JP2008301591A - Method and apparatus for determining battery reverse connection - Google Patents

Method and apparatus for determining battery reverse connection Download PDF

Info

Publication number
JP2008301591A
JP2008301591A JP2007143246A JP2007143246A JP2008301591A JP 2008301591 A JP2008301591 A JP 2008301591A JP 2007143246 A JP2007143246 A JP 2007143246A JP 2007143246 A JP2007143246 A JP 2007143246A JP 2008301591 A JP2008301591 A JP 2008301591A
Authority
JP
Japan
Prior art keywords
battery
diode
voltage
reverse connection
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007143246A
Other languages
Japanese (ja)
Inventor
Hiroshi Kunimoto
浩 国本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007143246A priority Critical patent/JP2008301591A/en
Publication of JP2008301591A publication Critical patent/JP2008301591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means that makes it possible to prevent damage to a battery due to charging of an internal battery by an external battery or an erroneous connection of the internal battery and to lengthen the battery life when the internal battery and the external battery are used in parallel. <P>SOLUTION: A diode D1 is placed between the (-) terminal 3b of an internal battery 1 and ground in the forward direction of the battery. A diode short-circuit circuit 4 is provided in parallel with this diode D1. A reverse connection detection circuit 7 is provided for detecting the voltage across the diode D1. When the reverse connection detection circuit 7 detects that the voltage across the diode D1 is equal to lower than a predetermined voltage value, it determines the connection of the internal battery to be correct. The diode short-circuit circuit 4 is controlled to short-circuit both ends of the diode D1 and bring a load circuit 11 into an operating state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内蔵電池に加えて外部に電池を並列接続して使用できる機器に関し、内蔵電池の極性が正しく装着されているか否かを判別し逆接続を防止する方法及びその装置に関するものである。   The present invention relates to a device that can be used by connecting a battery in parallel to the outside in addition to the built-in battery, and relates to a method and apparatus for determining whether the polarity of the built-in battery is correctly attached and preventing reverse connection. .

近年、携帯用オーディオ機器などで筐体を小さくするために小形の内蔵電池、たとえば単4形電池を装着し、長時間の使用を望むときは外部に電池ケースを装着して内蔵電池よりも容量の大きい、たとえば単3形電池を外付け電池として装着し、長時間の使用ができるように設定されたものが用いられている。   In recent years, small internal batteries, such as AAA batteries, have been installed in portable audio devices to reduce the size of the housing, and when long-term use is desired, an external battery case can be installed to provide a larger capacity than the internal battery. A large AA battery, for example, is used as an external battery and is set so that it can be used for a long time.

このような使い方の場合、電池の内部抵抗の違いで図4のように外部の、たとえば単3形電池から内部の、たとえば単4形電池に電流が流れ、内蔵電池に充電されることがある。   In such a case, current flows from an external, for example, AA battery to an internal, for example, an AAA battery as shown in FIG. 4 due to the difference in internal resistance of the battery, and the internal battery may be charged. .

また、内蔵電池と外付け電池が一次電池で内蔵電池の電圧(電池A+電池B・・2個直列使用の場合)より外付け電池の電圧(電池C+電池D)が高いと外付け電池から内蔵電池に電流が流れて、いずれも内蔵電池にダメージを与え、液漏れの原因にもなる。   Also, if the internal battery and external battery are primary batteries and the external battery voltage (battery C + battery D) is higher than the internal battery voltage (battery A + battery B ... when two batteries are used in series), then the internal battery Current flows through the battery, both of which damage the built-in battery and cause liquid leakage.

また、図5のように内蔵電池Aをプラスとマイナスを逆にして接続すると電池A+電池C+電池Dの合計の電池で電池Bを充電することになり、電池Bが液漏れまたは破裂し、大変危険な状態となる。   Also, as shown in FIG. 5, when the built-in battery A is connected so that the plus and minus are reversed, the battery B is charged with the total battery of the battery A + the battery C + the battery D, and the battery B leaks or ruptures. It becomes dangerous.

また図6のように内蔵電池Bのプラスとマイナスを逆にして接続すると電池B+電池C+電池Dの合計の電池で電池Aを充電することになり、電池Aが液漏れまたは破裂し、大変危険な状態となる。   Also, as shown in FIG. 6, if the positive and negative of the built-in battery B are connected in reverse, the battery A is charged with the total battery B + battery C + battery D, and the battery A leaks or ruptures, which is extremely dangerous. It becomes a state.

その対策として図7のようにダイオードD1を電池AとBの順方向に挿入して、図8または図9のように電池Aまたは電池Bのいずれかを逆に接続しても電池Aまたは電池Bに電流が流れないようにする方法がある。   As a countermeasure, even if the diode D1 is inserted in the forward direction of the batteries A and B as shown in FIG. 7 and either the battery A or the battery B is connected reversely as shown in FIG. There is a method of preventing current from flowing through B.

ダイオードD1の代わりに図示しないヒューズを入れて図5や図6のような逆接続をしたときの事故を防止する方法もあるが、図4のような正常接続における弱電流が流れる場合の対策は出来ない。   There is a method of preventing an accident when a reverse connection as shown in FIG. 5 or FIG. 6 is inserted by inserting a fuse (not shown) instead of the diode D1, but a countermeasure when a weak current flows in a normal connection as shown in FIG. I can't.

また、このような課題に対応するために特許文献1に示すような方法も提案されている。
特開平10−224999号公報
In order to cope with such a problem, a method as shown in Patent Document 1 has also been proposed.
JP-A-10-224999

たとえば負荷回路が1.5Vまで使用出来る場合は、図4のようにダイオードD1が無い状態では、内蔵電池の合計が1.5Vになるまで使用できるが、図10のようにダイオードD1を入れることでダイオードD1の電圧降下が発生するため、D1の電圧降下を0.6Vとした場合、電池の両端では2.1Vまでしか使用できなくなり、電池寿命が短くなる。   For example, when the load circuit can be used up to 1.5V, in the state where there is no diode D1 as shown in FIG. 4, it can be used until the total of the built-in batteries reaches 1.5V, but the diode D1 is inserted as shown in FIG. Since the voltage drop of the diode D1 occurs, when the voltage drop of D1 is 0.6V, the battery can be used only up to 2.1V at both ends of the battery, and the battery life is shortened.

また、ダイオードD1の電圧降下はD1に流れる電流で変わるため、電池残量の精度が悪くなる問題がある。また、内蔵電池A、内蔵電池Bのプラス、マイナスの極性誤りに気づきにくい、という問題点が残る。   In addition, since the voltage drop of the diode D1 varies depending on the current flowing through the diode D1, there is a problem that the accuracy of the remaining battery level is deteriorated. Further, there remains a problem that it is difficult to notice the positive and negative polarity errors of the internal battery A and the internal battery B.

また、特許文献1のものは、電池1個ごとにダイオード、スイッチ、および豆電球または発音装置が必要であり、逆接続された場合は対応する豆ランプの発光または発音装置の警告音発音がされるが、電池が正しく接続されている場合は個々のスイッチを順次押して電球の発光度合いを目視確認して電池の消耗度合いを把握する必要があった。   Moreover, the thing of patent document 1 requires a diode, a switch, and a light bulb or a sounding device for each battery, and when reversely connected, the corresponding bean lamp emits light or the sounding device emits a warning sound. However, when the batteries are connected correctly, it is necessary to grasp the degree of battery consumption by pressing each switch in turn and visually checking the light emission degree of the bulb.

本発明は外部電池の電圧が高い場合や内蔵電池の逆接続による電池への損傷を防ぐために内蔵電池と直列にダイオードを挿入し、このダイオードの電圧降下によるロスを防ぐために、内蔵電池と直列に接続したダイオードの端子間電圧が所定の電圧範囲内であるか否かにより内蔵電池の接続を判別し、接続が正しいときはダイオードの端子間を短絡することでダイオードの電圧降下によるロスをなくし、電池電圧を有効に利用でき電池寿命を改善できる電池逆接続判別方法及び電池逆接続判別装置を提供することを目的とする。   The present invention inserts a diode in series with the built-in battery to prevent damage to the battery due to the high voltage of the external battery or reverse connection of the built-in battery, and in order to prevent loss due to the voltage drop of this diode, Determine the connection of the built-in battery according to whether the voltage between the terminals of the connected diode is within the specified voltage range, and when the connection is correct, eliminate the loss due to the voltage drop of the diode by short-circuiting between the diode terminals, An object of the present invention is to provide a battery reverse connection determination method and a battery reverse connection determination device that can effectively use battery voltage and improve battery life.

この課題に対処するために本発明の電池逆接続判別装置は、第1の電池の正規接続方向に順方向になるよう直列に接続したダイオードと、前記第1の電池と前記ダイオードの直列回路に並列に接続した第2の電池と、前記ダイオードの端子間電圧が所定の電圧範囲内であるか否かを検出する逆接続検出回路と、前記ダイオードの端子間を短絡するダイオード短絡回路とを備え、前記逆接続検出回路が所定の電圧範囲内であることを検出した場合、前記第1の電池の接続は正しいものと判断し前記ダイオード短絡回路をオンにさせることを特徴とするものである。   In order to cope with this problem, the battery reverse connection determination device according to the present invention includes a diode connected in series so as to be forward in the normal connection direction of the first battery, and a series circuit of the first battery and the diode. A second battery connected in parallel; a reverse connection detection circuit that detects whether or not a voltage between the terminals of the diode is within a predetermined voltage range; and a diode short circuit that short-circuits between the terminals of the diode. When the reverse connection detection circuit detects that it is within a predetermined voltage range, it is determined that the connection of the first battery is correct, and the diode short circuit is turned on.

またこの課題に対処するために本発明の電池逆接続判別方法は、第1の電池の正規接続方向に順方向になるよう直列に接続したダイオードと、前記第1の電池と前記ダイオードの直列回路に並列に接続した第2の電池と、前記ダイオードの端子間電圧が所定の電圧範囲内であるか否かを検出する逆接続検出回路と、前記ダイオードの端子間を短絡するダイオード短絡回路とを用いて、前記ダイオードの端子間電圧が所定の範囲内であるか否かを検出する検出ステップと、前記ダイオードの端子間電圧が所定の範囲内である場合は前記第1の電池の接続は正しいと判定する判定ステップと、前記判定ステップにおいて前記第1の電池の接続は正しいと判定されたときは前記ダイオードの端子間を短絡する短絡ステップとを有することを特徴とするものである。   In order to cope with this problem, the battery reverse connection determination method of the present invention includes a diode connected in series so as to be forward in the normal connection direction of the first battery, and a series circuit of the first battery and the diode. A second battery connected in parallel to each other, a reverse connection detection circuit that detects whether or not a voltage between the terminals of the diode is within a predetermined voltage range, and a diode short circuit that short-circuits between the terminals of the diode And a detecting step for detecting whether or not the voltage between the terminals of the diode is within a predetermined range, and the connection of the first battery is correct when the voltage between the terminals of the diode is within the predetermined range. And a short-circuiting step for short-circuiting between the terminals of the diode when it is determined that the connection of the first battery is correct in the determination step. It is intended.

本発明の電池逆接続判別方法および電池逆接続判別装置によれば、第2の電池の電圧が高い場合や第1の電池の逆接続による電池への損傷を防ぐために第1の電池と直列に入れたダイオードの電圧降下によるロスを防ぐために、第1の電池と直列に接続したダイオードの端子間電圧が所定の電圧範囲内であるか否かにより第1の電池の接続を判別し、接続が正しいときはダイオードの端子間を短絡することでダイオードの電圧降下によるロスをなくし、電池電圧を有効に利用でき電池寿命を改善することができる。   According to the battery reverse connection determination method and the battery reverse connection determination device of the present invention, in order to prevent damage to the battery due to the high voltage of the second battery or the reverse connection of the first battery, the battery is connected in series with the first battery. In order to prevent loss due to the voltage drop of the inserted diode, the connection of the first battery is determined depending on whether or not the voltage between the terminals of the diode connected in series with the first battery is within a predetermined voltage range. When it is correct, the loss due to the voltage drop of the diode can be eliminated by short-circuiting the terminals of the diode, the battery voltage can be used effectively, and the battery life can be improved.

以下本発明の一実施形態について、図面を参照しながら説明する。図1は本発明の一実施形態における電池逆接続判別装置のブロック図、図2は同じくその動作フローチャート、図3は同じく電池逆接続判別装置の動作による内蔵電池の電池寿命の差を示す説明図を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a battery reverse connection discriminating apparatus according to an embodiment of the present invention, FIG. 2 is an operation flowchart thereof, and FIG. 3 is an explanatory diagram showing a difference in battery life of an internal battery due to the operation of the battery reverse connection discriminating apparatus. Indicates.

図1において、第1の電池である内蔵電池1として、たとえば単4形の電池Aおよび電池Bが直列に装着でき、また外付け電池ケース(図示せず)などを用いて第2の電池である外付け電池(外部電池)2として、たとえば単3形の電池Cおよび電池Dが装着でき、これらは電池端子3を介して本体回路に接続される。電池端子3の内部電池端子(+)3aは電池Aの(+)端子1aに接続され、内部電池端子(−)3bは電池Bの(−)端子1bに接続される。充電端子3cは電池A・Bが充電電池であるときのみに端子1cに接続される。外部電池端子(+)3dは外付け電池2の電池Cの(+)端子2aに接続され、外部電池端子(−)3eは外付け電池2の(−)端子2bに接続される。   In FIG. 1, for example, an AAA battery A and a battery B can be mounted in series as an internal battery 1 that is a first battery, or a second battery using an external battery case (not shown) or the like. As an external battery (external battery) 2, for example, an AA battery C and a battery D can be mounted, and these are connected to the main circuit via the battery terminal 3. The internal battery terminal (+) 3a of the battery terminal 3 is connected to the (+) terminal 1a of the battery A, and the internal battery terminal (−) 3b is connected to the (−) terminal 1b of the battery B. The charging terminal 3c is connected to the terminal 1c only when the batteries A and B are charging batteries. The external battery terminal (+) 3d is connected to the (+) terminal 2a of the battery C of the external battery 2, and the external battery terminal (−) 3e is connected to the (−) terminal 2b of the external battery 2.

ダイオード短絡回路4はダイオードD1の両端に接続され、ダイオードD1のカソードはFETQ1のアノードと接続され、ダイオードD1のアノードはFETQ1のカソードと接続されている。そしてダイオードD1のカソードは内部電池端子(−)3bに接続されることでダイオードD1は内蔵電池A・Bとは順方向に直列に接続される。   The diode short circuit 4 is connected to both ends of the diode D1, the cathode of the diode D1 is connected to the anode of the FET Q1, and the anode of the diode D1 is connected to the cathode of the FET Q1. The cathode of the diode D1 is connected to the internal battery terminal (−) 3b, so that the diode D1 is connected in series with the internal batteries A and B in the forward direction.

また、ダイオードD1のカソードは抵抗器R1とR2の直列回路を介して接地され、抵抗器R1とR2の中点は電圧検出のためマイクロコンピュータ(以下マイコン)5の電圧検出端子5aに接続されている。表示装置6は、液晶表示装置やLED等を用い、マイコン5の制御によって、少なくとも後述の電池の逆接続状態等を表示するものである。そうして、抵抗器R1、R2、マイコン5および表示装置6で逆接続検出回路7を構成している。   The cathode of the diode D1 is grounded through a series circuit of resistors R1 and R2, and the middle point of the resistors R1 and R2 is connected to a voltage detection terminal 5a of a microcomputer (hereinafter referred to as microcomputer) 5 for voltage detection. Yes. The display device 6 uses a liquid crystal display device, an LED, or the like, and displays at least a reverse connection state of a battery, which will be described later, under the control of the microcomputer 5. Thus, the resistors R1, R2, the microcomputer 5, and the display device 6 constitute a reverse connection detection circuit 7.

ダイオード短絡回路4のダイオードD1のアノードはDC入力ジャック部8のスイッチSW1により常時は接地され、DC入力ジャック部8に図示しない外部入力ジャックが接続されたときは連動するスイッチSW1によってダイオード短絡回路4は本装置から切り離される。   The anode of the diode D1 of the diode short circuit 4 is normally grounded by the switch SW1 of the DC input jack section 8, and when an external input jack (not shown) is connected to the DC input jack section 8, the diode short circuit 4 is connected by the interlocked switch SW1. Is disconnected from the device.

充電電流制御回路9は内蔵電池1が充電電池のときエミッタを抵抗器R3で接地したトランジスタQ2を介して充電端子3cを通じて充電電池の充電電流を制御するもので、またレギュレータ制御回路10はDC入力ジャック部8からの外部電源入力時にトランジスタQ3を介して電圧を調整するもので、いずれも本実施形態で説明しようとする動作には含まれない。   When the built-in battery 1 is a charging battery, the charging current control circuit 9 controls the charging current of the charging battery through the charging terminal 3c through the transistor Q2 whose emitter is grounded by the resistor R3, and the regulator control circuit 10 has a DC input. The voltage is adjusted via the transistor Q3 when an external power supply is input from the jack section 8, and none of them is included in the operation to be described in the present embodiment.

負荷回路11は内蔵電池1および外付け電池2、あるいは外部電源から電源を得て動作する携帯用のオーディオ機器などである。   The load circuit 11 is a built-in battery 1 and an external battery 2, or a portable audio device that operates by obtaining power from an external power source.

以上のように構成された本実施形態の電池逆接続判別装置について以下その動作を図2のフローチャートを併用して外付け電池の接続極性は正しいものとして説明する。まず逆接続検出回路7の動作は、ステップS1でマイコン5が端子5aの電圧をチェックして、内蔵電池1の電池A・Bのプラス、マイナスが正常に装着されている場合は電池端子3の端子3bはD1のカソード電圧になり、使用しているダイオードD1の順方向電圧で決まり、これは通常0.6V以下であるため、たとえば抵抗器R1が150KΩ、R2が100KΩの場合は、マイコン5で判定する電圧は0.6V×{100÷(150+100)}=0.24Vとなり、マイコン5の電圧検出端子5aにおいて、この0.24Vに誤差を加えた所定の電圧以下であれば所定の電圧範囲内であるとして電池が正しく装着されていると判断出来る。内蔵電池1の電池A・Bのプラス、マイナスを判定して正常であれば、ステップS2でマイコン5の制御出力5bをH出力にしてダイオードD1のアノードとカソードを接続する手段のFETQ1をオンにさせて、ダイオード短絡回路4を動作状態に移行させ、ステップS3で負荷回路11を動作状態に移行させる。   The operation of the battery reverse connection determination device of the present embodiment configured as described above will be described below assuming that the connection polarity of the external battery is correct using the flowchart of FIG. First, the operation of the reverse connection detection circuit 7 is as follows. In step S1, the microcomputer 5 checks the voltage of the terminal 5a, and if the positive and negative of the batteries A and B of the built-in battery 1 are normally attached, the battery terminal 3 The terminal 3b becomes the cathode voltage of D1, and is determined by the forward voltage of the diode D1 being used, which is normally 0.6 V or less. For example, when the resistor R1 is 150 KΩ and R2 is 100 KΩ, the microcomputer 5 Is determined to be 0.6V × {100 ÷ (150 + 100)} = 0.24V, and if the voltage detection terminal 5a of the microcomputer 5 is equal to or less than a predetermined voltage obtained by adding an error to 0.24V, the predetermined voltage It can be determined that the battery is correctly attached as being within the range. If positive and negative of the batteries A and B of the built-in battery 1 are judged to be normal, the control output 5b of the microcomputer 5 is set to H output in step S2, and the FET Q1 as means for connecting the anode and cathode of the diode D1 is turned on. Thus, the diode short circuit 4 is shifted to the operating state, and the load circuit 11 is shifted to the operating state in step S3.

またステップS1で、マイコン5の電圧検出端子5aが所定の電圧を超えるときは、以下に説明するように内蔵電池1の電池A・Bのいずれか、または両方のプラス、マイナスが逆に装着された場合であるとみなし、ステップS4でマイコン5の制御出力5bをL出力にしてダイオードD1のアノードとカソードを接続する手段のFETQ1をオフのままとし、ダイオード短絡回路4のQ1をオンにさせない。   In step S1, when the voltage detection terminal 5a of the microcomputer 5 exceeds a predetermined voltage, either the battery A or B of the built-in battery 1 or both positive and negative are mounted in reverse as described below. In step S4, the control output 5b of the microcomputer 5 is set to L output, and the FET Q1 as a means for connecting the anode and cathode of the diode D1 is kept off, and Q1 of the diode short circuit 4 is not turned on.

ステップS5でマイコン5は負荷回路11を制御して非動作状態のままとし、ステップS6で表示装置6を用いて電池の接続に異常がある旨表示する。   In step S5, the microcomputer 5 controls the load circuit 11 to remain in a non-operating state, and in step S6, the display device 6 is used to display that there is an abnormality in battery connection.

内蔵電池の接続が誤っている場合の具体的な数値例を説明すると、電池単体の電圧が1.5Vで電池AまたはBのどちらかのプラス、マイナスが逆に装着された場合のダイオードD1のカソード側電圧は1.5V+1.5V+1.5V−1.5V=3Vになる。マイコン5で判定する電圧は、R1が150KΩ、R2が100KΩの場合は、3V×{100÷(150+100)}=1.2Vとなる。   Explaining a specific numerical example when the connection of the built-in battery is wrong, the voltage of the diode D1 when the voltage of the battery alone is 1.5 V and either plus or minus of the battery A or B is reversed is installed. The cathode side voltage is 1.5V + 1.5V + 1.5V−1.5V = 3V. The voltage determined by the microcomputer 5 is 3V × {100 ÷ (150 + 100)} = 1.2V when R1 is 150 KΩ and R2 is 100 KΩ.

また、電池の電圧が1個あたり0.75Vに低下して内蔵電池Aまたは内蔵電池Bのどちらかのプラス、マイナスが逆に装着されている場合のD1のアノード側電圧は0.75V+0.75V+0.75V−0.75V=1.5Vになる。マイコンで判定する電圧は、R1が150KΩ、R2が100KΩの場合は、1.5V×{100÷(150+100)}=0.6Vとなる。   In addition, when the battery voltage is lowered to 0.75 V per battery and either the positive or negative of the internal battery A or the internal battery B is mounted in reverse, the anode side voltage of D1 is 0.75 V + 0.75 V + 0 .75V-0.75V = 1.5V. The voltage determined by the microcomputer is 1.5 V × {100 ÷ (150 + 100)} = 0.6 V when R1 is 150 KΩ and R2 is 100 KΩ.

さらに、電池単体の電圧が1.5Vで電池A・電池Bの両方ともプラス、マイナスが逆に装着された場合のダイオードD1のカソード側電圧は1.5V+1.5V+1.5V+1.5V=6Vになる。マイコン5で判定する電圧は、R1が150KΩ、R2が100KΩであるため、6V×{100÷(150+100)}=2.4Vとなる。   Furthermore, when the voltage of the battery alone is 1.5V and both the battery A and the battery B are positively and negatively attached, the cathode side voltage of the diode D1 is 1.5V + 1.5V + 1.5V + 1.5V = 6V = 6V become. The voltage determined by the microcomputer 5 is 6 V × {100 ÷ (150 + 100)} = 2.4 V because R1 is 150 KΩ and R2 is 100 KΩ.

さらに、電池単体の電圧が0.75Vで電池AまたはBの両方ともプラス、マイナスが逆に装着された場合のD1のカソード側電圧は0.75V+0.75V+0.75V+0.75V=3Vになる。マイコン5で判定する電圧は、R1が150KΩ、R2が100KΩの場合は、3V×{100÷(150+100)}=1.2Vとなる。   Furthermore, when the voltage of the single battery is 0.75 V and both the batteries A and B are positively and negatively attached, the cathode side voltage of D1 is 0.75 V + 0.75 V + 0.75 V + 0.75 V = 3 V . The voltage determined by the microcomputer 5 is 3V × {100 ÷ (150 + 100)} = 1.2V when R1 is 150 KΩ and R2 is 100 KΩ.

このように、内蔵の電池A・Bの少なくとも一方、または両方のプラス、マイナスが逆に装着された場合は0.6V〜2.4Vになるためマイコン5での判定は0.24Vに誤差を加えた所定の電圧以上の電圧になった時は、内蔵の電池A・Bのプラス、マイナスが逆になっていると判定できる。   As described above, when positive or negative of at least one of the built-in batteries A and B or both of them are mounted in reverse, the voltage becomes 0.6V to 2.4V, so that the determination by the microcomputer 5 has an error of 0.24V. When the voltage is equal to or higher than the applied voltage, it can be determined that the plus and minus of the built-in batteries A and B are reversed.

図3において、負荷回路の最低動作電圧が1.5Vで、電池単体の電圧が1.5Vのものを内蔵電池、外付け電池それぞれ2個直列の場合、ダイオードD1が挿入されたままの状態では内蔵電池1の電圧(V)は初期の電圧V1から時間(t)の経過とともに徐々に低下してV2の2.1Vに達すれば負荷回路が動作しなくなるところを、ダイオード短絡回路4の動作により電圧V3の点まで動作することができた。このように本発明の電池逆接判別方法及び電池逆接防止装置によれば、ダイオードD1の電圧降下による電圧ロスをなくし、電池の両端電圧をフルに使用することが出来るため、電池寿命を、たとえば6〜10%改善することが出来る。   In FIG. 3, when the minimum operating voltage of the load circuit is 1.5V and the voltage of the single battery is 1.5V, two internal batteries and two external batteries are connected in series, and the diode D1 is still inserted. The voltage (V) of the built-in battery 1 gradually decreases with the passage of time (t) from the initial voltage V1, and when the voltage reaches V2 of 2.1 V, the load circuit becomes inoperative. It was possible to operate up to the point of voltage V3. As described above, according to the battery reverse connection determination method and the battery reverse connection prevention device of the present invention, the voltage loss due to the voltage drop of the diode D1 can be eliminated and the voltage across the battery can be fully used. -10% improvement.

D1の電圧降下はD1に流れる電流で変わるため、電池残量の精度が悪くなる問題があったが、正常に接続された電源のオン時はD1のアノードとカソードを接続するため、D1の電圧降下によるロスが無くなり、電池残量の精度が良くなる。   Since the voltage drop of D1 varies depending on the current flowing through D1, there is a problem that the accuracy of the remaining battery capacity is deteriorated. However, when the power supply that is normally connected is turned on, the anode and cathode of D1 are connected. Loss due to the descent is eliminated, and the accuracy of the remaining battery level is improved.

以上説明したように本実施形態によれば、ダイオードD1を挿入した状態でD1の端子電圧を検出することにより内蔵電池の誤装着が簡単に検出され、内蔵電池が正しく接続されていれば、ダイオード短絡回路4によりダイオードD1を短絡することにより、D1による電圧降下をなくして実質的な電池寿命を伸ばすことができる。   As described above, according to the present embodiment, by detecting the terminal voltage of D1 with the diode D1 inserted, it is possible to easily detect erroneous mounting of the internal battery, and if the internal battery is correctly connected, the diode By short-circuiting the diode D1 by the short circuit 4, the voltage drop due to D1 can be eliminated and the substantial battery life can be extended.

なお、上記の実施形態では、外付け電池が正常で、内蔵電池の誤装着を検出するように説明したが、回路接続を内蔵電池と外部電池とを切り替え、外部電池にダイオードD1を直列に接続するようにすれば、内蔵電池(この場合第2の電池となる)が正常である場合に、外付け電池(この場合第1の電池となる)の誤接続があるかどうかを検出することも容易である。   In the above-described embodiment, the external battery is normal and it has been described that the built-in battery is erroneously mounted. However, the circuit connection is switched between the internal battery and the external battery, and the diode D1 is connected in series to the external battery. If this is done, it is possible to detect whether there is an erroneous connection of the external battery (in this case, the first battery) when the internal battery (in this case, the second battery) is normal. Easy.

また、上記実施形態で説明に用いられた電池の形式とか、抵抗値や電圧値などは、すべて一例であり、これに限定されるものではない。   Further, the battery type, the resistance value, the voltage value, and the like used for the description in the above embodiment are all examples, and are not limited thereto.

本発明の電池逆接続判別方法および電池逆接続判別装置によれば、外部電池の電圧が高い場合や内蔵電池の逆接続による電池への損傷を防ぎ、また電池の誤接続があれば警告を発したり、回路動作をさせない等機器の安全を確保でき、また電池電圧を有効に利用でき電池寿命を改善できるなど産業上の利用可能性が高いものである。   According to the battery reverse connection determination method and battery reverse connection determination device of the present invention, the battery is prevented from being damaged when the voltage of the external battery is high or the internal battery is reversely connected, and a warning is issued if there is an incorrect battery connection. In addition, it is possible to ensure the safety of the device, such as not to operate the circuit, and to use the battery voltage effectively to improve the battery life.

本発明の一実施形態における電池逆接続判別装置のブロック図The block diagram of the battery reverse connection discrimination | determination apparatus in one Embodiment of this invention. 同じくその動作フローチャートThe operation flowchart 同じく電池逆接続判別装置の動作による内蔵電池の電池寿命の差を示す説明図Explanatory drawing which shows the difference in the battery life of an internal battery similarly by operation | movement of a battery reverse connection discrimination device 内蔵電池A・Bが正常に装着された時のブロック図Block diagram when the built-in batteries A and B are installed correctly 内蔵電池Aがプラスとマイナスを逆に装着され、内蔵電池Bは正常に装着された時のブロック図Block diagram when built-in battery A is loaded with the plus and minus reversed, and built-in battery B is installed correctly 内蔵電池Bがプラスとマイナスを逆に装着され、内蔵電池Aは正常に装着された時のブロック図Block diagram when the built-in battery B is mounted with the positive and negative reversed, and the built-in battery A is mounted normally ダイオードD1を直列に挿入して内蔵電池A・Bが正常に装着された時のブロック図Block diagram when diode D1 is inserted in series and built-in batteries A and B are installed normally ダイオードD1を直列に挿入して内蔵電池Aがプラスとマイナスを逆に装着、内蔵電池Bは正常に装着された時のブロック図Block diagram when the diode D1 is inserted in series and the built-in battery A is mounted with the plus and minus reversed, and the built-in battery B is mounted normally ダイオードD1を直列に挿入して内蔵電池Bがプラスとマイナスを逆に装着、内蔵電池Aは正常に装着された時のブロック図Block diagram when the diode D1 is inserted in series and the built-in battery B is mounted with the positive and negative reversed, and the built-in battery A is mounted normally ダイオードD1を直列に挿入した時の負荷回路電圧と内蔵電池電圧の関係を示す説明図Explanatory drawing which shows the relationship between the load circuit voltage and internal battery voltage when the diode D1 is inserted in series

符号の説明Explanation of symbols

1 内蔵電池
2 外付け電池
3 電池端子
4 ダイオード短絡回路
5 マイコン
6 表示装置
7 逆接続検出回路
8 DC入力ジャック部
9 充電電流制御回路
10 レギュレータ制御回路
11 負荷回路
DESCRIPTION OF SYMBOLS 1 Built-in battery 2 External battery 3 Battery terminal 4 Diode short circuit 5 Microcomputer 6 Display apparatus 7 Reverse connection detection circuit 8 DC input jack part 9 Charging current control circuit 10 Regulator control circuit 11 Load circuit

Claims (8)

第1の電池の正規接続方向に順方向になるよう直列に接続したダイオードと、
前記第1の電池と前記ダイオードの直列回路に並列に接続した第2の電池と、
前記ダイオードの端子間電圧が所定の電圧範囲内であるか否かを検出する逆接続検出回路と、
前記ダイオードの端子間を短絡するダイオード短絡回路とを備え、
前記逆接続検出回路が所定の電圧範囲内であることを検出した場合、前記第1の電池の接続は正しいものと判断し前記ダイオード短絡回路をオンにさせることを特徴とする電池逆接続判別装置。
A diode connected in series so as to be forward in the normal connection direction of the first battery;
A second battery connected in parallel to a series circuit of the first battery and the diode;
A reverse connection detection circuit for detecting whether the voltage between the terminals of the diode is within a predetermined voltage range;
A diode short circuit for short-circuiting between the terminals of the diode;
When the reverse connection detection circuit detects that it is within a predetermined voltage range, it is determined that the connection of the first battery is correct and the diode short circuit is turned on. .
前記逆接続検出回路は前記第1の電池の接続は正しいものと判断したときは前記第1の電池と前記第2の電池とによって動作すべき負荷回路が動作状態になるように制御することを特徴とする請求項1記載の電池逆接続判別装置。 When the reverse connection detection circuit determines that the connection of the first battery is correct, the reverse connection detection circuit controls the load circuit to be operated by the first battery and the second battery to be in an operating state. The battery reverse connection determination device according to claim 1, wherein: 前記逆接続検出回路は電池の接続が正しいか否かを表示する表示装置を備えたことを特徴とする請求項1または2に記載の電池逆接続判別装置。 3. The battery reverse connection determination device according to claim 1, wherein the reverse connection detection circuit includes a display device that displays whether or not the battery is connected correctly. 前記第1の電池は内蔵電池であり、前記第2の電池は外部電池である請求項1から3のいずれかに記載の電池逆接続判別装置。 The battery reverse connection determination device according to claim 1, wherein the first battery is a built-in battery, and the second battery is an external battery. 第1の電池の正規接続方向に順方向になるよう直列に接続したダイオードと、
前記第1の電池と前記ダイオードの直列回路に並列に接続した第2の電池と、
前記ダイオードの端子間電圧が所定の電圧範囲内であるか否かを検出する逆接続検出回路と、
前記ダイオードの端子間を短絡するダイオード短絡回路とを用いて、
前記ダイオードの端子間電圧が所定の範囲内であるか否かを検出する検出ステップと、
前記ダイオードの端子間電圧が所定の範囲内である場合は前記第1の電池の接続は正しいと判定する判定ステップと、
前記判定ステップにおいて前記第1の電池の接続は正しいと判定されたときは前記ダイオードの端子間を短絡する短絡ステップとを有することを特徴とする電池逆接続判別方法。
A diode connected in series so as to be forward in the normal connection direction of the first battery;
A second battery connected in parallel to a series circuit of the first battery and the diode;
A reverse connection detection circuit for detecting whether the voltage between the terminals of the diode is within a predetermined voltage range;
With a diode short circuit that short-circuits between the terminals of the diode,
A detection step of detecting whether or not a voltage between terminals of the diode is within a predetermined range;
A determination step of determining that the connection of the first battery is correct when the voltage between the terminals of the diode is within a predetermined range;
A battery reverse connection determination method comprising: a short circuit step of short-circuiting between the terminals of the diode when it is determined in the determination step that the connection of the first battery is correct.
前記判定ステップにおいて前記第1の電池の接続は正しいと判定されたときに前記第1の電池と前記第2の電池とによって動作すべき負荷回路が動作状態になるように制御するステップを更に有することを特徴とする請求項5記載の電池逆接続判別方法。 The determination step further includes a step of controlling the load circuit to be operated by the first battery and the second battery to be in an operating state when it is determined that the connection of the first battery is correct in the determination step. The battery reverse connection determination method according to claim 5. 前記判定ステップにおいて前記第1の電池の接続は誤っていると判定されたときにその旨を表示するステップを更に有することを特徴とする請求項5または6に記載の電池逆接続判別方法。 The battery reverse connection determination method according to claim 5, further comprising a step of displaying that when it is determined that the connection of the first battery is incorrect in the determination step. 前記第1の電池は内蔵電池であり、前記第2の電池は外部電池である請求項5から7のいずれかに記載の電池逆接続判別方法。 The battery reverse connection determination method according to claim 5, wherein the first battery is a built-in battery, and the second battery is an external battery.
JP2007143246A 2007-05-30 2007-05-30 Method and apparatus for determining battery reverse connection Pending JP2008301591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143246A JP2008301591A (en) 2007-05-30 2007-05-30 Method and apparatus for determining battery reverse connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143246A JP2008301591A (en) 2007-05-30 2007-05-30 Method and apparatus for determining battery reverse connection

Publications (1)

Publication Number Publication Date
JP2008301591A true JP2008301591A (en) 2008-12-11

Family

ID=40174570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143246A Pending JP2008301591A (en) 2007-05-30 2007-05-30 Method and apparatus for determining battery reverse connection

Country Status (1)

Country Link
JP (1) JP2008301591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561338A (en) * 2016-09-30 2018-01-09 国家电网公司 Straight-flow system overhauls voltage detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561338A (en) * 2016-09-30 2018-01-09 国家电网公司 Straight-flow system overhauls voltage detector
CN107561338B (en) * 2016-09-30 2024-03-08 国家电网公司 DC system maintenance voltage detector

Similar Documents

Publication Publication Date Title
US7345450B2 (en) Microprocessor controlled booster apparatus with polarity protection
US20130140990A1 (en) Open LED Detection and Recovery System for LED Lighting System
JP2006014480A (en) Power supply device of vehicle
JP2010166752A (en) Battery pack and method of controlling charging and discharging
US8189313B1 (en) Fault detection and handling for current sources
KR102003461B1 (en) Charger for electric vehicles
EP2362296B1 (en) Method and system for determining an actual minimum operating voltage for a microprocessor control unit
JP6677404B1 (en) Battery voltage detection circuit with power supply switching function and electronic equipment
JP6016754B2 (en) Battery voltage detector
KR102050440B1 (en) Back light unit and mehtod for driving the same
JP4381365B2 (en) Judgment method of battery installation of charger
EP1485979B1 (en) Microprocessor controlled booster apparatus with polarity protection
US6339264B1 (en) Apparatus and method for forecasting output voltage of a battery of a digital camera
JP2008301591A (en) Method and apparatus for determining battery reverse connection
JP4811181B2 (en) Secondary battery protection device
JP2016181071A (en) Power unit
CN105093048A (en) Port detection system and vehicle possessing same
CN207867002U (en) Battery electric quantity checking device
KR100836789B1 (en) Apparatus for driving solenoid valve
JP2010019791A (en) Battery device
JP2008098495A (en) Led fault detection apparatus
KR101175191B1 (en) Sensor with self-test function
JP5663156B2 (en) Secondary battery charge control circuit
JP2006320154A (en) Charging set of secondary battery charger
JP4411910B2 (en) Gas safety device