JP2008298550A - Road surface height measuring apparatus and road surface height measuring method - Google Patents
Road surface height measuring apparatus and road surface height measuring method Download PDFInfo
- Publication number
- JP2008298550A JP2008298550A JP2007144214A JP2007144214A JP2008298550A JP 2008298550 A JP2008298550 A JP 2008298550A JP 2007144214 A JP2007144214 A JP 2007144214A JP 2007144214 A JP2007144214 A JP 2007144214A JP 2008298550 A JP2008298550 A JP 2008298550A
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- base station
- surface height
- height measuring
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000005259 measurement Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
本発明は、河川堤防の縦断断面図を得るなどの、路面高を路面に沿って測定する装置及び方法に関する。 The present invention relates to an apparatus and a method for measuring a road surface height along a road surface, such as obtaining a longitudinal sectional view of a river bank.
従来、河川堤防の決壊を未然に防止するために、河川堤防の保守が行われている。そのためには、河川堤防の河川に沿った正確な縦断断面図を得て、堤防のどの位置の高さが不足しているかを知る必要があった。このためには、レーザを用いた航空測量がある。その方法は、ヘリコプターにGPSとレーザを搭載して、ヘリコプタの位置をGPSで測定する。ヘリコプタから堤防の路面までの方向と距離を、レーザビームを堤防の路面に照射して、その反射波を受光し、照射角から方向を測定し、レーザの照射から反射波の受光までの時間から距離を測定する。そして、ヘリコプタの位置とヘリコプタから堤防の路面までの方向と距離とから、堤防のレーザの照射点におけるXYZ座標を求めるものである。その他の方法としては、実際に、堤防に出向いて、徒歩により、水平及び三角測量により、堤防の位置及び高さを測定する方法がある。また、GPSを用いた測量、測位としては、下記特許文献1、2に記載の方法が知られている。 Conventionally, maintenance of river embankments has been performed in order to prevent the river embankments from breaking down. To that end, it was necessary to obtain an accurate longitudinal cross-sectional view along the river of the river bank to know which position of the bank was insufficient. For this purpose, there is an aerial survey using a laser. In this method, a GPS and a laser are mounted on a helicopter, and the position of the helicopter is measured by GPS. The direction and distance from the helicopter to the road surface of the embankment, the laser beam is irradiated onto the road surface of the embankment, the reflected wave is received, the direction is measured from the irradiation angle, and the time from the laser irradiation to the reception of the reflected wave Measure distance. Then, XYZ coordinates at the laser irradiation point of the bank are obtained from the position of the helicopter and the direction and distance from the helicopter to the road surface of the bank. As another method, there is a method of actually going to the embankment, walking, measuring the position and height of the embankment by horizontal and triangulation. As surveying and positioning using GPS, methods described in Patent Documents 1 and 2 below are known.
ところが、レーザを用いる航空測量は、路面に雑草が生えている場合には、雑草の先端で、レーザが反射するために、正確に路面の高さが測定できないという問題がある。また、航空機を用いた測量であるために、経費がかかるという問題もある。一方、200m毎の距離標地点での、徒歩による従来の水平及び三角測量では、200m以内の区間での堤防の路面の陥没を見落とすという問題がある。このため、距離標地点では、堤防の路面高さが規格値を越えていても、距離標地点間で、実際には、規格値よりも低い路面高となっている場合があった。また、200mよりもさらに短い間隔で、徒歩で三角測量をするとすると、手間が非常にかかり、この測定点数の増加にも限度がある。そのため、堤防の縦断断面図を正確に得ることは、実質上、不可能であった。 However, aerial survey using a laser has a problem that when the weeds grow on the road surface, the height of the road surface cannot be measured accurately because the laser beam is reflected at the tip of the weeds. In addition, there is a problem that it is expensive because the survey is performed using an aircraft. On the other hand, in the conventional horizontal and triangulation surveys by walking at distance markers at every 200 m, there is a problem of overlooking the collapse of the dike road surface in a section within 200 m. For this reason, even if the road surface height of the embankment exceeds the standard value at the distance marker point, the road surface height may actually be lower than the standard value between the distance marker points. Further, if triangulation is performed on foot at intervals shorter than 200 m, it takes much time and there is a limit to the increase in the number of measurement points. For this reason, it has been virtually impossible to accurately obtain a longitudinal sectional view of a dike.
一方、上記特許文献1、2の方法は、単に、各地点でのGPSデータを集積して、測量、測位する方法に過ぎず、河川堤防の正確な縦断断面図を得る方法は、示唆されていない。 On the other hand, the methods of Patent Documents 1 and 2 are merely methods for accumulating GPS data at each point to perform surveying and positioning, and a method for obtaining an accurate longitudinal sectional view of a river bank has been suggested. Absent.
本発明は、上記の課題を解決するために成されたものであり、本発明の目的は、河川堤防の河川に沿った正確な縦断断面図が得られる程の細かなピッチでの路面高を得ることができるようにすることである。 The present invention has been made to solve the above-described problems, and the object of the present invention is to increase the road surface height at such a fine pitch that an accurate longitudinal sectional view along the river of the river bank is obtained. Is to be able to get.
上記課題を解決するための第1の発明は、路面の位置及び高度を測定する路面高測定装置において、路面に接触して回転可能な車輪と、車輪を回転可能に支持し、長さが既知のポールと、ポールの頂部に設けられたGPS電波を受信して移動点位置情報を取得する受信装置と、GPS受信装置により取得されたGPSデータを時刻と共に記憶する記憶装置とを有することを特徴とする路面高測定装置である。 1st invention for solving the said subject is the road surface height measuring apparatus which measures the position and altitude of a road surface, supports the wheel which can rotate in contact with a road surface, a wheel rotatably, and length is known. , A receiving device that receives GPS radio waves provided at the top of the pole to acquire movement point position information, and a storage device that stores GPS data acquired by the GPS receiving device together with time Is a road surface height measuring device.
また、第2の発明は、第1の発明の路面高測定装置を路面上を移動させながら、路面の位置及び高度を測定する路面高測定方法において、路面の位置及び高度を測定する測定時に、測定する路面の経路上に所定距離だけ隔てた2点に、それぞれ、第1基地局と第2基地局とを設定し、測定時において、第1基地局、第2基地局及び路面高測定装置においてGPS電波を受信して、時刻と共にそれらのGPSデータを記憶し、それらのGPSデータから、その時刻における路面高測定装置の第1基地局及び第2基地局に対する相対位置を求め、第1基地局及び第2基地局の近くに存在する電子基準点で受信される前記の各時刻におけるGPSデータと、第1基地局及び第2基地局におけるその時刻におけるGPSデータとから、第1基地局及び第2基地局のその時刻における絶対位置を求め、その時刻における第1基地局及び第2基地局の絶対位置と、路面高測定装置の相対位置とから、路面高測定装置のその時刻における絶対位置を求めることを特徴する路面高測定方法である。 Further, the second invention is a road surface height measuring method for measuring the position and altitude of the road surface while moving the road surface height measuring device of the first invention on the road surface, at the time of measuring the position and altitude of the road surface, A first base station and a second base station are respectively set at two points separated by a predetermined distance on the road surface to be measured. At the time of measurement, the first base station, the second base station, and the road surface height measuring device The GPS radio waves are received at the time, and the GPS data is stored together with the time. From the GPS data, the relative position of the road surface height measuring device at the time with respect to the first base station and the second base station is obtained. From the GPS data at each time received at the electronic reference point existing near the station and the second base station, and the GPS data at the time at the first base station and the second base station, the first base station and The absolute position of the two base stations at that time is obtained, and the absolute position of the road height measuring device at that time is obtained from the absolute positions of the first base station and the second base station at that time and the relative position of the road height measuring device. This is a road surface height measuring method characterized by obtaining.
また、第3の発明は、第3の発明において、路面高測定装置の絶対位置は、第1基地局に対する相対位置から求められた第1絶対位置と、第2基地局に対する相対位置から求められた第2絶対位置とを、第1基地局と第2基地局との間の距離に対する、路面高測定装置の第2基地局からの距離の比、第1基地局からの距離の比に応じて重み付け加算した値で求めることを特徴とする。 In a third aspect based on the third aspect, the absolute position of the road surface height measuring device is obtained from the first absolute position obtained from the relative position with respect to the first base station and the relative position with respect to the second base station. The second absolute position according to the ratio of the distance from the second base station to the distance between the first base station and the distance from the first base station to the distance between the first base station and the second base station. It is characterized in that it is obtained by a value obtained by weighted addition.
路面高測定装置の発明では、この装置の車輪と路面とを接触させて、このポールを人間が保持して、この車輪を回転させながら、路面上を移動するだけで、GPS電波を受信して記憶させることができる。この結果、車輪を堤防の路面に接触させながら、ポールを移動させるので、測定が極めて簡単となる。また、この測定装置を用いた路面高測定方法では、第1基地局及び第2基地局を定め、その基地局間を路面高測定装置を移動させて、第1及び第2基地局におけるGPSデータと共に、移動する路面高測定装置でのGPSデータを測定している。したがって、同時刻での3者のGPSデータから、第1基地局及び第2基地局に対する路面高測定装置の相対位置が、時刻と共に求められることになる。したがって、共通時刻において、2つの基地局に対する相対位置として、移動する路面高測定装置の位置が特定される結果、より、正確な位置を決定することができる。また、基地局のGPSデータは、GPSデータを取得する時刻での電子基準点でのGPSデータにより、さらに、補正されるため、第1基地局と第2基地局間における路面の高さを連続して、正確に測定することが可能となる。 In the invention of the road surface height measuring device, the wheel of this device is brought into contact with the road surface, the person holds the pole, and the GPS wave is received only by moving on the road surface while rotating the wheel. It can be memorized. As a result, since the pole is moved while the wheel is in contact with the road surface of the bank, the measurement becomes extremely simple. Further, in the road surface height measuring method using this measuring device, the first base station and the second base station are determined, the road surface height measuring device is moved between the base stations, and the GPS data in the first and second base stations is determined. At the same time, GPS data is measured by a moving road surface height measuring device. Therefore, the relative position of the road surface height measuring device with respect to the first base station and the second base station is obtained together with the time from the GPS data of the three parties at the same time. Therefore, as a result of specifying the position of the moving road surface height measuring device as the relative position with respect to the two base stations at the common time, a more accurate position can be determined. Further, since the GPS data of the base station is further corrected by the GPS data at the electronic reference point at the time when the GPS data is acquired, the road surface height between the first base station and the second base station is continuously increased. Thus, accurate measurement can be performed.
また、2つの基地局に対する路面高測定装置の相対位置が測定されるが、この相対位置は、基地局に対する距離が短い程、基地局と路面高測定装置とが同一経路でGPS電波を受信するので、誤差が小さくなる。したがって、第3の発明のように、第1基地局のGPSデータから得られた路面高測定装置の位置と、第2の基地局のGPSデータから得られた路面高測定装置の位置を、相手方の基地局に対する距離の基地局間距離に対する比で、重み付け加算することで、路面高測定装置の正確な絶対位置を得ることかできる。 In addition, the relative position of the road surface height measuring device with respect to the two base stations is measured. As the relative position is shorter, the base station and the road surface height measuring device receive GPS radio waves on the same route. Therefore, the error becomes small. Therefore, as in the third invention, the position of the road surface height measuring device obtained from the GPS data of the first base station and the position of the road surface height measuring device obtained from the GPS data of the second base station are It is possible to obtain an accurate absolute position of the road surface height measuring device by performing weighted addition with the ratio of the distance to the base station to the distance between the base stations.
以下、本発明を具体的な実施例に基づいて説明する。ただし、本発明は以下に示す実施例に限定されるものではない。 Hereinafter, the present invention will be described based on specific examples. However, the present invention is not limited to the following examples.
図1は、路面高測定装置1の構成を示した図で、(a)は正面図、(b)は側面図である。ゴムタイヤ11を有した車輪10は、路面20に接触して、路面20上を回転可能に支持部材30により支持されている。車輪10は、回転中心に車軸12を有しており、この車軸12が支持部材30に設けられたボールベアリングによる軸受31により回転可能に支持されている。支持部材30は、正面形状は、三角形をなし、側面形状は、平板が折り返されたU字形状をしている。このU字形状の平坦な頂部32に、所定長さのロッド40が立設されている。このロッド40の上部先端には、GPS電波を受信するアンテナ41が設けられている。このアンテナ41で受信されたGPSデータは、記録装置50に、測定時刻と共に、記憶される。車輪10を路面20に接触させて、ロッド40を路面20に対して垂直に保持した状態で、アンテナ41の電波受信面は路面20から正確に2mの位置となるように、車輪10の直径、ロッド40の長さ、アンテナ41の厚さが設計されている。
1A and 1B are diagrams showing a configuration of a road surface height measuring apparatus 1, in which FIG. 1A is a front view and FIG. 1B is a side view. The
次に、この路面高測定装置1を用いて、河川堤防の河川に沿った縦断断面図を測定する方法について説明する。
図2の(a)は、河川堤防の平面図である。河川61の両側に河川堤防60、62が存在し、本方法は、河川堤防60の河川に沿った(b)に示す縦断断面図を求める方法である。まず、測定区間の両端に第1基地局71、第2基地局72を設ける。これらの基地局間は2kmに設定されている。この第1、第2基地局71、72は、GPSデータを時刻と共に正確に受信できる装置であり、精密な静止観測が行われる。各基地局は、最低4つのGPS衛星からのGPSデータを受信する。GPSデータは、(送信時刻,衛星の位置)などから成るデータである。そして、第1、第2基地局71、72は、受信時刻、受信電波の位相、衛星からのGPSデータを、連続して記憶する。
Next, a method for measuring a longitudinal sectional view along the river of the river embankment using the road surface height measuring device 1 will be described.
FIG. 2A is a plan view of a river bank.
次に、路面高測定装置1を堤防60の路面20に沿って、第1基地局71から第2基地局72に向けて、移動させて、1秒間隔でGPSデータを受信し、記録装置50に受信時刻、その時の電波の位相データ、GPSデータを記録する。また、200m毎に、路面高測定装置1を静止させて、10秒間のデータを蓄積して、静止観測を行う。この間、路面高測定装置1と、第1、第2基地局71、72では、これらの衛星から送信されるGPSデータ、受信電波の位相が受信時刻と共に記憶される。
Next, the road surface height measuring device 1 is moved along the
一方、電子基準局は、緯度、経度、高度が、正確に既知の値として特定されている。この電子基準局における各衛星からのGPSデータは、受信時刻と共に記録されている。 On the other hand, in the electronic reference station, latitude, longitude, and altitude are accurately specified as known values. GPS data from each satellite in this electronic reference station is recorded together with the reception time.
以上のようにして、路面高測定装置1を堤防60の路面20上を移動させながら、GPSデータを時刻と共に蓄積する。まず、路面高測定装置1で蓄積したデータをD1(t)〜D4(t)とする。すなわち、衛星に搭載された時計による時刻t(GPSデータに含まれている)の送信データを路面高測定装置1が、各衛星から受信した受信データをD1(t)〜D4(t)とする。このデータには、送信時刻tの各衛星からの送信データを受信した、路面高測定装置1の有する時計による受信時刻T1〜T4も含まれている。この時刻T1〜T4は、各衛星から送信された電波の位相を検出することにより、時刻、すなわち、各衛星と路面高測定装置1との間の距離の分解能を向上させている。路面高測定装置1の時計は、衛星の時計に比べて正確ではない。そこで、衛星の時計に対して、路面高測定装置1の時計は、未知の時間Δだけ進んでいるとする。このΔは4つの衛星に対して同一の時刻差を与えることになる。したがって、各衛星と路面高測定装置1の時刻tにおける距離L1(t)は、L1(t)=(T1−t−Δ)×v1(t)で表される。ただし、v1(t)は、衛星1から送信された時刻tでの電波の伝搬速度である。これは電離層や気象の状態で変化するが、衛星の位置と高さを考慮すると、堤防60を測定している区間においては、一定と見做すことができる。
As described above, GPS data is accumulated with time while the road surface height measuring device 1 is moved on the
4つの衛星に対して時刻tでの式が、L1(t)=(T1−t−Δ)×v1(t),…,L4(t)=(T4−t−Δ)×v4(t)の4つの方程式を立てることができる。未知変数は、路面高測定装置1の緯度、経度、高度の3座標、Δ、v1(t)〜v4(t)8変数である。既知変数は、各衛星の位置と、時刻tである。このような方程式が第1基地局71、第2基地局72に対しても立てることが可能となる。ただし、第1基地局71、第2基地局72の緯度、経度、高度は、まずは、正確に測定されておりこの値は既知であると仮定する。結局、第1基地局71又は第2基地局72と、路面高測定装置1とで、8個の未知変数に対して8個の連立法定式を立てることができ、路面高測定装置1の時刻tにおける緯度、経度、高度を測定することができる。この第1基地局71、第2基地局72の緯度、経度、高度が正確に求まっていなくとも、各衛星に対しては、路面高測定装置1と共通の電波経路を構成していると見做せるので、路面高測定装置1の第1基地局71又は第2基地局72に対する相対的な緯度、経度、高度は正確に求めることができる。
For four satellites, the expression at time t is L1 (t) = (T1−t−Δ) × v1 (t),..., L4 (t) = (T4−t−Δ) × v4 (t) The following four equations can be established. The unknown variables are three coordinates of the latitude, longitude, and altitude of the road surface height measuring device 1, Δ, and v1 (t) to v4 (t) 8 variables. The known variables are the position of each satellite and the time t. Such an equation can be established for the
次に、第1基地局71と第2基地局72においては、精密な多数回の測定を行い、測定区間に最も近い電子基準点での衛星からの受信データS1(t)〜S4(t)を用いて、第1基地局71と第2基地局72の正確な緯度、経度、高度を求める。電子基準点は、全国に1200箇所存在し、極めて正確に緯度、経度、高度が求められている。そして、この電子基準点での各衛星からの受信データS1(t)〜S4(t)が公開されている。tは衛星の時計であり、したがって、地球上の年、月、日、時、分、秒…の正確な時刻でもある。共通な時刻tで、電子基準点と第1基地局71及び第2基地局72で、上述した方法により、第1基地局71と第2基地局72のその時刻tにおける緯度、経度、高度を得ることができる。次に、上述のようにして求められた時刻tにおける路面高測定装置1の第1基地局71又は第2基地局72に対する相対的な緯度、経度、高度を、第1基地局71、又は、第2基地局72の時刻tにおける緯度、経度、高度に加算する。この値は、路面高測定装置1の時刻tにおける正確な緯度、経度、高度を与えることになる。この値は、1級GPS定点観測に相当する。
Next, the
路面高測定装置1の緯度、経度、高度は、第1基地局71の情報から求められた値(x1,y1,z1)と、第2基地局72の情報から求められた値(x2,y2,z2)との2つの値が存在する。この値は、路面高測定装置1が第1基地局71に、第2基地局72よりも、より近い位置にあるならば、第1基地局71に対して求めた値の方が、第2基地局72に対して求められた値よりも誤差が小さいと言える。すなわち、基地局と路面高測定装置1が4つの衛星を見た時に、より電波経路が接近している基地局の方の情報を用いて求めた方が誤差が小さいと言える。
The latitude, longitude, and altitude of the road surface height measuring device 1 are values (x1, y1, z1) obtained from information of the
そこで、路面高測定装置1の真の緯度、経度、高度(x,y,z)を次式で求める。
x=(1−α)・x1+α・x2 …(1)
y=(1−α)・y1+α・y2 …(2)
z=(1−α)・z1+α・z2 …(3)
ただし、αは、路面高測定装置1の第1基地局71からの距離/(第2基地局72と第1基地局71との間の距離)、すなわち、路面高測定装置1の測定区間に対する内分比率である。
Therefore, the true latitude, longitude, and altitude (x, y, z) of the road surface height measuring device 1 are obtained by the following equations.
x = (1−α) · x1 + α · x2 (1)
y = (1−α) · y1 + α · y2 (2)
z = (1−α) · z1 + α · z2 (3)
However, α is the distance from the
このようにして、路面高測定装置1のアンテナ41における緯度、経度、高度を正確に測定できるので、その値からアンテナ41の高さ2.000mを一様に減算すれば、路面20の緯度、経度、高度を得ることができる。このようにして、図2(b)に示すように、河川堤防の縦断断面図を得ることができる。
In this way, since the latitude, longitude, and altitude at the
以上の手法で、実際に、河川堤防の縦断断面を測定した。河川堤防の路面20上の路面高測定装置1の車輪10が通る位置を、川表側堤防肩との境界を示す白線、表のり肩から1m、管理道路の中心線とした。第1基地局71と第2基地局72は2kmの間隔で設置し、その間の路面を路面高測定装置1を1往復させて、測定した。測定間隔は1秒、移動速度は、大略1m/sec 、200m毎の定点では、10秒の静止観測を行った。また、各位置での測定値は、上記の(1)〜(3)式により求めた。また、全長50kmに渡って、河川堤防の縦断断面を測定した。
The longitudinal section of the river dike was actually measured by the above method. The position through which the
この測定値の較差を求めた。基準値は、1級定点観測をして得られた値とした。
その結果を表1、表2に示す。
The results are shown in Tables 1 and 2.
表1は、200m間隔の定点で、10秒の定点観測をした場合である。高さを例にとると、平均較差は0.000m、標準偏差は0.010m、較差の最大値は、0.040m、較差の最小値は、−0.042mである。 Table 1 shows a case where fixed points are observed at intervals of 200 m and fixed points are observed for 10 seconds. Taking the height as an example, the average difference is 0.000 m, the standard deviation is 0.010 m, the maximum value of the difference is 0.040 m, and the minimum value of the difference is -0.042 m.
表2は、1m/sec で路面高測定装置1を移動しながら1m間隔で測定した場合の高度の測定値の較差を示す。平均較差の最大値は0.009m、標準偏差の最大値は0.030mが得られている。最大較差が0.192mと高い値もあるが、その値を含む区間における平均較差が0.009ち小さいことから、全体的には、信頼性のある値が得られていることが分かる。 Table 2 shows the difference in measured values of altitude when measured at 1 m intervals while moving the road surface height measuring device 1 at 1 m / sec. The maximum value of the average difference is 0.009 m, and the maximum value of the standard deviation is 0.030 m. Although the maximum difference is as high as 0.192 m, the average difference in the section including the value is smaller by 0.009, so that it is understood that a reliable value is obtained as a whole.
また、本手法で他の堤防の縦断断面を測定した結果、堤防川表側のコンクリートブロック張りによる堤体強化工事が施された部分では、最大8cmの路面の沈下が観測された。さらに、堤防に一方の側に土砂が300mに渡って仮置された箇所が存在したが、この区間において、300mに渡り、最大5cmの沈下が観測された。また、盛土による土留め工法が相違する区間が存在するが、この工法の相違により、地盤沈下の量が異なることが、本手法により観測された。 Moreover, as a result of measuring the longitudinal section of other dikes with this method, a maximum of 8 cm of road surface subsidence was observed in the part where the embankment reinforcement work was carried out by the concrete block tensioning on the embankment river front side. In addition, there was a place where earth and sand were temporarily placed on one side of the dike for 300 m. In this section, subsidence of up to 5 cm was observed over 300 m. In addition, there are sections where the earth retaining method by embankment is different, but it was observed by this method that the amount of ground subsidence differs due to this difference in construction method.
このように、本発明を用いることで、堤防縦断面をcmオーダで測定することができる。 As described above, by using the present invention, the longitudinal dike can be measured in cm order.
本発明は、河川堤防の縦断断面を求めるのに用いることができる。 The present invention can be used to obtain a longitudinal section of a river bank.
1…路面高測定装置
10…車輪
12…車軸
30…支持部材
31…軸受
32…頂部
40…ロッド
41…アンテナ
50…記録装置
DESCRIPTION OF SYMBOLS 1 ... Road surface
Claims (3)
前記路面に接触して回転可能な車輪と、
前記車輪を回転可能に支持し、長さが既知のポールと、
前記ポールの頂部に設けられたGPS電波を受信して移動点位置情報を取得する受信装置と、
前記GPS受信装置により取得されたGPSデータを時刻と共に記憶する記憶装置と
を有することを特徴とする路面高測定装置。 In the road surface height measuring device that measures the position and altitude of the road surface,
Wheels capable of rotating in contact with the road surface;
The wheel is rotatably supported, and a pole with a known length;
A receiving device that receives GPS radio waves provided at the top of the pole and obtains moving point position information;
A road surface height measuring device comprising: a storage device that stores GPS data acquired by the GPS receiver together with time.
路面の位置及び高度を測定する測定時に、測定する路面の経路上に所定距離だけ隔てた2点に、それぞれ、第1基地局と第2基地局とを設定し、
前記測定時において、前記第1基地局、前記第2基地局及び前記路面高測定装置においてGPS電波を受信して、時刻と共にそれらのGPSデータを記憶し、
それらのGPSデータから、その時刻における前記路面高測定装置の前記第1基地局及び前記第2基地局に対する相対位置を求め、
前記第1基地局及び前記第2基地局の近くに存在する電子基準点で受信される前記の各時刻におけるGPSデータと、前記第1基地局及び前記第2基地局におけるその時刻におけるGPSデータとから、前記第1基地局及び第2基地局のその時刻における絶対位置を求め、
その時刻における前記第1基地局及び前記第2基地局の絶対位置と、前記路面高測定装置の前記相対位置とから、前記路面高測定装置のその時刻における絶対位置を求める
ことを特徴する路面高測定方法。 In the road surface height measuring method for measuring the position and altitude of the road surface while moving the road surface height measuring device according to claim 1 on the road surface,
At the time of measuring the position and altitude of the road surface, the first base station and the second base station are respectively set at two points separated by a predetermined distance on the road surface to be measured.
At the time of the measurement, the first base station, the second base station and the road surface height measuring device receive GPS radio waves, store the GPS data along with the time,
From those GPS data, obtain the relative position of the road surface height measuring device at the time with respect to the first base station and the second base station,
GPS data at each time received at an electronic reference point located near the first base station and the second base station, and GPS data at the time at the first base station and the second base station, From the absolute position at the time of the first base station and the second base station,
A road surface height characterized in that an absolute position at the time of the road surface height measuring device is obtained from the absolute positions of the first base station and the second base station at the time and the relative position of the road surface height measuring device. Measuring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007144214A JP5060831B2 (en) | 2007-05-30 | 2007-05-30 | Road height measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007144214A JP5060831B2 (en) | 2007-05-30 | 2007-05-30 | Road height measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008298550A true JP2008298550A (en) | 2008-12-11 |
JP5060831B2 JP5060831B2 (en) | 2012-10-31 |
Family
ID=40172206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007144214A Active JP5060831B2 (en) | 2007-05-30 | 2007-05-30 | Road height measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5060831B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013029470A (en) * | 2011-07-29 | 2013-02-07 | Css Engineering Co Ltd | Survey method and survey device for uneven plane |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07159169A (en) * | 1993-12-10 | 1995-06-23 | Mitsui Constr Co Ltd | Surveying device |
JPH0961511A (en) * | 1995-08-28 | 1997-03-07 | Data Tec:Kk | Highly accurate position-measuring apparatus utilizing gps |
JPH0961509A (en) * | 1995-08-22 | 1997-03-07 | Hitachi Zosen Corp | Method and apparatus for gps survey |
JP2001116820A (en) * | 1999-10-15 | 2001-04-27 | Ntt Communications Kk | Method of correcting dgps, and mobile station |
JP2002311124A (en) * | 2001-04-11 | 2002-10-23 | Mitsui & Co Ltd | Satellite position measuring system |
JP2004144622A (en) * | 2002-10-24 | 2004-05-20 | Kokusai Kogyo Co Ltd | Monitoring system for sloped face |
JP2006500567A (en) * | 2002-09-23 | 2006-01-05 | トプコン・ジーピーエス・エルエルシー | Position estimation using a network of global positioning receivers |
JP2006275882A (en) * | 2005-03-30 | 2006-10-12 | Mitsubishi Electric Corp | Apparatus, method and program for delivering compensation information, and delivery system and positioning terminal |
-
2007
- 2007-05-30 JP JP2007144214A patent/JP5060831B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07159169A (en) * | 1993-12-10 | 1995-06-23 | Mitsui Constr Co Ltd | Surveying device |
JPH0961509A (en) * | 1995-08-22 | 1997-03-07 | Hitachi Zosen Corp | Method and apparatus for gps survey |
JPH0961511A (en) * | 1995-08-28 | 1997-03-07 | Data Tec:Kk | Highly accurate position-measuring apparatus utilizing gps |
JP2001116820A (en) * | 1999-10-15 | 2001-04-27 | Ntt Communications Kk | Method of correcting dgps, and mobile station |
JP2002311124A (en) * | 2001-04-11 | 2002-10-23 | Mitsui & Co Ltd | Satellite position measuring system |
JP2006500567A (en) * | 2002-09-23 | 2006-01-05 | トプコン・ジーピーエス・エルエルシー | Position estimation using a network of global positioning receivers |
JP2004144622A (en) * | 2002-10-24 | 2004-05-20 | Kokusai Kogyo Co Ltd | Monitoring system for sloped face |
JP2006275882A (en) * | 2005-03-30 | 2006-10-12 | Mitsubishi Electric Corp | Apparatus, method and program for delivering compensation information, and delivery system and positioning terminal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013029470A (en) * | 2011-07-29 | 2013-02-07 | Css Engineering Co Ltd | Survey method and survey device for uneven plane |
Also Published As
Publication number | Publication date |
---|---|
JP5060831B2 (en) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Malet et al. | The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) | |
Gili et al. | Using Global Positioning System techniques in landslide monitoring | |
Baker | Absolute sea level measurements, climate change and vertical crustal movements | |
Baldi et al. | Digital photogrammetry and kinematic GPS applied to the monitoring of Vulcano Island, Aeolian Arc, Italy | |
Song et al. | Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event | |
Wesche et al. | Surface topography and ice flow in the vicinity of the EDML deep-drilling site, Antarctica | |
Varbla et al. | Assessment of marine geoid models by ship-borne GNSS profiles | |
Janssen et al. | The Australian Height Datum turns 50: Past, present & future | |
Guo et al. | Evaluation of water level estimation in the upper Yangtze River from ICESat-2 data | |
JP5060831B2 (en) | Road height measurement method | |
Vittuari et al. | Space geodesy as a tool for measuring ice surface velocity in the Dome C region and along the ITASE traverse | |
Klügel et al. | Ground survey and local ties at the geodetic observatory wettzell | |
Garrido et al. | A high spatio-temporal methodology for monitoring dunes morphology based on precise GPS-NRTK profiles: Test-case of Dune of Mónsul on the south-east Spanish coastline | |
Alharthy¹ et al. | Analysis and accuracy assessment of airborne laserscanning system | |
JP3193949B2 (en) | Measurement device using GPS | |
Gond et al. | Accuracy assessment of relative GPS as a function of distance and duration for CORS network | |
Gonçalves et al. | Mobile mapping system based on action cameras | |
Nolan et al. | Which are the highest peaks in the US Arctic? Fodar settles the debate | |
Yamawaki et al. | High-rate altimetry in SNR-based GNSS-R: Proof-of-concept of a synthetic vertical array | |
Lang et al. | Accuracy detection of Satellite Technology in the Deformation Monitoring of Slope | |
Hapke et al. | The measurement and interpretation of coastal cliff and bluff retreat | |
Zhou et al. | Calibration results of multiple satellite altimetry missions from QianliYan permanent CAL/VAL facilities | |
Nusantara et al. | Instantaneous height of sea surface: A comparison between local field observation and the simulated level from global models | |
JP3089292B2 (en) | Height measurement method and device using GPS | |
Kromuszczyńska et al. | Evaluation of the EGNOS service for topographic profiling in field geosciences |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120731 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120806 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5060831 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |