JP2008300120A - Current collecting plate for fuel battery - Google Patents

Current collecting plate for fuel battery Download PDF

Info

Publication number
JP2008300120A
JP2008300120A JP2007143374A JP2007143374A JP2008300120A JP 2008300120 A JP2008300120 A JP 2008300120A JP 2007143374 A JP2007143374 A JP 2007143374A JP 2007143374 A JP2007143374 A JP 2007143374A JP 2008300120 A JP2008300120 A JP 2008300120A
Authority
JP
Japan
Prior art keywords
region
current collector
collector plate
fuel cell
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007143374A
Other languages
Japanese (ja)
Inventor
Masaru Okano
賢 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007143374A priority Critical patent/JP2008300120A/en
Publication of JP2008300120A publication Critical patent/JP2008300120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current collecting plate for a fuel battery suitable to cope with voltage drop in a manifold zone, suppression of a calorific value, and increase and suppression of thermal capacity. <P>SOLUTION: In the current collecting plate 3 for a fuel battery in which through-holes 6 are provided as well as the through-holes 6 for forming supply and discharge manifolds 7 for supplied fuel fluid are laminated at laminated ends of fuel battery cells 2 of a fuel battery stack 1 having a plurality of fuel battery cells 2 wherein the through-holes 6 for forming supply and discharge manifolds 7 for supplied fuel fluid is provided on the outside of a power generation zone, and an output terminal 13A is projected to the outside rather than a section where the through-holes 6 exist, the current collecting plate 3 is formed by increasing a plate thickness dimension among a zone 11 narrowing its width by the through-hole 6 between a current collecting zone 10 and the output terminal 13A of the current collecting plate 3, a part of a zone 15A of the current collecting zone 10, and a part of a zone 15B of the output terminal 13A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池スタックの複数の燃料電池セルを積層したセル積層端に積層して配置される燃料電池用集電板に関し、特に、燃料電池セルに供給する燃料流体等の給排マニホールド用の貫通穴を備える燃料電池用集電板に関するものである。   The present invention relates to a current collector plate for a fuel cell that is disposed at the end of a cell stack in which a plurality of fuel cells of a fuel cell stack are stacked, and in particular, for a supply / discharge manifold for fuel fluid or the like supplied to the fuel cell. The present invention relates to a current collector plate for a fuel cell having a through hole.

従来から複数の燃料電池セルを積層して構成される燃料電池スタックより電力を取り出すために、燃料電池スタックのセル積層端に配置され、燃料電池セルに供給する燃料流体等の給排マニホールド用の貫通穴を備える燃料電池用集電板が提案されている(特許文献1参照)。
特開2006−332006号公報
Conventionally, in order to extract electric power from a fuel cell stack configured by stacking a plurality of fuel cells, it is disposed at the cell stack end of the fuel cell stack, and is used for a supply / discharge manifold such as a fuel fluid supplied to the fuel cells. A fuel cell current collector having a through hole has been proposed (see Patent Document 1).
JP 2006-332006 A

ところで、燃料電池スタックを車両、特に乗用車等に搭載して使用する場合には車室の床下等に配置される場合が多いことから、高さ方向のスペースが制限される。このため、上記従来例においても、燃料電池スタックは複数の燃料電池セルを水平方向に積層し、燃料電池セルに供給される燃料流体等の給排マニホールドも燃料電池セルの水平方向の両側部分に配置され、燃料電池スタックのセル積層端に配置される集電板の出力端子も前記各マニホールドを貫通させた部位を介して燃料電池スタックの横方向に突き出して配置している。   By the way, when the fuel cell stack is used in a vehicle, particularly a passenger car, etc., the space in the height direction is limited because it is often arranged under the floor of the passenger compartment. For this reason, also in the above-described conventional example, the fuel cell stack has a plurality of fuel cells stacked in the horizontal direction, and a supply / discharge manifold for fuel fluid or the like supplied to the fuel cells is also provided on both sides in the horizontal direction of the fuel cells. The output terminal of the current collector plate arranged at the cell stack end of the fuel cell stack is also arranged so as to protrude in the lateral direction of the fuel cell stack through the part penetrating each manifold.

しかしながら、上記のように、マニホールドを備える領域を通過させて集電板の端に出力端子を設ける構成においては、集電板の集電領域と出力端子との間に、マニホールドを備えて電路の断面積が小さくなる領域が存在することとなり、燃料電池スタックの運転による発電電流を集電板の出力端子から取り出す際に、集電板のマニホールドを備える領域の発熱量が集電領域を構成する一般板部での発熱量よりも大きくなり、発電効率の低下(電圧低下)やマニホールドとの各流体シールのためのシール部材の寿命が低下する不具合があった。この不具合を解消すべく、マニホールドが存在する領域における電路断面積を増大させるように、一様に厚い集電板を用いる場合には、集電板の熱容量が大幅に増加することとなり、燃料電池スタックの低温時における起動時間が長くなる不具合が予想される。   However, as described above, in the configuration in which the output terminal is provided at the end of the current collector plate through the region including the manifold, the manifold is provided between the current collector region of the current collector plate and the output terminal. There will be a region with a small cross-sectional area, and when the generated current from the operation of the fuel cell stack is taken out from the output terminal of the current collector plate, the amount of heat generated in the region including the manifold of the current collector plate constitutes the current collector region. There is a problem that the amount of heat generated by the general plate portion is larger, and the power generation efficiency is lowered (voltage drop) and the life of the seal member for each fluid seal with the manifold is lowered. In order to solve this problem, when a uniformly thick current collector plate is used so as to increase the cross-sectional area of the electric circuit in the region where the manifold exists, the heat capacity of the current collector plate is greatly increased. It is expected that the start-up time will be longer when the stack is cold.

そこで本発明は、上記問題点に鑑みてなされたもので、マニホールド領域での電圧低下や発熱量の抑制と熱容量の増加抑制との両立に好適な燃料電池用集電板を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a current collector plate for a fuel cell that is suitable for coexistence of a decrease in voltage in the manifold region, suppression of heat generation, and increase in heat capacity. And

本発明は、供給される燃料流体等の給排マニホールド形成用の貫通穴を発電領域の外側に備える複数の燃料電池セルを備える燃料電池スタックの燃料電池セルの積層端に積層され、前記燃料電池セルの給排マニホールド形成用の貫通穴に連ねて同様に貫通穴を備えると共に、前記貫通穴が存在する部位より外側に出力端子を突き出して備える燃料電池用集電板において、前記集電板の集電領域と出力端子との間の貫通穴により幅が狭められた領域と、この領域に隣接する前記集電領域の一部の領域及び出力端子の一部の領域との板厚寸法を増加させて形成した。   According to the present invention, the fuel cell is stacked at a stack end of a fuel cell of a fuel cell stack including a plurality of fuel cells including a through hole for forming a supply / discharge manifold for a fuel fluid to be supplied outside the power generation region, In the current collector plate for a fuel cell, which is provided with a through hole similarly to the through hole for forming the supply / discharge manifold of the cell, and has an output terminal protruding outside the portion where the through hole exists, Increasing the plate thickness of the area narrowed by the through hole between the current collecting area and the output terminal, and the partial area of the current collecting area adjacent to this area and the partial area of the output terminal Formed.

したがって、本発明では、集電板の集電領域と出力端子との間の貫通穴により幅が狭められた領域と、この領域に隣接する前記集電領域の一部の領域及び出力端子の一部の領域との板厚寸法を増加させて形成したため、集電領域と出力端子との間の電路、即ち、貫通穴により幅が狭められた領域の通電路の断面積及びこの通電路へ接続された前後部分での、集電板幅方向への電流流れを伴う、通電路との接続部分への集中流れや接続部分からの拡散流れに対する断面積を増加でき、集電板のマニホールドを備える領域の発熱量が抑制されることにより、発電効率の低下(電圧低下)やマニホールドとの各流体シールのためのシール部材の寿命低下を防止できる。また、部分的に肉厚とするのみであるため、集電板の体積増加による熱容量の増加を最小限に留めることができ、燃料電池スタックの低温時における起動時間の増加も最小限とすることができる。   Therefore, in the present invention, a region where the width is narrowed by a through hole between the current collecting region of the current collector plate and the output terminal, a part of the current collecting region adjacent to this region, and one of the output terminals. Since the plate thickness dimension with the area of the part is increased, the cross section of the electric path between the current collecting area and the output terminal, that is, the electric path in the area narrowed by the through hole, and the connection to this electric path The cross-sectional area for the concentrated flow to the connecting part with the current path and the diffused flow from the connecting part with the current flow in the width direction of the current collecting plate at the front and rear portions can be increased, and the collector plate manifold is provided. By suppressing the amount of heat generated in the region, it is possible to prevent a decrease in power generation efficiency (voltage decrease) and a decrease in the life of the seal member for each fluid seal with the manifold. In addition, since it is only partially thickened, the increase in heat capacity due to the increase in the volume of the current collector plate can be minimized, and the increase in start-up time at low temperatures of the fuel cell stack should also be minimized. Can do.

以下、本発明の燃料電池用集電板を各実施形態に基づいて説明する。   Hereinafter, the current collector plate for a fuel cell of the present invention will be described based on each embodiment.

(第1実施形態)
図1、2は本発明を適用した燃料電池用集電板の第1実施形態を示し、図1は本実施形態の燃料電池用集電板を使用する燃料電池スタックの平面図、図2は本実施形態の燃料電池用集電板の斜視図である。
(First embodiment)
1 and 2 show a first embodiment of a current collector plate for a fuel cell to which the present invention is applied, FIG. 1 is a plan view of a fuel cell stack using the current collector plate for a fuel cell of this embodiment, and FIG. It is a perspective view of the collector plate for fuel cells of this embodiment.

図1において、燃料電池スタック1は、複数の燃料電池セル2を積層し、積層した燃料電池セル2の積層端の外側に、出力端子付の集電板3、絶縁断熱層4及びエンドプレート5がこの順に配置して構成している。また、両エンドプレート5同士は、図示されていないテンションプレートが架け渡され、これらテンションプレート端が各々エンドプレート5にボルト固定されることにより、積層した燃料電池セル2の積層方向に所定の圧縮力(締結荷重)が加えられるようになっている。   In FIG. 1, a fuel cell stack 1 includes a plurality of fuel cells 2 stacked, and a current collecting plate 3 with an output terminal, an insulating heat insulating layer 4, and an end plate 5 outside the stacked end of the stacked fuel cells 2. Are arranged in this order. In addition, a tension plate (not shown) is bridged between the end plates 5, and the ends of the tension plates are bolted to the end plates 5, whereby a predetermined compression is performed in the stacking direction of the stacked fuel cells 2. Force (fastening load) is applied.

前記燃料電池セル2は、図示しないが、イオン交換膜からなる電解質膜及びこれを両面から挟んだ一対の電極からなる膜・電極接合体と、この膜・電極接合体を外側から挟持する一対のセパレータと、で構成されている。セパレータは、例えば金属やカーボン等を基材とする導電体であり、各電極に空気等のカソードガス及び水素ガス等のアノードガスを供給するためのガス流路を有する。各電極に供給されたカソードガス及びアノードガスは、燃料電池セル2の膜・電極接合体内において電気化学反応を生じさせて起電力を発生させる。また、前記電気化学反応は発熱反応であり、燃料電池冷却用の冷媒(冷却水等)を流すための冷媒流路も前記セパレータに設けられている。   Although not shown, the fuel cell 2 includes an electrolyte membrane made of an ion exchange membrane and a membrane / electrode assembly made up of a pair of electrodes sandwiching the electrolyte membrane from both sides, and a pair of the membrane / electrode assembly held from the outside. And a separator. The separator is a conductor based on, for example, metal or carbon, and has a gas flow path for supplying a cathode gas such as air and an anode gas such as hydrogen gas to each electrode. The cathode gas and anode gas supplied to each electrode cause an electrochemical reaction in the membrane / electrode assembly of the fuel cell 2 to generate an electromotive force. In addition, the electrochemical reaction is an exothermic reaction, and the separator is also provided with a refrigerant flow path for flowing a refrigerant (cooling water or the like) for cooling the fuel cell.

前記燃料電池スタック1を構成する各燃料電池セル2、集電板3、絶縁断熱層4及び一方のエンドプレート5には、マニホールド形成用の貫通穴6が形成され、これら貫通穴6が重ね合わせられて、アノードガス流通用、カソードガス流通用及び冷媒流通用のマニホールド7がセル積層方向に貫通形成される。   Each fuel cell 2, current collector plate 3, insulating heat insulating layer 4, and one end plate 5 constituting the fuel cell stack 1 are formed with through holes 6 for manifold formation, and these through holes 6 are overlapped. Thus, manifolds 7 for anode gas circulation, cathode gas circulation and refrigerant circulation are formed penetrating in the cell stacking direction.

前記集電板3は、鉄、ステンレス、銅、アルミニウム等の金属で板状に形成され、積層された燃料電池セル2の積層端に直接接触するように配置されている。集電板3の燃料電池セル2に接触する表面には、金、銀、アルミ、ニッケル、亜鉛、すず等を用いためっき処理等の表面処理が施されて、燃料電池セル2との接触抵抗が確保されている。前記絶縁断熱層4は、絶縁性材料で構成されており、集電板3とエンドプレート5とを絶縁する機能と燃料電池セル2とエンドプレート5との間の断熱機能とを備える。絶縁断熱層4を構成する絶縁性材料としては、エポキシ樹脂等の熱硬化性樹脂、ポリアミドやポリアミド系合成繊維等の熱に強い熱可塑性樹脂、アルミナ、酸化物性セラミックスシート、等を採用することができる。また、前記エンドプレート5は、集電板3と同様に、各種金属(鉄、ステンレス、銅、アルミニウム等)で板状に形成される。   The current collector plate 3 is formed in a plate shape from a metal such as iron, stainless steel, copper, or aluminum, and is disposed so as to be in direct contact with the stacked end of the stacked fuel cells 2. The surface of the current collector plate 3 that contacts the fuel cell 2 is subjected to a surface treatment such as plating using gold, silver, aluminum, nickel, zinc, tin, etc., and the contact resistance with the fuel cell 2 Is secured. The insulating heat insulating layer 4 is made of an insulating material and has a function of insulating the current collector plate 3 and the end plate 5 and a heat insulating function between the fuel cell 2 and the end plate 5. As the insulating material constituting the insulating heat insulating layer 4, a thermosetting resin such as an epoxy resin, a heat resistant thermoplastic resin such as polyamide or polyamide synthetic fiber, alumina, an oxide ceramic sheet, or the like may be employed. it can. The end plate 5 is formed in a plate shape with various metals (iron, stainless steel, copper, aluminum, etc.), like the current collecting plate 3.

以上の一般的な燃料電池スタック1の構成において、本実施形態の燃料電池用集電板3は、図2に示すように、構成されている。即ち、図2において、本実施形態の集電板3は、中央の集電領域10と、前記集電領域10を挟んでその両側に配置されたマニホールド7を構成する貫通穴6を備えるマニホールド領域11、12と、一方のマニホールド領域11のさらにその外側に設けた出力端子13Aを構成する端子領域13とを備える、概略長方形の金属板材で形成されている。図2において、前記マニホールド7用の貫通穴6は、この配置に限定されるものでなく様々な目的に応じて配列されるものであるが、例えば、一方のマニホールド領域11においては、向こう側から手前に向かって、冷媒用、アノードガス用、カソードガス用が配列され、他方のマニホールド領域12においては、向こう側から手前に向かって、アノードガス用、カソードガス用、冷媒用が配列される。   In the configuration of the general fuel cell stack 1 described above, the fuel cell current collector plate 3 of the present embodiment is configured as shown in FIG. That is, in FIG. 2, the current collector plate 3 of the present embodiment includes a central current collecting region 10 and a manifold region having through holes 6 constituting the manifolds 7 arranged on both sides of the current collecting region 10. 11 and 12 and a terminal region 13 constituting an output terminal 13A provided on the outer side of one manifold region 11 is formed of a substantially rectangular metal plate material. In FIG. 2, the through holes 6 for the manifold 7 are not limited to this arrangement but are arranged according to various purposes. For example, in one manifold region 11, the through holes 6 are arranged from the other side. For the front, refrigerant, anode gas, and cathode gas are arranged. In the other manifold region 12, anode gas, cathode gas, and refrigerant are arranged from the other side to the front.

前記他方のマニホールド領域12と大部分の集電領域10(以下では「一般集電領域10A」という)及び端子領域13の先端側の板厚は、通常の寸法(例えば、4[mm])に形成しているが、一方のマニホールド領域11及び一方のマニホールド領域11に長手方向で隣接する集電領域10の一部と端子領域13の一部においては、その板厚寸法を大きく形成している。即ち、一方のマニホールド領域11においては、マニホールド7を構成する貫通穴6に沿った4本の桟状部分(以下では「連結部14」という)と連結部14の両端に連なって前記貫通穴6の縁を構成する集電領域10に重なる前後領域15Aと端子領域13に重なる前後領域15Bとを、一方の面側において隆起させてその板厚寸法を大きく形成している。集電板3は、積層された燃料電池セル2の積層端に他方の面側を接触させて配置される。そして、一方の面側は、隣接する絶縁断熱層4に接触される。この場合に、前記絶縁断熱層4は、前記他方のマニホールド領域12及びそれに隣接する一般集電領域10Aに接触する部位は、前記集電板3の一方のマニホールド領域11及びその前後領域15A、15Bの隆起した寸法分だけ厚く形成されて、前記他方のマニホールド領域12及び一般集電領域10Aと一方のマニホールド領域11及びその前後領域15A、15Bとの段差を吸収する。   The thickness of the other manifold region 12 and most of the current collecting region 10 (hereinafter referred to as “general current collecting region 10A”) and the tip side of the terminal region 13 are set to normal dimensions (for example, 4 [mm]). Although formed, the plate thickness dimension of one manifold region 11 and a part of the current collecting region 10 adjacent to the one manifold region 11 in the longitudinal direction and a part of the terminal region 13 are formed large. . That is, in one manifold region 11, four through-hole portions (hereinafter referred to as “connecting portions 14”) along the through-holes 6 constituting the manifold 7 and both ends of the connecting portions 14 are connected to the through-holes 6. The front and rear regions 15A that overlap the current collecting region 10 and the front and rear regions 15B that overlap the terminal region 13 are raised on one surface side to increase the plate thickness. The current collector plate 3 is disposed with the other surface side in contact with the stacked end of the stacked fuel cells 2. One surface side is in contact with the adjacent insulating heat insulating layer 4. In this case, the insulating heat insulating layer 4 is in contact with the other manifold region 12 and the general current collecting region 10A adjacent to the other manifold region 12 and one manifold region 11 of the current collecting plate 3 and its front and rear regions 15A and 15B. Is thickened by the height of the raised area, and absorbs a step between the other manifold region 12 and the general current collecting region 10A and the one manifold region 11 and its front and rear regions 15A and 15B.

前記連結部14及び前後領域15A、15Bの板厚寸法は、前記連結部14の長さ方向を横断する横断面積(図中のA−A線による断面積)が、前記一般集電領域10Aの横断面積と同等の断面積若しくは同等に近似したそれ以下の断面積となる寸法に設定している。例えば、前記一般集電領域10Aの横断面積が、400mm2(板厚4mm・板幅100mm)であり、前記連結部14の(各幅寸法10mm×4本=40mm(実質幅寸法))であれば、(400÷40=)10mm若しくは10mmに近いそれ以下の寸法に設定する。 The thickness of the connecting portion 14 and the front and rear regions 15A, 15B is such that the cross-sectional area (cross-sectional area taken along the line AA in the figure) crossing the length direction of the connecting portion 14 is the same as that of the general current collecting region 10A. The dimensions are set so that the cross-sectional area is equal to or equal to the cross-sectional area. For example, the cross-sectional area of the general current collecting region 10A is 400 mm 2 (plate thickness 4 mm, plate width 100 mm), and the connecting portion 14 (each width dimension 10 mm × 4 lines = 40 mm (substantial width dimension)). For example, (400 ÷ 40 =) 10 mm or less than 10 mm is set.

なお、前記連結部14の実質幅寸法が連結部14の長手方向位置において一様であれば、上記の通りに厚さ寸法を設定するが、マニホールド7の断面形状によっては、部分的に実質幅寸法が小さくなる部分が存在する場合には、最小となる実質幅寸法の部分において、前記条件に基づいて厚さ方向寸法を設定する。また、連結部14の厚さ寸法に対して前後領域15A、15Bの厚さ寸法を、若干厚く形成してもよい。この厚さ寸法の相違による段差は、重ね合わせる絶縁断熱層4の厚さ寸法を相違させて吸収することができる。   If the substantial width dimension of the connecting portion 14 is uniform at the longitudinal position of the connecting portion 14, the thickness dimension is set as described above. However, depending on the cross-sectional shape of the manifold 7, the substantial width portion is partially set. In the case where there is a portion where the dimension becomes smaller, the dimension in the thickness direction is set based on the above condition in the portion having the smallest substantial width dimension. Further, the thickness dimension of the front and rear regions 15A and 15B may be slightly thicker than the thickness dimension of the connecting portion 14. The step due to the difference in thickness can be absorbed by changing the thickness of the insulating heat insulating layer 4 to be superimposed.

以上の構成の燃料電池用集電板を燃料電池セル2の積層端に積層して備える燃料電池スタック1においては、カソードガス、アノードガス及び冷媒を各マニホールド7から供給して、各燃料電池セル2の膜・電極接合体内において電気化学反応を生じさせて起電力を発生させると、燃料電池セル2の積層端の集電板3には、一方の集電板3において集電領域10から一方のマニホールド領域11を介在して端子領域13へ、他方の集電板3においては端子領域13から一方のマニホールド領域11を介在して集電領域10に、電流が流れる。   In the fuel cell stack 1 having the fuel cell current collector plate having the above-described structure stacked on the stack end of the fuel cell 2, cathode gas, anode gas and refrigerant are supplied from each manifold 7, and each fuel cell. When an electromotive force is generated by generating an electrochemical reaction in the membrane / electrode assembly 2, the current collecting plate 3 at the stacking end of the fuel cell 2 is connected to the current collecting plate 3 from the current collecting region 10. A current flows from the terminal region 13 to the current collecting region 10 via the one manifold region 11 in the other current collecting plate 3.

各集電板3の集電領域10から端子領域13へ若しくは端子領域13から集電領域10へと、一方のマニホールド領域11を通過する電流は、一方の前後領域15A若しくは15Bにおいて集電板3の長手方向に流れると共に幅方向にも流れて連結部14と接続している接続部分へと集中されて連結部14に流れ、連結部14を長手方向に流れ、連結部14から他方の前後領域15A若しくは15Bとの接続部分を経由して他方の前後領域15A若しくは15Bに流れ、他方の前後領域15A若しくは15Bにおいて再び集電板3の幅方向に拡散されつつ集電板3の長手方向に流れる。   The current passing through one manifold region 11 from the current collecting region 10 to the terminal region 13 or from the terminal region 13 to the current collecting region 10 of each current collecting plate 3 is collected in one front and rear region 15A or 15B. The flow flows in the longitudinal direction and also in the width direction and is concentrated on the connecting portion connected to the connecting portion 14 and flows to the connecting portion 14, and flows in the connecting portion 14 in the longitudinal direction. It flows to the other front / rear region 15A or 15B via the connecting portion with 15A or 15B, and flows in the longitudinal direction of the current collector plate 3 while being diffused again in the width direction of the current collector plate 3 in the other front / rear region 15A or 15B. .

マニホールド7を構成する連結部14の横断面積の最小部分が、一般集電領域10Aの横断面積と同等か若しくはそれより若干小さく形成しているため、連結部14での発熱量は、一方のマニホールド領域11を一般集電領域10Aと同じ厚さ寸法とした一様な厚さの集電板と比較して小さくできる。   Since the minimum portion of the cross-sectional area of the connecting portion 14 constituting the manifold 7 is formed to be equal to or slightly smaller than the cross-sectional area of the general current collecting region 10A, the amount of heat generated at the connecting portion 14 is reduced to one of the manifolds. The area 11 can be made smaller as compared with a current collecting plate having the same thickness as that of the general current collecting area 10A.

また、マニホールド7を形成する連結部14の厚さ寸法に比較して前後領域15A、15Bの厚さ寸法を同等若しくは若干厚く形成しているため、前後領域15A、15Bと連結部14とを接続する接続部において、連結部14の最小横断面積以上の接続面積を確保でき、接続部における発熱量も、一方のマニホールド領域11を集電領域10と同じ厚さ寸法とした一様な厚さの集電板3と比較して小さくできる。   Further, since the thickness dimensions of the front and rear regions 15A and 15B are equal to or slightly thicker than the thickness of the connecting portion 14 forming the manifold 7, the front and rear regions 15A and 15B are connected to the connecting portion 14. In the connecting portion, a connecting area equal to or larger than the minimum cross-sectional area of the connecting portion 14 can be secured, and the amount of heat generated in the connecting portion has a uniform thickness in which one manifold region 11 has the same thickness as the current collecting region 10. It can be made smaller than the current collector plate 3.

したがって、本実施形態の燃料電池用集電板3を備える燃料電池スタック1においては、一方のマニホールド領域11及びその前後領域15A、15Bでの発熱量が大きくなって発電効率の低下や発熱によるシールの寿命への影響を発生させることを大幅に抑制でき、しかも、一方のマニホールド領域11及びその前後領域15A、15Bのみを一般集電領域10A等に比較して、発熱抑制に必要な寸法だけ厚肉寸法にしていることにより、集電板3の熱容量の増加を小さく抑えることができ、燃料電池スタック1の低温時における起動時間が長くなる不具合も解消できる。   Accordingly, in the fuel cell stack 1 including the fuel cell current collector plate 3 of the present embodiment, the amount of heat generated in one manifold region 11 and its front and rear regions 15A and 15B increases, resulting in a decrease in power generation efficiency and sealing due to heat generation. In addition, the one manifold region 11 and its front and rear regions 15A and 15B are thicker than the general current collection region 10A by a size necessary for suppressing heat generation. The increase in the heat capacity of the current collector plate 3 can be suppressed to a small size, and the problem that the startup time of the fuel cell stack 1 at a low temperature can be lengthened can be eliminated.

なお、上記実施形態において、燃料電池セル2の積層端の両側に配置される集電板3にマニホールド7用の貫通穴6が設けられているものについて説明したが、図示はしないが、一方の集電板3のみにマニホールド7用の貫通穴6が設けられ他方の集電板3にはマニホールド7用の貫通穴6が設けられていない、即ち、燃料電池スタック1の積層方向の一方から燃料ガス及び冷媒が給排される場合には、出力端子13Aとなる側にマニホールド7用の貫通穴6を備えない集電板3においては、一様な厚さ寸法の集電板3で構成し、出力端子13Aとなる側にマニホールド7用の貫通穴6を備える側の集電板3のみに、本実施形態の構成を備える集電板3を用いればよい。   In the above embodiment, the description has been given of the current collector plate 3 disposed on both sides of the stacked end of the fuel battery cell 2 provided with the through holes 6 for the manifold 7. Only the current collector plate 3 is provided with the through hole 6 for the manifold 7, and the other current collector plate 3 is not provided with the through hole 6 for the manifold 7, that is, the fuel from one side in the stacking direction of the fuel cell stack 1. When the gas and refrigerant are supplied and discharged, the current collector plate 3 that does not have the through hole 6 for the manifold 7 on the side that becomes the output terminal 13A is configured by the current collector plate 3 having a uniform thickness. The current collector plate 3 having the configuration of the present embodiment may be used only for the current collector plate 3 on the side provided with the through hole 6 for the manifold 7 on the side to be the output terminal 13A.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)供給される燃料流体等の給排マニホールド7形成用の貫通穴6を発電領域の外側に備える複数の燃料電池セル2を備える燃料電池スタック1の燃料電池セル2の積層端に積層され、前記燃料電池セル2の給排マニホールド7形成用の貫通穴6に連ねて同様に貫通穴6を備えると共に、前記貫通穴6が存在する部位より外側に出力端子13Aを突き出して備える燃料電池用集電板において、前記集電板3の集電領域10と出力端子13Aとの間の貫通穴6により幅が狭められた領域11と、この領域11に隣接する前記集電領域10の一部の領域15A及び出力端子13Aの一部の領域15Bとの板厚寸法を増加させて形成した。   (A) Stacked at the stacking end of the fuel cell 2 of the fuel cell stack 1 including a plurality of fuel cells 2 provided with a through hole 6 for forming a supply / discharge manifold 7 for the supplied fuel fluid or the like outside the power generation region. The fuel cell 2 is provided with a through-hole 6 in a similar manner to the through-hole 6 for forming the supply / exhaust manifold 7 of the fuel battery cell 2 and a fuel cell provided with an output terminal 13A protruding outside the portion where the through-hole 6 exists. In the current collecting plate, a region 11 whose width is narrowed by a through hole 6 between the current collecting region 10 of the current collecting plate 3 and the output terminal 13A, and a part of the current collecting region 10 adjacent to the region 11 The thickness of the region 15A and the partial region 15B of the output terminal 13A is increased.

したがって、集電領域10と出力端子13Aとの間の電路、即ち、貫通穴6により幅が狭められた領域11の通電路の断面積及びこの通電路へ接続された前後領域15A、15Bでの、集電板3幅方向への電流流れを伴う、通電路との接続部分への集中流れや接続部分からの拡散流れに対する断面積を増加でき、集電板3のマニホールド7を備える領域の発熱量が抑制されることにより、発電効率の低下(電圧低下)やマニホールド7との各流体シールのためのシール部材の寿命低下を防止できる。また、部分的に肉厚とするのみであるため、集電板3の体積増加による熱容量の増加を最小限に留めることができ、燃料電池スタック1の低温時における起動時間の増加も最小限とすることができる。   Therefore, the electrical path between the current collecting area 10 and the output terminal 13A, that is, the cross-sectional area of the current path in the area 11 narrowed by the through hole 6 and the front and rear areas 15A and 15B connected to the current path. In addition, it is possible to increase the cross-sectional area of the current flow in the width direction of the current collector plate 3 with respect to the concentrated flow at the connection portion with the current path and the diffusion flow from the connection portion. By suppressing the amount, it is possible to prevent a decrease in power generation efficiency (voltage decrease) and a decrease in the life of the seal member for each fluid seal with the manifold 7. Further, since the thickness is only partially increased, an increase in heat capacity due to an increase in the volume of the current collector plate 3 can be minimized, and an increase in start-up time at a low temperature of the fuel cell stack 1 is also minimized. can do.

(イ)貫通穴6により幅が狭められた領域11に隣接する前記集電領域10の一部の領域15A及び出力端子13Aの一部の領域15Bの板厚寸法は、前記貫通穴6により幅が狭められた領域11の板厚寸法より厚く形成されていることにより、マニホールド領域11への接続部においても、板厚が増加されていない一般板部の領域の横断面積と同等以上を確保できるため、接続部での発熱量を一般板部と同等以下にすることができる。   (A) The plate thickness dimension of the partial region 15A of the current collecting region 10 and the partial region 15B of the output terminal 13A adjacent to the region 11 whose width is narrowed by the through hole 6 is the width of the through hole 6. Is formed thicker than the plate thickness dimension of the narrowed region 11, the connection area to the manifold region 11 can ensure a cross-sectional area equal to or greater than the cross-sectional area of the general plate portion region where the plate thickness is not increased. Therefore, the amount of heat generated at the connecting portion can be made equal to or less than that of the general plate portion.

(ウ)貫通穴6により幅が狭められた領域11の最小横断面積は、集電板3の板厚寸法が増加されていない領域の横断面積に対して、同等若しくはそれ以下の断面積に設定されていることにより、両断面積が同等の場合には、前記最小横断面積部分の発熱量を板厚が増加されていない一般板部での発熱量と同等とでき、前記最小横断面積が、板厚が増加されていない一般板部の横断面積以下の断面積に設定されている場合には、一様な板厚で形成した集電板よりもマニホールド領域11の最小断面積部での発熱量を小さくしつつ、集電板3の熱容量の増加を小さく抑えることができる。   (C) The minimum cross-sectional area of the region 11 whose width is narrowed by the through hole 6 is set to be equal to or smaller than the cross-sectional area of the region where the thickness of the current collector plate 3 is not increased. Thus, when both cross-sectional areas are equal, the calorific value of the minimum cross-sectional area portion can be equal to the calorific value of a general plate portion where the plate thickness is not increased, and the minimum cross-sectional area is When the cross-sectional area is set to be equal to or less than the cross-sectional area of the general plate portion where the thickness is not increased, the amount of heat generated at the minimum cross-sectional area portion of the manifold region 11 rather than the current collecting plate formed with a uniform plate thickness. The increase in the heat capacity of the current collector plate 3 can be suppressed to a small value while reducing the current.

(エ)貫通穴6により幅が狭められた領域11と、この領域11に隣接する前記集電領域10の一部の領域15A及び出力端子13Aの一部の領域15Bとの板厚寸法の増加部分は、セル積層側とは反対の側に板厚を増加させて形成されていることにより、積層する燃料電池セル2等との接触を確保でき、燃料電池セル2、集電板3間の接触抵抗を変えることなく、マニホールド領域11及びその隣接領域15A、15Bでの発熱量を抑えることができる。   (D) Increase in the plate thickness of the region 11 whose width is narrowed by the through hole 6 and the partial region 15A of the current collecting region 10 and the partial region 15B of the output terminal 13A adjacent to the region 11 The portion is formed by increasing the plate thickness on the side opposite to the cell stacking side, so that contact with the fuel cell 2 or the like to be stacked can be secured, and the portion between the fuel cell 2 and the current collector plate 3 can be secured. The amount of heat generated in the manifold region 11 and its adjacent regions 15A and 15B can be suppressed without changing the contact resistance.

(第2実施形態)
図3〜図5は、本発明を適用した燃料電池用集電板の第2実施形態を示し、図3は本実施形態の燃料電池用集電板の第1実施例の平面図、図4は図3の燃料電池用集電板の斜視図、図5は本実施形態の燃料電池用集電板の第2実施例の平面図である。本実施形態においては、マニホールドを構成する貫通穴6が長方形とは異なる異形に形成された場合における構成を第1実施形態に追加したものである。なお、図1、2と同一装置、部分には同一符号を付してその説明を省略ないし簡略化する。
(Second Embodiment)
3 to 5 show a second embodiment of a current collector plate for a fuel cell to which the present invention is applied. FIG. 3 is a plan view of a first example of a current collector plate for a fuel cell according to this embodiment. FIG. 5 is a perspective view of the fuel cell current collector of FIG. 3, and FIG. 5 is a plan view of a second example of the fuel cell current collector of the present embodiment. In the present embodiment, the configuration in the case where the through holes 6 constituting the manifold are formed in a different shape from the rectangular shape is added to the first embodiment. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted or simplified.

図3、4において、本実施形態の第1実施例の燃料電池用集電板3においては、一方のマニホールド領域11に形成するマニホールド7用の貫通穴6の内側となる一部の壁面を、燃料電池セル2のセパレータに設けるガス流路へのガス供給若しくはガス排出が円滑となるように、マニホールド7とガス流路との接続領域を拡大させて、円弧状に形成している。この場合、マニホールド領域は連結部14と連結部14を集電領域10上の前後領域15Aにつなげる領域16とにより構成されている。   3 and 4, in the fuel cell current collector plate 3 of the first example of the present embodiment, a part of the wall surface inside the through hole 6 for the manifold 7 formed in one manifold region 11 is The connection region between the manifold 7 and the gas flow path is enlarged and formed in an arc shape so that the gas supply or gas discharge to the gas flow path provided in the separator of the fuel cell 2 is smooth. In this case, the manifold region is constituted by a connecting portion 14 and a region 16 that connects the connecting portion 14 to the front and rear regions 15A on the current collecting region 10.

このように貫通穴6の壁面の一部を円弧状に形成した場合には、マニホールド7を構成する貫通穴6に沿う連結部14の横断面積が、一方(集電領域10内)の前後領域15A側から他方(端子領域13内)の前後領域15Bに向かって円弧状の壁面により徐々に小さくなり、直線状の壁面に移行した段階で最小の横断面積となる。したがって、前記壁面が直線状となるB−B線に沿う横断面積により、第1実施形態と同様に、連結部14の板厚寸法を設定する。なお、マニホールド領域11とその前後領域15A、15Bとの板厚寸法は同じ厚さ寸法としている。図中の破線は、マニホールド領域11とその前後領域15Aとの境界である。その他の構成は第1実施形態と同様に構成している。   When a part of the wall surface of the through hole 6 is formed in an arc shape in this way, the cross-sectional area of the connecting portion 14 along the through hole 6 constituting the manifold 7 is one of the front and rear regions (within the current collecting region 10). From the 15A side toward the other front / rear region 15B (inside the terminal region 13), it gradually becomes smaller due to the arc-shaped wall surface, and becomes the minimum cross-sectional area at the stage of transition to the straight wall surface. Therefore, the plate | board thickness dimension of the connection part 14 is set similarly to 1st Embodiment with the cross-sectional area which follows the BB line from which the said wall surface becomes linear form. In addition, the plate | board thickness dimension of the manifold area | region 11 and its front and back area | region 15A, 15B is made into the same thickness dimension. A broken line in the figure is a boundary between the manifold region 11 and its front and rear regions 15A. Other configurations are the same as those in the first embodiment.

このように、異形のマニホールド7用の貫通穴6を備える集電板3においても、燃料電池スタック1の燃料電池セル2の積層端に配列して装備することにより、第1実施形態と同様に、マニホールド領域11及びその前後領域15A、15Bでの発熱量が大きくなって発電効率の低下や発熱によるシールの寿命への影響を発生させることを大幅に抑制でき、しかも、一方のマニホールド領域11及びその前後領域15A、15Bのみを一般集電領域10A等に比較して、発熱抑制に必要な寸法だけ厚肉寸法にしていることにより、集電板3の熱容量の増加を小さく抑えることができ、燃料電池スタック1の低温時における起動時間が長くなる不具合も解消できる。   As described above, the current collector plate 3 having the through hole 6 for the irregular shaped manifold 7 is also arranged and equipped at the stacking end of the fuel cell 2 of the fuel cell stack 1, so that the same as in the first embodiment. The heat generation amount in the manifold region 11 and the front and rear regions 15A and 15B thereof can be greatly suppressed from causing a decrease in power generation efficiency and the effect on the life of the seal due to heat generation. Only the front and rear regions 15A and 15B are made thicker than the general current collecting region 10A, so that the heat capacity of the current collecting plate 3 can be kept small. The problem that the startup time of the fuel cell stack 1 at a low temperature becomes long can be solved.

また、この実施例において、(集電領域10側及び端子領域13側の両者の)前後領域15A、15Bの集電板3幅方向(図4中の矢印方向)に対する横断面積(ハッチングされている範囲)を、マニホールド領域11の連結部14の最小横断面積(一般集電領域10Aの横断面積と同等若しくはそれよりも若干少ない面積で構成される)と同等若しくはそれよりも若干少ない面積で構成している。このように構成することにより、集電領域10から集電板3の長手方向に流れつつマニホールド領域11の連結部14に向かって集電板3の幅方向にも流れる電流に対して充分に広い電路を提供することができる。   Further, in this embodiment, the cross-sectional area (hatched) of the front and rear regions 15A and 15B (both on the current collecting region 10 side and the terminal region 13 side) with respect to the current collecting plate 3 width direction (the arrow direction in FIG. 4). Range) is configured with an area that is equal to or slightly less than the minimum cross-sectional area of the connecting portion 14 of the manifold region 11 (configured with an area that is equal to or slightly smaller than the cross-sectional area of the general current collecting region 10A). ing. With this configuration, the current is sufficiently wide with respect to the current flowing in the width direction of the current collector plate 3 from the current collector region 10 toward the connecting portion 14 of the manifold region 11 while flowing in the longitudinal direction of the current collector plate 3. An electric circuit can be provided.

そして、前記前後領域15の集電板3幅方向に対する横断面積をマニホールド領域11の連結部14の最小横断面積に対して同等とした場合には、前後領域15A、15B内において集電板3幅方向に流れる電流に起因する発熱量はマニホールド領域11の最小横断面積の部分での発熱量と等しくできる。また、前記前後領域15A、15Bの集電板3幅方向に対する横断面積がマニホールド領域11の連結部14の最小横断面積に対して同等より小さくした場合には、一様な板厚で集電板3を形成する場合よりも、前記前後領域15A、15B内において集電板3幅方向に流れる電流に起因する発熱量を抑制しつつその熱容量を小さくすることができる。   When the cross-sectional area of the front and rear region 15 in the width direction of the current collector plate 3 is made equal to the minimum cross-sectional area of the connecting portion 14 of the manifold region 11, the current collector plate 3 width in the front and rear regions 15A and 15B. The amount of heat generated due to the current flowing in the direction can be made equal to the amount of heat generated in the portion of the manifold area 11 with the minimum cross-sectional area. Further, when the cross-sectional area of the front and rear regions 15A and 15B in the width direction of the current collector plate 3 is smaller than that of the minimum cross-sectional area of the connecting portion 14 of the manifold region 11, the current collector plate has a uniform thickness. Compared with the case of forming 3, the heat capacity can be reduced while suppressing the amount of heat generated due to the current flowing in the width direction of the current collector plate 3 in the front and rear regions 15A and 15B.

図5は本実施形態の第2実施例の燃料電池用集電板3を示す。本実施例の集電板3においては、第1実施例の集電板3の連結部14の領域11と集電領域10上の前後領域15Aとの境界部を直線でなく、前記マニホールド7の円弧状壁面に近似させた形状に形成したものである。また、前記境界部の形状変更に応じて、前後領域15の一般集電領域10Aとの境界も、同様に前記マニホールド領域11との境界部の段差部分の形状に近似させた形状に変更している。その他の構成は第1実施例と同様に構成している。   FIG. 5 shows the fuel cell current collector plate 3 of the second example of the present embodiment. In the current collector plate 3 of the present embodiment, the boundary portion between the region 11 of the connecting portion 14 of the current collector plate 3 of the first embodiment and the front and rear regions 15A on the current collector region 10 is not a straight line, It is formed in a shape that approximates an arcuate wall surface. Further, according to the change in the shape of the boundary portion, the boundary between the front and rear region 15 and the general current collecting region 10A is similarly changed to a shape that approximates the shape of the step portion of the boundary portion with the manifold region 11. Yes. Other configurations are the same as those of the first embodiment.

この実施例においては、第1実施例に比較して、マニホールド領域11を構成する連結部14及び当該連結部14を集電領域10上の前後領域15Aへつなげる領域16の内、連結部14を集電領域10上の前後領域15Aへつなげる(厚さ寸法が増加された)領域16が縮小される結果として、第1実施例に比較して、集電板3の熱容量をより一層低減することができる。   In this embodiment, compared to the first embodiment, the connecting portion 14 of the connecting portion 14 constituting the manifold region 11 and the region 16 connecting the connecting portion 14 to the front and rear region 15A on the current collecting region 10 is provided. As a result of the reduction of the region 16 (increased in thickness) connected to the front and rear regions 15A on the current collecting region 10, the heat capacity of the current collecting plate 3 can be further reduced as compared with the first embodiment. Can do.

本実施形態においては、第1実施形態における効果(ア)、(ウ)、(エ)に加えて以下に記載した効果を奏することができる。   In this embodiment, in addition to the effects (a), (c), and (d) in the first embodiment, the following effects can be achieved.

(オ)貫通穴6により幅が狭められた領域11に隣接する前記集電領域10の一部の領域15A及び出力端子13Aの一部の領域15Bの板厚寸法と、前記貫通穴6により幅が狭められた領域11の板厚寸法とは、同等に形成されていることにより、マニホールド領域11及びその前後領域15A、15Bでの熱容量の変化を最小限に抑えることができる。また、両者間の段差をなくすることができることにより、集電板3の構造を簡素化でき、積層される絶縁断熱層4の形状も簡素化できる。   (E) Plate thickness dimensions of a partial region 15A of the current collecting region 10 and a partial region 15B of the output terminal 13A adjacent to the region 11 whose width is narrowed by the through hole 6, and the width by the through hole 6 Since the plate thickness dimension of the region 11 in which is narrowed is equal, the change in the heat capacity in the manifold region 11 and its front and rear regions 15A and 15B can be minimized. Further, since the step between the two can be eliminated, the structure of the current collector plate 3 can be simplified, and the shape of the insulating heat insulating layer 4 to be laminated can be simplified.

(カ)貫通穴6により幅が狭められた領域11に隣接する前記集電領域10の一部の領域15A及び出力端子13Aの一部の領域15Bの集電板3幅方向に対する横断面積は、集電板3の板厚寸法が増加されていない領域の横断面積に対して、同等若しくはそれ以下の断面積に設定されていることにより、同等であれば、前後領域15A、15Bでの発熱量を集電板3の板厚寸法が増加されていない一般板部での発熱量と同等以下とでき、集電板3の板厚寸法が増加されていない領域の横断面積に対してそれ以下の断面積である場合では、一様な板厚で集電板3を形成する場合よりも前後領域15A、15Bでの発熱量を小さくしつつ、集電板3の熱容量の増加を小さく抑えることができる。   (F) The cross-sectional area of the current collecting area 10 adjacent to the area 11 narrowed by the through hole 6 and the partial area 15B of the output terminal 13A in the width direction of the current collector 3 is: The amount of heat generated in the front and rear regions 15A and 15B is equal to or equal to the cross-sectional area of the region where the plate thickness dimension of the current collector plate 3 is not increased by setting it equal to or less than the cross-sectional area. Can be equal to or less than the amount of heat generated in the general plate portion where the plate thickness dimension of the current collector plate 3 is not increased, and less than the cross sectional area of the region where the plate thickness size of the current collector plate 3 is not increased. In the case of the cross-sectional area, it is possible to suppress the increase in the heat capacity of the current collector plate 3 while reducing the amount of heat generated in the front and rear regions 15A and 15B as compared with the case where the current collector plate 3 is formed with a uniform thickness. it can.

本発明の一実施形態の燃料電池用集電板を使用する燃料電池スタックの平面図。The top view of the fuel cell stack which uses the current collector plate for fuel cells of one embodiment of the present invention. 同じく本実施形態の燃料電池用集電板の斜視図。The perspective view of the collector plate for fuel cells of this embodiment similarly. 本発明の第2実施形態の燃料電池用集電板の第1実施例の平面図。The top view of the 1st Example of the current collector plate for fuel cells of 2nd Embodiment of this invention. 図3の燃料電池用集電板の斜視図。FIG. 4 is a perspective view of the fuel cell current collector plate of FIG. 3. 本実施形態の燃料電池用集電板の第2実施例の平面図。The top view of the 2nd Example of the current collector plate for fuel cells of this embodiment.

符号の説明Explanation of symbols

1 燃料電池スタック
2 燃料電池セル
3 集電板
4 絶縁断熱層
5 エンドプレート
6 貫通穴
7 マニホールド
10 集電領域
10A 一般集電領域
11、12 マニホールド領域
13 端子領域
13A 出力端子
14 連結部
15A、15B 前後領域
DESCRIPTION OF SYMBOLS 1 Fuel cell stack 2 Fuel cell 3 Current collector plate 4 Insulation heat insulation layer 5 End plate 6 Through hole 7 Manifold 10 Current collection area 10A General current collection area 11, 12 Manifold area 13 Terminal area 13A Output terminal 14 Connecting part 15A, 15B Front and back area

Claims (6)

供給される燃料流体等の給排マニホールド形成用の貫通穴を発電領域の外側に備える複数の燃料電池セルを備える燃料電池スタックにおける燃料電池セルの積層端に積層され、前記燃料電池セルの給排マニホールド形成用の貫通穴に連ねて同様に貫通穴を備えると共に、前記貫通穴が存在する部位より外側に出力端子を突き出して備える燃料電池用集電板において、
前記集電板の集電領域と出力端子との間の貫通穴により幅が狭められた領域と、この領域に隣接する前記集電領域の一部の領域および出力端子の一部の領域との板厚寸法を増加させて形成されていることを特徴とする燃料電池用集電板。
A fuel cell stack having a plurality of fuel cells each having a through hole for forming a supply / discharge manifold for fuel fluid to be supplied is provided outside the power generation region. In the fuel cell current collector plate provided with a through hole similarly to the through hole for forming the manifold, and provided with an output terminal protruding outside the portion where the through hole exists,
An area narrowed by a through hole between the current collecting area of the current collecting plate and the output terminal, and a partial area of the current collecting area adjacent to this area and a partial area of the output terminal A current collector plate for a fuel cell, wherein the current collector plate is formed with an increased thickness.
前記貫通穴により幅が狭められた領域に隣接する前記集電領域の一部の領域及び出力端子の一部の領域の板厚寸法は、前記貫通穴により幅が狭められた領域の板厚寸法より厚く形成されていることを特徴とする請求項1に記載の燃料電池用集電板。   The plate thickness dimension of the partial region of the current collecting region and the partial region of the output terminal adjacent to the region narrowed by the through hole is the plate thickness dimension of the region narrowed by the through hole. The current collector plate for a fuel cell according to claim 1, wherein the current collector plate is formed thicker. 前記貫通穴により幅が狭められた領域に隣接する前記集電領域の一部の領域及び出力端子の一部の領域の板厚寸法と、前記貫通穴により幅が狭められた領域の板厚寸法とは、同等に形成されていることを特徴とする請求項1に記載の燃料電池用集電板。   The plate thickness dimension of the partial region of the current collecting region and the partial region of the output terminal adjacent to the region narrowed by the through hole, and the plate thickness dimension of the region narrowed by the through hole The current collector plate for a fuel cell according to claim 1, wherein the current collector plate is formed equally. 前記貫通穴により幅が狭められた領域の最小横断面積は、集電板の板厚寸法が増加されていない領域の横断面積に対して、同等若しくはそれ以下の断面積に設定されていることを特徴とする請求項1から請求項3のいずれか一つに記載の燃料電池用集電板。   The minimum cross-sectional area of the region narrowed by the through hole is set to be equal to or less than the cross-sectional area of the region where the thickness of the current collector plate is not increased. The current collector plate for a fuel cell according to any one of claims 1 to 3, wherein the current collector plate is a fuel cell current collector. 前記貫通穴により幅が狭められた領域に隣接する前記集電領域の一部の領域及び出力端子の一部の領域の集電板幅方向に対する横断面積は、集電板の板厚寸法が増加されていない領域の横断面積に対して、同等若しくはそれ以下の断面積に設定されていることを特徴とする請求項1から請求項4のいずれか一つに記載の燃料電池用集電板。   The cross-sectional area of the current collector region adjacent to the region narrowed by the through hole and the partial region of the output terminal in the width direction of the current collector plate increases the thickness of the current collector plate. The current collector plate for a fuel cell according to any one of claims 1 to 4, wherein the cross-sectional area is set to be equal to or less than a cross-sectional area of a region not formed. 前記貫通穴により幅が狭められた領域と、この領域に隣接する前記集電領域の一部の領域及び出力端子の一部の領域との板厚寸法の増加部分は、セル積層側とは反対の側に板厚を増加させて形成されていることを特徴とする請求項1から請求項5のいずれか一つに記載の燃料電池用集電板。   The increased portion of the plate thickness dimension between the region narrowed by the through hole and the partial region of the current collecting region and the partial region of the output terminal adjacent to the region is opposite to the cell stacking side. The current collector plate for a fuel cell according to any one of claims 1 to 5, wherein the current collector plate is formed with an increased thickness on the side of the fuel cell.
JP2007143374A 2007-05-30 2007-05-30 Current collecting plate for fuel battery Pending JP2008300120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143374A JP2008300120A (en) 2007-05-30 2007-05-30 Current collecting plate for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143374A JP2008300120A (en) 2007-05-30 2007-05-30 Current collecting plate for fuel battery

Publications (1)

Publication Number Publication Date
JP2008300120A true JP2008300120A (en) 2008-12-11

Family

ID=40173452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143374A Pending JP2008300120A (en) 2007-05-30 2007-05-30 Current collecting plate for fuel battery

Country Status (1)

Country Link
JP (1) JP2008300120A (en)

Similar Documents

Publication Publication Date Title
US7799480B2 (en) Fuel cell stack with dummy cell
US7309539B2 (en) Fuel cell stack
JP4828841B2 (en) Fuel cell
US20070287053A1 (en) Collecting Plate, Fuel Cell, and Method for Manufacturing Same
JP5098128B2 (en) Fuel cell
KR20070005999A (en) Stack and fuel cell system with the same
JP4447204B2 (en) Fuel cell with metal separator
JP2009176609A (en) Fuel cell stack and current-collecting plate used for the fuel cell stack
CN101828293A (en) Fuel cell
US7713643B2 (en) Fuel cell stack
JP2011086549A (en) Fuel cell system
US9190691B2 (en) Fuel cell stack
KR101155911B1 (en) Stack for fuel cell system
JP6155711B2 (en) Fuel cell
JP4461949B2 (en) Solid oxide fuel cell
JP2019531577A (en) Fuel cell
JP2003217615A (en) Separator for fuel cell
JP2008300120A (en) Current collecting plate for fuel battery
JP4726182B2 (en) Fuel cell stack
JP2003297395A (en) Fuel cell
JP2002280048A (en) Fuel cell
JP4438762B2 (en) Fuel cell
JP2006216240A (en) Solid polymer fuel cell
JP4656841B2 (en) Fuel cell separator
JP2008117789A (en) Metal separator for fuel cell