JP2008304356A - Reagent sealing structure of lab-on-chip, and lab-on-chip - Google Patents

Reagent sealing structure of lab-on-chip, and lab-on-chip Download PDF

Info

Publication number
JP2008304356A
JP2008304356A JP2007152612A JP2007152612A JP2008304356A JP 2008304356 A JP2008304356 A JP 2008304356A JP 2007152612 A JP2007152612 A JP 2007152612A JP 2007152612 A JP2007152612 A JP 2007152612A JP 2008304356 A JP2008304356 A JP 2008304356A
Authority
JP
Japan
Prior art keywords
reagent
reaction
sealing
lab
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007152612A
Other languages
Japanese (ja)
Inventor
智行 ▲高▼屋
Satoyuki Takaya
Masaaki Chino
正晃 地野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007152612A priority Critical patent/JP2008304356A/en
Publication of JP2008304356A publication Critical patent/JP2008304356A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reagent sealing structure of a lab-on-chip capable of starting a reaction of a reagent with reaction liquid at an appropriate timing while the reagent is prevented from being affected by the flow of the reaction liquid in a reaction tub. <P>SOLUTION: A reagent sealing section 1 of the lab-on-chip 2 has a plurality of reaction tubs 4 filled with the reagent 7, the reaction liquid is added to the reaction tubs 4 and reaction is performed. The reagent sealing section 1 has sealing layers 8 that contain sealing material that is solid at normal temperature and is fused by heating and are fixed to the inside of respective reaction tubs 4. The reagent 7 is distributed and stored in the sealing layers 8 or covered with the sealing layers 8. The sealing layers 8 are heated together with the reaction liquid, thereby bringing the reagent 7 into contact with the reaction liquid to form a reactable state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ラボオンチップの反応槽において試薬を封止する封止構造及びラボオンチップに関する。   The present invention relates to a sealing structure for sealing a reagent in a lab-on-chip reaction tank and a lab-on-chip.

ラボオンチップは、基板上で化学・生物学実験を行う技術である。これは、基板上の反応槽内にあらかじめ装填された試薬等に反応液を加えることで、基板上に実験系を集積することによって操作の手間を軽減して省スペースを実現し、効率を向上させることができるというものである。   Lab-on-a-chip is a technology for conducting chemical and biological experiments on a substrate. This is because the reaction solution is added to the reagents, etc. that are pre-loaded in the reaction tank on the substrate, and the experimental system is integrated on the substrate, reducing the labor of operation and saving space and improving efficiency. It can be made to.

一方、複数の反応槽で共通の反応液が使用される場合、各反応槽を流路で連通させ、一端に設けられた注入口から反応液を注入することによって、流路を介してすべての反応槽に簡便に効率よく反応液を配置することができる反応容器が知られている(例えば、特許文献1参照)。
特表2004−502164号公報
On the other hand, when a common reaction liquid is used in a plurality of reaction tanks, all reaction tanks are communicated with each other through a flow path, and the reaction liquid is injected from an inlet provided at one end, so that There is known a reaction vessel in which a reaction solution can be simply and efficiently placed in a reaction vessel (see, for example, Patent Document 1).
JP-T-2004-502164

しかしながら、特許文献1の反応容器の構造をラボオンチップに適用しようとした場合、単に試薬等が反応槽に装填されているだけであると、反応液が反応槽に流入すると試薬と接触し、すぐに反応が開始してしまうことがある。従って、反応開始のタイミング制御が困難であるという問題がある。   However, when trying to apply the structure of the reaction vessel of Patent Document 1 to a lab-on-chip, if the reagent or the like is simply loaded in the reaction vessel, the reaction solution comes into contact with the reagent when flowing into the reaction vessel, The reaction may start immediately. Therefore, there is a problem that it is difficult to control the timing of starting the reaction.

また、反応液が、ある上流側の反応槽から隣接する下流側の反応槽へ流出する際に、装填された試薬等が反応液とともに下流側の反応槽へ流れてしまい、上流側の反応槽内の試薬等がなくなってしまったり、量が不足してしまったりすることが起きる。これは適切な反応が起こらなくなる原因となり、問題である。   In addition, when the reaction liquid flows out from a certain upstream reaction tank to the adjacent downstream reaction tank, the loaded reagents and the like flow to the downstream reaction tank together with the reaction liquid, so that the upstream reaction tank The reagent etc. of the inside may be lost or the amount may be insufficient. This is a problem because it causes no proper reaction.

本発明は、上記事情に鑑みてなされたものであり、試薬が反応槽における反応液の流れに影響を受けず、適切なタイミングで試薬と反応液との反応を開始させることができるラボオンチップの試薬封止構造及びラボオンチップを提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a lab-on-a-chip capable of starting the reaction between the reagent and the reaction liquid at an appropriate timing without being affected by the flow of the reaction liquid in the reaction tank. It is an object to provide a reagent sealing structure and a lab-on-chip.

本発明のラボオンチップの試薬封止構造は、試薬が装填された複数の反応槽を有し、前記反応槽に反応液が添加されて反応が行われるラボオンチップの試薬封止構造であって、常温では固体であり、加熱されることで融解する封止材料を含み、各々の前記反応槽内に固着される封止層を備え、前記試薬は前記封止層内に分散格納され、又は前記封止層によって被覆されており、前記封止層が前記反応液とともに加熱されることによって、前記試薬と前記反応液とが接触し、反応可能な状態となることを特徴とする。   The lab-on-chip reagent sealing structure of the present invention is a lab-on-chip reagent sealing structure in which a reaction liquid is added to the reaction tank and a reaction is performed. A sealing material that is solid at normal temperature and melts when heated, and includes a sealing layer fixed in each of the reaction vessels, and the reagent is dispersedly stored in the sealing layer, Or it is coat | covered with the said sealing layer, and when the said sealing layer is heated with the said reaction liquid, the said reagent and the said reaction liquid will contact and it will be in the state which can react.

なお、「試薬」とは、ラボオンチップ上で反応液と反応させるために用いられるあらゆる物質を指し、核酸、酵素、基質、バッファ等が含まれる。   The “reagent” refers to any substance used for reacting with a reaction solution on a lab-on-chip, and includes nucleic acids, enzymes, substrates, buffers, and the like.

本発明のラボオンチップの試薬封止構造によれば、反応槽が加熱によって融解されるまで、試薬が反応液と接触しないように反応槽内に固着される。   According to the reagent sealing structure of the lab-on-chip of the present invention, the reagent is fixed in the reaction vessel so as not to come into contact with the reaction solution until the reaction vessel is melted by heating.

本発明のラボオンチップの試薬封止構造は、前記封止材料を前記封止層より高濃度に含有し、前記封止層を被覆するように配置された被覆層をさらに備え、前記試薬は前記封止層内に分散格納されてもよい。この場合、封止層が被覆層によって被覆されるので、封止層上面付近に分散格納された試薬の溶出が効果的に抑制される。   The reagent sealing structure of the lab-on-chip of the present invention further includes a coating layer that contains the sealing material at a higher concentration than the sealing layer, and is arranged to cover the sealing layer. It may be distributed and stored in the sealing layer. In this case, since the sealing layer is covered with the coating layer, the elution of the reagent dispersedly stored near the upper surface of the sealing layer is effectively suppressed.

前記封止層は、フィルム状に形成されており、前記試薬は前記封止層によって被覆されてもよい。この場合、容積の小さい試薬封止部を構成することができる。   The sealing layer may be formed in a film shape, and the reagent may be covered with the sealing layer. In this case, a reagent sealing portion with a small volume can be configured.

前記封止材料は、アガロース、ゼラチン、油脂、パラフィンのいずれかを含んで形成されてもよい。この場合、封止層及び被覆層内に格子状構造が含まれるので、より効率的に試薬が分散、封止される。   The sealing material may be formed including any of agarose, gelatin, fats and oils, and paraffin. In this case, since the lattice structure is included in the sealing layer and the covering layer, the reagent is more efficiently dispersed and sealed.

また、本発明のラボオンチップは、本発明のラボオンチップの試薬封止構造を備えることを特徴とする。この場合、適切なタイミングでラボオンチップ上における反応を開始させることができる。   The lab-on-a-chip of the present invention is characterized by including the lab-on-a-chip reagent sealing structure of the present invention. In this case, the reaction on the lab-on-chip can be started at an appropriate timing.

本発明のラボオンチップは、前記反応槽間に設けられ、各々の前記反応槽間を連通させる流路と、前記反応液が注入される注入口とをさらに備え、前記注入口から注入された前記反応液は、前記流路を通って各々の前記反応槽に流入するものでもよい。この場合、注入口から反応液を注入することによって、すべての反応槽に、反応液を配置することができる。また、その際に試薬が下流側の反応槽に流出することがない。   The lab-on-chip of the present invention is further provided with a flow path provided between the reaction tanks and communicating between the reaction tanks and an injection port into which the reaction solution is injected, and is injected from the injection port. The reaction solution may flow into each reaction tank through the flow path. In this case, the reaction solution can be placed in all the reaction vessels by injecting the reaction solution from the injection port. In this case, the reagent does not flow out to the downstream reaction tank.

本発明のラボオンチップの試薬封止構造及びラボオンチップによれば、試薬が反応槽における反応液の流れに影響を受けず、適切なタイミングで試薬と反応液との反応を開始させることができるラボオンチップの試薬封止構造及びラボオンチップを提供する   According to the lab-on-chip reagent sealing structure and the lab-on-chip of the present invention, the reagent is not affected by the flow of the reaction liquid in the reaction vessel, and the reaction between the reagent and the reaction liquid can be started at an appropriate timing. Lab-on-chip reagent sealing structure and lab-on-chip

以下、本発明の第1実施形態の試薬封止部(試薬封止構造)1を備えるラボオンチップ2について、図1から図7を参照して説明する。
図1は、ラボオンチップ2の平面図、図2はラボオンチップ2の断面図である。図1及び図2に示すように、ラボオンチップ2は樹脂等からなる基板3に、反応槽4として複数の凹部が形成されて構成されている。各反応槽4は溝状の流路5で連通されており、流路5の一方の端部には、反応液が注入される注入口6が設けられている。
Hereinafter, a lab-on-chip 2 including the reagent sealing portion (reagent sealing structure) 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 7.
FIG. 1 is a plan view of the lab-on-chip 2, and FIG. 2 is a cross-sectional view of the lab-on-chip 2. As shown in FIGS. 1 and 2, the lab-on-chip 2 is configured by forming a plurality of recesses as a reaction tank 4 on a substrate 3 made of resin or the like. Each reaction tank 4 is communicated with a groove-like channel 5, and an inlet 6 through which a reaction solution is injected is provided at one end of the channel 5.

各反応槽4の内部には、反応に用いられる試薬7が封止された試薬封止部1が固着されている。試薬封止部1は、試薬7と、試薬7を封止する封止部材(封止材料)8Aからなる封止層8とを含んで構成されている。   Inside each reaction tank 4, a reagent sealing portion 1 in which a reagent 7 used for the reaction is sealed is fixed. The reagent sealing portion 1 includes a reagent 7 and a sealing layer 8 made of a sealing member (sealing material) 8A that seals the reagent 7.

封止層8を形成する封止部材8Aとしては、常温において固相(固体)であり、反応槽4に固着して、後述する反応液が反応槽4内に供給される時に流路5から流出しないことが必要となる。また、分子構造に格子状の部分(マトリクス)を有し、反応液と試薬7との化学反応に影響を及ぼさないものが好ましい。さらに、所定の温度に加熱することで、融解し液相となる材料であることが必要である。   The sealing member 8A that forms the sealing layer 8 is a solid phase (solid) at room temperature, and is fixed to the reaction tank 4 so that the reaction liquid described later is supplied from the flow path 5 when the reaction liquid is supplied into the reaction tank 4. It is necessary not to leak. Further, those having a lattice-like part (matrix) in the molecular structure and not affecting the chemical reaction between the reaction solution and the reagent 7 are preferable. Furthermore, it is necessary that the material melts into a liquid phase when heated to a predetermined temperature.

封止部材8Aの具体例としては、アガロース、ゼラチン、油脂、パラフィン等が挙げられる。これらの材料から、封止される試薬7の熱耐性等を考慮して、適切な融点のものが適宜選択されて用いられる。
封止層8には封止部材8A以外の材料が含まれてもよい。例えば、封止される試薬7の品質保持のために、アジ化ナトリウム等の防腐剤等が添加されてもよい。
Specific examples of the sealing member 8A include agarose, gelatin, fats and oils, and paraffin. An appropriate melting point is appropriately selected from these materials in consideration of the heat resistance of the reagent 7 to be sealed.
The sealing layer 8 may include materials other than the sealing member 8A. For example, a preservative such as sodium azide may be added to maintain the quality of the reagent 7 to be sealed.

試薬7としては、反応に必要な、核酸、酵素、基質、バッファなどが、ラボオンチップ上で行われる化学反応に基づいて適宜1種類あるいは複数種類選択される。これらの試薬7は、封止層8に分散された状態で、封止部材8Aのマトリクス内に保持されて試薬封止部1が構成されている。
なお、複数のプローブの組み合わせを用いてポリメラーゼ連鎖反応法(PCR法)が行われる等の場合は、各反応槽ごとに異なる試薬が配置されてもよい。
As the reagent 7, one or more kinds of nucleic acids, enzymes, substrates, buffers and the like necessary for the reaction are appropriately selected based on a chemical reaction performed on a lab-on-chip. These reagents 7 are held in the matrix of the sealing member 8 </ b> A in a state of being dispersed in the sealing layer 8 to constitute the reagent sealing portion 1.
In the case where the polymerase chain reaction method (PCR method) is performed using a combination of a plurality of probes, a different reagent may be arranged for each reaction tank.

封止される試薬7は、必要に応じて凍結乾燥等の処理が施されてもよい。このようにすると、試薬7の容積を小さくして、試薬封止部1全体の容積を小さくすることができる。また、試薬7の安定性を高めて、ラボオンチップ2の使用可能期間を長くすることができる。   The reagent 7 to be sealed may be subjected to a treatment such as freeze-drying as necessary. If it does in this way, the volume of the reagent 7 can be made small and the volume of the whole reagent sealing part 1 can be made small. Moreover, the stability of the reagent 7 can be improved and the usable period of the lab-on-chip 2 can be lengthened.

上記のように構成された試薬封止部1は、封止部材8Aにあらかじめ試薬7を分散させた混合物を、図3に示すように、定量分注機100等を用いて各反応槽4に分注装填することによって形成される。試薬7を分散させることに代えて、図4(a)に示すように、凍結乾燥等によって乾燥させた試薬7が反応槽4内に充填され、図4(b)に示すように、その上から封止部材8Aが注入されて被覆されることによって試薬封止部1が形成されてもよい。   In the reagent sealing part 1 configured as described above, the mixture in which the reagent 7 is dispersed in advance in the sealing member 8A is placed in each reaction tank 4 using a quantitative dispenser 100 or the like as shown in FIG. Formed by dispensing and loading. Instead of dispersing the reagent 7, as shown in FIG. 4 (a), the reagent 7 dried by lyophilization or the like is filled in the reaction tank 4, and as shown in FIG. Then, the reagent sealing portion 1 may be formed by injecting and covering the sealing member 8A.

上記のように構成されたラボオンチップ2の使用時の動作を図5(a)から図5(c)を参照して以下に説明する。
まず、図5(a)に示すように、試薬封止部1の封止層8が固相を保持している状態で、精製ゲノムDNA等を含む反応液9を、分注機101等を用いて注入口6から圧力を加えながら注入する。
The operation at the time of using the lab-on-chip 2 configured as described above will be described below with reference to FIGS. 5 (a) to 5 (c).
First, as shown in FIG. 5 (a), with the sealing layer 8 of the reagent sealing part 1 holding a solid phase, the reaction solution 9 containing purified genomic DNA or the like is dispensed with a dispenser 101 or the like. It injects, applying pressure from the inlet 6 using.

注入された反応液9は、図5(b)に示すように、流路5を通って各反応槽4に配置される。このとき、試薬封止部1は反応槽4に固着しているため、下流側に移動しない。また、固相であるため、試薬7と反応液9とは接触せず、反応は開始されない。   The injected reaction solution 9 is disposed in each reaction tank 4 through the flow path 5 as shown in FIG. At this time, since the reagent sealing portion 1 is fixed to the reaction vessel 4, it does not move downstream. Moreover, since it is a solid phase, the reagent 7 and the reaction liquid 9 do not contact, and reaction is not started.

続いて、ラボオンチップ2を、ヒートブロック等を備えた反応装置に設置して所定の温度に加熱すると、図5(c)に示すように、封止層8の封止部材8Aが融解し、固相から液相へと変化する。そして、試薬封止部1に封止されていた試薬7が反応液9と混合されて接触し、所定の温度条件下におかれることによって所定の反応を進行させる。
なお、ラボオンチップ2を加熱する前に、流路5を塑性変形等させることによって各反応槽4間の連通を断絶させておくと、封止層8が液相となった際も、各反応槽の内容物が混合されることがなく、好ましい。
Subsequently, when the lab-on-chip 2 is installed in a reactor equipped with a heat block and heated to a predetermined temperature, the sealing member 8A of the sealing layer 8 is melted as shown in FIG. 5 (c). It changes from a solid phase to a liquid phase. Then, the reagent 7 sealed in the reagent sealing portion 1 is mixed with and brought into contact with the reaction liquid 9, and a predetermined reaction is advanced by being placed under a predetermined temperature condition.
In addition, if the communication between the reaction tanks 4 is interrupted by plastically deforming the flow path 5 before the lab-on-chip 2 is heated, each of the sealing layers 8 is in a liquid phase. The contents of the reaction vessel are not mixed, which is preferable.

反応終了後のラボオンチップ2は、タイピング反応や、蛍光測定等の後工程に送られる。
次に、実際の例を用いて、本実施形態の試薬封止構造についてさらに説明する。
The lab-on-chip 2 after completion of the reaction is sent to a post-process such as typing reaction or fluorescence measurement.
Next, the reagent sealing structure of this embodiment will be further described using an actual example.

[実施例1]
封止部材としてのアガロースのPCR反応効率に対する影響を検討するために、以下の実験を行った。
まず、試薬7としてPCRバッファ(バッファ:10X、1μL)、dNTP(基質:10X、1μL)、プライマー1(CCAATACCGCCAACAGT、10pmol/μL、1μL)、プライマー2(AGGAGTCCCATCACCAGGT、10pmol/μL、1μL)、の混合物を12サンプル分作成した。
[Example 1]
In order to examine the influence of agarose as a sealing member on the PCR reaction efficiency, the following experiment was conducted.
First, as reagent 7, a mixture of PCR buffer (buffer: 10X, 1 μL), dNTP (substrate: 10X, 1 μL), primer 1 (CCAATACCGCCAACAGT, 10 pmol / μL, 1 μL), primer 2 (AGGAGTCCCATCACCAGGT, 10 pmol / μL, 1 μL) 12 samples were prepared.

上記12サンプルのうち、図6に示すように、10サンプルにおいてはポリメラーゼ(HS Ex Taq:タカラバイオ株式会社製、5U/μL、0.5μL)をさらに加えた試薬とした。ポリメラーゼを加えた5サンプル及び加えなかった1サンプルに対して、凍結乾燥処理を行い、12サンプルすべてをそれぞれ200μLPCR用マイクロチューブに装填した。   Among the 12 samples, as shown in FIG. 6, 10 samples were reagents to which polymerase (HS Ex Taq: manufactured by Takara Bio Inc., 5 U / μL, 0.5 μL) was further added. Five samples with and without polymerase were subjected to lyophilization, and all 12 samples were loaded into 200 μL PCR microtubes.

続いて、熱により溶融した状態の2%アガロース溶液を、図6に示す分量だけそれぞれのサンプルに滴下し、4℃で10分間静置してアガロース溶液をゲル化させた。ここに、精製ゲノムDNA溶液(反応液:200ng/μL、1μL)を加え、さらにサンプルの体積が10μLとなるように蒸留水を加え、所定の温度サイクルに加熱してPCR法による遺伝子増幅を行った。   Subsequently, a 2% agarose solution melted by heat was dropped onto each sample in the amount shown in FIG. 6 and allowed to stand at 4 ° C. for 10 minutes to gel the agarose solution. A purified genomic DNA solution (reaction solution: 200 ng / μL, 1 μL) is added to this, and distilled water is further added so that the volume of the sample becomes 10 μL, followed by heating to a predetermined temperature cycle to perform gene amplification by the PCR method. It was.

図7は上記PCR法による増幅産物を示すバンドの図である。図7に示すように、ポリメラーゼを添加した10サンプルにおいては、アガロース溶液の滴下量、凍結乾燥処理の有無のいずれにもかかわらず、略同等の増幅産物を得ることができた。従って、アガロースによりPCR法の反応が阻害されないこと、及び、試薬を凍結乾燥してから封止しても正常にPCR法を行うことができることが確認された。   FIG. 7 is a band diagram showing an amplification product obtained by the PCR method. As shown in FIG. 7, in 10 samples to which polymerase was added, substantially the same amplification product could be obtained regardless of whether the dripping amount of the agarose solution or the lyophilization treatment was performed. Therefore, it was confirmed that the reaction of the PCR method was not inhibited by agarose, and that the PCR method could be performed normally even if the reagent was sealed after lyophilization.

本実施形態の試薬封止部1によれば、加熱前には試薬7が封止層8の封止部材8A内部に分散した状態で各反応槽4に固着しているため、注入口6から注入された反応液9が流入してきた際も、試薬7が下流側の流路5に流出することがない。従って、各々の反応槽4において反応に必要な試薬が保持され、ラボオンチップ2上で適切に反応させることができる。   According to the reagent sealing part 1 of the present embodiment, the reagent 7 is fixed to each reaction tank 4 in a state of being dispersed inside the sealing member 8A of the sealing layer 8 before heating. Even when the injected reaction liquid 9 flows in, the reagent 7 does not flow out into the flow path 5 on the downstream side. Therefore, reagents necessary for the reaction are held in each reaction tank 4 and can be appropriately reacted on the lab-on-chip 2.

また、加熱前の試薬7は封止層8内に分散格納されているので、反応液9が反応槽に流入しても、直ちには接触せず、加熱されて封止層8が融解されることによって試薬7と反応液9とが接触し、反応可能な状態となる。従って、反応開始のタイミングを制御し、適切に反応を進行させることができる。   Further, since the reagent 7 before heating is dispersedly stored in the sealing layer 8, even if the reaction liquid 9 flows into the reaction tank, it does not come into contact immediately but is heated and the sealing layer 8 is melted. As a result, the reagent 7 and the reaction liquid 9 come into contact with each other, and the reaction becomes possible. Therefore, the reaction start timing can be controlled and the reaction can proceed appropriately.

続いて、本発明の第2実施形態について図8(a)から図8(c)を参照して説明する。なお、上述の実施形態と同様の構成要素については、同一の符号を付して重複する説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. 8 (a) to 8 (c). In addition, about the component similar to the above-mentioned embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図8(a)から図8(c)は、本実施形態の試薬封止部11の形成及びラボオンチップへの配置手順を示す図である。
まず、水分含量の少ないアガロースゲルを用いてフィルム状に形成された封止フィルム(封止層)12を2枚用意し、図8(a)に示すように、凍結乾燥処理を施した試薬7を上下から封止フィルム12で挟み込んで被覆する。
FIG. 8A to FIG. 8C are diagrams showing a procedure for forming the reagent sealing portion 11 of this embodiment and arranging it on the lab-on-chip.
First, two sealing films (sealing layers) 12 formed into a film shape using an agarose gel having a low water content were prepared, and the reagent 7 subjected to freeze-drying treatment as shown in FIG. Is sandwiched and covered with the sealing film 12 from above and below.

試薬7に触れていない周縁部を溶着や熱融着等の方法で接着すると、図8(b)に示すように、封止フィルム12の内部に試薬7が封止された試薬封止部11が得られる。試薬封止部11を反応槽13の内部に固着させると、本実施形態のラボオンチップ14が完成する。   When the peripheral part not touching the reagent 7 is bonded by a method such as welding or heat sealing, the reagent sealing part 11 in which the reagent 7 is sealed inside the sealing film 12 as shown in FIG. Is obtained. When the reagent sealing part 11 is fixed inside the reaction tank 13, the lab-on-chip 14 of this embodiment is completed.

上記のように構成された試薬封止部11及びラボオンチップ14においては、第1実施形態の試薬封止部1及びラボオンチップ2と同様の効果を得ることができる。
また、試薬7に熱を加えることなく封止することができるので、試薬7が熱に弱い物質等の場合も変性させずに封止することができる。
In the reagent sealing part 11 and the lab-on-chip 14 configured as described above, the same effects as those of the reagent sealing part 1 and the lab-on-chip 2 of the first embodiment can be obtained.
Further, since the reagent 7 can be sealed without applying heat, the reagent 7 can be sealed without being denatured even when the reagent 7 is a substance that is weak against heat.

また、試薬7が凍結乾燥されているので、試薬7の体積を小さくすることができる。従って、試薬封止部11全体をより小さく構成することができる。従って、より小さい反応槽にも適用することができ、ラボオンチップの反応槽を小型化してより効率的に配置することができる。   Moreover, since the reagent 7 is freeze-dried, the volume of the reagent 7 can be reduced. Therefore, the whole reagent sealing part 11 can be configured smaller. Therefore, it can be applied to a smaller reaction tank, and the reaction tank of the lab-on-chip can be downsized and arranged more efficiently.

さらに、封止フィルム12として、特に水分含量が少ないものを使用すれば、公知のロールツーロールの製造機械等を用いることによって、試薬封止部11を低コストで大量に製造することができる。   Furthermore, if a sealing film 12 having a particularly low water content is used, the reagent sealing part 11 can be manufactured in large quantities at low cost by using a known roll-to-roll manufacturing machine or the like.

加えて、封止フィルム12の水分含量が少なく、かつ試薬7が凍結乾燥されているので、全体として水分含量が少なく保存性に優れている。そして、複数の反応槽が流路で連通された通常の反応容器の各々の反応槽に、本実施形態の試薬封止部を配置することによって、該反応容器をラボオンチップとして使用することができる。   In addition, since the moisture content of the sealing film 12 is small and the reagent 7 is freeze-dried, the moisture content is small as a whole and the storage stability is excellent. Then, by arranging the reagent sealing part of this embodiment in each reaction tank of a normal reaction container in which a plurality of reaction tanks are communicated with each other through a flow path, the reaction container can be used as a lab-on-chip. it can.

以上、本発明の実施形態について説明してきたが、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   Although the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. .

例えば、上述の実施形態においては、試薬7が封止層8に分散格納される例を説明したが、これに代えて、図9(a)及び図9(b)に示す変形例のように、試薬封止部1の上に、同一或いは異なる材料からなる封止部材が分注器101等を用いて層状に配置されてもよい。このようにして形成された被覆層10を備えた試薬封止部1Aとして試薬封止構造を構成すると、試薬封止部1の表面上にある試薬7の溶出をより効果的に抑制することができる。   For example, in the above-described embodiment, the example in which the reagent 7 is distributed and stored in the sealing layer 8 has been described, but instead, as in the modification examples illustrated in FIGS. 9A and 9B. On the reagent sealing part 1, sealing members made of the same or different materials may be arranged in layers using the dispenser 101 or the like. When the reagent sealing structure is configured as the reagent sealing portion 1A including the coating layer 10 formed in this manner, the elution of the reagent 7 on the surface of the reagent sealing portion 1 can be more effectively suppressed. it can.

なお、この場合、被覆層10における封止部材の濃度を封止層8よりも高く設定すると、被覆層のマトリクス密度がより高くなり、より確実に試薬7の溶出を防ぐことができる。   In this case, if the concentration of the sealing member in the coating layer 10 is set higher than that of the sealing layer 8, the matrix density of the coating layer becomes higher and the elution of the reagent 7 can be prevented more reliably.

また、上述の実施例においては、各反応槽が流路で連通されたラボオンチップに適用される例を説明したが、これには限定されず、流路を有さないラボオンチップに適用されてもよい。この場合も本発明の試薬封止構造によって、試薬を安定した状態で反応槽内に封止することができる。   Further, in the above-described embodiment, an example is described in which each reaction tank is applied to a lab-on-chip communicated with a flow path, but the present invention is not limited to this and is applied to a lab-on-chip that does not have a flow path. May be. Also in this case, the reagent can be sealed in the reaction vessel in a stable state by the reagent sealing structure of the present invention.

さらに、試薬7として複数種類の物質が封止される場合は、物質ごとに試薬封止部が形成され、反応槽内にこれらの試薬封止部が積層されてもよい。さらに、積層された試薬封止部間が、被覆層10や封止フィルム12によって隔絶されてもよい。このようにすると、試薬中の各物質が接触しない状態で封止することができる。従って、保存性等の観点から混合させたくないような物質が組み合わされた試薬でも、良好に保存できる封止構造を構成することができる。   Furthermore, when a plurality of types of substances are sealed as the reagent 7, a reagent sealing part may be formed for each substance, and these reagent sealing parts may be stacked in the reaction tank. Furthermore, the stacked reagent sealing portions may be isolated by the covering layer 10 or the sealing film 12. If it does in this way, it can seal in the state where each substance in a reagent does not contact. Therefore, it is possible to form a sealed structure that can be stored well even with a reagent combined with substances that are not desired to be mixed from the viewpoint of storage stability.

加えて、上述の実施形態においては、PCR法を行うためのラボオンチップに適用された例を説明したが、本発明の用途はこれには限定されず、例えば、FRET効果を利用した蛍光検出にも使用することができる。   In addition, in the above-described embodiment, the example applied to the lab-on-chip for performing the PCR method has been described. However, the application of the present invention is not limited to this, for example, fluorescence detection using the FRET effect Can also be used.

本発明の第1実施形態の試薬封止構造を備えたラボオンチップを示す平面図である。It is a top view which shows the lab-on-chip provided with the reagent sealing structure of 1st Embodiment of this invention. 同ラボオンチップの断面図である。It is sectional drawing of the same lab on chip. 同ラボオンチップの反応槽に試薬封止部が配置される状態を示す図である。It is a figure which shows the state by which a reagent sealing part is arrange | positioned in the reaction tank of the same lab on chip. 試薬封止部が配置される他の方法を示す図である。It is a figure which shows the other method by which a reagent sealing part is arrange | positioned. 同ラボオンチップの使用時の動作を示す図である。It is a figure which shows the operation | movement at the time of use of the same lab on chip. 同実施形態の実験例における各サンプルの試薬封止部の構成を示す図である。It is a figure which shows the structure of the reagent sealing part of each sample in the experiment example of the embodiment. 同実験例におけるPCR反応後の増幅産物を示すバンド図である。It is a band figure which shows the amplification product after PCR reaction in the experiment example. 本発明の第2実施形態の試薬封止構造と、ラボオンチップへの配置工程を示す図である。It is a figure which shows the reagent sealing structure of 2nd Embodiment of this invention, and the arrangement | positioning process to a lab-on-chip. 本発明のラボオンチップの変形例における試薬封止部とその配置工程を示す図である。It is a figure which shows the reagent sealing part and its arrangement | positioning process in the modification of the lab-on-a-chip of this invention.

符号の説明Explanation of symbols

1、11 試薬封止部(試薬封止構造)
2、14 ラボオンチップ
4、13 反応槽
5 流路
6 注入口
7 試薬
8 封止層
8A 封止部材(封止材料)
9 反応液
10 被覆層
12 封止フィルム(封止層)
1,11 Reagent sealing part (reagent sealing structure)
2, 14 Lab-on-chip 4, 13 Reaction tank 5 Channel 6 Inlet 7 Reagent 8 Sealing layer 8A Sealing member (sealing material)
9 reaction liquid 10 coating layer 12 sealing film (sealing layer)

Claims (6)

試薬が装填された複数の反応槽を有し、前記反応槽に反応液が添加されて反応が行われるラボオンチップの試薬封止構造であって、
常温では固体であり、加熱されることで融解する封止材料を含み、各々の前記反応槽内に固着される封止層を備え、
前記試薬は前記封止層内に分散格納され、又は前記封止層によって被覆されており、前記封止層が前記反応液とともに加熱されることによって、前記試薬と前記反応液とが接触し、反応可能な状態となることを特徴とするラボオンチップの試薬封止構造。
A reagent-sealed structure of a lab-on-chip that has a plurality of reaction tanks loaded with reagents, and a reaction liquid is added to the reaction tank to perform a reaction,
It includes a sealing material that is solid at normal temperature and melts when heated, and includes a sealing layer that is fixed in each of the reaction vessels.
The reagent is dispersedly stored in the sealing layer, or is covered with the sealing layer, and the reagent and the reaction liquid come into contact with each other by heating the sealing layer together with the reaction liquid, A lab-on-chip reagent sealing structure characterized by being in a reactive state.
前記封止材料を前記封止層より高濃度に含有し、前記封止層を被覆するように配置された被覆層をさらに備え、
前記試薬は前記封止層内に分散格納されている請求項1に記載のラボオンチップの試薬封止構造。
Containing the sealing material in a higher concentration than the sealing layer, further comprising a coating layer arranged to cover the sealing layer;
The lab-on-chip reagent sealing structure according to claim 1, wherein the reagent is distributed and stored in the sealing layer.
前記封止層は、フィルム状に形成されており、前記試薬は前記封止層によって被覆されていることを特徴とする請求項1に記載のラボオンチップの試薬封止構造。   The lab-on-chip reagent sealing structure according to claim 1, wherein the sealing layer is formed in a film shape, and the reagent is covered with the sealing layer. 前記封止材料は、アガロース、ゼラチン、油脂、パラフィンのいずれかを含んで形成されていることを特徴とする請求項1から3のいずれか1項に記載のラボオンチップの試薬封止構造。   The lab-on-chip reagent sealing structure according to any one of claims 1 to 3, wherein the sealing material includes any one of agarose, gelatin, fats and oils, and paraffin. 請求項1から4のいずれか1項に記載のラボオンチップの試薬封止構造を備えることを特徴とするラボオンチップ。   5. A lab-on-chip comprising the lab-on-chip reagent sealing structure according to any one of claims 1 to 4. 前記反応槽間に設けられ、各々の前記反応槽間を連通させる流路と、
前記反応液が注入される注入口と、
をさらに備え、
前記注入口から注入された前記反応液は、前記流路を通って各々の前記反応槽に流入することを特徴とする請求項5に記載のラボオンチップ。
A flow path provided between the reaction vessels and communicating between the reaction vessels;
An inlet through which the reaction solution is injected;
Further comprising
The lab-on-chip according to claim 5, wherein the reaction liquid injected from the injection port flows into each of the reaction tanks through the flow path.
JP2007152612A 2007-06-08 2007-06-08 Reagent sealing structure of lab-on-chip, and lab-on-chip Withdrawn JP2008304356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152612A JP2008304356A (en) 2007-06-08 2007-06-08 Reagent sealing structure of lab-on-chip, and lab-on-chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152612A JP2008304356A (en) 2007-06-08 2007-06-08 Reagent sealing structure of lab-on-chip, and lab-on-chip

Publications (1)

Publication Number Publication Date
JP2008304356A true JP2008304356A (en) 2008-12-18

Family

ID=40233209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152612A Withdrawn JP2008304356A (en) 2007-06-08 2007-06-08 Reagent sealing structure of lab-on-chip, and lab-on-chip

Country Status (1)

Country Link
JP (1) JP2008304356A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118798A (en) * 2007-11-16 2009-06-04 Tokyo Medical & Dental Univ Apparatus and method for amplifying nucleic acid, and method of culturing cell and amplifying nucleic acid
WO2010087466A1 (en) * 2009-01-27 2010-08-05 国立大学法人東京農工大学 Method for preparing pcr chamber, and pcr kit
WO2011099251A1 (en) * 2010-02-10 2011-08-18 ソニー株式会社 Microchip for nucleic acid amplification reaction and and process for production thereof
CN102399867A (en) * 2010-09-16 2012-04-04 索尼公司 Nucleic acid quantification method and microchip for nucleic acid amplification reaction
US20130102062A1 (en) * 2011-10-25 2013-04-25 Sony Corporation Microchip for nucleic acid amplification reaction and method of producing the same
WO2013080941A1 (en) * 2011-12-01 2013-06-06 三菱レイヨン株式会社 Base for use in amplification of nucleic acid, and nucleic acid amplification method
CN104673622A (en) * 2013-11-29 2015-06-03 精工爱普生株式会社 Cartridge For Nucleic Acid Amplification Reaction And Cartridge Kit For Nucleic Acid Amplification Reaction
CN104673621A (en) * 2013-11-29 2015-06-03 精工爱普生株式会社 Container For Nucleic Acid Amplification Reaction, Cartridge For Nucleic Acid Amplification Reaction, And Cartridge Kit For Nucleic Acid Amplification Reaction
JP2016192931A (en) * 2015-04-01 2016-11-17 セイコーエプソン株式会社 Cartridge for nucleic acid amplification reaction, and nucleic acid amplification apparatus
CN111304072A (en) * 2020-02-28 2020-06-19 宁波胤瑞生物医学仪器有限责任公司 Oil seal device for digital PCR chip

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118798A (en) * 2007-11-16 2009-06-04 Tokyo Medical & Dental Univ Apparatus and method for amplifying nucleic acid, and method of culturing cell and amplifying nucleic acid
JPWO2010087466A1 (en) * 2009-01-27 2012-08-02 国立大学法人東京農工大学 PCR chamber preparation method and PCR kit
WO2010087466A1 (en) * 2009-01-27 2010-08-05 国立大学法人東京農工大学 Method for preparing pcr chamber, and pcr kit
CN102741408B (en) * 2010-02-10 2014-03-19 索尼公司 Microchip for nucleic acid amplification reaction and process for production thereof
WO2011099251A1 (en) * 2010-02-10 2011-08-18 ソニー株式会社 Microchip for nucleic acid amplification reaction and and process for production thereof
JP2011160728A (en) * 2010-02-10 2011-08-25 Sony Corp Microchip for nucleic acid amplification reaction and manufacturing method thereof
CN102741408A (en) * 2010-02-10 2012-10-17 索尼公司 Microchip for nucleic acid amplification reaction and and process for production thereof
CN102399867A (en) * 2010-09-16 2012-04-04 索尼公司 Nucleic acid quantification method and microchip for nucleic acid amplification reaction
US20130102062A1 (en) * 2011-10-25 2013-04-25 Sony Corporation Microchip for nucleic acid amplification reaction and method of producing the same
CN103074203A (en) * 2011-10-25 2013-05-01 索尼公司 Microchip for nucleic acid amplification reaction and method of producing the same
EP2787068A4 (en) * 2011-12-01 2014-10-22 Mitsubishi Rayon Co Base for use in amplification of nucleic acid, and nucleic acid amplification method
EP2787068A1 (en) * 2011-12-01 2014-10-08 Mitsubishi Rayon Co., Ltd. Base for use in amplification of nucleic acid, and nucleic acid amplification method
WO2013080941A1 (en) * 2011-12-01 2013-06-06 三菱レイヨン株式会社 Base for use in amplification of nucleic acid, and nucleic acid amplification method
US20140342935A1 (en) * 2011-12-01 2014-11-20 Mitsubishi Rayon Co., Ltd. Base for use in amplification of nucleic acid and method for amplifying nucleic acid
JPWO2013080941A1 (en) * 2011-12-01 2015-04-27 三菱レイヨン株式会社 Nucleic acid amplification substrate and nucleic acid amplification method
JP2017018118A (en) * 2011-12-01 2017-01-26 三菱レイヨン株式会社 Nucleic acid amplification substrate and nucleic acid amplification method
CN104673622A (en) * 2013-11-29 2015-06-03 精工爱普生株式会社 Cartridge For Nucleic Acid Amplification Reaction And Cartridge Kit For Nucleic Acid Amplification Reaction
CN104673621A (en) * 2013-11-29 2015-06-03 精工爱普生株式会社 Container For Nucleic Acid Amplification Reaction, Cartridge For Nucleic Acid Amplification Reaction, And Cartridge Kit For Nucleic Acid Amplification Reaction
JP2015104364A (en) * 2013-11-29 2015-06-08 セイコーエプソン株式会社 Container for nucleic acid amplification reaction, cartridge for nucleic acid amplification reaction, and cartridge kit for nucleic acid amplification reaction
JP2016192931A (en) * 2015-04-01 2016-11-17 セイコーエプソン株式会社 Cartridge for nucleic acid amplification reaction, and nucleic acid amplification apparatus
CN111304072A (en) * 2020-02-28 2020-06-19 宁波胤瑞生物医学仪器有限责任公司 Oil seal device for digital PCR chip
CN111304072B (en) * 2020-02-28 2023-05-02 宁波胤瑞生物医学仪器有限责任公司 Oil seal device for digital PCR chip

Similar Documents

Publication Publication Date Title
JP2008304356A (en) Reagent sealing structure of lab-on-chip, and lab-on-chip
US20230249185A1 (en) Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
JP6655652B2 (en) Microfluidic devices, methods and applications
EP3303547A1 (en) Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
US20210276009A1 (en) Micro chamber plate
US7790109B2 (en) Micro-fluid reaction vessel, method for manufacturing the same, and micro-fluid reaction method using the vessel
US8911938B2 (en) Reaction chamber having pre-stored reagents
JP6029366B2 (en) Integrated cartridge for pretreatment / electrophoresis, pretreatment integrated capillary electrophoresis apparatus, and pretreatment integrated capillary electrophoresis method
WO2019023133A1 (en) Digital microfluidics systems and methods with integrated plasma collection device
EP1721009B1 (en) Hybridization method as well as hybridization microarray and hybridization kit
JP5786295B2 (en) Nucleic acid isothermal amplification microchip, method for producing the same, and nucleic acid isothermal amplification method
US8715924B2 (en) Process for determining the concentration of nucleic acids
JP2008233002A (en) Reaction tip and reaction method using the same
JP5015441B2 (en) Reaction chip and reaction method
EP2535408B1 (en) Microchip for nucleic acid amplification reaction and and process for production thereof
JP2007192739A (en) Reaction vessel
US20090166203A1 (en) Injection method for microfluidic chips
JP2009270922A5 (en) Reaction liquid filling method
JP3661112B2 (en) Incubator temperature control method and incubator for a small amount of specimen
JP2009047643A (en) Biochip, and temperature detection method of same
TWI358289B (en) Fluid transferring apparatus
JP2009139138A (en) Reaction vessel
JP4717643B2 (en) Reaction container lid and reaction container
JP5009534B2 (en) Reaction vessel
JP4750482B2 (en) Reaction method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907