JP2008303897A - Retainer for ball bearing, and ball bearing - Google Patents

Retainer for ball bearing, and ball bearing Download PDF

Info

Publication number
JP2008303897A
JP2008303897A JP2007148878A JP2007148878A JP2008303897A JP 2008303897 A JP2008303897 A JP 2008303897A JP 2007148878 A JP2007148878 A JP 2007148878A JP 2007148878 A JP2007148878 A JP 2007148878A JP 2008303897 A JP2008303897 A JP 2008303897A
Authority
JP
Japan
Prior art keywords
retainer
cage
ball bearing
hole
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007148878A
Other languages
Japanese (ja)
Other versions
JP4983410B2 (en
Inventor
Takashi Takaira
隆 高井良
Yoichi Matsumoto
洋一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007148878A priority Critical patent/JP4983410B2/en
Publication of JP2008303897A publication Critical patent/JP2008303897A/en
Application granted granted Critical
Publication of JP4983410B2 publication Critical patent/JP4983410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/42Ball cages made from wire or sheet metal strips
    • F16C33/422Ball cages made from wire or sheet metal strips made from sheet metal
    • F16C33/427Ball cages made from wire or sheet metal strips made from sheet metal from two parts, e.g. ribbon cages with two corrugated annular parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a retainer for a ball bearing capable of stably maintaining its rigidity and rotating smoothly with constant accuracy without damage over a long period of time even under a high-speed rotation environment, and to provide a ball bearing. <P>SOLUTION: The retainer 10 for a ball bearing is assembled in the ball bearing including raceway rings and a plurality of balls so as to retain the balls in pockets 8. Plate-like flat portions 2 each having a through hole 2h and concave portions 4 each concaved in a substantially semi-spherical shape from the flat portions are alternately connected so as to form an annular retainer constituent element 20. Two retainer constituent elements are arranged face to face in such a manner that the respective concave portions are depressed in reverse directions to each other and the through holes of the respective flat portions communicate with each other. The two retainer constituent elements are fixedly combined with each other by fixing members 6 inserted in the through holes and the substantially spherical spaces defined by the facing concave portions are circumferentially arranged at certain intervals, thereby constituting the pockets. When the shortest distance between the outer circumference of the retainer constituent element and the peripheral edge of the through hole is shown by d1 and the shortest distance between the inner circumference of the retainer constituent element and the peripheral edge of the through hole is shown by d2, d1 and d2 are so set as to fulfill the following formula: d1<d2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、玉軸受に組み込まれ、転動体である複数の玉を回転自在に保持するいわゆる波型の合わせタイプの保持器に関し、特に、玉軸受が高速回転される環境下における使用に好適な保持器、及び当該保持器を組み込んだ玉軸受に関する。   The present invention relates to a so-called corrugated cage that is incorporated in a ball bearing and rotatably holds a plurality of balls that are rolling elements, and is particularly suitable for use in an environment where the ball bearing is rotated at a high speed. The present invention relates to a cage and a ball bearing incorporating the cage.

従来から、各種の玉軸受(以下、単に軸受という)において、軌道輪間を転動する転動体である玉は、環状を成す保持器に所定間隔で配列されたポケットに1つずつ収容されるとともに、回転自在に保持された状態で軌道輪間に組み込まれ、当該軸受の軌道輪(軌道面)間を前記保持器とともに公転(転動)している。これにより、各玉は、その転動面が相互に接触することなく、軌道輪間(軌道面間)をスムーズに転動することができ、結果として、当該各玉が相互に接触して摩擦が生じることによる回転抵抗の増大や焼き付きなどの防止が図られている。   Conventionally, in various ball bearings (hereinafter simply referred to as “bearings”), balls that are rolling elements that roll between races are accommodated one by one in pockets arranged at predetermined intervals in an annular cage. At the same time, it is incorporated between the bearing rings while being rotatably held, and revolves (rolls) with the cage between the bearing rings (race surfaces) of the bearings. As a result, each ball can smoothly roll between the raceways (between the raceway surfaces) without the rolling surfaces coming into contact with each other. Prevention of an increase in rotational resistance and seizure due to the occurrence of this is achieved.

その際、使用される保持器としては、冠型、もみ抜き型、あるいは波型の合わせタイプなど、各種の型式があり、軸受の使用態様や使用目的などに応じて各形式の保持器が使い分けられている。
例えば、特許文献1には、波型の合わせタイプの保持器(以下、波型保持器という)の一例が開示されており、その構成が図3〜5に例示されている。図3に示すように、かかる波型保持器は、2つの環状板材(以下、保持器構成体という)20を組み合わせた構造を成しており、当該保持器構成体20は、リベット6が挿通される貫通孔2h(図5(a)〜(c))を有する平板状の平坦部2と、当該平坦部2よりも略半球状に窪んだ凹状部4とが交互に連結されて構成されている。
At that time, there are various types of cages such as crown type, machined type, or corrugated type, and each type of cage is properly used depending on the usage and purpose of the bearing. It has been.
For example, Patent Document 1 discloses an example of a corrugated type retainer (hereinafter referred to as a corrugated retainer), and its configuration is illustrated in FIGS. As shown in FIG. 3, the corrugated cage has a structure in which two annular plate members (hereinafter referred to as a cage structure) 20 are combined, and the rivet 6 is inserted into the cage structure 20. The flat plate-like flat portion 2 having the through-holes 2h (FIGS. 5A to 5C) and the concave portion 4 recessed in a substantially hemispherical shape than the flat portion 2 are alternately connected. ing.

この場合、凹状部4同士が互いに反対方向へ窪み、且つ、平坦部2同士が互いの貫通孔2hを連通させるように2つの保持器構成体20を対向させるとともに、前記連通させた各貫通孔2h(以下、この状態の2つの貫通孔2hを連通孔22hという)にリベット6を挿通し、その軸の一端部を加締めることで、当該2つの保持器構成体20が一体的に組み合わされている。このように2つの保持器構成体20を組み合わせることで、対向した凹状部4により形成される略球状の凹状空間が周方向へ所定間隔で配され、当該凹状空間をポケット8とした波型保持器を構成することができる。   In this case, the two cage structures 20 are opposed to each other so that the concave portions 4 are recessed in opposite directions and the flat portions 2 communicate with each other through the through holes 2h, and the through holes communicated with each other. By inserting the rivet 6 into 2h (hereinafter, the two through-holes 2h in this state are referred to as communication holes 22h) and crimping one end of the shaft, the two retainer components 20 are combined together. ing. By combining the two cage structures 20 in this way, the substantially spherical concave spaces formed by the opposed concave portions 4 are arranged at predetermined intervals in the circumferential direction, and the corrugated shape holding the concave spaces as pockets 8. Can be configured.

図4(a),(b)に示すように、波型保持器は、各連通孔22hに1本ずつ挿通されたリベット6を加締めることにより、対向する2つの保持器構成体20を一体的に組み合わせた構造を成している。なお、加締める前の状態において、各リベット6は、その基端部(図4(a)の下端部)に連通孔22hの径寸法よりも大きな径寸法に設定された頭部6hが設けられているとともに、当該頭部6hから先端部(同図の上端部)まで、連通孔22hの径寸法よりも僅かに小さな一定の径寸法に設定された円柱状の軸部6bが延出された構造を成している。   As shown in FIGS. 4 (a) and 4 (b), the corrugated cage unites two opposing cage components 20 together by caulking one rivet 6 inserted through each communication hole 22h. It has a combined structure. In addition, in the state before caulking, each rivet 6 is provided with a head 6h set at a diameter larger than the diameter of the communication hole 22h at the base end (the lower end in FIG. 4A). In addition, a columnar shaft portion 6b set to a constant diameter slightly smaller than the diameter of the communication hole 22h is extended from the head 6h to the tip (the upper end in the figure). It has a structure.

連通孔22hに挿通されたリベット6を加締める際には、軸部6bの一端部(先端部)をポンチ30などで基端部の方向へ押圧し(図4(a))、連通孔22hから突出している部分を短縮させるとともに、当該連通孔22hの径寸法よりも大きな径寸法となるまで拡径変形(膨大)させる(同図(b))。また、その際には、連通孔22hに挿通されている部分が当該連通孔22hの径寸法と略同一の径寸法となるまで拡径変形(膨大)される(図4(b))。
これにより、リベット6は、その先端部に加締部6tが形成されて当該加締部6tと頭部6hとの間に2つの保持器構成体20(平坦部2)を挟み込むとともに、その軸部6bが連通孔22hと密着した状態となることで、2つの保持器構成体20を組み付け、一体的に固定する(図4(b))。
When caulking the rivet 6 inserted through the communication hole 22h, one end portion (tip portion) of the shaft portion 6b is pressed toward the base end portion with a punch 30 or the like (FIG. 4A), and the communication hole 22h In addition to shortening the portion protruding from the diameter, the diameter is expanded (enlarged) until the diameter becomes larger than the diameter of the communication hole 22h (FIG. 5B). Further, at that time, the diameter of the portion inserted into the communication hole 22h is expanded (enlarged) until the diameter is substantially the same as the diameter of the communication hole 22h (FIG. 4B).
As a result, the rivet 6 has a caulking portion 6t formed at the tip thereof, sandwiching the two cage components 20 (flat portion 2) between the caulking portion 6t and the head 6h, and its shaft When the portion 6b is in close contact with the communication hole 22h, the two cage constituting bodies 20 are assembled and fixed integrally (FIG. 4B).

ところで、上述したような構成を成す波型保持器においては、2つの保持器構成体20をリベット6を加締めて一体的に組み合わせる(組み付ける)際、連通孔22hに挿通されたリベット6の軸部6bは、当該連通孔22hの径寸法を限度としてこれと同一寸法まで拡径変形される。その後、リベット6は、かかる軸部6bを連通孔22hに密着させ、当該連通孔22hを拡径させる方向(例えば、図4(b)の矢印方向)へ押圧する。すなわち、波型保持器は、リベット6の軸部6bから平坦部2の連通孔22hに対して押圧力が負荷された状態となる(図4(b)に示す状態)。なお、波型保持器が加締時においてこのような状態となることは、一例として、特許文献2に開示がなされている。
このため、波型保持器においては、図5(a)に示すように、平坦部2の連通孔22hの近傍に周方向への引張応力が残留した状態(すなわち、残留引張応力f1が常に負荷された状態)となっている。
By the way, in the wave type cage having the above-described configuration, when the two cage components 20 are integrally combined (assembled) by caulking the rivet 6, the shaft of the rivet 6 inserted through the communication hole 22h. The part 6b is expanded and deformed up to the same dimension as the diameter of the communication hole 22h. Thereafter, the rivet 6 presses the shaft portion 6b in close contact with the communication hole 22h and expands the diameter of the communication hole 22h (for example, the arrow direction in FIG. 4B). That is, the corrugated cage is in a state in which a pressing force is applied from the shaft portion 6b of the rivet 6 to the communication hole 22h of the flat portion 2 (the state shown in FIG. 4B). It is disclosed in Patent Document 2 as an example that the wave cage is in such a state at the time of caulking.
For this reason, in the corrugated cage, as shown in FIG. 5A, the tensile stress in the circumferential direction remains in the vicinity of the communication hole 22h of the flat portion 2 (that is, the residual tensile stress f1 is always loaded). Is in the state).

さらに、軸受の回転時においては、図5(b)に示すように、当該回転に伴って生じる遠心力f2が波型保持器に作用され、当該波型保持器が拡径変形(膨張変形)されるため、波型保持器には、その全体に周方向への引張応力f3が発生した状態となる。
したがって、軸受が高速回転を続け、当該回転に伴って生ずる過大な遠心力f2が波型保持器に対して継続的に作用された場合、力学的に前記引張応力f3が最大となる内周部から波型保持器が損傷(例えば、破断や亀裂など)してしまう虞がある。
特開平10−238544号公報 特開平4−4938号公報
Further, during the rotation of the bearing, as shown in FIG. 5B, the centrifugal force f2 generated along with the rotation is applied to the corrugated cage, and the corrugated cage is expanded in diameter (expanded deformation). For this reason, the wave cage is in a state in which a tensile stress f3 in the circumferential direction is generated on the whole thereof.
Therefore, when the bearing continues to rotate at a high speed and an excessive centrifugal force f2 generated along with the rotation is continuously applied to the wave cage, the inner peripheral portion where the tensile stress f3 is mechanically maximized. Therefore, the corrugated cage may be damaged (for example, broken or cracked).
JP-A-10-238544 JP-A-4-4938

ここで、特許文献1に開示された従来の波型保持器(各保持器構成体20)においては、図5(c)に示すように、連通孔22h(貫通孔2h)の中心点が波型保持器(各保持器構成体20)の外径寸法と内径寸法の合計寸法の半分の径寸法に設定された当該波型保持器(各保持器構成体20)と同心の仮想円周上、すなわち、波型保持器(各保持器構成体20)の外周部と内周部の間における保持器径方向の中間点を相互に結んだ仮想円周上に位置付けられている。   Here, in the conventional corrugated cage (each cage component 20) disclosed in Patent Document 1, the center point of the communication hole 22h (through hole 2h) is a wave as shown in FIG. On the virtual circumference concentric with the corrugated cage (each cage component 20) set to a half of the total outer diameter and inner diameter of the die cage (each cage component 20) In other words, it is positioned on a virtual circumference connecting the intermediate points in the radial direction of the cage between the outer peripheral portion and the inner peripheral portion of the corrugated cage (each cage constituent body 20).

このため、波型保持器(各保持器構成体20)の外周部と連通孔22h(貫通孔2h)の周縁部との最短距離d3(以下、距離d3という)と、当該波型保持器(各保持器構成体20)の内周部と連通孔22h(貫通孔2h)の周縁部との最短距離d4(同、距離d4という)とが同一の距離に設定されている(d3=d4)。
したがって、従来の波型保持器においては、距離d4(すなわち、連通孔22h(貫通孔2h)の周縁部と波型保持器(各保持器構成体20)の内周部との間隔)を十分に確保し難い構成となっている。
For this reason, the shortest distance d3 (hereinafter referred to as distance d3) between the outer peripheral portion of the corrugated cage (each cage constituent body 20) and the peripheral portion of the communication hole 22h (through hole 2h), and the corrugated cage ( The shortest distance d4 (referred to as distance d4) between the inner peripheral part of each cage component 20) and the peripheral part of the communication hole 22h (through hole 2h) is set to the same distance (d3 = d4). .
Therefore, in the conventional corrugated cage, the distance d4 (that is, the distance between the peripheral portion of the communication hole 22h (through hole 2h) and the inner peripheral portion of the corrugated cage (each cage constituent body 20)) is sufficient. It is difficult to secure.

その際、かかる距離d4が小さいと、リベット6の加締時に発生する平坦部2の残留引張応力f1(図5(a))が連通孔22h(貫通孔2h)の近傍だけに止まらず、波型保持器(各保持器構成体20)の内周部にまで影響を及ぼすこととなる。この結果、当該残留引張応力f1が軸受の高速回転時に生じる遠心力f2(図5(b))によって発生する当該内周部の引張応力f3(同図)と重畳され、波型保持器(特に、その内周部)が早期に損傷(例えば、破断や亀裂など)を起こし易くなってしまう。   At this time, if the distance d4 is small, the residual tensile stress f1 (FIG. 5 (a)) of the flat portion 2 generated when the rivet 6 is crimped does not stop only in the vicinity of the communication hole 22h (through hole 2h). This will affect the inner periphery of the mold cage (each cage component 20). As a result, the residual tensile stress f1 is superimposed on the inner peripheral tensile stress f3 (FIG. 5B) generated by the centrifugal force f2 (FIG. 5B) generated at the time of high-speed rotation of the bearing. , Its inner peripheral part) is liable to be damaged early (for example, breakage, cracks, etc.).

本発明は、このような課題を解決するためになされており、その目的は、高速回転される環境下においても、長期に亘って損傷が生じることなく安定した剛性を維持し、一定の精度でスムーズに回転させ続けることが可能な玉軸受用保持器(波型保持器)、及び玉軸受を提供することにある。   The present invention has been made in order to solve such a problem, and its purpose is to maintain a stable rigidity without causing damage over a long period of time even in an environment where the motor is rotated at a high speed, and with a certain accuracy. It is an object of the present invention to provide a ball bearing cage (wave cage) that can continue to rotate smoothly, and a ball bearing.

このような目的を達成するために、本発明に係る玉軸受用保持器は、相対回転可能に対向配置された少なくとも一対の軌道輪と、当該軌道輪間で転動する複数の玉を備えた玉軸受に組み込まれ、所定間隔で配されたポケットに前記玉を1つずつ収容して回転自在に保持している。かかる玉軸受用保持器においては、固定部材が挿通される貫通孔を有する平板状の平坦部と、当該平坦部よりも略半球状に窪んだ凹状部とが交互に連結されて環状の保持器構成体を成し、前記凹状部同士が反対方向へ窪み、且つ、前記平坦部同士が互いの貫通孔を連通させるように2つの前記保持器構成体を対向させるとともに、前記連通させた各貫通孔に挿通された固定部材で固定して一体的に組み合わせ、対向した凹状部により形成される略球状の凹状空間が周方向へ所定間隔で配されることで前記ポケットが構成されている。その際、前記保持器構成体の外周部と前記貫通孔の周縁部との最短距離をd1、当該保持器構成体の内周部と当該貫通孔の周縁部との最短距離をd2とした場合、d1<d2なる関係に設定されている。   In order to achieve such an object, a ball bearing retainer according to the present invention includes at least a pair of bearing rings arranged to face each other so as to be relatively rotatable, and a plurality of balls that roll between the bearing rings. The balls are housed one by one in pockets that are incorporated in ball bearings and arranged at predetermined intervals, and are rotatably held. In such a ball bearing retainer, a flat plate-like flat portion having a through-hole through which a fixing member is inserted and a concave portion recessed in a substantially hemispherical shape from the flat portion are alternately connected to each other to form an annular retainer. Each of the through-holes that constitute the structure, the two recessed parts are opposed to each other so that the concave parts are recessed in opposite directions, and the flat parts communicate with each other through the through-holes. The pockets are configured by fixing by a fixing member inserted through a hole and combining them together and arranging substantially spherical concave spaces formed by opposing concave portions at predetermined intervals in the circumferential direction. At that time, when the shortest distance between the outer peripheral part of the cage structure and the peripheral part of the through hole is d1, and the shortest distance between the inner peripheral part of the cage structure and the peripheral part of the through hole is d2. , D1 <d2.

また、かかる玉軸受用保持器は、前記固定後の固定部材の軸中心を、前記保持器構成体の外径寸法と内径寸法の合計寸法の半分の径寸法に設定された当該保持器構成体と同心の仮想円周よりも、前記保持器構成体の外周部寄りに位置付けた構成としてもよい。   In addition, the ball bearing retainer is configured such that the axial center of the fixed member after the fixing is set to a diameter that is half the total of the outer diameter and the inner diameter of the retainer structure. It is good also as a structure located near the outer peripheral part of the said retainer structure rather than the concentric virtual circumference.

なお、前記固定部材としては、リベットを用いることができ、この場合、前記連通させた各貫通孔に当該リベットを挿通し、その軸の一端部を加締めることで、前記2つの保持器構成体を一体的に組み合わせることができる。   As the fixing member, a rivet can be used. In this case, the two retainer components are inserted by inserting the rivet into each of the communicating through holes and caulking one end portion of the shaft. Can be combined together.

また、上述した目的を達成するために、本発明に係る玉軸受は、相対回転可能に対向配置された少なくとも一対の軌道輪と、当該軌道輪間で転動する複数の玉とを備えており、各玉は、上述した玉軸受用保持器により、所定間隔を成して回転自在に保持されている。   In order to achieve the above-described object, a ball bearing according to the present invention includes at least a pair of bearing rings opposed to each other so as to be relatively rotatable and a plurality of balls that roll between the bearing rings. Each ball is rotatably held at a predetermined interval by the above-described ball bearing cage.

本発明によれば、固定部材(一例として、リベット)が挿通される貫通孔の周縁部と玉軸受用保持器(波型保持器)の内周部との間隔を十分に確保することで、固定部材による組付時(一例として、リベット加締時)に生じる残留引張応力の前記内周部への影響を最小限に止めることができ、高速回転下での遠心力により当該内周部に生じる引張応力に対する剛性を高めることができる。したがって、高速回転される環境下においても、長期に亘って波型保持器(特に、内周部)に損傷を生じさせることなく安定した保持器剛性を維持することができる。これにより、波型保持器、及びこれを組み込んだ玉軸受を一定の精度でスムーズに回転させ続け、これらの長寿命化を図ることができる。   According to the present invention, by sufficiently ensuring the distance between the peripheral edge of the through hole through which the fixing member (as an example, a rivet) is inserted and the inner peripheral part of the ball bearing retainer (wave-shaped retainer), It is possible to minimize the influence on the inner peripheral portion of the residual tensile stress that occurs during assembly with a fixing member (for example, when rivets are tightened), and the inner peripheral portion is caused by centrifugal force under high-speed rotation. The rigidity with respect to the generated tensile stress can be increased. Therefore, even in an environment where the rotation is performed at a high speed, it is possible to maintain stable cage rigidity without causing damage to the corrugated cage (particularly, the inner peripheral portion) over a long period of time. As a result, the corrugated cage and the ball bearing incorporating the corrugated cage can be continuously rotated with a certain degree of accuracy, and the life of the cage can be extended.

以下、本発明の一実施形態に係る玉軸受用保持器、及び玉軸受について、添付図面を参照して説明する。この際、本実施形態に係る玉軸受用保持器としては、波型の合わせタイプを想定しており、その基本的な構成は、上述した従来の玉軸受用保持器(図3)と同様であるため、当該玉軸受用保持器と同一の構成については、図面上で同一の符号を付する。
図1及び図2(a),(b)には、本実施形態に係る波型の合わせタイプの玉軸受用保持器(以下、単に保持器という)10が示されている。この場合、かかる保持器10は、相対回転可能に対向配置された少なくとも一対の軌道輪(図示しない)と、当該軌道輪間で転動する複数の玉(図示しない)を備えた玉軸受(図示しない)に組み込まれ、所定間隔で配されたポケット8に前記玉を1つずつ収容して回転自在に保持している。
Hereinafter, a ball bearing retainer and a ball bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings. At this time, as the ball bearing retainer according to the present embodiment, a corrugated matching type is assumed, and the basic configuration is the same as that of the conventional ball bearing retainer described above (FIG. 3). For this reason, the same reference numerals are assigned to the same configurations as those of the ball bearing cage.
1 and 2 (a) and 2 (b) show a corrugated type ball bearing cage (hereinafter simply referred to as a cage) 10 according to this embodiment. In this case, the cage 10 is a ball bearing (not shown) including at least a pair of bearing rings (not shown) opposed to each other so as to be relatively rotatable and a plurality of balls (not shown) rolling between the bearing rings. The balls are housed one by one in pockets 8 arranged at predetermined intervals and held rotatably.

なお、保持器10が組み込まれる玉軸受は、その使用態様や使用目的などに応じて任意のタイプとすることができるが、本実施形態においては、当該玉軸受が各種サイズの深溝玉軸受(以下、単に軸受という)である場合を一例として想定する。この際、かかる軸受は、軌道輪に対して玉を転動させるための軌道が1本のみ形成された単列構成としてもよいし、当該軌道が2本以上形成された複列構成であってもよい。あるいは、2つ以上の軸受を組み合わせた構成としてもよい。
また、玉のサイズ(径寸法)は、当該玉が組み込まれる軸受のサイズに応じて任意に設定すればよい。
Note that the ball bearing into which the cage 10 is incorporated can be of any type depending on the use mode or purpose of use, but in the present embodiment, the ball bearing is a deep groove ball bearing of various sizes (hereinafter referred to as “ball cage”). As an example, a case of a bearing) is assumed. In this case, the bearing may have a single-row configuration in which only one track for rolling the ball with respect to the raceway is formed, or a double-row configuration in which two or more of the tracks are formed. Also good. Or it is good also as a structure which combined two or more bearings.
The ball size (diameter dimension) may be arbitrarily set according to the size of the bearing into which the ball is incorporated.

図1に示すように、かかる保持器10は、2つの環状板材(保持器構成体)20を組み合わせた構造を成しており、当該保持器構成体20は、固定部材6が挿通される貫通孔2h(図5(a)〜(c))を有する平板状の平坦部2と、当該平坦部2よりも略半球状に窪んだ凹状部4とが交互に連結されて構成されている。なお、固定部材6は、軸受の使用態様や使用目的、保持器10の材質などに応じて各種の部材を任意に選択して用いればよい。例えば、ボルト及びナット、ビス、あるいはリベットなどを用いることができるが、本実施形態においては、固定部材6としてリベット(以下、リベット6という)が用いられている場合を一例として想定する。   As shown in FIG. 1, the cage 10 has a structure in which two annular plate members (a cage structure) 20 are combined, and the cage structure 20 penetrates the fixing member 6. A flat plate-like flat portion 2 having a hole 2h (FIGS. 5A to 5C) and a concave portion 4 that is recessed in a substantially hemispherical shape than the flat portion 2 are alternately connected. In addition, what is necessary is just to select and use various members arbitrarily for the fixing member 6 according to the usage mode and usage purpose of a bearing, the material of the holder | retainer 10, etc. FIG. For example, bolts, nuts, screws, rivets, or the like can be used. In this embodiment, a case where a rivet (hereinafter referred to as rivet 6) is used as the fixing member 6 is assumed as an example.

保持器10は、凹状部4同士が互いに反対方向へ窪み、且つ、平坦部2同士が互いの貫通孔2hを連通させるように2つの保持器構成体20を対向させるとともに、前記連通させた各貫通孔2h(連通孔22h)にリベット6が挿通され、その軸の一端部を加締めることで、当該2つの保持器構成体20が一体的に組み合わされることにより構成されている。このように、2つの保持器構成体20を組み合わせることで略半球状の2つの凹状部4が対向し、略球状の凹状空間を形成することができるとともに、当該凹状空間を周方向へ所定間隔で配することができる。これにより、当該凹状空間をポケット8として保持器10が構成される。   The cage 10 has two cage structures 20 facing each other such that the concave portions 4 are recessed in opposite directions and the flat portions 2 communicate with each other through the through-holes 2h. The rivet 6 is inserted through the through-hole 2h (communication hole 22h), and one of the shafts is caulked so that the two cage components 20 are integrally combined. As described above, by combining the two cage structures 20, two substantially hemispherical concave portions 4 face each other to form a substantially spherical concave space, and the concave space is spaced at a predetermined interval in the circumferential direction. Can be arranged. Thereby, the holder 10 is configured with the concave space as the pocket 8.

なお、保持器構成体20(平坦部2及び凹状部4)の大きさや形状などは、当該保持器構成体20によって構成された保持器10が組み込まれる軸受の大きさや形状などに応じて任意に設定されるため、ここでは特に限定しない。その際、凹状部4は、当該凹状部4によって形成されるポケット8に玉を1つずつ収容し、回転自在に保持することが可能な大きさや形状に設定すればよい。また、凹状部4は、保持器10が組み込まれる軸受の使用態様や使用目的などに基づいて予め設定される組込玉数と同じ数だけ保持器構成体20に対して設ければよい。そして、このように設定された数の凹状部4を所定間隔(一例として等間隔)で配することが可能となるように、平坦部2の大きさ、形状及び数を任意に設定し、保持器構成体20、すなわち保持器10を構成すればよい。   The size and shape of the cage structure 20 (the flat portion 2 and the concave portion 4) are arbitrarily determined according to the size and shape of the bearing into which the cage 10 constituted by the cage structure 20 is incorporated. Since it is set, there is no particular limitation here. In that case, the concave part 4 should just set to the magnitude | size and shape which can accommodate a ball one by one in the pocket 8 formed by the said concave part 4, and can hold | maintain rotatably. Moreover, what is necessary is just to provide the concave-shaped part 4 with respect to the holder | retainer structure 20 by the same number as the number of built-in balls preset based on the usage condition, purpose, etc. of the bearing in which the holder | retainer 10 is integrated. Then, the size, shape and number of the flat portions 2 are arbitrarily set and held so that the set number of concave portions 4 can be arranged at a predetermined interval (as an example, at equal intervals). What is necessary is just to comprise the container structure 20, ie, the holder | retainer 10. FIG.

一例として、図1及び図2(a)には、9つの玉を回転自在に保持することが可能となるように、9つの凹状部4が等間隔で配されるとともに、これらの凹状部4を9つの平坦部2で相互に連結した保持器10及び保持器構成体20の構成を示している。
また、保持器10(保持器構成体20)の材質は、当該保持器10(保持器構成体20)が組み込まれる軸受の使用態様や使用目的などに応じて任意に設定されるため、ここでは特に限定しない。例えば、保持器10は、鉄板、銅板やステンレス板等の各種金属製や、プラスチック板等の樹脂製などとすればよい。
As an example, in FIG. 1 and FIG. 2A, nine concave portions 4 are arranged at equal intervals so that nine balls can be rotatably held, and these concave portions 4 The structure of the holder | retainer 10 and the holder | retainer structure 20 which mutually connected with 9 flat parts 2 is shown.
Further, the material of the cage 10 (the cage structure 20) is arbitrarily set according to the use mode or purpose of the bearing in which the cage 10 (the cage structure 20) is incorporated. There is no particular limitation. For example, the cage 10 may be made of various metals such as an iron plate, a copper plate, and a stainless plate, or a resin such as a plastic plate.

この場合、保持器10は、各連通孔22hに1本ずつ挿通されたリベット6を加締めることにより、対向する2つの保持器構成体20を一体的に組み合わせた構造を成しており、当該リベット6を加締める際には、軸部6bの一端部(先端部)をポンチ30などで基端部の方向へ押圧し(図4(a))、連通孔22hから突出している部分を短縮させるとともに、当該連通孔22hの径寸法よりも大きな径寸法となるまで拡径変形(膨大)させる(同図(b))。その際には、連通孔22hに挿通されている部分が当該連通孔22hの径寸法と略同一の径寸法となるまで拡径変形(膨大)される。
これにより、リベット6は、その先端部に加締部6tが形成されて当該加締部6tと頭部6hとの間に2つの保持器構成体20(平坦部2)を挟み込むとともに、その軸部6bが連通孔22hと密着した状態となることで、2つの保持器構成体20を一体的に組み付け、固定することができる(図4(b))。
In this case, the cage 10 has a structure in which two opposing cage structures 20 are integrally combined by caulking the rivets 6 inserted one by one into each communication hole 22h. When caulking the rivet 6, one end (front end) of the shaft portion 6b is pressed toward the base end with a punch 30 or the like (FIG. 4A), and the portion protruding from the communication hole 22h is shortened. At the same time, the diameter is increased (enlarged) until the diameter becomes larger than the diameter of the communication hole 22h (FIG. 5B). At that time, the diameter of the portion inserted into the communication hole 22h is expanded (enormously) until the diameter is substantially the same as the diameter of the communication hole 22h.
As a result, the rivet 6 has a caulking portion 6t formed at the tip thereof, sandwiching the two cage components 20 (flat portion 2) between the caulking portion 6t and the head 6h, and its shaft When the portion 6b is in close contact with the communication hole 22h, the two cage constituting bodies 20 can be assembled and fixed integrally (FIG. 4 (b)).

本実施形態においては、図2(b)に示すように、保持器構成体20の外周部と貫通孔2hの周縁部との最短距離をd1(以下、距離d1という)、当該保持器構成体20の内周部と当該貫通孔2hの周縁部との最短距離をd2(同、距離d2という)とした場合、d1<d2なる関係に設定されている。すなわち、貫通孔2hは、その中心点が、保持器構成体20の外径寸法と内径寸法の合計寸法の半分の径寸法に設定された当該保持器構成体20と同心の仮想円周(以下、仮想中間円周という)よりも、保持器構成体20の外周部寄りに位置付けられている。   In the present embodiment, as shown in FIG. 2B, the shortest distance between the outer periphery of the cage structure 20 and the peripheral edge of the through hole 2h is d1 (hereinafter referred to as distance d1), and the cage structure. When the shortest distance between the inner peripheral portion of 20 and the peripheral portion of the through-hole 2h is d2 (same as the distance d2), the relationship d1 <d2 is set. That is, the through-hole 2h has a virtual circumference (hereinafter referred to as a concentric circle) that is concentric with the cage structure 20 whose center point is set to a diameter that is half the total of the outer diameter and the inner diameter of the cage structure 20. (Referred to as “virtual intermediate circumference”).

ここで、距離d1及び距離d2の大きさ、これらの比率などは、保持器構成体20の大きさや材質などに応じて任意に設定されるため、特に限定しない。ただし、距離d1と距離d2の大きさの比率は、保持器構成体20、及びこれを組み合わせた保持器10が組み込まれた軸受を高速回転させた場合であっても、十分な剛性(強度)を確保することが可能な範囲に設定する必要がある。したがって、軸受の高速回転時における保持器10(保持器構成体20)の剛性(強度)を考慮して、距離d1と距離d2の大きさの比率を設定し、連通孔22h(貫通孔2h)の保持器径方向に対する穿孔位置を調整すればよい。
一例として、本実施形態においては、距離d2を距離d1の2倍の大きさ(d2=d1×2)に設定して、連通孔22h(貫通孔2h)が穿孔されている場合を想定する。
Here, the sizes of the distance d1 and the distance d2, the ratio thereof, and the like are not particularly limited because they are arbitrarily set according to the size and material of the cage structure 20. However, the ratio of the size of the distance d1 and the distance d2 is sufficient rigidity (strength) even when the cage assembly 20 and the bearing in which the cage 10 in which this cage is combined are rotated at high speed. It is necessary to set it within a range where it can be secured. Therefore, in consideration of the rigidity (strength) of the cage 10 (cage component 20) during high-speed rotation of the bearing, the ratio of the distance d1 and the distance d2 is set to establish the communication hole 22h (through hole 2h). What is necessary is just to adjust the drilling position with respect to the cage radial direction.
As an example, in the present embodiment, it is assumed that the distance d2 is set to be twice as large as the distance d1 (d2 = d1 × 2) and the communication hole 22h (through hole 2h) is drilled.

このような構成によれば、対向させた2つの保持器構成体20の各連通孔22hにリベット6を1本ずつ挿通し、当該各リベット6を加締めた場合、加締固定後のリベット6は、その軸中心が仮想中間円周よりも保持器構成体20の外周部寄り(すなわち、保持器10の外周部寄り)に位置付けられることとなる。   According to such a configuration, when the rivets 6 are inserted one by one into the respective communication holes 22h of the two cage structure bodies 20 opposed to each other and the rivets 6 are swaged, the rivets 6 after swaged and fixed Is positioned closer to the outer peripheral portion of the cage structure 20 than the virtual intermediate circumference (that is, closer to the outer peripheral portion of the cage 10).

なお、図1及び図2(a),(b)には、連通孔22h(貫通孔2h)の保持器周方向に対する穿孔位置が平坦部2の周方向中間位置、すなわち隣り合う2つのポケット8(凹状部4)の周方向中間位置に設定された保持器10(保持器構成体20)の構成を一例として示しているが、当該連通孔22h(貫通孔2h)の保持器周方向に対する穿孔位置は、これに限定されない。例えば、隣り合う2つのポケット8(凹状部4)のいずれか一方寄りに連通孔22h(貫通孔2h)を穿孔した構成としてもよい。   1 and 2 (a) and 2 (b), the drilling position of the communication hole 22h (through hole 2h) in the circumferential direction of the cage is the circumferential intermediate position of the flat portion 2, that is, two adjacent pockets 8. The structure of the cage 10 (the cage structure 20) set at the intermediate position in the circumferential direction of the (concave portion 4) is shown as an example, but the communication hole 22h (through hole 2h) is drilled in the circumferential direction of the cage. The position is not limited to this. For example, a communication hole 22h (through hole 2h) may be formed near one of two adjacent pockets 8 (concave portion 4).

また、貫通孔2hの形成は、保持器構成体20の材質などに応じて任意の方法で行えばよく、その方法は特に限定されない。例えば、各種の金属板をプレス加工することにより、保持器構成体20を成形する場合、当該保持器構成体20の成形と同時に貫通孔2hを形成(穿孔)すればよい。あるいは、保持器構成体20を成形した後、当該成形後の保持器構成体20に対して穿孔加工を施すことにより、貫通孔2hを形成してもよい。   The formation of the through hole 2h may be performed by any method depending on the material of the cage component 20 and the like, and the method is not particularly limited. For example, when the cage structure 20 is formed by pressing various metal plates, the through holes 2h may be formed (drilled) simultaneously with the formation of the cage structure 20. Or after shape | molding the cage structure 20, you may form the through-hole 2h by drilling with respect to the said cage structure 20 after the shaping | molding.

これにより、リベット6の加締時に発生する平坦部2の残留引張応力f1(図5(a))と、軸受の高速回転時に生じる遠心力f2(図5(b))によって発生する当該内周部の引張応力f3(同図)とが重畳的に保持器10(各保持器構成体20)の内周部、具体的には、連通孔22h(貫通孔2h)の近傍に対して作用した場合であっても、これらの残留引張応力f1及び引張応力f3を確実に負荷することができる。   Thus, the inner circumference generated by the residual tensile stress f1 (FIG. 5 (a)) of the flat portion 2 generated when the rivet 6 is crimped and the centrifugal force f2 (FIG. 5 (b)) generated when the bearing rotates at high speed. Tensile stress f3 (same figure) acts on the inner peripheral portion of the cage 10 (each cage component 20), specifically, in the vicinity of the communication hole 22h (through hole 2h). Even in this case, the residual tensile stress f1 and the tensile stress f3 can be reliably loaded.

すなわち、保持器10においては、上述した保持器構成体20の距離d2が距離d1よりも大きく設定されているため(d1<d2(一例として、d2=d1×2))、保持器10の外周部と連通孔22hの周縁部との間隔(保持器構成体20の外周部と貫通孔2hの周縁部との間隔)を、保持器10の内周部と連通孔22hの周縁部との間隔(保持器構成体20の内周部と貫通孔2hの周縁部との間隔)と比較して拡大させることができ、かかる拡大された領域によって保持器10の内周部の剛性を高めることができる。   That is, in the cage 10, the distance d2 of the cage structure 20 described above is set to be larger than the distance d1 (d1 <d2 (d2 = d1 × 2 as an example)). The distance between the outer peripheral portion of the retainer 10 and the peripheral portion of the communication hole 22h (the interval between the outer peripheral portion of the cage structure 20 and the peripheral portion of the through hole 2h) is the distance between the inner peripheral portion of the retainer 10 and the peripheral portion of the communication hole 22h. The distance between the inner peripheral portion of the cage structure 20 and the peripheral edge portion of the through hole 2h can be enlarged, and the rigidity of the inner peripheral portion of the cage 10 can be increased by the enlarged region. it can.

このように、本実施形態に係る保持器10によれば、リベット6が挿通される連通孔22h(貫通孔2h)の周縁部と保持器10の内周部との間隔(領域)を十分に確保することで、リベット6の加締時に生じる残留引張応力f1の前記内周部への影響を最小限に止めることができ、高速回転下での遠心力f2により当該内周部に生じる引張応力f3に対する剛性を高めることができる。したがって、高速回転される環境下においても、長期に亘って保持器10(特に、内周部)に損傷(例えば、破断や亀裂など)を生じさせることなく安定した保持器剛性を維持することができる。これにより、保持器10を一定の精度でスムーズに回転させ続けることが可能となり、その長寿命化を図ることができる。   As described above, according to the cage 10 according to the present embodiment, the distance (region) between the peripheral edge portion of the communication hole 22h (through hole 2h) through which the rivet 6 is inserted and the inner peripheral portion of the cage 10 is sufficiently large. By securing, the influence of the residual tensile stress f1 generated when the rivet 6 is crimped on the inner peripheral portion can be minimized, and the tensile stress generated in the inner peripheral portion by the centrifugal force f2 under high-speed rotation. The rigidity with respect to f3 can be increased. Therefore, even in an environment where the rotation is performed at a high speed, it is possible to maintain stable cage rigidity without causing damage (for example, breakage or cracking) to the cage 10 (particularly, the inner periphery) over a long period of time. it can. Thereby, it becomes possible to continue rotating the holder | retainer 10 smoothly with a fixed precision, and it can achieve the lifetime improvement.

そして、かかる保持器10により複数の玉(図示しない)を1つずつ所定間隔(一例として、等間隔)を成して回転自在に保持し、その状態でこれらを軌道輪(図示しない)間に組み込んで軸受(図示しない)を構成することで、当該軸受を一定の精度でスムーズに回転させ続けることが可能となり、その長寿命化を図ることができる。   The cage 10 holds a plurality of balls (not shown) one by one at a predetermined interval (for example, an equal interval) so that the balls can rotate freely. By constructing a bearing (not shown) by incorporating it, it becomes possible to continue to rotate the bearing smoothly with a certain accuracy, and it is possible to extend its life.

本発明の一実施形態に係る玉軸受用保持器の全体構成を示す斜視図。The perspective view which shows the whole structure of the cage for ball bearings which concerns on one Embodiment of this invention. 本発明の一実施形態に係る玉軸受用保持器の保持器構成体の構成を示す図であって、(a)は、全体構成を示す斜視図、(b)は、貫通孔の穿孔位置を示す要部平面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the cage structure of the ball bearing retainer which concerns on one Embodiment of this invention, Comprising: (a) is a perspective view which shows the whole structure, (b) is the drilling position of a through-hole. The principal part top view shown. 従来の玉軸受用保持器の構成例を示す全体斜視図。The whole perspective view which shows the structural example of the conventional ball bearing cage. リベットを加締めて2つの保持器構成体を一体的に組み合わせる作業を説明するための図であって、(a)は、加締前の状態を示す要部断面図、(b)は、加締後の状態を示す要部断面図。It is a figure for demonstrating the operation | work which unites two cage structure bodies by caulking a rivet, Comprising: (a) is principal part sectional drawing which shows the state before caulking, (b) is caulking. The principal part sectional drawing which shows the state after fastening. 従来の保持器構成体に対する負荷状態を説明するための図であって、(a)は、リベット加締時の残留引張応力を示す要部平面図、(b)は、軸受回転時の遠心力、及び当該遠心力に伴う引張応力を示す要部平面図、(c)は、貫通孔の穿孔位置を示す要部平面図。It is a figure for demonstrating the load condition with respect to the conventional cage structure, Comprising: (a) is a principal part top view which shows the residual tensile stress at the time of rivet caulking, (b) is the centrifugal force at the time of bearing rotation FIG. 3 is a plan view of a main part showing a tensile stress associated with the centrifugal force, and FIG.

符号の説明Explanation of symbols

2 平坦部
2h 貫通孔
4 凹状部
6 固定部材(リベット)
8 ポケット
10 玉軸受用保持器
20 保持器構成体
22h 連通孔
d1 保持器構成体外周部と貫通孔周縁部との最短距離
d2 保持器構成体内周部と貫通孔周縁部との最短距離
2 Flat part 2h Through hole 4 Concave part 6 Fixing member (rivet)
8 Pocket 10 Ball Bearing Retainer 20 Retainer Constructing Body 22h Communication Hole d1 Shortest Distance between Retainer Constructing Body Outer Periphery and Through Hole Periphery d2 Shortest Distance Between Retainer Constructing Body Peripheral and Through Hole Peripheral

Claims (4)

相対回転可能に対向配置された少なくとも一対の軌道輪と、当該軌道輪間で転動する複数の玉を備えた玉軸受に組み込まれ、所定間隔で配されたポケットに前記玉を1つずつ収容して回転自在に保持する玉軸受用保持器であって、
固定部材が挿通される貫通孔を有する平板状の平坦部と、当該平坦部よりも略半球状に窪んだ凹状部とが交互に連結されて環状の保持器構成体を成し、前記凹状部同士が反対方向へ窪み、且つ、前記平坦部同士が互いの貫通孔を連通させるように、2つの前記保持器構成体を対向させるとともに、前記連通させた各貫通孔に挿通された固定部材で固定して一体的に組み合わせ、対向した凹状部により形成される略球状の凹状空間が周方向へ所定間隔で配されることで前記ポケットが構成されており、
前記保持器構成体の外周部と前記貫通孔の周縁部との最短距離をd1、当該保持器構成体の内周部と当該貫通孔の周縁部との最短距離をd2とした場合、d1<d2なる関係に設定されていることを特徴とする玉軸受用保持器。
The ball is incorporated in a ball bearing having at least a pair of bearing rings that are opposed to each other so as to be relatively rotatable and a plurality of balls that roll between the bearing rings, and each of the balls is stored in a pocket arranged at a predetermined interval. And a ball bearing retainer that is rotatably held,
A flat plate-like flat portion having a through-hole through which the fixing member is inserted and a concave portion recessed in a substantially hemispherical shape from the flat portion are alternately connected to form an annular cage structure, and the concave portion With the fixing member inserted into each of the communicated through-holes, the two cage structures are opposed to each other so that they are recessed in opposite directions and the flat portions communicate with each other. The pockets are configured by fixing and integrally combining the substantially spherical concave spaces formed by the opposed concave portions arranged at predetermined intervals in the circumferential direction,
When the shortest distance between the outer peripheral part of the cage structure and the peripheral part of the through hole is d1, and the shortest distance between the inner peripheral part of the cage structure and the peripheral part of the through hole is d2, d1 < A ball bearing retainer characterized in that the relationship d2 is set.
相対回転可能に対向配置された少なくとも一対の軌道輪と、当該軌道輪間で転動する複数の玉を備えた玉軸受に組み込まれ、所定間隔で配されたポケットに前記玉を1つずつ収容して回転自在に保持する玉軸受用保持器であって、
固定部材が挿通される貫通孔を有する平板状の平坦部と、当該平坦部よりも略半球状に窪んだ凹状部とが交互に連結されて環状の保持器構成体を成し、前記凹状部同士が反対方向へ窪み、且つ、前記平坦部同士が互いの貫通孔を連通させるように、2つの前記保持器構成体を対向させるとともに、前記連通させた各貫通孔に挿通された固定部材で固定して一体的に組み合わせ、対向した凹状部により形成される略球状の凹状空間が周方向へ所定間隔で配されることで前記ポケットが構成されており、
前記固定後の固定部材は、その軸中心が、前記保持器構成体の外径寸法と内径寸法の合計寸法の半分の径寸法に設定された当該保持器構成体と同心の仮想円周よりも、前記保持器構成体の外周部寄りに位置付けられていることを特徴とする玉軸受用保持器。
The ball is incorporated in a ball bearing having at least a pair of bearing rings that are opposed to each other so as to be relatively rotatable and a plurality of balls that roll between the bearing rings, and each of the balls is stored in a pocket arranged at a predetermined interval. And a ball bearing retainer that is rotatably held,
A flat plate-like flat portion having a through-hole through which the fixing member is inserted and a concave portion recessed in a substantially hemispherical shape from the flat portion are alternately connected to form an annular cage structure, and the concave portion With the fixing member inserted into each of the through-holes communicated with each other, the two cage components are opposed to each other so that they are recessed in opposite directions and the flat portions communicate with each other. The pockets are configured by fixing and integrally combining the substantially spherical concave spaces formed by the opposed concave portions arranged at predetermined intervals in the circumferential direction,
The fixed member after the fixing has an axial center that is concentric with the cage structure and a virtual circumference that is concentric with a diameter that is half the total of the outer diameter and inner diameter of the cage structure. The ball bearing retainer is positioned near the outer periphery of the retainer structure.
前記固定部材としてリベットが用いられており、前記連通させた各貫通孔に当該リベットを挿通し、その軸の一端部を加締めることで、前記2つの保持器構成体が一体的に組み合わされていることを特徴とする請求項1又は2に記載の玉軸受用保持器。   A rivet is used as the fixing member, and the two retainer components are integrally combined by inserting the rivet into each of the communicating through holes and caulking one end of the shaft. The ball bearing retainer according to claim 1 or 2, wherein the ball bearing retainer is provided. 相対回転可能に対向配置された少なくとも一対の軌道輪と、当該軌道輪間で転動する複数の玉とを備えた玉軸受であって、
各玉は、請求項1〜3のいずれかに記載の玉軸受用保持器により、所定間隔を成して回転自在に保持されていることを特徴とする玉軸受。
A ball bearing comprising at least a pair of bearing rings arranged to be relatively rotatable and a plurality of balls that roll between the bearing rings,
Each ball is rotatably held at a predetermined interval by the ball bearing retainer according to any one of claims 1 to 3.
JP2007148878A 2007-06-05 2007-06-05 Ball bearing cage and ball bearing Expired - Fee Related JP4983410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148878A JP4983410B2 (en) 2007-06-05 2007-06-05 Ball bearing cage and ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148878A JP4983410B2 (en) 2007-06-05 2007-06-05 Ball bearing cage and ball bearing

Publications (2)

Publication Number Publication Date
JP2008303897A true JP2008303897A (en) 2008-12-18
JP4983410B2 JP4983410B2 (en) 2012-07-25

Family

ID=40232809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148878A Expired - Fee Related JP4983410B2 (en) 2007-06-05 2007-06-05 Ball bearing cage and ball bearing

Country Status (1)

Country Link
JP (1) JP4983410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092862A (en) * 2010-10-25 2012-05-17 Nsk Ltd Plastic retainer, method of manufacturing the same, and rolling bearing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335346U (en) * 1976-09-01 1978-03-28
JPS54148874A (en) * 1978-04-08 1979-11-21 Skf Kugellagerfabriken Gmbh Plastics holding container
JPH0380121U (en) * 1989-12-04 1991-08-16
JPH044938A (en) * 1990-04-19 1992-01-09 Hideji Murakami Method for riveting holder
JPH09158874A (en) * 1995-12-11 1997-06-17 Toshiba Corp Hermetic compressor
JPH1047353A (en) * 1996-08-06 1998-02-17 Toho Kogyo Kk Corrugated cage for single-row ball bearing
JPH10238544A (en) * 1997-02-28 1998-09-08 Koyo Seiko Co Ltd Corrugated holder and ball bearing using corrugated holder
JP2001030727A (en) * 1999-07-22 2001-02-06 Suzuki Motor Corp Suspension mounting structure
JP2002339980A (en) * 2001-05-21 2002-11-27 Koyo Seiko Co Ltd Bearing holder, and radial roller bearing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335346U (en) * 1976-09-01 1978-03-28
JPS54148874A (en) * 1978-04-08 1979-11-21 Skf Kugellagerfabriken Gmbh Plastics holding container
JPH0380121U (en) * 1989-12-04 1991-08-16
JPH044938A (en) * 1990-04-19 1992-01-09 Hideji Murakami Method for riveting holder
JPH09158874A (en) * 1995-12-11 1997-06-17 Toshiba Corp Hermetic compressor
JPH1047353A (en) * 1996-08-06 1998-02-17 Toho Kogyo Kk Corrugated cage for single-row ball bearing
JPH10238544A (en) * 1997-02-28 1998-09-08 Koyo Seiko Co Ltd Corrugated holder and ball bearing using corrugated holder
JP2001030727A (en) * 1999-07-22 2001-02-06 Suzuki Motor Corp Suspension mounting structure
JP2002339980A (en) * 2001-05-21 2002-11-27 Koyo Seiko Co Ltd Bearing holder, and radial roller bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092862A (en) * 2010-10-25 2012-05-17 Nsk Ltd Plastic retainer, method of manufacturing the same, and rolling bearing

Also Published As

Publication number Publication date
JP4983410B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP2009236314A5 (en)
US9169871B2 (en) Cage and method of assembling cage
US20160123385A1 (en) Rolling bearing
JP2013015200A (en) Conical roller bearing
US10527096B2 (en) Rolling bearing
JP2006200677A (en) Thrust ball bearing
JP2007263279A (en) Retainer of rolling bearing
JP4983410B2 (en) Ball bearing cage and ball bearing
TWI726224B (en) Rolling bearings and retainers
JP2009008164A (en) Cage manufacturing method, cage, and rolling bearing
JP5506354B2 (en) Rolling bearings and cages for rolling bearings
JP2008038978A (en) Antifriction bearing
JP2009275799A (en) Deep groove ball bearing
JP2008223970A (en) Thrust bearing cage
JP2005221001A (en) Tapered roller bearing
JP5050910B2 (en) Ball bearing cage and ball bearing
JP2008240776A (en) Angular contact ball bearing
JP5790033B2 (en) Tapered roller bearing
JP5790032B2 (en) Tapered roller bearing
JP2013194768A (en) Retainer and rolling bearing
JP2010151211A (en) Retainer for conical roller bearing, conical roller bearing and method of assembling the same
WO2016147880A1 (en) Rolling bearing
JP2009168180A5 (en)
JP5321224B2 (en) Rolling bearing
JP2009168180A (en) Cage for roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees