に対応する長さを、前記波板(10A)における波の1ピッチ分の展開長の1/2の整数倍に設定した上で、前記波板(10A)の表面に交差する方向から前記貫通孔(20)の形状を認識し、この認識した前記貫通孔(20)の形状が、該貫通孔(20)の前記帯状部材(10)の延長方向に対応する端部が前記波板(10A)の波形状の曲面部(10Ab)に位置するときに相当すると判断した場合に、前記貫通孔(20)の端部を前記波形状の曲面部(10Ab)相互間の平面部(10Aa)に位置させるように、前記一対の成形ロール(11a,11b)相互の間隔を変化させることを特徴とする孔付波板の製造方法。   A corrugated sheet is provided by feeding a belt-like member (10) having a through hole (20) between a pair of forming rolls (11a, 11b) having forming teeth (110a, 110b) on an outer peripheral portion along the extending direction. (10A) is a method for manufacturing a corrugated plate with holes, wherein the length corresponding to the extending direction of the band-like member (10) of the through hole (20) is equal to one pitch of the wave in the corrugated plate (10A). Then, the shape of the through hole (20) is recognized from the direction intersecting the surface of the corrugated plate (10A), and the recognized through hole (20) is set. The shape of the through hole (20) is determined to correspond to the end portion of the corrugated plate (10A) corresponding to the extending direction of the belt-like member (10) located on the corrugated curved surface portion (10Ab). In this case, the end of the through hole (20) is connected to the curved surface ( 0ab) flat portion between mutually (as is positioned 10Aa), said pair of forming rolls (11a, 11b) method for producing a perforated corrugated plate, characterized in that to change the mutual spacing. 前記貫通孔(20)の端部が前記波形状の平面部(10Aa)に位置するときの貫通孔(20)の形状は、矩形状であることを特徴とする請求項1に記載の孔付波板の製造方法。   The corrugated plate with holes according to claim 1, wherein the shape of the through hole (20) when the end portion of the through hole (20) is positioned on the corrugated flat surface portion (10Aa) is a rectangular shape. Manufacturing method. 貫通孔(20)を備えた帯状部材(10)をその延長方向に沿って、外周部に成形歯(110a,110b)を備えた一対の成形ロール(11a,11b)間に供給して波板(10A)に成形する孔付波板の製造装置であって、前記貫通孔(20)の前記帯状部材(10)の延長方向に対応する長さを、前記波板(10A)における波の1ピッチ分の展開長の1/2の整数倍に設定した上で、前記波板(10A)の表面に交差する方向から前記貫通孔(20)の形状を認識する孔形状認識手段(14)と、この孔形状認識手段(14)により認識した前記貫通孔(20)の形状が、該貫通孔(20)の前記帯状部材(10)の延長方向に対応する端部が前記波板(10A)の形状の曲面部(10Ab)に位置するときに相当するかどうかを判断する孔形状判断手段(19)と、この孔形状判断手段(19)が、前記貫通孔(20)の形状が、該貫通孔(20)の端部が前記波形状の曲面部(10Ab)に位置するときに相当すると判断したときに、前記一対の成形ロール(11a,11b)相互の間隔を変化させる成形ロール移動手段(18)とを有することを特徴とする孔付波板の製造装置。   A corrugated sheet is provided by feeding a belt-like member (10) having a through hole (20) between a pair of forming rolls (11a, 11b) having forming teeth (110a, 110b) on an outer peripheral portion along the extending direction. (10A) is a manufacturing apparatus for corrugated plate with holes, and the length corresponding to the extending direction of the band-like member (10) of the through hole (20) is set to one pitch of the wave in the corrugated plate (10A). Hole shape recognition means (14) for recognizing the shape of the through hole (20) from the direction intersecting the surface of the corrugated plate (10A) The shape of the through hole (20) recognized by the hole shape recognition means (14) is such that the end portion of the through hole (20) corresponding to the extending direction of the strip member (10) is the shape of the corrugated plate (10A). Whether it corresponds to the position on the curved surface (10Ab) The hole shape determining means (19) and the hole shape determining means (19) are configured so that the shape of the through hole (20) is such that the end of the through hole (20) is the curved surface portion (10Ab) having the wave shape. An apparatus for manufacturing a corrugated plate with holes, comprising: forming roll moving means (18) for changing a distance between the pair of forming rolls (11a, 11b) when it is determined that the position corresponds to the position.
JP2007159221A 2007-06-15 2007-06-15 Method and apparatus for manufacturing corrugated plate with hole Pending JP2008307587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159221A JP2008307587A (en) 2007-06-15 2007-06-15 Method and apparatus for manufacturing corrugated plate with hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159221A JP2008307587A (en) 2007-06-15 2007-06-15 Method and apparatus for manufacturing corrugated plate with hole

Publications (1)

Publication Number Publication Date
JP2008307587A true JP2008307587A (en) 2008-12-25

Family

ID=40235674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159221A Pending JP2008307587A (en) 2007-06-15 2007-06-15 Method and apparatus for manufacturing corrugated plate with hole

Country Status (1)

Country Link
JP (1) JP2008307587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077474A1 (en) * 2009-12-21 2011-06-30 株式会社Ihi Method and device for manufacturing separator for polymer electrolyte fuel cell
JP6291106B1 (en) * 2017-03-29 2018-03-14 三和パッキング工業株式会社 Molded material and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077474A1 (en) * 2009-12-21 2011-06-30 株式会社Ihi Method and device for manufacturing separator for polymer electrolyte fuel cell
RU2516342C2 (en) * 2009-12-21 2014-05-20 АйЭйчАй КОРПОРЕЙШН Method and device for manufacturing of separator for polymer-electrolyte fuel element
US8959969B2 (en) 2009-12-21 2015-02-24 Ihi Corporation Method and device for manufacturing separator for polymer electrolyte fuel cell
JP6291106B1 (en) * 2017-03-29 2018-03-14 三和パッキング工業株式会社 Molded material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5757414B2 (en) Battery electrode sheet and manufacturing method thereof
EP1123759B2 (en) Method for corrugating a metal foil and metal foil obtained by such a method
JP2007245199A (en) Apparatus of manufacturing corrugated sheet
PL194357B1 (en) Method for producing an acoustically effective stack of films for a motor vehicle heat shield
JP2007175759A (en) Method and apparatus for forming corrugated fin structure
JP2016505388A (en) Method and apparatus for manufacturing profile-formed metal strip
JP4464934B2 (en) A feeding device that accurately conveys a band-shaped material having a wave shape without deformation.
US20020112811A1 (en) Method and device for manufacturing a structured packing corrugation, and corresponding fluid-treatment apparatus
JP2008307587A (en) Method and apparatus for manufacturing corrugated plate with hole
JP5845799B2 (en) Feeder
JP2011101896A (en) Apparatus and method for manufacturing corrugated plate with hole
JP2005262315A (en) Corrugate fin producing device and corrugate fin producing method
JP4630219B2 (en) Rolling roll
JP5097352B2 (en) Folding machine for building plate
JP4464935B2 (en) In-mold pitch fluctuation prevention device
JP6032267B2 (en) Battery electrode sheet and manufacturing method thereof
JP2007144291A (en) Manufacturing method of perforated corrugated plate
JP2006272443A (en) Production method for corrugated sheet
JP2018027561A (en) Metal foil sheet processing device and processing method
JP2005059100A (en) Manufacturing method and apparatus of regular stacked filler
JP2010221254A (en) Method of manufacturing spiral steel pipe
JP2011230863A (en) Transport roller, method for manufacturing the same, and printing device
JP2010149171A (en) Roll bending apparatus for steel sheet and roll bend forming method for steel sheet using the same
JP2007237272A (en) Method and device for manufacturing spiral steel tube
JP2006212656A (en) Apparatus for manufacturing corrugated sheet