JP2008304297A - Omnidirectional sensor and device using it - Google Patents

Omnidirectional sensor and device using it Download PDF

Info

Publication number
JP2008304297A
JP2008304297A JP2007151237A JP2007151237A JP2008304297A JP 2008304297 A JP2008304297 A JP 2008304297A JP 2007151237 A JP2007151237 A JP 2007151237A JP 2007151237 A JP2007151237 A JP 2007151237A JP 2008304297 A JP2008304297 A JP 2008304297A
Authority
JP
Japan
Prior art keywords
sphere
light
transmission window
omnidirectional sensor
side transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007151237A
Other languages
Japanese (ja)
Inventor
Masaaki Matsunaga
正明 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2007151237A priority Critical patent/JP2008304297A/en
Publication of JP2008304297A publication Critical patent/JP2008304297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Navigation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an omnidirectional sensor capable of simultaneously extracting the direction of an azimuthal magnetic needle operated by a terrestrial magnetism and the inclination to the direction of gravity by a simple method. <P>SOLUTION: In this omniderectional sensor, the surface of a sphere, inside of which a directional magnet 16 and a weight 17 are present, is reflection-treated and the surface of a sphere, enclosing the sphere, is scattering-treated, while an absorption pattern which suitably prohibits the light to transmit is arranged on the surface. This sphere is floated in a light shielding housing 13 which is filled with a transparent liquid and has a transmission window 12 on an incident side and a transmission window 19 on an emitting side to convert the light emitted from the transmission window 19 on the emitting side to electric signals by a photoelectron conversion element 18. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地磁気により発生する磁場方位を電気的で取り出す方位センサーおよびそれを用いた装置に関するものであり、特に、GPS(全方位地球システム)機能付きのナビゲーションシステム装置等に用いられる全方位センサーに関するものである。   The present invention relates to an azimuth sensor that electrically extracts a magnetic azimuth direction generated by geomagnetism and an apparatus using the azimuth sensor, and in particular, an omnidirectional sensor used for a navigation system apparatus with a GPS (omnidirectional earth system) function. It is about.

従来より、地磁気により発生する磁場方位は、方位磁針の向きにより簡便に肉眼で把握することが可能である。しがしながら、GPS機能付きのナビゲーション装置に表示された電子ディスプレイモニター地図画面を進行方向に応じて正常な向きに回転させるには、方位磁針の向きを電気的に、デジタル信号として取り出す必要がある。   Conventionally, the direction of the magnetic field generated by the geomagnetism can be easily grasped by the naked eye based on the direction of the azimuth magnetic needle. However, in order to rotate the electronic display monitor map screen displayed on the navigation device with GPS function in a normal direction according to the traveling direction, it is necessary to electrically extract the direction of the magnetic compass as a digital signal. is there.

一方、特開平6−82253号公報には、発光素子、受光センサおよび複数の開口部を設けたケース内部に配置された微小な遮光性小球により、発光素子からの光を遮り、複数の姿勢を検出する姿勢検出装置の技術が開示されている。
特開平6−82253号公報(第1頁、第2図)
On the other hand, in Japanese Patent Laid-Open No. 6-82253, light from a light-emitting element is blocked by a light-emitting element, a light-receiving sensor, and a minute light-shielding small sphere disposed inside a case provided with a plurality of openings, and a plurality of postures are provided. A technique of a posture detecting device for detecting the above is disclosed.
JP-A-6-82253 (first page, FIG. 2)

しかしながら、微小な遮光性小球により、発光素子からの光を遮り、複数の姿勢を検出する従来の方法では、姿勢方向が、正立、左傾斜、右傾斜、前傾斜、後継者、倒立の6方位のとびとびの方向しか認識できず、全方位に渡って正確に方位を認識することは不可能であった。よって、本発明は連続的に全方位に渡って正確に方位を認識できる全方位センサーを提供することを目的とする。   However, in the conventional method of detecting a plurality of postures by blocking the light from the light emitting element by a small light blocking sphere, the posture direction is erect, left-tilted, right-tilted, forward-tilted, successor, inverted. Only six directions were recognized, and it was impossible to accurately recognize the directions in all directions. Therefore, an object of the present invention is to provide an omnidirectional sensor capable of accurately recognizing an azimuth continuously in all directions.

本発明の全方位センサーは、方位磁石と錘が内在された球体と、球体を移動可能に保持する筐体とを備えた全方位センサーであって、球体の表面は光を導光する導光機能を備え、かつ表面の少なくとも一部に光を吸収する吸収パターンを有し、筐体は光が入射する入射側透過窓と、光が出射する出射側透過窓とを有し、入射側透過窓から入射した光は、球体の表面を導光し、出射側透過窓より出射され、出射された光を電気信号に変換することを特徴とする。   The omnidirectional sensor of the present invention is an omnidirectional sensor including a sphere in which an azimuth magnet and a weight are incorporated, and a housing that holds the sphere so as to be movable, and the surface of the sphere guides light. It has a function and has an absorption pattern that absorbs light on at least a part of its surface, and the housing has an incident-side transmission window through which light enters and an emission-side transmission window through which light exits. Light incident from the window guides the surface of the sphere, is emitted from the exit-side transmission window, and converts the emitted light into an electrical signal.

また、吸収パターンは球体の表面を導光する光量が方位によって異なるように、球体の表面に配置されていることを特徴とする。また球体は、表面が反射処理された内核球を有し、内核球の外側には表面が散乱機能を有する導光層が備えられていることを特徴とする。また球体は樹脂からなることを特徴とする。また筐体内には透明液体が満たされ、球体を移動可能に保持していることを特徴とする。また、本発明はこの全方位センサーを用いた装置である。   The absorption pattern is arranged on the surface of the sphere so that the amount of light that guides the surface of the sphere varies depending on the orientation. The sphere has an inner core sphere whose surface is subjected to reflection treatment, and a light guide layer having a scattering function on the surface is provided outside the inner core sphere. The spherical body is made of resin. Further, the housing is filled with a transparent liquid, and the sphere is held movably. Further, the present invention is an apparatus using this omnidirectional sensor.

本発明の全方位センサーを用いることにより、地磁気により発生する磁場方位と重力方向に対する傾斜を同時に、簡素な光学系による光電変換システムにより電気的信号に変換できるため、方位を連続的に感知することが可能である。また、センサー自体の小型化と方位の電気信号化により、モニター上の地図画像や航空衛星画像をすばやく方位に応じて回転させる共に、装置を傾けても正確さが損なわれない、使用者にとって小型で高性能の方位装置やナビゲーション装置を提供できる。なお、光電素子は少数でよいので、光電素子やそれを実装するための複雑な回路基板も簡略が可能である。   By using the omnidirectional sensor of the present invention, the magnetic field azimuth generated by geomagnetism and the inclination with respect to the direction of gravity can be simultaneously converted into an electrical signal by a photoelectric conversion system using a simple optical system, so that the azimuth can be sensed continuously. Is possible. In addition, the miniaturization of the sensor itself and the use of an electrical signal for the azimuth allow the map image and aerial satellite image on the monitor to be quickly rotated according to the azimuth, and the accuracy is not impaired even if the device is tilted. Can provide high-performance bearing devices and navigation devices. Since only a small number of photoelectric elements are required, the photoelectric element and a complicated circuit board for mounting the photoelectric element can be simplified.

以下に本発明の形態を詳述する。本発明の全方位センサーを用いた方位装置の機能を図5に基づいて説明する。本発明を用いた方位装置51は、GPS機能によって電子ディスプレイ上の地図モニタ−53上に、方位装置を持った人の位置と進行方向表示52を行うことが可能である。これは、方位装置51に組み込まれた全方位センサー54が、地磁気の向きを電気的なデジタル信号として出力し、電子ディスプレイモニター上の地図画面を進行方向に応じて正常な向きに回転させるためである。   Hereinafter, embodiments of the present invention will be described in detail. The function of the azimuth | direction apparatus using the omnidirectional sensor of this invention is demonstrated based on FIG. The azimuth | direction apparatus 51 using this invention can perform the position of the person who has an azimuth | direction apparatus, and the advancing direction display 52 on the map monitor-53 on an electronic display by GPS function. This is because the omnidirectional sensor 54 incorporated in the azimuth device 51 outputs the direction of geomagnetism as an electrical digital signal, and rotates the map screen on the electronic display monitor in a normal direction according to the traveling direction. is there.

次に、本発明の全方位センサーについて実施例として詳述する。図1は本発明の全方位センサーの構造を示す模式図である。11は光源で光を出力する赤色LEDであり、3Vで0.1Aの300mwで発光している。遮光筐体13には光源からの光を入射する3mmφの入射側透過窓12が設けられている。この遮光筐体13内には、透明液体のベンゼンが満たされ、表面に導光機能を備えた球体14が移動可能に浮遊した状態となっている。この球体14は、固定された方位磁石16と真ちゅうの錘17とを内在している。   Next, the omnidirectional sensor of the present invention will be described in detail as an example. FIG. 1 is a schematic diagram showing the structure of an omnidirectional sensor of the present invention. Reference numeral 11 denotes a red LED that outputs light from a light source, and emits light at 300 mw of 0.1 A at 3V. The light shielding casing 13 is provided with a 3 mmφ incident side transmission window 12 through which light from a light source is incident. The light shielding housing 13 is filled with a transparent liquid benzene, and a sphere 14 having a light guide function on the surface is movably floated. The spherical body 14 includes a fixed compass 16 and a brass weight 17.

球体14は、遮光筐体13内を自由に回転できるように、遮光筐体13と球体14との間には隙間を設けている。しかし、入射側透過窓12から入射した光が球体14のほぼ中心に入射されるように、その隙間がなるべく小さくなるように設計するのが好ましい。また、球体14と透明液体との比重をほぼ等しくさせれば、遮光筐体13があらゆる方向に変化しても、球体14は、錘と方位磁石によって、ほぼ定位置に保持することが可能である。さらに、遮光筐体13には二つの出射側透過窓19を設けている。この出射側透過窓19は一つでも構わないが、複数個設けることによって、センサーの精度を高めることができる。   The spherical body 14 is provided with a gap between the light shielding housing 13 and the spherical body 14 so as to freely rotate in the light shielding housing 13. However, it is preferable to design the gap as small as possible so that the light incident from the incident-side transmission window 12 enters the approximate center of the sphere 14. Further, if the specific gravity of the sphere 14 and the transparent liquid is made substantially equal, the sphere 14 can be held in a substantially fixed position by the weight and the azimuth magnet even if the light shielding casing 13 changes in all directions. is there. Further, the light shielding casing 13 is provided with two emission side transmission windows 19. The number of the exit side transmission windows 19 may be one, but the accuracy of the sensor can be improved by providing a plurality of the exit side transmission windows 19.

図2は、球体14の表面における吸収パターンを示した模式図である。この吸収パターンは点状の黒色網点パターンであり、球体14の表面を導光する光量が方位によって異なるように、表面の単位面積あたりの黒色網点パターンを各々変化させ、球体14の表面に各々分布をもって、黒色網点パターンを複数箇所設けている。図2の<側面パターン模式図>では、球体14の側面側から見た黒色網点パターンを示している。図2の<上面パターンの模式図>では、球体14の上部極点側から見た黒色網点パターンを示している。これら模式図に図示したように、上部極点付近と下部極点付近では、黒色網点パターンの配置分布密度を濃くし、赤道付近では配置分布密度を淡くする。また、極点付近においても、<上面パターンの模式図>で図示するように、極点を中心に黒色網点パターンの配置密度を徐々に変化させる。図示しないが、下面の極点付近でも、黒色網点パターンの配置密度を徐々に変化させる。このとき、上面の極点付近とは逆回転で濃から淡へと配置分布を変えるのが好ましい。   FIG. 2 is a schematic diagram showing an absorption pattern on the surface of the sphere 14. This absorption pattern is a dot-like black halftone dot pattern. The black halftone dot pattern per unit area of the surface is changed so that the amount of light guided through the surface of the sphere 14 varies depending on the orientation, and the surface of the sphere 14 is changed. A plurality of black halftone dot patterns are provided with each distribution. 2 shows a black halftone dot pattern as viewed from the side surface of the sphere 14. In the <schematic diagram of the top surface pattern> of FIG. 2, a black halftone dot pattern viewed from the upper pole side of the sphere 14 is shown. As shown in these schematic diagrams, the arrangement distribution density of the black halftone dot pattern is increased near the upper pole and the vicinity of the lower pole, and the arrangement distribution density is decreased near the equator. Also, in the vicinity of the extreme point, as shown in <Schematic diagram of upper surface pattern>, the arrangement density of the black halftone dot pattern is gradually changed around the extreme point. Although not shown, the arrangement density of the black halftone dot pattern is gradually changed even near the poles on the lower surface. At this time, it is preferable to change the arrangement distribution from dark to light by reverse rotation from the vicinity of the pole on the upper surface.

図3は球体の断面を示した図である。球体は外径が1cmφの大きさで、中心部が空洞のアクリル樹脂36である。また、球体の内部には空洞のアクリル樹脂36からなる内核球を備えている。内核球は球体の内部で動かないように、球体の内側にぴったり収納されている。内核球の空洞内部には、方位磁針34と真鍮の錘35が、アクリル接着剤により固定化されている。また、内核球の表面は、白色塗料が塗布されて反射機能を有する反射処理部33が形成されている。また、球体の表面はブラスト処理されすりガラス状のブラスト処理部32が形成されており、球体へ入射する光を散乱させる散乱機能を備えている。このように球体の表面が散乱機能を備えているので、球体の最外郭に設けられたアクリル樹脂36とブラスト処理部33との層は導光機能を有している。さらに、球体の最表面には、前述した黒色網点パターン31が凹版印刷で形成されている。   FIG. 3 is a view showing a cross section of a sphere. The spherical body is an acrylic resin 36 having an outer diameter of 1 cmφ and a hollow center. Further, an inner core sphere made of a hollow acrylic resin 36 is provided inside the sphere. The inner core sphere is stored inside the sphere so that it does not move inside the sphere. An azimuth needle 34 and a brass weight 35 are fixed inside the cavity of the inner core sphere with an acrylic adhesive. The surface of the inner sphere is coated with a white paint to form a reflection processing unit 33 having a reflection function. Further, the surface of the sphere is blasted to form a frosted glass-like blasting portion 32 and has a scattering function for scattering light incident on the sphere. Thus, since the surface of the sphere has a scattering function, the layer of the acrylic resin 36 and the blast processing unit 33 provided on the outermost surface of the sphere has a light guiding function. Further, the black halftone dot pattern 31 described above is formed on the outermost surface of the sphere by intaglio printing.

図4は、球体に入射した光が導光している状態を示した模式断面図である。遮光筐体の入射側透過窓から入射した赤色の入射光40は、内核球の外側表面の反射処理部43で反射し、球体の表面であるブラスト処理部43とアクリル樹脂との層で導光し、伝播を繰り返す。伝播した光は黒色網点パターン41が配置されている箇所では吸収され、球体の外へは出射されず、黒色網点パターン41が配置されていない箇所では球体の外側へ出射光44として出射される。出射光44は遮光筐体に設けられた複数の出射側透過窓から出射され、出射側透明窓の外側に配置されている光電変換素子48により光量が電流値に変換されて測定される。あらかじめ光量と方位の関係を求めておき、出射光の電流値によって、方位を得ることができる。   FIG. 4 is a schematic cross-sectional view showing a state where light incident on the sphere is guided. The red incident light 40 incident from the incident side transmission window of the light shielding casing is reflected by the reflection processing unit 43 on the outer surface of the inner core sphere, and is guided by the blast processing unit 43 that is the surface of the sphere and the acrylic resin layer. And repeat propagation. The propagated light is absorbed at the place where the black halftone dot pattern 41 is arranged, is not emitted outside the sphere, and is emitted as the outgoing light 44 outside the sphere at the place where the black halftone dot pattern 41 is not arranged. The The emitted light 44 is emitted from a plurality of emission-side transmission windows provided in the light shielding casing, and the light amount is converted into a current value by the photoelectric conversion element 48 disposed outside the emission-side transparent window, and is measured. The relationship between the light amount and the azimuth is obtained in advance, and the azimuth can be obtained from the current value of the emitted light.

このように、図3で図示した球体を図1に図示するように遮光筐体13内に設けることによって全方位センサーを得ることができる。図1に図示したように、球体14に照射された赤色光は、反射処理された内核球15の表面で伝播を繰り返し、黒色網点パターンによって出射分布が異なるため、遮光筐体13の傾きや方位によって、光電変換素子18で受光される光強度が異なる。このような光強度を光電変換素子18によって数値化し、全方位センサーの方位を得ることができる。   Thus, an omnidirectional sensor can be obtained by providing the sphere illustrated in FIG. 3 in the light shielding casing 13 as illustrated in FIG. As shown in FIG. 1, the red light applied to the sphere 14 repeatedly propagates on the surface of the inner core sphere 15 subjected to the reflection process, and the emission distribution varies depending on the black halftone dot pattern. The light intensity received by the photoelectric conversion element 18 varies depending on the orientation. Such light intensity can be digitized by the photoelectric conversion element 18 to obtain the orientation of the omnidirectional sensor.

本実施例の場合、筐体の底面側の光電変換素子に流れる電流値は6〜12マイクロアンペアであった。また、側面側の光電変換素子に流れる電流値15〜35アンペアであった。   In the case of this example, the value of the current flowing through the photoelectric conversion element on the bottom side of the housing was 6 to 12 microamperes. The current value flowing through the photoelectric conversion element on the side surface side was 15 to 35 amperes.

したがって、図1に示すように、遮光筐体13の向きによって、光電変換素子に流れる電流に強弱の差異が生じ、この電流値の強弱差に加え光電素子間の電流値の比率の比較により、地球磁場方位と共に重力方向に対する傾斜を同時に電気信号として出力する。すなわち、光電変換電流を、電圧変換しAMPで増幅し、A/D変換後MPU(マイクロプロセッサーユニット)で方位演算し、重力方向を含む方位信号とをデジタル信号として出力する。   Therefore, as shown in FIG. 1, a difference in strength occurs in the current flowing through the photoelectric conversion element depending on the direction of the light shielding casing 13, and in addition to the difference in strength of the current value, the comparison of the ratio of the current value between the photoelectric elements, The inclination with respect to the direction of gravity is output as an electric signal at the same time as the geomagnetic field direction. That is, the photoelectric conversion current is converted into a voltage, amplified by AMP, subjected to azimuth calculation by MPU (microprocessor unit) after A / D conversion, and an azimuth signal including a gravity direction is output as a digital signal.

本発明の全方位センサーの構成を示す模式図である。It is a schematic diagram which shows the structure of the omnidirectional sensor of this invention. 本発明の球体の表面パターンを示す模式図である。It is a schematic diagram which shows the surface pattern of the spherical body of this invention. 本発明の球体の模式断面図である。It is a schematic cross section of the sphere of the present invention. 本発明の入射光の経路を示した模式断面図である。It is the schematic cross section which showed the path | route of the incident light of this invention. 本発明の傾斜センサーを用いた方位装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the azimuth | direction apparatus using the inclination sensor of this invention.

符号の説明Explanation of symbols

11 光源
12 入射側透過窓
13 遮光筐体
14 球体
15 内核球
16 方位磁石
17 錘
18 光電変換素子
19 出射側透過窓
31 黒色網点パターン
32 ブラスト処理部
33 反射処理部
34 方位磁石
35 錘
36 アクリル樹脂
51 方位装置
52 進行方向表示
53 地図モニター
54 全方位センサー
DESCRIPTION OF SYMBOLS 11 Light source 12 Incident side transmission window 13 Shading case 14 Sphere 15 Inner core ball 16 Directional magnet 17 Weight 18 Photoelectric conversion element 19 Output side transmission window 31 Black halftone dot pattern 32 Blast processing part 33 Reflection processing part 34 Directional magnet 35 Weight 36 Acrylic Resin 51 Directional device 52 Travel direction display 53 Map monitor 54 Omnidirectional sensor

Claims (6)

方位磁石と錘が内在された球体と、
該球体を移動可能に保持する筐体とを備えた全方位センサーであって、
前記球体の表面は光を導光する導光機能を備え、かつ前記表面の少なくとも一部に光を吸収する吸収パターンを有し、
前記筐体は光が入射する入射側透過窓と、光が出射する出射側透過窓とを有し、
前記入射側透過窓から入射した光は、前記球体の表面を導光し、前記出射側透過窓より出射され、該出射された光を電気信号に変換することを特徴とする全方位センサー。
A sphere with a compass and weight,
An omnidirectional sensor comprising a housing for holding the sphere so as to be movable;
The surface of the sphere has a light guide function of guiding light, and has an absorption pattern that absorbs light on at least a part of the surface,
The housing has an incident-side transmission window through which light enters and an emission-side transmission window through which light exits,
The omnidirectional sensor characterized in that light incident from the incident side transmission window is guided through the surface of the sphere, is emitted from the emission side transmission window, and converts the emitted light into an electrical signal.
前記吸収パターンは前記球体の表面を導光する光量が方位によって異なるように、前記球体の表面に配置されていることを特徴とする請求項1に記載の全方位センサー。   2. The omnidirectional sensor according to claim 1, wherein the absorption pattern is arranged on a surface of the sphere so that an amount of light guided on the surface of the sphere is different depending on a direction. 前記球体は、表面が反射処理された内核球を有し、該内核球の外側には表面が散乱機能を有する導光層が備えられていることを特徴とする請求項1または2に記載の全方位センサー。   The sphere has an inner core sphere having a reflection-treated surface, and a light guide layer having a scattering function on the surface is provided outside the inner sphere. Omnidirectional sensor. 前記球体は樹脂からなることを特徴とする請求項1から3のいずれか一項に記載の全方位センサー。   The omnidirectional sensor according to any one of claims 1 to 3, wherein the sphere is made of a resin. 前記筐体内には透明液体が満たされ、前記球体を移動可能に保持していることを特徴とする請求項1から4のいずれか一項に記載の全方位センサー。   The omnidirectional sensor according to any one of claims 1 to 4, wherein the casing is filled with a transparent liquid and the sphere is movably held. 請求項1から5のいずれか一項に記載の全方位センサーを用いた装置。   The apparatus using the omnidirectional sensor as described in any one of Claim 1 to 5.
JP2007151237A 2007-06-07 2007-06-07 Omnidirectional sensor and device using it Pending JP2008304297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151237A JP2008304297A (en) 2007-06-07 2007-06-07 Omnidirectional sensor and device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151237A JP2008304297A (en) 2007-06-07 2007-06-07 Omnidirectional sensor and device using it

Publications (1)

Publication Number Publication Date
JP2008304297A true JP2008304297A (en) 2008-12-18

Family

ID=40233154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151237A Pending JP2008304297A (en) 2007-06-07 2007-06-07 Omnidirectional sensor and device using it

Country Status (1)

Country Link
JP (1) JP2008304297A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122621A1 (en) * 2009-11-24 2011-05-26 Kaipo Chen Lighting device with sensor
CN103234532A (en) * 2013-04-10 2013-08-07 黄铭 A digital liquid floating compass and a measurement method for attitude angles by using the same
CN104197906A (en) * 2014-09-15 2014-12-10 瑞安市顺风航仪有限公司 Axle needle of magnetic compass and application of ball pen point in manufacture of axle needle of magnetic compass
CN112525235A (en) * 2020-12-01 2021-03-19 天津津航技术物理研究所 Window structure for photoelectric detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122621A1 (en) * 2009-11-24 2011-05-26 Kaipo Chen Lighting device with sensor
CN103234532A (en) * 2013-04-10 2013-08-07 黄铭 A digital liquid floating compass and a measurement method for attitude angles by using the same
CN104197906A (en) * 2014-09-15 2014-12-10 瑞安市顺风航仪有限公司 Axle needle of magnetic compass and application of ball pen point in manufacture of axle needle of magnetic compass
CN112525235A (en) * 2020-12-01 2021-03-19 天津津航技术物理研究所 Window structure for photoelectric detection device

Similar Documents

Publication Publication Date Title
US9372117B2 (en) Optical ground tracking apparatus, systems, and methods
US20070282564A1 (en) Spatially aware mobile projection
JP5748298B2 (en) Display screen and control system for data processing system combined with this
JP2008304297A (en) Omnidirectional sensor and device using it
Hagem et al. Self contained adaptable optical wireless communications system for stroke rate during swimming
US7724353B2 (en) Method for measuring distance to object
US20140313321A1 (en) Optical ground tracking apparatus, systems, and methods
JP2008539933A (en) Computer control piece
FR2908579A1 (en) Mobile communication terminal includes control unit that adjusts display direction of information displayed on display unit using at least one of gravitational and rotational direction sensed by detecting unit
US20070071425A1 (en) Sensing apparatus, program execution apparatus and image-taking system
KR101539304B1 (en) Apparatus for Display Interactive through Motion Detection
EP3483631B1 (en) Distance measurement device
CN201569783U (en) Binocular telescope
Kavatsyuk et al. Multi-PMT optical module for the KM3NeT neutrino telescope
Coniglione KM3NeT-ARCA project status and plan
CN104024920B (en) Light emitting module
Yanny et al. Hubble Space Telescope Imaging of the BL Lacertae Object OJ 287
JP2009159044A (en) Optical transmission system
Kuch et al. Preliminary report: Embedded platform for inertial based underwater navigation
CN215078393U (en) Biological characteristic detection device and wearable equipment
US20240045520A1 (en) Electronic apparatus for identifying a control signal based on motion information and control method thereof
CN1796932A (en) Miniature Magnetic Infrared Attitude Measurement System
JP2024005516A (en) Wind direction and wind speed measurement device
KR20160126741A (en) Uv measuring system considering measuring state and sun position and uv measuring instrument included therein
Leonora et al. The multi-PMT optical modules for the IDMAR research infrastructure