JP2008305498A - Optical pickup device - Google Patents

Optical pickup device Download PDF

Info

Publication number
JP2008305498A
JP2008305498A JP2007152313A JP2007152313A JP2008305498A JP 2008305498 A JP2008305498 A JP 2008305498A JP 2007152313 A JP2007152313 A JP 2007152313A JP 2007152313 A JP2007152313 A JP 2007152313A JP 2008305498 A JP2008305498 A JP 2008305498A
Authority
JP
Japan
Prior art keywords
optical
optical element
phase difference
adhesive
quarter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007152313A
Other languages
Japanese (ja)
Other versions
JP5115040B2 (en
Inventor
Takamitsu Watanabe
貴光 渡邉
Hiroshi Kokado
博司 古角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007152313A priority Critical patent/JP5115040B2/en
Publication of JP2008305498A publication Critical patent/JP2008305498A/en
Application granted granted Critical
Publication of JP5115040B2 publication Critical patent/JP5115040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical pickup device equipped with an optical element which can maintain the optical element in a stable state against the deformation of the optical element made of a resin material having optical anisotropy when it is mounted, and a large temperature change in an installation site, installation environments or the like after the installation. <P>SOLUTION: In an optical disk reader equipped with the optical pickup in which the optical element made of the resin material having optical anisotropy is adhesively fixed to a case, the optical element is of a quadrilateral shape, the phase difference optical axis 22A of the optical element is nearly parallel to the diagonal line of the quadrilateral, and the case and the optical element are adhesively fixed at two places in the counter angle part in the direction of the phase difference optical axis 22A of the optical element. Also, when adhesively fixing, the optical element is of a parallelogram shape for enabling to clearly judge the direction of the phase difference axis so as to prevent it from being adhesively fixed in the wrong direction. Furthermore, an adhesive used for adhesively fixing the optical element having a hardness of less than Shore D45 is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ディスクでの光学的な情報の記録及び/再生(以下、記録再生という)を行う光ピックアップ装置に関する。   The present invention relates to an optical pickup device that records and / or reproduces optical information on an optical disc (hereinafter referred to as recording and reproduction).

従来、CDやDVDなどのような光ディスクの記録再生を行う光ディスク読み取り装置において、特に光学的な記録再生を行うための光ピックアップ装置が各種開発されている。(例えば特許文献1参照)
図7および図8に従来の光ピックアップ100の構成を示す。
2. Description of the Related Art Conventionally, various types of optical pickup devices for performing optical recording / reproduction have been developed in optical disk reading devices for recording / reproducing optical disks such as CDs and DVDs. (For example, see Patent Document 1)
7 and 8 show the configuration of a conventional optical pickup 100. FIG.

図7において、従来の光ピックアップは、光情報記録媒体から光情報を読み取り、あるいは光情報記録媒体に光情報を書き込む、もしくはその両方の機能を有する光ピックアップにおいて、レーザダイオード102のレーザ光出射側に設けられているレーザ光透過部の外周端面にλ波長板110を貼り付けており、図8に示すように、アクリル製のλ波長板110はレーザダイオード102のレーザ光出射側キャン端面におけるレーザ光透過用開放穴102aの外周部(レーザ光透過開放部の外周端面)に直接接着固定される。このような構成を用いることで、高性能で且つ量産性に優れた光ピックアップを実現していた。
特開2001−273664号公報(第2−4図)
In FIG. 7, the conventional optical pickup reads the optical information from the optical information recording medium, writes the optical information to the optical information recording medium, or an optical pickup having both functions. A λ wavelength plate 110 is affixed to the outer peripheral end face of the laser light transmitting portion provided in the laser, and as shown in FIG. It is directly bonded and fixed to the outer peripheral portion of the light transmitting open hole 102a (the outer peripheral end surface of the laser light transmitting open portion). By using such a configuration, an optical pickup having high performance and excellent mass productivity has been realized.
JP 2001-273664 A (Fig. 2-4)

しかしながら、従来の光ピックアップ装置における波長板などの光学的異方性を有する樹脂で形成された光学素子(例えば1/4波長板)を筐体(例えばオプトベース、半導体レーザなど)の壁面に接着剤などで固着する場合、接着剤が硬化するときの収縮や接着力などにより、歪みやねじれなどの物理的な変形が発生する場合があり、この変形に伴い、コマ収差や非点収差或いは球面収差などの各種の光学収差を発生し、記録再生特性が大幅に劣化するおそれがある。また、例えば車載用の機器に用いられた場合など、周囲温度が大きく変化するおそれがある。この場合、前記光学素子が硬化後の接着剤の熱的な変性や劣化などにより安定した取付け状態を保持できず、位相差光軸の角度がずれて、レーザ光の偏光特性に変動をもたらすため、記録再生特性が大幅に劣化することもある。このため、大きな温度変化に対して常時安定した位置確保と変形防止とを図ることが要請されている。   However, an optical element (for example, a quarter-wave plate) formed of a resin having optical anisotropy such as a wavelength plate in a conventional optical pickup device is bonded to the wall surface of a housing (for example, an opto base, a semiconductor laser, etc.). When fixing with an agent, physical deformation such as distortion or twist may occur due to shrinkage or adhesive force when the adhesive is cured, and coma, astigmatism, or spherical Various optical aberrations such as aberration may occur, and the recording / reproducing characteristics may be greatly deteriorated. In addition, for example, when used in a vehicle-mounted device, the ambient temperature may change greatly. In this case, the optical element cannot maintain a stable mounting state due to thermal modification or deterioration of the adhesive after curing, and the angle of the phase difference optical axis shifts, resulting in fluctuations in the polarization characteristics of the laser light. In addition, the recording / reproducing characteristics may be greatly deteriorated. For this reason, it is required to always secure a stable position and prevent deformation against a large temperature change.

このように、光学的異方性を有する樹脂で形成された光学素子は、取付けの際の変形や取付け後の位相差光軸の角度の変動などが、記録再生特性などに大きな影響を及ぼす要因となっている。このため、前記光学素子を所定の位置に物理的な変形のない正しい姿勢で固着させて取付けるとともに、長期間にわたり大きな温度変化に対して安定した状態でその位置を正確に保持できるようにすることが重要な課題となっている。   In this way, optical elements made of resin having optical anisotropy are factors that greatly affect recording / reproduction characteristics due to deformation during mounting and changes in the angle of the phase difference optical axis after mounting. It has become. For this reason, the optical element is fixedly attached to a predetermined position in a correct posture without physical deformation, and the position can be accurately maintained in a stable state against a large temperature change over a long period of time. Has become an important issue.

本発明は、上記事情に鑑みてなされたもので、光学的異方性を有する樹脂で形成された光学素子を取付ける際の物理的な変形や、取付け後の大幅な温度変化に対して、前記光学素子を安定した状態で保持しておくことができる、換言すれば、取付けの際の形状信頼性及び取付け後の位置信頼性を高めることができる前記光学素子を備えた光ピックアップ装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, with respect to physical deformation when mounting an optical element formed of a resin having optical anisotropy, and a significant temperature change after mounting, Provided is an optical pickup device provided with the optical element capable of holding the optical element in a stable state, in other words, improving the shape reliability at the time of attachment and the position reliability after the attachment. For the purpose.

本発明は、光学的異方性を有した樹脂材料からなる光学素子を筐体に接着固定した光ピ
ックアップを備えた光ディスク読み取り装置において、前記光学素子は四辺形形状であり、前記光学素子の位相差光軸は前記四辺形の対角線に略平行であり、前記筐体と前記光学素子とが前記光学素子の位相差光軸方向の対角部の2箇所で接着固定されたものである。
ここで、光学的異方性を有した樹脂材料とは、例えばポリカーボネイト、シクロオレフィレンポリマーなどの材料からなるフィルム状の板であり、複屈折性などの光学特性を有し、その厚みや位相差光軸の方向を変化させることでフィルムを透過する光の偏光状態や位相を調整することができる。これらの光学特性を利用して、光ディスク読み取り装置や液晶ディスプレイの光学補償用として用いられるものである。
また、位相差光軸とは光学素子材料の繊維方向に沿ったベクトルにおいて、光学素子材料の重心を通るベクトルで代表した軸である。
そして、位相差光軸方向の対角部とは、本発明の実施例の場合、図3(b)のような平行四辺形形状を有した光学素子の4つの角部の内、位相差光軸に近い角部である鋭角部2箇所のことである。
The present invention relates to an optical disk reading apparatus having an optical pickup in which an optical element made of a resin material having optical anisotropy is bonded and fixed to a housing, wherein the optical element has a quadrilateral shape, and the position of the optical element is The phase difference optical axis is substantially parallel to the diagonal line of the quadrilateral, and the casing and the optical element are bonded and fixed at two diagonal portions of the optical element in the phase difference optical axis direction.
Here, the resin material having optical anisotropy is a film-like plate made of a material such as polycarbonate or cycloolefin polymer, and has optical properties such as birefringence, and its thickness and level. By changing the direction of the phase difference optical axis, the polarization state and phase of the light transmitted through the film can be adjusted. By utilizing these optical characteristics, it is used for optical compensation of an optical disk reading device or a liquid crystal display.
The phase difference optical axis is a vector represented by a vector passing through the center of gravity of the optical element material in a vector along the fiber direction of the optical element material.
In the embodiment of the present invention, the diagonal portion in the phase difference optical axis direction is the phase difference light among the four corners of the optical element having a parallelogram shape as shown in FIG. It is two acute angle portions which are corner portions close to the axis.

この構成を有することにより、前記光学素子を前記筐体に接着固定する際、接着剤の接着力によって前記光学素子に発生する伸縮力が前記光学素子の位相差光軸方向、即ち繊維方向に沿って発生する。即ち、負荷に強い方向に伸縮力を集中できるため、光学素子の歪みやねじれなどの物理的な変形を抑制し、光学特性の劣化を低減できる。   With this configuration, when the optical element is bonded and fixed to the housing, the stretching force generated in the optical element by the adhesive force of the adhesive is along the phase difference optical axis direction of the optical element, that is, the fiber direction. Occur. That is, since the stretching force can be concentrated in a direction strong against the load, physical deformation such as distortion and twist of the optical element can be suppressed, and deterioration of the optical characteristics can be reduced.

また、本発明は、前記光学素子の形状は平行四辺形である構成としている。   In the present invention, the shape of the optical element is a parallelogram.

この構成を有することにより、前記光学素子を前記筐体に接着固定する際、前記光学素子の位相差光軸(繊維)方向が明瞭に判断可能になるので、誤って接着固定することを防止することができる。   With this configuration, when the optical element is bonded and fixed to the casing, the phase difference optical axis (fiber) direction of the optical element can be clearly determined, thereby preventing erroneous bonding and fixing. be able to.

さらに、本発明は、前記光学素子と前記筐体とを接着固定する接着剤にはショアD45以下の硬度のものを用いる構成としている。   Furthermore, in the present invention, a material having a hardness of Shore D45 or less is used as an adhesive for bonding and fixing the optical element and the housing.

ここで、ショアDとはデュロメータ タイプDでの硬度を指すものであり、例えば硬度が50度の場合、一般にD50と表記する。   Here, Shore D refers to the durometer type D hardness. For example, when the hardness is 50 degrees, it is generally expressed as D50.

この構成を有することにより、接着剤の伸縮力によって生じる前記光学素子の物理的な変形を抑制し、光学収差を低減できる。   By having this configuration, physical deformation of the optical element caused by the stretching force of the adhesive can be suppressed, and optical aberration can be reduced.

本発明によれば、光学的異方性を有する樹脂材料からなる光学素子を取付けた後、設置する場所や環境の変化などによらず、前記光学素子を長期間にわたり常時安定した状態で定位置に保持することができる。換言すれば取付けの際の形状信頼性及び取付け後の位置信頼性を高めることができる光学素子を備えた光ピックアップ装置を提供することができる。   According to the present invention, after an optical element made of a resin material having optical anisotropy is mounted, the optical element is always in a stable state over a long period of time regardless of a change in installation place or environment. Can be held in. In other words, it is possible to provide an optical pickup device including an optical element that can improve the shape reliability at the time of attachment and the position reliability after the attachment.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の実施形態にかかる光ピックアップ装置は、光情報記録媒体から光情報を読み取り、あるいは光情報記録媒体に光情報を書き込む、もしくはその両方の機能を有するものであり、半導体レーザを保護する筐体であるLD(半導体レーザ)ブロックに1/4波長板を貼り付けている。この1/4波長板は四辺形形状を有しており、位相差光軸は半導体レーザ出射光の偏光方向に対して45度の傾きを持たせ、固定された構成となっている。この構成を有することによって、直線偏光である半導体レーザからの出射光が1/4波長
板を透過して円偏光に変換され、DVDやCD等の光ディスクに対する記録再生精度を向上させることができるものである。
An optical pickup device according to an embodiment of the present invention has a function of reading optical information from an optical information recording medium and / or writing optical information to an optical information recording medium, and has a function of protecting the semiconductor laser. A quarter wave plate is attached to an LD (semiconductor laser) block which is a body. This quarter-wave plate has a quadrilateral shape, and the phase difference optical axis has a fixed structure with an inclination of 45 degrees with respect to the polarization direction of the light emitted from the semiconductor laser. By having this configuration, light emitted from the semiconductor laser, which is linearly polarized light, is transmitted through the quarter-wave plate and converted to circularly polarized light, and the recording / reproducing accuracy for an optical disk such as a DVD or CD can be improved. It is.

図1は、本発明の実施形態にかかる光ディスク読み取り装置の光ピックアップ装置1を示すものであり、この光ピックアップ装置1は、筐体部分を構成するオプトベース2と、オプトベース2に対して電磁力を利用して変位可能に連結された対物レンズアクチュエータ3とを備える。なお、図1は内部の光学素子の配置についての正確な記載は複雑になるため、複数の方向から見たときの様子を便宜上同一平面上に記載してある。   FIG. 1 shows an optical pickup device 1 of an optical disk reading device according to an embodiment of the present invention. This optical pickup device 1 is an opt base 2 that constitutes a casing portion, and is electromagnetic with respect to the opt base 2. And an objective lens actuator 3 connected to be displaceable using force. In FIG. 1, accurate description of the arrangement of the internal optical elements is complicated, and therefore the state when viewed from a plurality of directions is shown on the same plane for convenience.

このうち、オプトベース2は後述する対物レンズ31及び絞り部を除く主要な光学系を備えるものであり、半導体レーザを用いた光源21と、1/4波長板22と、回折格子23と、往路と復路とで光路を分離させるための光束分離手段であるハーフプレート24と、平行光を形成するコリメートレンズ25と、半導体レーザ21からのレーザ光を光ディスクDへ投光させる投光光学系用の光路及び光ディスクDで反射して戻る受光光学系用の光路を方向転換させるための立ち上げミラー26と、光ディスクDで反射して戻る反射光の受光光学系での(ハーフプレート24を透過後の)光路上に配置する反射ミラー27及びAS(Astigmatism;非点収差)補正板28と、受光素子29などを配置している。
回折格子23は、読取用及びサーボ用となる0次光及び±1次光の回折光を生成するようになっている。ハーフプレート24は、半導体レーザ21側から入射するレーザ光を反射させて光路を90度折り曲げるとともに、光ディスクDで反射するレーザ光を透過させ受光光学系の光路を投光光学系の光路から分離させるようになっている。AS補正板28は、トラッキング方向及びフォーカス方向での良好なサーボ制御を行うために、ハーフプレート24で発生する非点収差の角度を補正するものであり、本実施形態では、非点収差の方向が受光素子29の受光面に設けた分割線に対して45度ずれた角度となるように、光軸に対して60度回転させている。なお、このAS補正番27は、この厚さ及びこれに入射するレーザ光の入射角と、発生する非点収差(AS)の角度とについて一定の関係があり、この関係式を利用して光路に対して60度回転させてあるが、この関係式については説明を省略する。受光素子29には、光電変換素子として、例えばPINフォトダイオードなどを用いている。
Among these, the opt base 2 is provided with main optical systems excluding an objective lens 31 and a diaphragm portion, which will be described later, and includes a light source 21 using a semiconductor laser, a quarter-wave plate 22, a diffraction grating 23, and a forward path. For a light projecting optical system for projecting laser light from the semiconductor laser 21 onto the optical disc D, a half plate 24 that is a light beam separating means for separating the optical path between the light path and the return path, a collimating lens 25 that forms parallel light, and the like. The rising mirror 26 for changing the direction of the optical path and the optical path for the light receiving optical system reflected and returned by the optical disc D, and the light receiving optical system for the reflected light reflected by the optical disc D (after passing through the half plate 24) ) A reflection mirror 27 and an AS (Astigmatism) correction plate 28 arranged on the optical path, a light receiving element 29, and the like are arranged.
The diffraction grating 23 generates 0th-order light and ± first-order diffracted light for reading and servo. The half plate 24 reflects the laser beam incident from the semiconductor laser 21 side and bends the optical path by 90 degrees, and transmits the laser beam reflected by the optical disc D to separate the optical path of the light receiving optical system from the optical path of the light projecting optical system. It is like that. The AS correction plate 28 corrects the angle of astigmatism generated in the half plate 24 in order to perform good servo control in the tracking direction and the focus direction. In this embodiment, the direction of astigmatism Is rotated by 60 degrees with respect to the optical axis so as to have an angle of 45 degrees with respect to the dividing line provided on the light receiving surface of the light receiving element 29. The AS correction number 27 has a certain relationship between the thickness, the incident angle of the laser beam incident thereon, and the angle of the generated astigmatism (AS), and the optical path is calculated using this relational expression. The relational expression is omitted from the description. For the light receiving element 29, for example, a PIN photodiode is used as a photoelectric conversion element.

一方、対物レンズアクチュエータ3は、情報の記録読取を行う光ディスクDのトラック(ピット)へレーザ光を集光するための対物レンズ31および図示外の絞り部などを設けている。また、本実施形態の対物レンズアクチュエータ30は、図示しないが、トラッキングサーボをかけるために光ディスクDのラジアル(R)方向に変位可能であるとともにフォーカシングサーボをかけるために光ディスクDの厚さ方向に変位可能な可動部と、この可動部を支持するヨーク部とを備えている。   On the other hand, the objective lens actuator 3 is provided with an objective lens 31 for condensing a laser beam onto a track (pit) of an optical disc D that records and reads information, a diaphragm unit (not shown), and the like. Although not shown, the objective lens actuator 30 of the present embodiment can be displaced in the radial (R) direction of the optical disk D to apply tracking servo, and is displaced in the thickness direction of the optical disk D to apply focusing servo. The movable part which can be provided, and the yoke part which supports this movable part are provided.

以上のような構成を有することで、トラッキング制御の際には、半導体レーザ21からの光束を光ディスクDのトラックに追従させるため対物レンズアクチュエータ3(対物レンズ31)の微動を図示外のサーボ機構で行い、サーボ機構で追従しきれない所定距離以上の移動動作が必要な場合は、図示外のトラバース機構を利用してオプトベース2を移動させる。   With the above configuration, in tracking control, fine movement of the objective lens actuator 3 (objective lens 31) is performed by a servo mechanism (not shown) in order to cause the light beam from the semiconductor laser 21 to follow the track of the optical disk D. If a moving operation of a predetermined distance or more that cannot be followed by the servo mechanism is required, the opt base 2 is moved using a traverse mechanism (not shown).

次に、図2、図3、及び図4を用いて図1のLD(半導体レーザ)ブロック20、半導体レーザ21、及び1/4波長板22の詳細を説明する。   Next, the details of the LD (semiconductor laser) block 20, the semiconductor laser 21, and the quarter wavelength plate 22 of FIG. 1 will be described with reference to FIGS.

図2(a)はオプトベース2にLDブロック20を取り付けた状態の外観図であり、図2(b)はその拡大断面図である。ここで、LDブロック20とは、半導体レーザ21と1/4波長板22を固定するための金属板などで形成された筐体である。組み立て工程上、半導体レーザ21のレーザ光軸位置を調整することが必要なため、その他の光学素子と
は別の筐体が用意されている。すなわち、LDブロック20に半導体レーザ21と1/4波長板22を接着固定し、半導体レーザ21のレーザ光軸位置を調整した後に、LDブロック20をオプトベース2に接着剤41、及び接着剤42で固定する構造になっている。
FIG. 2A is an external view of the optical base 2 with the LD block 20 attached thereto, and FIG. 2B is an enlarged sectional view thereof. Here, the LD block 20 is a housing formed of a metal plate or the like for fixing the semiconductor laser 21 and the quarter wavelength plate 22. Since it is necessary to adjust the position of the laser optical axis of the semiconductor laser 21 in the assembly process, a housing separate from other optical elements is prepared. That is, after the semiconductor laser 21 and the quarter wavelength plate 22 are bonded and fixed to the LD block 20 and the laser optical axis position of the semiconductor laser 21 is adjusted, the LD block 20 is bonded to the opto base 2 with the adhesive 41 and the adhesive 42. It is structured to be fixed with.

ここで、上述の各光学素子について詳細を説明する。   Here, details of each of the above-described optical elements will be described.

半導体レーザ21には、光ディスクDでの読取又は書き込みのために所定波長のレーザ光を出射するものを用いている。ここで、半導体レーザの構造として、レーザ光が出射される活性層が半導体レーザ上面(本実施形態においては半導体レーザ上面21A)に対して平行に存在する構造となっている。また、この活性層からの出射光は活性層に対して平行方向の直線偏光を有している。そのため、この出射光の偏光方向に対して、位相差光軸が+45度もしくは−45度を成すような光学的異方性を有した光学素子(例えば1/4波長板)を透過した場合、円偏光に変換される。   A semiconductor laser 21 that emits laser light having a predetermined wavelength for reading or writing on the optical disk D is used. Here, the semiconductor laser has a structure in which an active layer from which laser light is emitted exists in parallel to the upper surface of the semiconductor laser (the semiconductor laser upper surface 21A in the present embodiment). In addition, light emitted from the active layer has linearly polarized light in a direction parallel to the active layer. Therefore, when transmitted through an optical element (for example, a quarter wavelength plate) having optical anisotropy such that the phase difference optical axis forms +45 degrees or −45 degrees with respect to the polarization direction of the emitted light, Converted to circularly polarized light.

図3(a)は1/4波長板22の形状を示す図であり、図3(b)は1/4波長板22をLDブロック20に固着した状態を示し、図2(b)を正面図としたときのLDブロックの上面図である。   3A is a diagram showing the shape of the quarter wavelength plate 22, FIG. 3B shows a state in which the quarter wavelength plate 22 is fixed to the LD block 20, and FIG. 2B is a front view. It is a top view of LD block when making it into a figure.

1/4波長板22は、光学的異方性を有する樹脂で形成された光学素子である。この1/4波長板の形状は図3(a)に示すように四辺形形状であり、特に本実施の形態においては平行四辺形のものを用いている。1/4波長板22は、位相差光軸22Aが長辺に対して45度を成す構造としている。そして、1/4波長板22の長辺が半導体レーザ21の上面21Aと平行に取り付けらることで、先に述べたように半導体レーザの偏光方向と、半導体レーザ21の偏光方向と1/4波長板22の位相差光軸22Aの傾きが45度の関係になることから、半導体レーザの出射光は1/4波長板22を透過時に直線偏光から円偏光に変換される。   The quarter wavelength plate 22 is an optical element formed of a resin having optical anisotropy. The quarter-wave plate has a quadrangular shape as shown in FIG. 3A, and in particular in the present embodiment, a parallelogram is used. The quarter-wave plate 22 has a structure in which the phase difference optical axis 22A forms 45 degrees with respect to the long side. Then, by attaching the long side of the quarter wavelength plate 22 in parallel with the upper surface 21A of the semiconductor laser 21, the polarization direction of the semiconductor laser and the polarization direction of the semiconductor laser 21 are set to 1/4 as described above. Since the inclination of the phase difference optical axis 22A of the wave plate 22 is 45 degrees, the emitted light of the semiconductor laser is converted from linearly polarized light to circularly polarized light when transmitted through the quarter wave plate 22.

オプトベース2とLDブロック20と1/4波長板22との関係は、図2(b)に示すように、半導体レーザ21の出射光に対して垂直となるよう、半導体レーザ21におけるレーザ出射面21B、LDブロック20におけるオプトベース取付面20A、及び段落ち面20Cが平行な構造となっており、その段落ち面20C上に1/4波長板22が固着されている。なお、段落ち面20Cを囲う上面20F、下面20Gは半導体レーザ22の上面21Aと平行な構造となっており、上面20F、下面20Gを基準に1/4波長板22を取り付けることで、1/4波長板22の長辺二辺が半導体レーザ21の上面に平行で、かつ適宜1/4波長板22の中心位置と位相差角度の位置決めができる形状としている。
さらに、この段落ち面20Cに1/4波長板を取り付けて、1/4波長板22を接着剤で固定するよう紙面の奥に向かって半球状に窪んだ接着だまり20Hを設けて、この位置で固着できるような形状としている。
As shown in FIG. 2 (b), the relationship between the opt base 2, the LD block 20, and the quarter wavelength plate 22 is such that the laser emission surface of the semiconductor laser 21 is perpendicular to the emission light of the semiconductor laser 21. 21B, the opto-base mounting surface 20A and the stepped surface 20C in the LD block 20 have a parallel structure, and the quarter-wave plate 22 is fixed on the stepped surface 20C. The upper surface 20F and the lower surface 20G surrounding the stepped surface 20C have a structure parallel to the upper surface 21A of the semiconductor laser 22. By attaching the quarter wavelength plate 22 with the upper surface 20F and the lower surface 20G as a reference, 1 / Two long sides of the four-wavelength plate 22 are parallel to the upper surface of the semiconductor laser 21 and can be appropriately positioned with respect to the center position of the quarter-wave plate 22 and the phase difference angle.
Further, a quarter-wave plate is attached to the stepped surface 20C, and an adhesive pool 20H that is recessed in a hemispherical shape toward the back of the paper surface is provided so as to fix the quarter-wave plate 22 with an adhesive. The shape can be fixed with.

このように、光学的異方性を有した樹脂材料である1/4波長板22をLDブロック20などの筐体に接着剤をもちいて固定したものであり、1/4波長板22を四辺形形状として、四辺形形状の4つの角部のうち位相差光軸22Aに近い2つの対角部である2箇所で接着固定している。特に、1/4波長板として、例えばポリカーボネイト、シクロオレフィレンポリマーなどの材料からなるフィルム状の板を用いればよく、これらのものは複屈折性などの光学特性を有し、その厚みや位相差光軸の方向を変化させることでフィルムを透過する光の偏光状態や位相を調整することができるため、これらの光学特性を利用することができる。ここで、位相差光軸とは光学素子の繊維方向に沿ったベクトルにおいて、光学素子材料の重心を通るベクトルで代表した軸をさす。このような構成とすることによって、1/4波長板22を前記筐体に接着固定する際、接着剤の接着力によって1/4波長板に発生する伸縮力が位相差光軸方向、即ち繊維方向に沿って発生するので、負荷に
対して強い方向に伸縮力を集中でき、光学素子の歪みやねじれなどの物理的な変形を抑制し、光学特性の劣化を低減することができる。
As described above, the quarter-wave plate 22 that is a resin material having optical anisotropy is fixed to a housing such as the LD block 20 using an adhesive, and the quarter-wave plate 22 is fixed to four sides. As the shape, the four corners of the quadrangular shape are bonded and fixed at two locations which are two diagonal portions close to the phase difference optical axis 22A. In particular, for example, a film-like plate made of a material such as polycarbonate or cycloolefin polymer may be used as the quarter-wave plate, and these have optical properties such as birefringence, and have a thickness and retardation. Since the polarization state and phase of light transmitted through the film can be adjusted by changing the direction of the optical axis, these optical characteristics can be used. Here, the phase difference optical axis refers to an axis represented by a vector passing through the center of gravity of the optical element material in a vector along the fiber direction of the optical element. With such a configuration, when the quarter wavelength plate 22 is bonded and fixed to the housing, the expansion and contraction force generated in the quarter wavelength plate by the adhesive force of the adhesive is in the phase difference optical axis direction, that is, the fiber. Since it occurs along the direction, the stretching force can be concentrated in a direction strong against the load, physical deformation such as distortion and twist of the optical element can be suppressed, and deterioration of the optical characteristics can be reduced.

さらに、本実施形態においては、1/4波長板22を、図3(a)に示したように、平行四辺形形状のものを用いている。すなわち、位相差光軸に近い角部である鋭角部2箇所で1/4波長板22をLDブロック20に固着するようにしている。したがって、1/4波長板22をLDブロック20などの記筐体に接着固定する際に、1/4波長板の位相差光軸方向(繊維方向)を容易にかつ明瞭に判断することができるので、1/4波長の向きを誤って接着固定してしまうことを防止することができる。   Further, in the present embodiment, the quarter-wave plate 22 having a parallelogram shape is used as shown in FIG. That is, the quarter wavelength plate 22 is fixed to the LD block 20 at two acute angle portions that are close to the phase difference optical axis. Therefore, when the quarter wavelength plate 22 is bonded and fixed to a housing such as the LD block 20, the phase difference optical axis direction (fiber direction) of the quarter wavelength plate can be easily and clearly determined. Therefore, it is possible to prevent the quarter wavelength direction from being erroneously bonded and fixed.

次に、LDブロック20と1/4波長板22の接着固定方法について説明する。   Next, a method for bonding and fixing the LD block 20 and the quarter-wave plate 22 will be described.

先に述べたように、1/4波長板22の接着剤が硬化するときの収縮や接着力などにより、歪みやねじれなどの物理的な変形が発生する場合があり、この変形に伴い、コマ収差や非点収差或いは球面収差などの各種の光学収差を発生し、記録再生特性が大幅に劣化するおそれがある。そのため光学収差が小さい接着仕様が好まれ、この光学収差については波面収差RMS値で一般的に20mλrms以下が好ましく、特に車載環境における温度変化による光学収差劣化を考慮した場合には10mλrms以下であることが好ましいことが知られている。なお、波面収差RMS値(以下、RMS値)は以下の次数式1で定義される。
RMS値=[{ΣH(ρ,θ)/N}−{ΣH(ρ,θ)/N}1/2・・・(数式1)
但し、H(ρ,θ);形状関数、ρ,θ;極座標、N;データ数である。
As described above, physical deformation such as distortion or twist may occur due to shrinkage or adhesive force when the adhesive of the quarter-wave plate 22 is cured. Various optical aberrations such as aberration, astigmatism, and spherical aberration are generated, and the recording / reproducing characteristics may be greatly deteriorated. For this reason, an adhesive specification with small optical aberration is preferred, and this optical aberration is generally preferably 20 mλ rms or less in terms of the wavefront aberration RMS value. Is known to be preferred. The wavefront aberration RMS value (hereinafter referred to as RMS value) is defined by the following formula 1.
RMS value = [{ΣH (ρ, θ) 2 / N} − {ΣH (ρ, θ) / N} 2 ] 1/2 (Formula 1)
Where H (ρ, θ); shape function, ρ, θ; polar coordinates, N: number of data.

以上を踏まえ、発明者らは実験計画法を用いて、接着剤の種類、接着箇所数、接着量、接着剤硬化時のUV照射量の4種類それぞれの因子について、3種類の水準を設定し、その水準から9種類の接着パターンに組み分け、その接着パターンで固定した1/4波長板22に発生する光学収差に基づき接着仕様検討を行った。ここで、水準とは各因子の接着仕様候補であり、本検討における接着量水準の場合、0.05mg、0.1mg、0.2mgと設定した。   Based on the above, the inventors set three levels for each of the four types of factors: the type of adhesive, the number of points to be bonded, the amount of adhesion, and the UV irradiation amount when curing the adhesive, using the experimental design method. The adhesive specifications were examined based on optical aberrations generated in the quarter-wave plate 22 that were assembled into nine types of adhesive patterns from that level and fixed with the adhesive patterns. Here, the level is an adhesion specification candidate for each factor, and 0.05 mg, 0.1 mg, and 0.2 mg were set for the adhesion amount level in this study.

図4は上記検討における実験結果を示している。図4(a)は、接着剤の材質の違いによる収差の違い、図4(b)は、接着剤の接着箇所の数の違いによる収差の違い、図4(c)は、1/4波長板とLDブロック20との接着量の違いによる収差の違い、図4(d)は、接着剤硬化時におけるUV照射量の違いによる収差の違いをそれぞれ表にしたものである。ここで、工程平均とは各水準に起因する収差劣化量を基に算出した値であり、この値が大きいほど収差劣化量が小さく、好ましい水準、即ち接着仕様である。例えば、因子iの内、水準jに起因して発生する非点収差Xasの工程平均χasは次数式2で求められる。 FIG. 4 shows the experimental results in the above study. FIG. 4A shows the difference in aberration due to the difference in the material of the adhesive, FIG. 4B shows the difference in aberration due to the difference in the number of adhesion points of the adhesive, and FIG. 4C shows the quarter wavelength. The difference in aberration due to the difference in the amount of adhesion between the plate and the LD block 20, FIG. 4D shows the difference in aberration due to the difference in the UV irradiation amount when the adhesive is cured. Here, the process average is a value calculated based on the amount of aberration deterioration caused by each level, and the larger this value is, the smaller the amount of aberration deterioration is. For example, the process average χ as of the astigmatism X as generated due to the level j among the factors i is obtained by the following equation 2.


χas i,j=1/m Σ{−10log10as i,j,k}・・・(数式2)
k=1
但し、Xas:因子iの内、水準jで作製したサンプルk(k=1,・・・m)の非点収差、m:因子iの内、水準jで作製したサンプル数である。なお、コマ収差、球面収差、RMS値に関する工程平均も同様に算出できる。
m
χ as i, j = 1 / m Σ {−10 log 10 X as 2 i, j, k } (Expression 2)
k = 1
Where Xas: astigmatism of sample k (k = 1,... M) produced at level j among factors i, m: number of samples produced at level j among factors i. In addition, the process average regarding a coma aberration, a spherical aberration, and an RMS value can be calculated similarly.

なお、グラフ上の曲線aは非点収差(astigmatism)に関する工程平均、cはコマ収差(comatic aberration)に関する工程平均、sは球面収差(spherical aberration)に関
する工程平均、rはRMS値に関する工程平均である。
Note that a curve a on the graph is a process average related to astigmatism, c is a process average related to commatic aberration, s is a process average related to spherical aberration, and r is a process average related to RMS value. is there.

図4の各結果からわかるように、接着量および接着剤硬化時のUV照射量については、RMS値の工程平均が0に近いので、接着量は0.05mg、UV照射量は3000mJ/cmとするのが好ましく、接着箇所については、RMS値は1点も2点も大きく変わらないが、非点収差が大きく良化できる2点接着が好ましいと判断できる。 As can be seen from the results in FIG. 4, with respect to the adhesion amount and the UV irradiation amount at the time of curing the adhesive, since the process average of the RMS value is close to 0, the adhesion amount is 0.05 mg and the UV irradiation amount is 3000 mJ / cm 2. It is preferable that the RMS value is not significantly changed by 1 point or 2 points, but it is possible to determine that 2-point adhesion that can greatly improve astigmatism is preferable.

また、上記検討において、接着剤のショア硬度と接着箇所が光学収差に大きく起因することが判明したため、この二つの仕様に関して、以下の追加実験を行った。なお、この追加実験では、光学収差劣化の傾向を明瞭にするため、接着仕様量の倍である0.10mgで実施した。   Further, in the above examination, it has been found that the Shore hardness and the adhesion location of the adhesive are largely caused by optical aberration. Therefore, the following additional experiments were conducted with respect to these two specifications. In addition, in this additional experiment, in order to clarify the tendency of optical aberration deterioration, it was carried out at 0.10 mg which is twice the adhesion specification amount.

まず、接着箇所に関しては、位相差光軸22Aに対して略平行方向の対角部の2箇所で接着固定した場合(A)と、その垂直方向の対角部の2箇所で接着固定した場合に発生する光学収差の比較実験(B)を行った。その結果を表1に示す。   First, with respect to the bonding location, the case of bonding and fixing at two diagonal portions in a substantially parallel direction with respect to the phase difference optical axis 22A (A) and the case of bonding and fixing at two vertical portions of the diagonal portion The comparative experiment (B) of the optical aberration generated in the above was performed. The results are shown in Table 1.

表1に示すように位相差光軸の延在方向に沿った光学素子の対角部の2箇所で接着固定した場合(A)の方が1/4波長板に発生する光学収差(非点収差、コマ収差、球面収差、RMS値)の劣化を低減することができるという結果が確認された。この結果を踏まえ、1/4波長板22の形状を平行四辺形として、容易に位相差光軸22A方向を明瞭に判断できるようにしたので、1/4波長板22をLDブロック20に誤った方向で接着固定することを防止することができる。   As shown in Table 1, the optical aberration (astigmatism) that occurs in the quarter-wave plate when (A) is bonded and fixed at two diagonal portions of the optical element along the extending direction of the phase difference optical axis. As a result, it was confirmed that deterioration of aberration, coma aberration, spherical aberration, and RMS value can be reduced. Based on this result, the quarter-wave plate 22 is made a parallelogram so that the direction of the phase-difference optical axis 22A can be easily determined clearly. Bonding and fixing in the direction can be prevented.

次に1/4波長板22の接着固定における接着剤の硬度と波面収差の関係を確認する実験を行った。その結果を図5に示す。図5のグラフからわかるように、D45を超える硬度の接着剤を用いた場合には、急激に光学収差が劣化し、10mλrmsを超えてしまうため、車載環境での温度環境の急激な変化による更なる光学収差劣化を考慮した場合、20mλrms以上の光学収差劣化が発生し、光ピックアップ全体としての光学特性を低下させるおそれがある。そのため、車載環境への適用を考慮した場合、少なくともD45以下の硬度のものを用いることが好ましいと判断できる。
以上を踏まえ決定した接着仕様を基に作製したサンプルを用いて、各種信頼性試験を実施した。図6にこれら各種信頼性試験における1/4波長板の光学収差の変動を示す。
ここで、各種信頼性試験とは、特に温度変化の激しい車載用の電子機器に搭載することを想定して行われる試験であり、熱衝撃サイクル試験、高温高湿放置試験、高温放置試験、低温放置試験の4種類であり、それぞれ、熱衝撃サイクル試験は、設置場所の温度を−40℃で30分放置した後に+85℃まで温度を急激上昇させ、そのまま30分放置し、更に急激に温度を−40℃まで降下させる耐環境試験であり、この過程を1サイクルと定義して、1000サイクル実施した。高温高湿放置試験は、設置場所の温度+60℃、湿度90%の環境下で放置する耐環境試験を1000時間実施した。高温放置試験は、設置場所の温度+85℃の環境下で放置する耐環境試験を1000時間実施した。低温放置試験は、設置場所の温度−40℃の環境下で放置する耐環境試験を1000時間実施したものである。
図6において、(A)は熱衝撃サイクル試験の結果、(B)は高温高湿放置試験結果、
(C)は高温放置試験の結果、(D)は低温放置試験の結果をそれぞれ示している。
Next, an experiment was conducted to confirm the relationship between the hardness of the adhesive and the wavefront aberration in the bonding and fixing of the quarter-wave plate 22. The result is shown in FIG. As can be seen from the graph of FIG. 5, when an adhesive having a hardness exceeding D45 is used, the optical aberration rapidly deteriorates and exceeds 10 mλrms. When the optical aberration deterioration is considered, optical aberration deterioration of 20 mλ rms or more may occur, and the optical characteristics of the entire optical pickup may be deteriorated. Therefore, when considering application to an in-vehicle environment, it can be determined that it is preferable to use a material having a hardness of at least D45.
Various reliability tests were performed using samples prepared based on the adhesion specifications determined based on the above. FIG. 6 shows fluctuations in the optical aberration of the quarter-wave plate in these various reliability tests.
Here, various reliability tests are tests that are performed assuming that they are mounted on in-vehicle electronic devices that are particularly susceptible to temperature changes. Thermal shock cycle test, high temperature and high humidity test, high temperature test, low temperature There are four types of standing tests. In each of the thermal shock cycle tests, the temperature at the place of installation is left at -40 ° C for 30 minutes, then the temperature is rapidly increased to + 85 ° C, left as it is for 30 minutes, and the temperature is further rapidly It was an environmental resistance test that lowered to −40 ° C., and this process was defined as one cycle, and 1000 cycles were performed. In the high-temperature and high-humidity storage test, an environmental resistance test was performed for 1000 hours in an environment where the temperature at the installation location was + 60 ° C. and the humidity was 90%. In the high temperature storage test, an environmental resistance test was performed for 1000 hours in the environment of the installation location temperature + 85 ° C. The low-temperature storage test is an environment resistance test that is performed in an environment where the temperature of the installation site is −40 ° C. for 1000 hours.
In FIG. 6, (A) is the result of the thermal shock cycle test, (B) is the result of the high temperature and high humidity leaving test,
(C) shows the result of the high temperature storage test, and (D) shows the result of the low temperature storage test.

この実験結果によると、信頼性試験前に5mλrms程度の光学収差であるのに対して、各種信頼性1000cyc、1000h経過後も大きな収差劣化は見られず、10mλrms以下に抑えられている。即ち、光学的異方性を有した樹脂材料からなる光学素子に対して、車載環境へ十分適用可能な信頼性を有した接着固定方法と判断できる。   According to this experimental result, the optical aberration was about 5 mλrms before the reliability test, but no significant aberration deterioration was observed even after various reliability 1000 cyc and 1000 h had elapsed, and it was suppressed to 10 mλrms or less. In other words, it can be determined that the optical element made of a resin material having optical anisotropy is a reliable adhesive fixing method that is sufficiently applicable to an in-vehicle environment.


以上のとおり、光学素子を筐体に接着固定する場合において、光学素子を四辺形形状とし、この光学素子の位相差光軸を前記四辺形の対角線に略平行であり、前記筐体と前記光学素子とが前記光学素子の位相差光軸方向の対角部の2箇所で接着固定するの構成としたことにより、前記光学素子を前記筐体に接着固定する際、接着剤の接着力によって前記光学素子に発生する伸縮力が前記光学素子の位相差光軸方向、即ち繊維方向に沿って発生する。即ち、負荷に強い方向に伸縮力を集中できるため、光学素子の歪みやねじれなどの物理的な変形を抑制し、光学特性の劣化を低減できる。

As described above, when the optical element is bonded and fixed to the casing, the optical element has a quadrilateral shape, and the phase difference optical axis of the optical element is substantially parallel to the diagonal of the quadrilateral, and the casing and the optical element Since the element is bonded and fixed at two positions of the diagonal portion of the optical element in the phase difference optical axis direction, when the optical element is bonded and fixed to the casing, the adhesive force of the adhesive causes the The stretching force generated in the optical element is generated along the phase difference optical axis direction of the optical element, that is, the fiber direction. That is, since the stretching force can be concentrated in a direction strong against the load, physical deformation such as distortion and twist of the optical element can be suppressed, and deterioration of the optical characteristics can be reduced.

さらに、光学素子の形状を平行四辺形としてよく、この場合、光学素子を筐体に接着固定する際、光学素子の位相差光軸(繊維)方向が明瞭に判断可能になるので、誤って接着固定することを防止することができる。   Furthermore, the shape of the optical element may be a parallelogram. In this case, when the optical element is bonded and fixed to the housing, the phase difference optical axis (fiber) direction of the optical element can be clearly determined. Fixing can be prevented.

そして、光学素子と筐体とを接着固定する接着剤にはショアD45以下の硬度のものを用いる構成とすることで、接着剤の伸縮力によって生じる前記光学素子の物理的な変形を抑制し、光学収差を低減できる。   And, by using an adhesive that bonds and fixes the optical element and the housing with a hardness of Shore D45 or less, the physical deformation of the optical element caused by the stretching force of the adhesive is suppressed, Optical aberration can be reduced.

なお、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。   In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can implement with a various form.

本発明の光ピックアップ装置は、設置する場所や環境などでの大幅な温度変化に対して、光学的異方性を有した樹脂材料からなる光学素子の変形及び位置的な変化を抑えることができる、換言すれば位置信頼性を高めることができる効果を有し、特に温度変化の激しい車載用の電子機器に搭載する光ピックアップ装置等に有用である。   The optical pickup device of the present invention can suppress deformation and positional change of an optical element made of a resin material having optical anisotropy against a large temperature change in an installation place or environment. In other words, it has the effect of improving the position reliability, and is particularly useful for an optical pickup device or the like that is mounted on an in-vehicle electronic device having a large temperature change.

本発明の実施形態に係る光ピックアップ装置の光学素子を示す構成図The block diagram which shows the optical element of the optical pick-up apparatus which concerns on embodiment of this invention (a)本発明の実施形態に係る光ピックアップ装置のオプトベースに固着するLDブロックを示す外観図(b)本発明の実施形態に係る光ピックアップ装置のオプトベースに固着するLDブロックを示す図(A) External view showing an LD block fixed to an optical base of an optical pickup device according to an embodiment of the present invention (b) Diagram showing an LD block fixed to an optical base of an optical pickup device according to an embodiment of the present invention (a)本発明の実施形態に係る1/4波長板を示す説明図(b)本発明の実施形態に係る1/4波長板のLDブロックへの取り付けを示す説明図(A) Explanatory drawing which shows the quarter wavelength plate which concerns on embodiment of this invention (b) Explanatory drawing which shows the attachment to the LD block of the quarter wavelength plate which concerns on embodiment of this invention (a)本発明の実施形態に係る1/4波長板とLDブロックの接着仕様検討における各接着剤種の工程平均比較を示す説明図(b)本発明の実施形態に係る1/4波長板とLDブロックの接着仕様検討における各接着箇所の工程平均比較を示す説明図(c)本発明の実施形態に係る1/4波長板とLDブロックの接着仕様検討における各接着量の工程平均比較を示す説明図(d)本発明の実施形態に係る1/4波長板とLDブロックの接着仕様検討における各UV照射量の工程平均比較を示す説明図(A) Explanatory drawing which shows the process average comparison of each adhesive agent type | mold in examination of the adhesion specification of the quarter wavelength plate and LD block which concerns on embodiment of this invention (b) The quarter wavelength plate which concerns on embodiment of this invention (C) Process average comparison of each adhesion amount in quarter wave plate and LD block adhesion specification examination according to an embodiment of the present invention Explanatory drawing (d) Explanatory drawing which shows the process average comparison of each UV irradiation amount in the adhesion specification examination of the quarter wavelength plate and LD block which concern on embodiment of this invention 本発明の実施形態に係る1/4波長板とLDブロックの固定用接着剤の硬度と波面収差の相関性を示す図The figure which shows the correlation of the hardness of the adhesive for a quarter wavelength plate and LD block which concerns on embodiment of this invention, and a wavefront aberration 本発明の実施形態に係る1/4波長板の各種信頼性での光学収差の変動を示す図The figure which shows the fluctuation | variation of the optical aberration in various reliability of the quarter wavelength plate which concerns on embodiment of this invention. 従来例に係わる光ピックアップ装置を示す構成図Configuration diagram showing an optical pickup device according to a conventional example 従来例に係わる1/4波長板を取り付けた半導体レーザの外観図External view of a semiconductor laser with a quarter-wave plate attached to a conventional example

符号の説明Explanation of symbols

1 ピックアップ装置
2 オプトベース
2A オプトベースにおけるLDブロック取付面
3 対物レンズアクチュエータ
20 LDブロック(半導体レーザブロック)
20A LDブロックにおけるオプトベース取付面
20C LDブロックにおける1/4波長板取付面(段落ち面)
20F LDブロックにおける1/4波長板取付面を囲う壁上面
20G LDブロックにおける1/4波長板取付面を囲う壁上面
20H LDブロックにおける1/4波長板取付のための接着だまり
21 半導体レーザ(光源)
21A 半導体レーザの上面
21B 半導体レーザにおけるレーザ出射面
22 1/4波長板
22A 1/4波長板の位相差光軸(繊維方向)
23 回折格子
24 ハーフプレートミラー(光束分離手段)
25 コリメートレンズ
26 立ち上げミラー
27 反射ミラー
28 AS補正板
29 受光素子
31 対物レンズ
41 LDブロックとオプトベースを固定する接着剤1
42 LDブロックとオプトベースを固定する接着剤2
43 1/4波長板とLDブロックを固定する接着剤
DESCRIPTION OF SYMBOLS 1 Pickup apparatus 2 Opt base 2A LD block mounting surface in opt base 3 Objective lens actuator 20 LD block (semiconductor laser block)
Opto-base mounting surface in 20A LD block 1/4 wavelength plate mounting surface (stepped surface) in 20C LD block
Wall top surface surrounding quarter wave plate mounting surface in 20F LD block Wall top surface surrounding quarter wave plate mounting surface in 20G LD block Adhesive pool for quarter wave plate mounting in 20H LD block 21 Semiconductor laser (light source) )
21A Upper surface of semiconductor laser 21B Laser exit surface of semiconductor laser 22 1/4 wavelength plate 22A Phase difference optical axis (fiber direction) of 1/4 wavelength plate
23 Diffraction grating 24 Half plate mirror (Flux separation means)
25 Collimating lens 26 Rising mirror 27 Reflecting mirror 28 AS correction plate 29 Light receiving element
31 Objective lens 41 Adhesive 1 for fixing LD block and opto base
42 Adhesive 2 for fixing LD block and opt base
43 Adhesive to fix quarter wave plate and LD block

Claims (3)

光学的異方性を有した樹脂材料からなる光学素子を筐体に接着固定した光ピックアップ装置において、前記光学素子は光学的位相差を有した四辺形形状であり、前記筐体と前記光学素子とが前記光学素子の位相差光軸に近い2つの角である対角の2箇所で接着固定された光ピックアップ装置。   In an optical pickup device in which an optical element made of a resin material having optical anisotropy is bonded and fixed to a casing, the optical element has a quadrilateral shape having an optical phase difference, and the casing and the optical element And an optical pickup device in which the two are bonded and fixed at two diagonal positions which are two angles close to the phase difference optical axis of the optical element. 前記光学素子の形状は平行四辺形である請求項1記載の光ピックアップ装置。   The optical pickup device according to claim 1, wherein the optical element has a parallelogram shape. 前記光学素子と前記筐体とを接着固定する接着剤の硬度がショアD45以下である請求項1記載の光ピックアップ装置。   The optical pickup device according to claim 1, wherein the hardness of an adhesive that bonds and fixes the optical element and the housing is Shore D45 or less.
JP2007152313A 2007-06-08 2007-06-08 Optical pickup device Expired - Fee Related JP5115040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152313A JP5115040B2 (en) 2007-06-08 2007-06-08 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152313A JP5115040B2 (en) 2007-06-08 2007-06-08 Optical pickup device

Publications (2)

Publication Number Publication Date
JP2008305498A true JP2008305498A (en) 2008-12-18
JP5115040B2 JP5115040B2 (en) 2013-01-09

Family

ID=40234079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152313A Expired - Fee Related JP5115040B2 (en) 2007-06-08 2007-06-08 Optical pickup device

Country Status (1)

Country Link
JP (1) JP5115040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073066A1 (en) * 2011-11-16 2013-05-23 三洋電機株式会社 Holder for optical element, optical element unit, and optical pick-up device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273664A (en) * 2000-03-29 2001-10-05 Hitachi Media Electoronics Co Ltd Optical pickup
JP2003141748A (en) * 2001-10-31 2003-05-16 Sanyo Electric Co Ltd Diffraction grating installation device for optical head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273664A (en) * 2000-03-29 2001-10-05 Hitachi Media Electoronics Co Ltd Optical pickup
JP2003141748A (en) * 2001-10-31 2003-05-16 Sanyo Electric Co Ltd Diffraction grating installation device for optical head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073066A1 (en) * 2011-11-16 2013-05-23 三洋電機株式会社 Holder for optical element, optical element unit, and optical pick-up device

Also Published As

Publication number Publication date
JP5115040B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP2002150598A (en) Optical pickup device and recording/reproducing device
JP4621964B2 (en) Optical pickup device, recording / reproducing device, and correction method of spherical aberration fluctuation in optical pickup device
KR100486134B1 (en) Assembly method of optical pickup and objective lens for optical pickup
JP2007115299A (en) Liquid crystal device for optical pickup and optical pickup
US8284504B2 (en) Lens fixing device and optical pickup device
US20040213109A1 (en) Tilt sensor using diffraction grating
US20050018585A1 (en) Optical pickup device
JP4513946B2 (en) Optical system for optical pickup device, optical pickup device, and optical information recording / reproducing device
JP4347280B2 (en) Optical integrated unit, adjustment method therefor, and optical pickup device
JP5115040B2 (en) Optical pickup device
JP2009205775A (en) Optical pickup device
JP4699224B2 (en) Optical pickup device
US20090046561A1 (en) Optical pickup device
JP4947940B2 (en) Optical pickup device
JP2008176887A (en) Objective lens actuator and optical pickup device including the same
JP4342534B2 (en) Optical head housing, optical head, manufacturing method thereof, and optical recording / reproducing apparatus
US8130622B2 (en) Optical pickup apparatus having multi-sectional polarizer
JP2005116045A (en) Optical head, and optical information recording and reproducing device
JP2004281033A (en) Optical pickup
JP4732289B2 (en) Optical pickup device
JP2006209821A (en) Optical pickup and optical information processing system using it
JP2010009675A (en) Optical pickup device
JP2008226301A (en) Objective lens and optical pickup device
JP2011146080A (en) Half mirror fixing device
JP2005038598A (en) Optical pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees