JP2008298474A - Sound quality evaluation device and method for vehicle - Google Patents
Sound quality evaluation device and method for vehicle Download PDFInfo
- Publication number
- JP2008298474A JP2008298474A JP2007142313A JP2007142313A JP2008298474A JP 2008298474 A JP2008298474 A JP 2008298474A JP 2007142313 A JP2007142313 A JP 2007142313A JP 2007142313 A JP2007142313 A JP 2007142313A JP 2008298474 A JP2008298474 A JP 2008298474A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- evaluation
- order
- component
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
本発明は、車両の排気吐出口や車内運転席耳位置等における音の協和感を評価する車両用音質評価装置、及び、車両用音質評価方法に関する。 The present invention relates to a vehicular sound quality evaluation apparatus and a vehicular sound quality evaluation method for evaluating a feeling of sound harmony at an exhaust outlet of a vehicle, a driver seat ear position, and the like.
従来より、車両においては、車両の伝達音を評価する様々な技術が提案されている。例えば、特開2002−123261号公報では、データベースに聴覚感性に基づく様々な評価語(「快適」、「歯切れのある」、「リニア感のある」)及び所定の機械要素に対応した、音の周波数スペクトル、エンジン回転数と騒音レベルの相関テーブル等の音響特性データを備え、受音部で受音した音の騒音レベルの測定、エンジン音に起因する周期音、走行に起因する非周期音の測定等の分析を行って、これらの分析値をデータベースを参照して評価語と評価値を算出する技術が開示されている。
ところで、音には美しさを感じさせる一要素として「協和感」というものがあり、従来、車両におけるこの「協和感」の評価は、熟練評価者による官能法により評価していた。しかし、官能法では評価者の個人差や体調変化などによる評価バラツキが大きく、再現性のある定量評価法が求められている。上述の特許文献1に開示される評価法では、「リニア感のある」音を評価するために、回帰直線からの変位量を求めることにより、「リニア感」の評価値を求める例が開示されているが、音の「協和感」の評価については何ら開示されておらず、「協和感」について、再現性のある適切な定量評価法の技術の開発が強く求められている。
By the way, there is a thing called “consonance” as one element that makes a sound feel beauty. Conventionally, evaluation of this “consonance” in a vehicle has been evaluated by a sensory method by a skilled evaluator. However, the sensory method has a large evaluation variation due to individual differences of the evaluator and changes in physical condition, and a quantitative evaluation method with reproducibility is required. In the evaluation method disclosed in
本発明は上記事情に鑑みてなされたもので、車両に生じる様々な音についての協和感に対し、再現性のある適切な定量評価を可能とする車両用音質評価装置、及び、車両用音質評価方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a vehicle sound quality evaluation apparatus and a vehicle sound quality evaluation that enable appropriate quantitative evaluation with reproducibility for a sense of harmony regarding various sounds generated in a vehicle. It aims to provide a method.
本発明は、計測した評価対象とする評価音を次数解析する次数解析手段と、基音となる次数成分とその倍音となる次数成分の音圧レベルに対する直線の理想とする傾き角度を理想傾き角度として記憶する理想傾き角度記憶手段と、上記次数解析した評価音の上記基音となる次数成分とその倍音となる次数成分の音圧レベルに対する直線の傾きを解析傾き角度として求める解析傾き角度演算手段と、少なくとも上記理想傾き角度と上記解析傾き角度に基づいて上記評価音の協和感を定量評価する評価式を予め設定し、該評価式に基づいて上記評価音の協和感を定量評価する定量評価手段とを備えたことを特徴としている。 The present invention provides an order analysis means for performing order analysis of the evaluation sound to be evaluated, and an ideal inclination angle of a straight line with respect to the sound pressure level of the order component serving as the fundamental tone and the order component serving as a harmonic thereof, as an ideal tilt angle. An ideal inclination angle storage means for storing, an analysis inclination angle calculation means for obtaining, as an analysis inclination angle, an inclination of a straight line with respect to a sound pressure level of the order component which is the fundamental sound of the evaluation sound subjected to the order analysis and a harmonic component thereof; A quantitative evaluation means for preliminarily setting an evaluation formula for quantitatively evaluating the cooperative feeling of the evaluation sound based on at least the ideal inclination angle and the analytical inclination angle, and quantitatively evaluating the cooperative feeling of the evaluation sound based on the evaluation formula; It is characterized by having.
本発明による車両用音質評価装置、及び、車両用音質評価方法によれば、車両に生じる様々な音についての協和感に対し、再現性のある適切な定量評価が可能となる。 According to the vehicle sound quality evaluation apparatus and the vehicle sound quality evaluation method according to the present invention, it is possible to perform appropriate quantitative evaluation with reproducibility for a sense of harmony regarding various sounds generated in the vehicle.
以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図8は本発明の実施の一形態を示し、図1は車両用音質評価装置の全体を示す構成図、図2は音質評価プログラムのフローチャート、図3は協和感定量評価式による協和感レベルの演算処理ルーチンのフローチャート、図4は評価音の次数解析の一例を示す説明図、図5は4気筒エンジンの車内音の解析の一例を示す説明図、図6は6気筒エンジンの車内音の解析の一例を示す説明図、図7は評価音の評価の説明図、図8はエンジン回転数と周波数で音質を表示する例の説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 8 show an embodiment of the present invention, FIG. 1 is a block diagram showing the overall sound quality evaluation apparatus for a vehicle, FIG. 2 is a flowchart of a sound quality evaluation program, and FIG. FIG. 4 is an explanatory diagram showing an example of the order analysis of the evaluation sound, FIG. 5 is an explanatory diagram showing an example of the analysis of the interior sound of the 4-cylinder engine, and FIG. 6 is the interior of the 6-cylinder engine. FIG. 7 is an explanatory view showing an example of sound analysis, FIG. 7 is an explanatory view of evaluation sound evaluation, and FIG. 8 is an explanatory view of an example of displaying sound quality by engine speed and frequency.
本実施形態において、車両の音質評価の処理は、パーソナルコンピュータ(以下、PCと略称)等のコンピュータシステムにおいて後述する処理プログラムが実行されることによって行われる。 In the present embodiment, the sound quality evaluation process of the vehicle is performed by executing a processing program described later in a computer system such as a personal computer (hereinafter abbreviated as PC).
図1に示すように、車両用音質評価装置であるPC1は、中央処理装置(以下、CPUと略称)と各種データ及びプログラムを記憶する記憶装置とを備えたコンピュータ本体2と、このコンピュータ本体2に接続された、キー入力装置であるキーボード3と、ポインティングデバイスであるマウス4と、表示装置であるモニタ5とを有して主要に構成されている。
As shown in FIG. 1, a
このコンピュータ本体2には、内蔵されたHD(Hard Disk)に、後述する音質評価プログラムが記録されている。 In the computer main body 2, a sound quality evaluation program described later is recorded in a built-in HD (Hard Disk).
また、コンピュータ本体2に内蔵されたHDには、基音となる次数成分とその倍音となる次数成分の音圧レベルに対する直線の理想とする傾き角度が理想傾き角度として、予め複数の理想傾き角度xrが記憶されている。 The HD built in the computer main body 2 has a plurality of ideal tilt angles xr in advance, with the ideal tilt angle of the straight line with respect to the sound pressure level of the order component serving as the fundamental tone and the harmonic component serving as the overtone as the ideal tilt angle. Is remembered.
これら理想傾き角度xrは、予め実験等により設定されるものであり、例えば、4気筒エンジンの車両については、基音次数を2.0次成分とし、その倍音成分(4.0次成分、6.0次成分、8.0次成分・・・)に対応した音圧レベルに対する直線の理想とする傾き角度となっている。 These ideal inclination angles xr are set in advance through experiments or the like. For example, for a four-cylinder engine vehicle, the fundamental order is a 2.0th order component, and its harmonic component (4.0th order component, 6.th order component). The ideal inclination angle of the straight line with respect to the sound pressure level corresponding to the 0th order component, the 8.0th order component, ...).
また、6気筒エンジンの車両に対応した理想傾き角度として、基音次数を1.5次成分とし、その倍音成分(3.0次成分、4.5次成分、6.0次成分・・・)に対応した音圧レベルに対する直線の理想とする傾き角度と、基音次数を3.0次成分とし、その倍音成分(6.0次成分、9.0次成分、12.0次成分・・・)に対応した音圧レベルに対する直線の理想とする傾き角度の2種類が記憶されている。 As an ideal inclination angle corresponding to a 6-cylinder engine vehicle, the fundamental order is a 1.5th order component, and its harmonic components (3.0th order component, 4.5th order component, 6.0th order component...) The ideal inclination angle of the straight line with respect to the sound pressure level corresponding to and the fundamental order is the 3.0th order component, and its harmonic components (6.0th order component, 9.0th order component, 12.0th order component,... ) Are stored as two kinds of ideal inclination angles of the straight line with respect to the sound pressure level corresponding to.
そして、評価対象とする評価音のするデータが、FD(flexible disk)、CD(Compact Disc)、DVD(Digital Versatile Disk)等の記録メディア等を通じて供給され、コンピュータ本体2に内蔵された、HD(Hard Disk)に記録され、後述の音質評価プログラムに従って、音質評価が実行される。尚、この評価音は、車室内の運転席や助手席における耳位置に設けられたマイクで取得した音、或いは、車両の排気吐出口で計測されるエグゾーストノイズ等である。 The data of the evaluation sound to be evaluated is supplied through a recording medium such as an FD (flexible disk), a CD (Compact Disc), a DVD (Digital Versatile Disk), and the like. Sound quality evaluation is executed according to a sound quality evaluation program described later. This evaluation sound is a sound acquired by a microphone provided at an ear position in a driver's seat or a passenger seat in the passenger compartment, or exhaust noise measured at the exhaust outlet of the vehicle.
本実施の形態により実行される具体的な音質評価を、図2、図3のフローチャートで説明する。 Specific sound quality evaluation executed according to the present embodiment will be described with reference to the flowcharts of FIGS.
まず、ステップ(以下、「S」と略称)101で、評価対象とする評価音に対し、その評価条件が入力される。この評価条件とは、具体的には、評価音の評価位置(例えば、車内音であれば車室内の運転席や助手席における耳位置、或いは、エグゾーストノイズであれば車両の排気吐出口位置等)、全開加速時に発生する音、緩加速時に発生する音、及び、エンジン回転数の領域等の協和感を評価する条件である。 First, in step (hereinafter abbreviated as “S”) 101, an evaluation condition is input for an evaluation sound to be evaluated. Specifically, this evaluation condition is the evaluation position of the evaluation sound (for example, the position of the ear in the driver's or passenger's seat in the passenger compartment if the sound is in the vehicle, or the position of the exhaust outlet of the vehicle if the exhaust noise. ), A sound that is generated during full-open acceleration, a sound that is generated during slow acceleration, and a condition for evaluating a sense of harmony such as an engine speed range.
そして、S102に進み、上述のS101の評価条件の下での評価音の計測が行われ、計測した評価音がFD、CD、DVD等の記録メディアに記録され、これら記録メディアから、コンピュータ本体2のHDに記録される。 Then, the process proceeds to S102, where the evaluation sound is measured under the evaluation conditions of S101 described above, and the measured evaluation sound is recorded on a recording medium such as FD, CD, DVD, etc., and the computer main body 2 is recorded from these recording media. Recorded on the HD.
次いで、S103に進み、上述の記録した評価音を、例えば、図4に示すように、0.1次ピッチで次数解析する。すなわち、このS103が、次数解析手段としてのものとなっている。 Next, the process proceeds to S103, and the above-described recorded evaluation sound is subjected to order analysis at a 0.1th-order pitch, for example, as shown in FIG. That is, S103 is used as an order analysis means.
次に、S104に進み、協和感定量評価式による協和感レベルの演算処理を行う。
この協和感定量評価式による協和感レベルの演算処理は、図3のフローチャートに示すように、まず、S201で、2次成分の音圧レベルが3次成分の音圧レベルよりも大きいか否かを判定し、2次成分の音圧レベルが3次成分の音圧レベルよりも大きい場合は、4気筒エンジンに係わる音であると判定してS202に進み、基音次数を2次成分とし、その高次成分を倍音成分として判別する(図5にその例を示す)。
Next, the process proceeds to S104, and a sense of harmony level calculation process is performed using a sense of harmony quantitative evaluation formula.
As shown in the flowchart of FIG. 3, first, in S201, whether or not the sound pressure level of the secondary component is higher than the sound pressure level of the tertiary component is calculated in S201. If the sound pressure level of the secondary component is greater than the sound pressure level of the tertiary component, it is determined that the sound is related to the 4-cylinder engine and the process proceeds to S202, where the fundamental order is set as the secondary component, A higher order component is discriminated as a harmonic component (an example is shown in FIG. 5).
逆に、2次成分の音圧レベルが3次成分の音圧レベル以下と判定した場合は、6気筒エンジンに係わる音であると判定してS203に進み、1.5次成分の音圧レベルと6.0次成分の音圧レベルとを比較する。 Conversely, if the sound pressure level of the secondary component is determined to be equal to or lower than the sound pressure level of the tertiary component, it is determined that the sound is related to the 6-cylinder engine, and the process proceeds to S203, where the sound pressure level of the 1.5th component is determined. Is compared with the sound pressure level of the 6.0th-order component.
このS203の比較の結果、1.5次成分の音圧レベルが6.0次成分の音圧レベルよりも大きい場合は、S204に進み、基音次数を1.5次成分とし、その高次成分を倍音成分として判別する(図6(a)にその例を示す)。 As a result of the comparison in S203, if the sound pressure level of the 1.5th order component is higher than the sound pressure level of the 6.0th order component, the process proceeds to S204, where the fundamental order is set to the 1.5th order component, and the higher order component. As a harmonic component (an example is shown in FIG. 6A).
逆に、1.5次成分の音圧レベルが6.0次成分の音圧レベル以下と判定した場合は、S205に進み、基音次数を3.0次成分とし、その高次成分を倍音成分として判別する(図6(b)にその例を示す)。 Conversely, if it is determined that the sound pressure level of the 1.5th-order component is equal to or lower than the sound pressure level of the 6.0th-order component, the process proceeds to S205, where the fundamental order is set to the 3.0th-order component, and the higher-order component is the harmonic component. (An example is shown in FIG. 6B).
すなわち、6気筒エンジンの場合、1.5次成分を基音次数としてその倍音成分を車両の音として認識している場合と、3.0次成分を基音次数としてその倍音成分を車両の音として認識している場合の2つの場合があるため、この2つの場合に適切に対応できる評価を行うためである。尚、本実施の形態では、S201〜S205の処理により、各次数成分の音圧レベルを比較して、基音次数とその倍音成分を決定するようにしているが、評価の初期条件として予め与えられるようにしても良い。 That is, in the case of a 6-cylinder engine, a 1.5th order component is recognized as a fundamental sound and a harmonic component is recognized as a vehicle sound, and a 3.0th order component is recognized as a fundamental sound and a harmonic component is recognized as a vehicle sound. This is because there are two cases where the two cases are performed, and therefore, an evaluation that can appropriately deal with the two cases is performed. In this embodiment, the sound pressure levels of the respective order components are compared by the processing of S201 to S205 to determine the fundamental order and its harmonic component, but are given in advance as initial conditions for evaluation. You may do it.
上述のS202、S204、或いは、S205で基音次数とその倍音成分を決定した後は、S206に進み、基音次数とその高次成分に対し、ピークレベルの傾き角度(解析傾き角度)xを演算する。 After the fundamental order and its harmonic component are determined in S202, S204, or S205 described above, the process proceeds to S206, and the peak level inclination angle (analysis inclination angle) x is calculated for the fundamental order and its higher order components. .
例えば、基音次数が2.0次成分でその高次成分の場合は、ピークレベルの傾き角度として、図5に示すように、2.0次成分、4.0次成分、6.0次成分、・・・・の音圧レベルを近似する直線Lxを、例えば最小二乗法により演算し、この直線の傾き角度(解析傾き角度)xを演算する。 For example, in the case where the fundamental order is a 2.0th order component and its higher order component, as shown in FIG. 5, the 2.0th order component, 4.0th order component, 6.0th order component are used as the inclination angle of the peak level. The straight line Lx that approximates the sound pressure level of... Is calculated by, for example, the least square method, and the inclination angle (analytical inclination angle) x of this straight line is calculated.
また、基音次数が1.5次成分でその高次成分の場合は、ピークレベルの傾き角度として、図6(a)に示すように、1.5次成分、3.0次成分、4.5次成分、・・・・の音圧レベルを近似する直線Lxを、例えば最小二乗法により演算し、この直線の傾き角度(解析傾き角度)xを演算する。 In the case where the fundamental order is a 1.5th order component and its higher order component, as shown in FIG. A straight line Lx that approximates the sound pressure level of the fifth-order component,... Is calculated by, for example, the least square method, and the inclination angle (analysis inclination angle) x of this straight line is calculated.
また、基音次数が3.0次成分でその高次成分の場合は、ピークレベルの傾き角度として、図6(b)に示すように、3.0次成分、6.0次成分、9.0次成分、・・・・の音圧レベルを近似する直線Lxを、例えば最小二乗法により演算し、この直線の傾き角度x(解析傾き角度)を演算する。 When the fundamental order is a 3.0th order component and its higher order component, as shown in FIG. 6B, the peak level inclination angle is 3.0th order component, 6.0th order component, 9. A straight line Lx that approximates the sound pressure level of the zeroth order component,... Is calculated by, for example, the least square method, and the inclination angle x (analysis inclination angle) of this straight line is calculated.
尚、分析対象とする次数は、例えば20次成分までとする。すなわち、このS206は、解析傾き角度演算手段としてのものである。 The order to be analyzed is, for example, up to the twentieth component. That is, this S206 is used as an analytical tilt angle calculation means.
次に、S207に進み、基音次数に応じた理想傾き角度xrを読み込む。この理想傾き角度xrは、前述の如く、コンピュータ本体2に内蔵されたHDに記録されているものであり、従って、コンピュータ本体2に内蔵されたHDは、理想傾き角度記憶手段として設けられている。 In step S207, the ideal inclination angle xr corresponding to the fundamental tone order is read. The ideal tilt angle xr is recorded in the HD built in the computer main body 2 as described above. Therefore, the HD built in the computer main body 2 is provided as an ideal tilt angle storage means. .
次いで、S208に進み、0.5次成分の倍数の各次数間に存在する暗騒音の音圧レベルの大きさの合計値(0.5次ピッチ暗騒音の合計値)NL0.5を演算する。この0.5次ピッチ暗騒音とは、図4に示すように、0.5次成分の主要次数成分を除いた部分(0.0〜0.4次成分、0.6〜0.9次成分、1.1〜1.4次成分、・・・・)の音圧レベルを示す。尚、本実施の形態では、0.5次ピッチ暗騒音を抽出して加算しているが、暗騒音の音圧レベルの合計値として、他にも、1次ピッチ、2次ピッチ、或いはその他の複次ピッチ暗騒音を抽出して、その暗騒音の音圧レベルを加算しても良い。 Next, in S208, the total value of the sound pressure levels of the background noise existing between the respective orders of multiples of the 0.5th order component (the total value of the 0.5th order pitch background noise) NL0.5 is calculated. . As shown in FIG. 4, the 0.5th order pitch background noise is a portion excluding the main order component of the 0.5th order component (0.0th to 0.4th order component, 0.6th to 0.9th order). The sound pressure level of the component, 1.1 to 1.4 order component,. In the present embodiment, the 0.5th-order pitch background noise is extracted and added, but as the total value of the sound pressure level of the background noise, there are other primary pitches, secondary pitches, or other values. May be extracted and the sound pressure level of the background noise may be added.
次に、S209に進み、基音次数とその高次成分レベルを基に、これらの音圧レベルの総和、すなわち、主要次数レベル総和値Sを演算する。 Next, proceeding to S209, the sum of these sound pressure levels, that is, the main order level sum value S is calculated based on the fundamental order and its higher order component level.
次いで、S210に進み、以下の協和感定量評価式により、協和感レベルを演算し、出力して、ルーチンを抜ける。
協和感レベル=−A・|xr−x|−B・NL0.5+C・S+D
ここで、A、B、C、Dは、予め設定した定数(本実施の形態では正の値)であり、これら定数の設定の仕方により、協和感レベルの判定範囲等が決定されると共に、それぞれの演算項の影響度も決定されることになる。
Next, the process proceeds to S210, and the level of cooperative feeling is calculated and output by the following quantitative feeling evaluation expression, and the routine is exited.
Sense of harmony = -A ・ | xr-x | -B ・ NL0.5 + C ・ S + D
Here, A, B, C, and D are preset constants (positive values in the present embodiment), and the determination range of the sense of harmony level is determined according to how these constants are set, The degree of influence of each operation term is also determined.
上述の協和感定量評価式によれば、第1の演算項により、理想傾き角度xrから解析傾き角度xが大きく外れるほど、協和感レベルが低下するようになっている。すなわち、誰しもが協和感の高い美しい音と感じる音から遠ざかっているほど協和感レベルが低下することを示す演算項となっている。 According to the above-mentioned quantitative evaluation formula for the sense of harmony, the sense of harmony level decreases as the analytical tilt angle x deviates greatly from the ideal tilt angle xr by the first calculation term. In other words, this is an arithmetic term indicating that the level of harmony decreases as the distance from the sound that everyone feels as a beautiful sound with a high sense of harmony increases.
また、第2の演算項により、0.5次ピッチ暗騒音の合計値NL0.5が大きくなるほど、協和感レベルが低下するようになっている。すなわち、0.5次ピッチ暗騒音の合計値NL0.5が大きいほど、主要次数成分の認識性が低下し、協和感レベルが低下することを示す演算項となっている。 Further, according to the second calculation term, the level of cooperating feeling decreases as the total value NL0.5 of the 0.5th order pitch background noise increases. In other words, this is an arithmetic term indicating that the greater the total value NL0.5 of the 0.5th-order pitch background noise is, the lower the recognizability of the main order component and the lower the sense of harmony.
更に、第3の演算項により、主要次数レベル総和値Sが大きくなるほど協和感レベルが上昇するようになっている。すなわち、主要次数レベル総和値Sが大きいほど、主要次数成分の認識性が向上し、協和感レベルが上昇することを示す演算項となっている。
このように、S210は、定量評価手段としてのものとなっている。
Further, the third calculation term is such that the level of cooperating feeling increases as the main order level sum value S increases. That is, the larger the major order level sum value S is, the higher the recognizability of the major order component is, and the calculation term indicates that the sense of coexistence increases.
Thus, S210 serves as a quantitative evaluation means.
その後は、再び、図2に戻り、S105に進んで、評価音の評価値を演算する。この評価音の評価値は、例えば、図7に示すように、エンジン回転数のNEC1〜NEC2の領域における協和感レベルの合計値のみに着目した評価値である。尚、評価値は、全てのエンジン回転数領域としてももちろん良い。 Thereafter, returning to FIG. 2 again, the process proceeds to S105, and the evaluation value of the evaluation sound is calculated. For example, as shown in FIG. 7, the evaluation value of the evaluation sound is an evaluation value focusing only on the total value of the sense of unity in the region of the engine speed NEC1 to NEC2. Of course, the evaluation value may be all engine speed ranges.
次いで、S106に進み、評価音の評価結果の表示を行う。具体的には、評価音を、例えば図8に示すように、エンジン回転数と周波数で音圧レベルを三次元的に表示して、音質を表示するものとなっている。そして、この表示と共に、予め設定しておいた判定値の何%の評価値であるか((評価値/判定値)・100)を評価結果として表示する。 Next, the process proceeds to S106, and the evaluation result of the evaluation sound is displayed. Specifically, as shown in FIG. 8, for example, the sound pressure level is three-dimensionally displayed with the engine speed and the frequency, and the sound quality is displayed. Then, along with this display, what percentage of the preset judgment value is ((evaluation value / judgment value) · 100) is displayed as the evaluation result.
そして、S107に進み、上述の評価結果が目標を達成しているか否かを判定し、例えば、評価結果が90%以上の場合に目標達成と判定し、音質評価を終了する。逆に、評価結果が90%未満の場合は目標未達成と判定して、S108に進み、S106で表示された音質から、各次数成分と周波数帯成分の評価値への感度の解析が行われる。例えば、評価結果に及ぼす影響が大きくなっている特定の次数成分があるか、或いは、評価結果に及ぼす影響が大きくなっている特定の周波数帯成分があるか等を解析する。 Then, the process proceeds to S107 to determine whether or not the above-described evaluation result has achieved the target. For example, when the evaluation result is 90% or more, it is determined that the target has been achieved, and the sound quality evaluation is terminated. Conversely, if the evaluation result is less than 90%, it is determined that the target has not been achieved, and the process proceeds to S108, and sensitivity analysis is performed on the evaluation value of each order component and frequency band component from the sound quality displayed in S106. . For example, it is analyzed whether there is a specific order component that has a large influence on the evaluation result, or a specific frequency band component that has a large influence on the evaluation result.
次いで、S109に進み、S108での解析結果に基づき、設計変数の選択(特定の次数成分の変更、或いは、特定の周波数帯成分)を行う。 Next, the process proceeds to S109, and a design variable is selected (change of a specific order component or a specific frequency band component) based on the analysis result in S108.
そして、S110に進み、S109で選択した設計変更を実行した場合の目標達成音質の演算を行い、再び、S104からの処理を繰り返す。 In S110, the target achievement sound quality is calculated when the design change selected in S109 is executed, and the processing from S104 is repeated again.
このように本発明の実施の形態によれば、計測した評価対象とする評価音を次数解析し、次数解析した評価音の基音となる次数成分とその倍音成分の音圧レベルに対する直線の傾きを解析傾き角度xとして求め、この解析傾き角度xと予め記憶しておいた理想傾き角度xrとの差と、暗騒音の合計値として求めた0.5次ピッチ暗騒音の合計値NL0.5と、主要次数レベル総和値Sのそれぞれについての演算項を含んで形成した協和感定量評価式により協和感レベルを求めるようになっている。このため、車両に生じる様々な音についての協和感に対し、再現性のある適切な定量評価が可能となる。 As described above, according to the embodiment of the present invention, the measured evaluation sound to be evaluated is subjected to order analysis, and the slope of a straight line with respect to the sound pressure level of the order component which is the fundamental sound of the evaluation sound subjected to the order analysis and its overtone component is obtained. Calculated as an analytical inclination angle x, the difference between the analytical inclination angle x and the ideal inclination angle xr stored in advance, and the total value NL0.5 of the 0.5th-order pitch background noise determined as the total value of background noise Thus, the sense of unity level is obtained from the unity sense quantitative evaluation formula formed including the calculation terms for each of the main order level summation values S. For this reason, it is possible to perform appropriate quantitative evaluation with reproducibility for a sense of harmony regarding various sounds generated in the vehicle.
尚、本実施の形態では、4気筒エンジンと6気筒エンジンの車両に関する音の評価について説明したが、4気筒エンジンの車両のみ、或いは、6気筒エンジンの車両のみの評価を行うプログラムとしても良く、また、これら以外の気筒数のエンジンの車両に関する音の評価を、同様に行うようにしても良い。また、協和感定量評価式は、解析傾き角度xと予め記憶しておいた理想傾き角度xrとの差と、暗騒音の音圧レベルの合計値として求めた0.5次ピッチ暗騒音の合計値NL0.5と、主要次数レベル総和値Sのそれぞれについての演算項を含んで形成しているが、解析傾き角度xと予め記憶しておいた理想傾き角度xrとの差と、暗騒音の音圧レベルの合計値として求めた0.5次ピッチ暗騒音の合計値NL0.5のみについての演算項を含んで形成しても良いし、解析傾き角度xと予め記憶しておいた理想傾き角度xrとの差と、主要次数レベル総和値Sのみについての演算項を含んで形成しても良い。 In the present embodiment, the sound evaluation related to the four-cylinder engine and the six-cylinder engine vehicle has been described. However, a program for evaluating only the four-cylinder engine vehicle or the six-cylinder engine vehicle may be used. In addition, the evaluation of the sound related to the vehicle of the engine having the number of cylinders other than these may be performed in the same manner. In addition, the Kyowakan quantitative evaluation formula is the sum of the difference between the analysis inclination angle x and the ideal inclination angle xr stored in advance and the 0.5th-order pitch background noise obtained as the total value of the sound pressure level of the background noise. Although the calculation terms for each of the value NL0.5 and the main order level total value S are formed, the difference between the analysis inclination angle x and the ideal inclination angle xr stored in advance and the background noise It may be formed including a calculation term for only the total value NL0.5 of the 0.5th order pitch background noise obtained as the total value of the sound pressure level, or the analysis inclination angle x and the ideal inclination stored in advance. You may form including the calculation term about only the difference with angle xr, and main order level total value S.
1 パーソナルコンピュータ
2 コンピュータ本体
3 キーボード
4 マウス
5 モニタ
1 Personal Computer 2
Claims (8)
基音となる次数成分とその倍音となる次数成分の音圧レベルに対する直線の理想とする傾き角度を理想傾き角度として記憶する理想傾き角度記憶手段と、
上記次数解析した評価音の上記基音となる次数成分とその倍音となる次数成分の音圧レベルに対する直線の傾きを解析傾き角度として求める解析傾き角度演算手段と、
少なくとも上記理想傾き角度と上記解析傾き角度に基づいて上記評価音の協和感を定量評価する評価式を予め設定し、該評価式に基づいて上記評価音の協和感を定量評価する定量評価手段と、
を備えたことを特徴とする車両用音質評価装置。 Order analysis means for order analysis of the measured evaluation sound to be evaluated;
Ideal inclination angle storage means for storing an ideal inclination angle of a straight line with respect to the sound pressure level of the order component serving as a fundamental tone and the harmonic component serving as a harmonic thereof, as an ideal inclination angle;
An analysis inclination angle calculation means for obtaining an inclination of a straight line with respect to the sound pressure level of the order component serving as the fundamental tone and the harmonic order component of the evaluation sound subjected to the order analysis as an analysis tilt angle;
A quantitative evaluation means for presetting an evaluation formula for quantitatively evaluating the sense of harmony of the evaluation sound based on at least the ideal tilt angle and the analysis tilt angle, and quantitatively evaluating the sense of harmony of the evaluation sound based on the evaluation formula; ,
A vehicle sound quality evaluation apparatus comprising:
上記次数解析した評価音の基音となる次数成分とその倍音となる次数成分の音圧レベルに対する直線の傾きを解析傾き角度として求める解析傾き角度演算ステップと、
少なくとも上記基音となる次数成分とその倍音となる次数成分の音圧レベルに対する直線の理想とする理想傾き角度と上記解析傾き角度に基づいて上記評価音の協和感を定量評価する評価式を予め設定し、該評価式に基づいて上記評価音の協和感を定量評価する定量評価ステップと、
を有することを特徴とする車両用音質評価方法。 An order analysis step for order analysis of the measured evaluation sound to be evaluated;
An analysis inclination angle calculation step for obtaining an inclination angle of a straight line with respect to the sound pressure level of the order component that is the fundamental sound of the evaluation sound and the harmonic component that is the harmonic order, as an analysis inclination angle;
An evaluation formula is set in advance to quantitatively evaluate the sense of unity of the evaluation sound based on the ideal ideal inclination angle of the straight line with respect to the sound pressure level of the order component which is the fundamental tone and the harmonic order component and the analysis inclination angle. A quantitative evaluation step for quantitatively evaluating the sense of harmony of the evaluation sound based on the evaluation formula;
A sound quality evaluation method for a vehicle, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007142313A JP5180519B2 (en) | 2007-05-29 | 2007-05-29 | Vehicle sound quality evaluation apparatus and vehicle sound quality evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007142313A JP5180519B2 (en) | 2007-05-29 | 2007-05-29 | Vehicle sound quality evaluation apparatus and vehicle sound quality evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008298474A true JP2008298474A (en) | 2008-12-11 |
JP5180519B2 JP5180519B2 (en) | 2013-04-10 |
Family
ID=40172139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007142313A Expired - Fee Related JP5180519B2 (en) | 2007-05-29 | 2007-05-29 | Vehicle sound quality evaluation apparatus and vehicle sound quality evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5180519B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017149336A (en) * | 2016-02-26 | 2017-08-31 | 株式会社古賀 | Vehicle sound evaluation device |
CN109443778A (en) * | 2018-09-29 | 2019-03-08 | 江苏大学 | A kind of engine sound quality prediction technique |
CN111751119A (en) * | 2020-06-10 | 2020-10-09 | 中国第一汽车股份有限公司 | Automobile acceleration sound quality evaluation method based on sound order frequency characteristics |
CN112326261A (en) * | 2020-10-23 | 2021-02-05 | 安徽江淮汽车集团股份有限公司 | Automobile door closing sound quality checking method |
JP2021169973A (en) * | 2020-04-16 | 2021-10-28 | トヨタ自動車株式会社 | Abnormal noise evaluation system and abnormal noise evaluation method |
CN115457976A (en) * | 2022-08-01 | 2022-12-09 | 广州汽车集团股份有限公司 | Accelerated sound quality evaluation method, device, computer equipment and storage medium |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101963323B1 (en) * | 2017-02-27 | 2019-07-31 | 대한민국 | Vehicle speed estimation method and system |
CN115900169B (en) * | 2022-12-21 | 2024-10-01 | 天津大学 | Waste heat recovery type air-cooled refrigerator and control method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11107746A (en) * | 1997-10-08 | 1999-04-20 | Toyota Motor Corp | Exhaust pipe structure of internal combustion engine for vehicle |
JP2001159586A (en) * | 1999-12-02 | 2001-06-12 | Suzuki Motor Corp | Method and device for evaluating sound and storage medium storing program for evaluating sound |
JP2001159585A (en) * | 1999-12-02 | 2001-06-12 | Suzuki Motor Corp | Method and device for evaluating sound and storage medium storing program for evaluating sound |
JP2002123261A (en) * | 2000-10-12 | 2002-04-26 | Toyota Central Res & Dev Lab Inc | Apparatus for supporting sound quality design |
JP2003057108A (en) * | 2001-08-09 | 2003-02-26 | Kobe University | Sound evaluation method and system therefor |
JP2004286634A (en) * | 2003-03-24 | 2004-10-14 | Toyota Motor Corp | Method and detector for abnormal noise |
JP2008196876A (en) * | 2007-02-09 | 2008-08-28 | Ono Sokki Co Ltd | Signal processor and tracking method of signal search range |
-
2007
- 2007-05-29 JP JP2007142313A patent/JP5180519B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11107746A (en) * | 1997-10-08 | 1999-04-20 | Toyota Motor Corp | Exhaust pipe structure of internal combustion engine for vehicle |
JP2001159586A (en) * | 1999-12-02 | 2001-06-12 | Suzuki Motor Corp | Method and device for evaluating sound and storage medium storing program for evaluating sound |
JP2001159585A (en) * | 1999-12-02 | 2001-06-12 | Suzuki Motor Corp | Method and device for evaluating sound and storage medium storing program for evaluating sound |
JP2002123261A (en) * | 2000-10-12 | 2002-04-26 | Toyota Central Res & Dev Lab Inc | Apparatus for supporting sound quality design |
JP2003057108A (en) * | 2001-08-09 | 2003-02-26 | Kobe University | Sound evaluation method and system therefor |
JP2004286634A (en) * | 2003-03-24 | 2004-10-14 | Toyota Motor Corp | Method and detector for abnormal noise |
JP2008196876A (en) * | 2007-02-09 | 2008-08-28 | Ono Sokki Co Ltd | Signal processor and tracking method of signal search range |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017149336A (en) * | 2016-02-26 | 2017-08-31 | 株式会社古賀 | Vehicle sound evaluation device |
CN109443778A (en) * | 2018-09-29 | 2019-03-08 | 江苏大学 | A kind of engine sound quality prediction technique |
JP2021169973A (en) * | 2020-04-16 | 2021-10-28 | トヨタ自動車株式会社 | Abnormal noise evaluation system and abnormal noise evaluation method |
JP7294222B2 (en) | 2020-04-16 | 2023-06-20 | トヨタ自動車株式会社 | Abnormal noise evaluation system and abnormal noise evaluation method |
US11749033B2 (en) | 2020-04-16 | 2023-09-05 | Toyota Jidosha Kabushiki Kaisha | Abnormal noise evaluation system and abnormal noise evaluation method |
CN111751119A (en) * | 2020-06-10 | 2020-10-09 | 中国第一汽车股份有限公司 | Automobile acceleration sound quality evaluation method based on sound order frequency characteristics |
CN112326261A (en) * | 2020-10-23 | 2021-02-05 | 安徽江淮汽车集团股份有限公司 | Automobile door closing sound quality checking method |
CN115457976A (en) * | 2022-08-01 | 2022-12-09 | 广州汽车集团股份有限公司 | Accelerated sound quality evaluation method, device, computer equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP5180519B2 (en) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5180519B2 (en) | Vehicle sound quality evaluation apparatus and vehicle sound quality evaluation method | |
EP3631388B1 (en) | A vehicle noise, vibration and harshness (nvh) testing method and system | |
Stender et al. | Complex machine dynamics: systematic recurrence quantification analysis of disk brake vibration data | |
JP4769673B2 (en) | Audio signal interpolation method and audio signal interpolation apparatus | |
Nechak et al. | Robustness of stochastic expansions for the stability of uncertain nonlinear dynamical systems–application to brake squeal | |
Kim et al. | Sound quality evaluation for vehicle door opening sound using psychoacoustic parameters. | |
JP4973296B2 (en) | Vibration countermeasure support system, vibration countermeasure support method, vibration countermeasure support program | |
Kwon et al. | Quantification of rattle noise generations from automotive compartments by variational mode decomposition | |
Bacciaglia et al. | A design of experiment approach to 3D-printed mouthpieces sound analysis | |
Park et al. | Evaluation index for sporty engine sound reflecting evaluators’ tastes, developed using K-means cluster analysis | |
He et al. | Analysis on loudness of exhaust noise and improvement of exhaust system based on structure-loudness model | |
Liu et al. | The objective quantification of door closing sound quality based on multidimensional subjective perception attributes | |
Lee et al. | Development of an algorithm to automatically detect and distinguish squeak and rattle noises | |
Chen et al. | Sound quality analysis and prediction of vehicle interior noise based on grey system theory | |
Kamper et al. | Hybrid NVH modeling approach: High quality of NVH results enables psychoacoustic analysis of numerical computations | |
Kim et al. | 2C2-2 Modelling of the Auditory Satisfaction Function for the Automobile Door Opening Quality | |
Duvigneau et al. | Evaluation of the directional characteristics of the sound quality | |
Wang et al. | Identification and assessment of vehicle seat adjuster sound quality | |
Benghanem et al. | Objective quantification of sound sensory attributes in side-by-side vehicles using multiple linear regression models | |
Kwon et al. | Design of sporty SQI using semantic differential and verification of its effectiveness | |
Mohammed et al. | A Study on Door Clips and Their Influence on BSR Performance | |
Wang et al. | A Process to Improve Passenger Vehicle Sound and Vibration Quality Using a Combination of SPC and CAE Analysis | |
Hirate et al. | V6-SUV engine sound development | |
Park et al. | Analysis of the HVAC system’s sound quality using the design of experiments | |
Laux et al. | Power seat adjuster noise metric development & correlation to subjective response data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5180519 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |