JP2008298123A - Turning bearing - Google Patents

Turning bearing Download PDF

Info

Publication number
JP2008298123A
JP2008298123A JP2007142694A JP2007142694A JP2008298123A JP 2008298123 A JP2008298123 A JP 2008298123A JP 2007142694 A JP2007142694 A JP 2007142694A JP 2007142694 A JP2007142694 A JP 2007142694A JP 2008298123 A JP2008298123 A JP 2008298123A
Authority
JP
Japan
Prior art keywords
slewing bearing
curing agent
solid lubricant
group
bearing according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007142694A
Other languages
Japanese (ja)
Inventor
Kengo Hiramatsu
研吾 平松
Mika Obara
美香 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007142694A priority Critical patent/JP2008298123A/en
Publication of JP2008298123A publication Critical patent/JP2008298123A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turning bearing having the long service life, and without leakage of lubricant, under a condition used in a high load and low speed rocking. <P>SOLUTION: This turning bearing has a fixed ring 2 having a rolling travel surface of an outer diameter surface, a turning ring 3 containing the fixed ring 2 in the substantial center, and a plurality of rolling elements 4 interposed between the fixed ring 2 and the turning ring 3. Both end surfaces of the fixed ring 2 and the turning ring 3 are sealed by a seal member 5, and a foaming solid lubricant 6 is sealed in this sealed space. This foaming solid lubricant 6 is a foaming solid lubricant formed by foaming and hardening a mixture including a lubricating component, a resin component, a hardening agent and a foaming agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は旋回軸受に関し、特に被検体の検査または治療のために、高荷重、低速揺動で使用される医療用C型アームに用いられる旋回軸受に関する。   The present invention relates to a slewing bearing, and more particularly to a slewing bearing used for a medical C-type arm that is used with high load and low-speed swinging for examination or treatment of a subject.

医療機器の一種であるC型アームX線診断装置は、造影剤を投与した血管をX線で透視撮影し、血管異常を発見するものである。C型アームX線診断装置では、X線発生器および検出器が旋回軸受に旋回可能に支持されたC型アーム等の両端に取り付けられて被検体のまわりを旋回させられる(例えば、特許文献1、特許文献2参照)。C型アーム、X線発生器および検出器は高重量であり、旋回は低速で行なわれるため、C型アーム等を支持する旋回軸受は、低速揺動部で高荷重条件下で使用されることとなる。上記旋回軸受は、通常転がり軸受であり、シールされた軸受空間内にグリースが充填されて使用されている。   A C-arm X-ray diagnostic apparatus, which is a type of medical equipment, is used to detect a blood vessel abnormality by fluoroscopically photographing a blood vessel to which a contrast medium has been administered. In the C-type arm X-ray diagnostic apparatus, an X-ray generator and a detector are attached to both ends of a C-type arm or the like that is rotatably supported by a swivel bearing, and can be swung around a subject (for example, Patent Document 1). , See Patent Document 2). Since the C-arm, X-ray generator and detector are heavy and swivel at a low speed, the swivel bearing that supports the C-arm, etc., should be used under high load conditions at the low-speed swing section It becomes. The slewing bearing is usually a rolling bearing, and is used by filling a sealed bearing space with grease.

しかしながら、このような高荷重で低速揺動にて支持する転がり軸受をグリース潤滑にて運転すると、一般的に油潤滑に比べて、その増ちょう剤の種類や、ちょう度を最適化しても潤滑特性に劣るという問題がある。さらに、高荷重、低速揺動という使用条件のため、その油膜厚さは薄くなり潤滑寿命は短くなる。
また、軸受内のグリースが漏れ出し周辺環境を汚染する可能性がある。使用される環境は病院内の医療現場であり、グリースの漏れによる被検体や周辺機器への汚染は人的な不快感を伴い、クリーンであるべき医療現場のイメージに甚大な悪影響を及ぼす。
However, if such a rolling bearing that is supported by high load and low-speed oscillation is operated by grease lubrication, it is generally lubricated even if the type of thickener and consistency are optimized compared to oil lubrication. There is a problem that the characteristics are inferior. Furthermore, due to the use conditions of high load and low speed swing, the oil film thickness is reduced and the lubrication life is shortened.
In addition, grease in the bearing may leak and contaminate the surrounding environment. The environment used is a medical site in a hospital, and contamination of the subject and peripheral equipment due to the leakage of grease is accompanied by human discomfort and has a serious adverse effect on the image of the medical site that should be clean.

なお、このようなグリース潤滑固有の問題を防止するために、所定の固体潤滑剤を軸受空間内に封入する技術が特許文献3に開示されている。しかしながら、ここで開示されている固体潤滑剤はあくまでもポリエチレン樹脂に潤滑成分を含浸して固化させたものであり、その内部に保持できる潤滑剤成分の量は少ないという問題がある。
特開2007−29168号公報 特開2003−190149号公報 特開昭56−49418号公報
In order to prevent such a problem inherent to grease lubrication, Patent Document 3 discloses a technique for enclosing a predetermined solid lubricant in a bearing space. However, the solid lubricant disclosed here is obtained by impregnating and solidifying a polyethylene resin with a lubricating component, and there is a problem that the amount of the lubricant component that can be held inside is small.
JP 2007-29168 A JP 2003-190149 A JP 56-49418 A

本発明はかかる問題に対処するためになされたものであり、高荷重、低速揺動で使用される条件下において、長寿命であり、かつ潤滑剤の漏れがない旋回軸受を提供することを目的とする。   The present invention has been made to cope with such a problem, and an object of the present invention is to provide a slewing bearing that has a long life and does not leak a lubricant under conditions used under high load and low speed swinging. And

本発明の旋回軸受は、外径面に軌道面を有する固定輪と、該固定輪を略中央に内包する旋回輪と、上記固定輪と旋回輪との間に介在する複数の転動体と、上記固定輪と旋回輪との両端面をシールで封止し、この封止された空間に発泡固形潤滑剤を封入してなる旋回軸受において、上記発泡固形潤滑剤は、潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなる発泡固形潤滑剤であることを特徴とする。
また、上記旋回輪が被検体の検査または治療に用いられる医療用C型アームを支持することを特徴とする。
The slewing bearing of the present invention includes a fixed ring having a raceway surface on the outer diameter surface, a slewing ring containing the fixed ring substantially in the center, a plurality of rolling elements interposed between the fixed ring and the slewing ring, In a slewing bearing in which both end surfaces of the fixed ring and the slewing ring are sealed with a seal, and the foamed solid lubricant is sealed in the sealed space, the foamed solid lubricant includes a lubricating component and a resin component. And a foamed solid lubricant obtained by foaming and curing a mixture containing a curing agent and a foaming agent.
The swivel wheel supports a medical C-type arm used for examination or treatment of a subject.

上記発泡固形潤滑剤の中で第1の発泡固形潤滑剤は、潤滑成分が炭化水素系潤滑油および炭化水素系グリースから選ばれた少なくとも1つの潤滑成分であり、上記樹脂成分は、高分子主鎖が炭化水素から構成され、該主鎖末端に水酸基価が 25 mg KOH/g〜110 mg KOH/g となる量の水酸基を有する液状ゴムであり、上記硬化剤は分子内にイソシアネート基を有する有機化合物であり、上記発泡剤が水であり、上記液状ゴムと上記硬化剤との割合は、上記液状ゴムに含まれる水酸基と上記硬化剤に含まれるイソシアネート基とが当量比で(OH/NCO)=1/( 1.0〜2.0 )の範囲であり、上記混合物は、混合物全体に対して、上記潤滑成分を 40 重量%〜80 重量%、上記液状ゴムを 5 重量%〜45 重量%含むことを特徴とする。
また、上記液状ゴムがブタジエンもしくはイソプレンの重合体の主鎖末端に水酸基を有する数平均分子量 1000〜3500 の水酸基末端ジエン系重合体、または該ジエン系重合体を水添処理した変性水酸基末端ジエン系重合体であることを特徴とする。
また、上記分子内にイソシアネート基を持つ有機化合物は、分子内に2個以上のイソシアネート基を有し、イソシアネート基の割合が 2.5 NCO%〜5.0 NCO%からなるプレポリマーであるか、または芳香族ポリイソシアネートであることを特徴とする。
Among the above-mentioned foamed solid lubricants, the first foamed solid lubricant is at least one lubricating component whose lubricating component is selected from hydrocarbon-based lubricants and hydrocarbon-based greases, and the resin component is a polymer main component. The rubber is a liquid rubber having a hydroxyl group in an amount such that the chain is composed of hydrocarbon and the hydroxyl value of the main chain end is 25 mg KOH / g to 110 mg KOH / g, and the curing agent has an isocyanate group in the molecule. It is an organic compound, the foaming agent is water, and the ratio of the liquid rubber to the curing agent is such that the hydroxyl group contained in the liquid rubber and the isocyanate group contained in the curing agent are equivalent (OH / NCO ) = 1 / (1.0 to 2.0), and the mixture contains 40% to 80% by weight of the lubricating component and 5% to 45% by weight of the liquid rubber with respect to the whole mixture. Features.
Further, the liquid rubber is a hydroxyl group-terminated diene polymer having a number average molecular weight of 1000 to 3500 having a hydroxyl group at the main chain terminal of a butadiene or isoprene polymer, or a modified hydroxyl group-terminated diene system obtained by hydrogenating the diene polymer. It is a polymer.
The organic compound having an isocyanate group in the molecule is a prepolymer having two or more isocyanate groups in the molecule and a ratio of the isocyanate group of 2.5 NCO% to 5.0 NCO%, or aromatic. It is a polyisocyanate.

上記発泡固形潤滑剤の中で第2の発泡固形潤滑剤は、上記潤滑成分が潤滑油およびグリースから選ばれた少なくとも1つの潤滑成分であり、上記樹脂成分は、イソシアネート基含有量が 2 重量%以上 6 重量%未満のウレタンプレポリマーであり、上記発泡剤が水であり、上記混合物は、混合物全体に対して、上記潤滑成分を 30 重量%〜70 重量%含み、発泡後の連続気泡率が 50%以上であることを特徴とする。また、上記ウレタンプレポリマーは、エステル系ウレタンプレポリマー、カプロラクトン系ウレタンプレポリマー、およびエーテル系ウレタンプレポリマーから選ばれた少なくとも1つのウレタンプレポリマーであることを特徴とする。
また、上記イソシアネート基と、該イソシアネート基と反応する上記硬化剤の官能基との割合が当量比で(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲であることを特徴とする。
また、上記水の水酸基と、上記硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7〜2.0)の範囲であることを特徴とする。
上記硬化剤が芳香族ポリアミノ化合物、特にアミノ基の隣接位に置換基を有する芳香族ポリアミノ化合物であることを特徴とする。
Among the foamed solid lubricants, the second foamed solid lubricant is at least one lubricating component in which the lubricating component is selected from lubricating oil and grease, and the resin component has an isocyanate group content of 2% by weight. More than 6% by weight of urethane prepolymer, the foaming agent is water, and the mixture contains 30% to 70% by weight of the lubricating component with respect to the whole mixture, and the open cell ratio after foaming is It is characterized by being 50% or more. The urethane prepolymer is at least one urethane prepolymer selected from an ester urethane prepolymer, a caprolactone urethane prepolymer, and an ether urethane prepolymer.
Further, the ratio of the isocyanate group to the functional group of the curing agent that reacts with the isocyanate group is an equivalent ratio (functional group of the curing agent / NCO) = 1 / (1.1 to 2.5). And
The ratio of the hydroxyl group of water to the functional group of the curing agent is an equivalent ratio (hydroxyl group of water / functional group of the curing agent) = 1 / (0.7 to 2.0).
The curing agent is an aromatic polyamino compound, particularly an aromatic polyamino compound having a substituent at a position adjacent to an amino group.

本発明の旋回軸受は、外径面に軌道面を有する固定輪と、該固定輪を略中央に内包する旋回輪と、上記固定輪と旋回輪との間に介在する複数の転動体と、上記固定輪と旋回輪との両端面をシールで封止し、この封止された空間に発泡固形潤滑剤を封入してなり、上記発泡固形潤滑剤は潤滑成分および樹脂成分を必須成分とし、該樹脂成分を発泡・硬化して多孔質化した固形物であり、かつ潤滑成分が発泡・硬化した固形成分内に吸蔵される。この発泡固形潤滑剤は、樹脂の分子間から潤滑成分を外部に徐放できるので、軸受の回転に伴い滲み出す潤滑成分は、軸受潤滑に必要な最小限の量にすることができ、潤滑寿命が向上するとともに、軸受外部への潤滑剤の漏れを防止できる。なお、本発明において「吸蔵」とは、液体・半固体状の潤滑成分が他の配合成分と反応することなく、固体の樹脂中に化合物にならないで含まれることをいう。   The slewing bearing of the present invention includes a fixed ring having a raceway surface on the outer diameter surface, a slewing ring containing the fixed ring substantially in the center, a plurality of rolling elements interposed between the fixed ring and the slewing ring, The both ends of the fixed wheel and the swivel wheel are sealed with a seal, and the foamed solid lubricant is sealed in the sealed space. The foamed solid lubricant has a lubricating component and a resin component as essential components, The resin component is a solid material which is made porous by curing and foaming, and the lubricating component is occluded in the foamed and cured solid component. This foamed solid lubricant can release the lubricating component from the resin molecules to the outside, so that the lubricating component that oozes out as the bearing rotates can be the minimum amount required for bearing lubrication, and the lubrication life And the leakage of the lubricant to the outside of the bearing can be prevented. In the present invention, “occlusion” means that a liquid / semi-solid lubricating component does not react with other compounding components and is contained in a solid resin without becoming a compound.

また、発泡固形潤滑剤を封入することで、転走面近くに潤滑剤が存在できグリース潤滑と比較してより潤滑剤が転走面に供給されやすい。その上、多孔質な部分を多く持つので、軸受の軽量化の点でも有利である。
また、組み立て後に潤滑剤を封入する必要がないので、生産効率が向上し、安価に製造できる。
Further, by encapsulating the foamed solid lubricant, the lubricant can be present near the rolling surface, and the lubricant is more easily supplied to the rolling surface than grease lubrication. In addition, since it has many porous portions, it is advantageous in terms of reducing the weight of the bearing.
In addition, since it is not necessary to enclose a lubricant after assembly, production efficiency is improved and manufacturing can be performed at low cost.

本発明の旋回軸受を図1および図2に基づいて説明する。図1は、C型アームを含む医療用CTスキャナ装置の一例を示す図である。図2は、本発明の旋回軸受の一実施例を示す図であり、図1におけるC型アームの一部切欠き図(A部)である。
図1に示すようにC型アーム13は、X線発生装置11と、X線発生装置11から被検体16を通過したX線を受けとる検出器12とを両端部で支持している。このC型アーム13は、フレーム14に吊り下げられ旋回自在に支持されている。門型の高剛性の構造体であるフレーム14は、全体の支持体である。この主フレーム14は、C型アーム13を旋回可能に支持する上フレーム14a、この横上フレーム14aを支えている一対の縦ビーム14b、この縦ビーム14bが固定載置され、この装置全体の基礎となっているベース14cから構成されている。被検体位置移動手段15は、ベース14cの上にあり、被検体保持手段である椅子17を載置している。
The slewing bearing of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating an example of a medical CT scanner apparatus including a C-shaped arm. FIG. 2 is a view showing an embodiment of the slewing bearing of the present invention, and is a partially cutaway view (part A) of the C-shaped arm in FIG.
As shown in FIG. 1, the C-shaped arm 13 supports the X-ray generator 11 and the detector 12 that receives X-rays that have passed through the subject 16 from the X-ray generator 11 at both ends. The C-shaped arm 13 is suspended from the frame 14 and supported so as to be rotatable. A frame 14 that is a portal-type high-rigidity structure is an overall support. The main frame 14 has an upper frame 14a that supports the C-arm 13 so as to be pivotable, a pair of vertical beams 14b that support the horizontal upper frame 14a, and a vertical beam 14b that is fixedly mounted. It is comprised from the base 14c which becomes. The subject position moving means 15 is on the base 14c, and a chair 17 serving as a subject holding means is placed thereon.

図2に示すように旋回軸受1は、C型アーム13内に設けられ、C型アーム13がフレーム14に対して旋回自在となるよう支持している。旋回軸受1は、外径面に軌道面を有する固定輪2と、該固定輪2を略中央に内包する旋回輪3と、固定輪2と旋回輪3との間に介在する複数の転動体4とを有し、固定輪2と旋回輪3との両端面がシール部材5で封止され、この封止された空間に後述する発泡固形潤滑剤6が封入されている。
また、本発明の旋回軸受1は、被検体16が、撮影テーブル上に仰向けに横たわり、この被検体16を中心にしてC型アーム13が回転・揺動する方式にも使用できる。
As shown in FIG. 2, the slewing bearing 1 is provided in the C-type arm 13 and supports the C-type arm 13 so as to be rotatable with respect to the frame 14. The slewing bearing 1 includes a fixed ring 2 having a raceway surface on an outer diameter surface, a slewing ring 3 containing the fixed ring 2 substantially in the center, and a plurality of rolling elements interposed between the fixed ring 2 and the slewing ring 3. 4, both end surfaces of the fixed wheel 2 and the swivel wheel 3 are sealed with a seal member 5, and a foamed solid lubricant 6 described later is sealed in the sealed space.
Further, the slewing bearing 1 of the present invention can be used for a system in which the subject 16 lies on the imaging table on its back and the C-arm 13 rotates and swings around the subject 16.

本発明の旋回軸受に封入した発泡固形潤滑剤は樹脂内に潤滑成分を吸蔵するので、樹脂の柔軟性により、例えば圧縮、膨張、屈曲、ねじりなどの外力による変形や毛細管現象により潤滑剤を滲み出させて樹脂の分子間から外部に徐放できる。この際、滲み出す潤滑油量は、外力の大きさに応じて弾性変形する程度を樹脂の選択などによって変えることにより、必要最小限の量で潤滑の用に供することができ、軸受外部に漏れ出すことがない。このため、グリースの漏れによる被検体や周辺機器への汚染を防止できる。   The foamed solid lubricant encapsulated in the slewing bearing of the present invention occludes the lubricating component in the resin, so that the flexibility of the resin causes the lubricant to bleed due to deformation or capillary action due to external force such as compression, expansion, bending, and twisting. And can be released gradually from between the resin molecules. At this time, the amount of lubricating oil that oozes out can be used for lubrication with the minimum necessary amount by changing the degree of elastic deformation according to the magnitude of the external force, depending on the choice of resin, etc. I do not put out. For this reason, it is possible to prevent contamination of the subject and peripheral devices due to grease leakage.

さらに、この発泡固形潤滑剤は、非発泡体と比較して屈曲時に必要なエネルギーが非常に小さく、潤滑成分を高密度に保持しながら柔軟な変形が可能である。よって、該発泡固形潤滑剤を固化させた後冷却する過程において、発泡固形潤滑剤が収縮し転動体を抱き込んだとしても屈曲・変形時に必要なエネルギーが小さいために容易に変形することができ、回転トルクが大きくなるという問題を防ぐことができる。また、発泡部分すなわち多孔質な部分を多く持つため、軽量化の点でも有利である。
また、本発明に用いる発泡固形潤滑剤は潤滑成分と、樹脂成分とを必須成分として含む混合物を発泡・硬化させるだけであるので、特別な設備も不要であり、任意の場所に充填して成形することが可能である。
また、上記混合物の配合成分の配合量をコントロールすることにより発泡固形潤滑剤の密度を変化させることができる。
Furthermore, this foamed solid lubricant requires very little energy when bent compared to a non-foamed body, and can be flexibly deformed while retaining the lubricating component at a high density. Therefore, in the process of solidifying the foamed solid lubricant and cooling it, even if the foamed solid lubricant contracts and embraces the rolling element, it can be easily deformed because the energy required for bending and deformation is small. The problem of increased rotational torque can be prevented. Moreover, since it has many foamed parts, ie, a porous part, it is advantageous also at the point of weight reduction.
In addition, since the foamed solid lubricant used in the present invention only foams and cures a mixture containing a lubricating component and a resin component as essential components, no special equipment is required, and it is filled and molded in any place. Is possible.
Further, the density of the foamed solid lubricant can be changed by controlling the blending amount of the blending components of the mixture.

本発明に用いる発泡固形潤滑剤を構成する樹脂成分としては、発泡・硬化後にゴム状弾性を有し、変形により潤滑成分の滲出性を有するものが好ましい。
発泡・硬化は、樹脂生成時に発泡・硬化させる形式であっても、樹脂成分に発泡剤を配合して成形時に発泡・硬化させる形式であってもよい。ここで硬化は架橋反応および/または液状物が固体化する現象を意味する。また、ゴム状弾性とは、ゴム弾性を意味するとともに、外力により加えられた変形がその外力を無くすことにより元の形状に復帰することを意味する。
As the resin component constituting the foamed solid lubricant used in the present invention, a resin component having rubber-like elasticity after foaming and curing, and having a leaching property of the lubricant component by deformation is preferable.
Foaming / curing may be in a form in which foaming / curing is performed at the time of resin production, or in a form in which a foaming agent is added to the resin component and foaming / curing is performed in molding. Here, curing means a cross-linking reaction and / or a phenomenon in which a liquid is solidified. The rubber-like elasticity means rubber elasticity and means that deformation applied by an external force returns to the original shape by eliminating the external force.

本発明に用いる発泡固形潤滑剤の樹脂成分には耐熱性および柔軟性に優れ、低コスト化が可能となるウレタン樹脂を用いるのが好ましい。樹脂成分として、以下に説明する分子内に水酸基を有する液状ゴムを用いる第1の発泡固形潤滑剤、所定のNCOを含有するウレタンプレポリマーを用いる第2の発泡固形潤滑剤が好ましい。
また、ポリオールとしてのポリエーテルポリオールとポリイソシアネートとを反応させて得られる樹脂成分を用いることができる。
For the resin component of the foamed solid lubricant used in the present invention, it is preferable to use a urethane resin that is excellent in heat resistance and flexibility and can be reduced in cost. As the resin component, a first foamed solid lubricant using a liquid rubber having a hydroxyl group in the molecule described below and a second foamed solid lubricant using a urethane prepolymer containing a predetermined NCO are preferable.
Moreover, the resin component obtained by making the polyether polyol and polyisocyanate as a polyol react can be used.

本発明に用いることができる第1の発泡固形潤滑剤に用いられる樹脂成分には耐熱性および柔軟性に優れ、低コスト化が可能となるウレタン樹脂を用いるのが好ましい。ウレタン樹脂を形成する水酸基含有成分としては、分子内に水酸基を有する液状ゴムが好ましく、この液状ゴムは高分子主鎖が炭化水素から構成され、該主鎖末端に水酸基価が 25〜110 mg KOH/g となる量の水酸基を有する液状ゴムであることが好ましい。水酸基価が 25 mg KOH/g 未満では、発泡・硬化が十分でなく、水酸基価が 110 mg KOH/g をこえると、発泡固形潤滑剤の弾力性が失われる場合がある。
この液状ゴムは、ブタジエンもしくはイソプレンの重合体の主鎖末端に水酸基を有する数平均分子量 1000〜3500 の水酸基末端ジエン系重合体、または該ジエン系重合体を水添処理した変性水酸基末端ジエン系重合体を用いることができる。
水酸基末端液状ポリブタジエンとしては、poly-bd R45HT(出光興産社製)、poly-bd R15HT(出光興産社製)、NISSO−PB G−1000、G−2000、G−3000(日本曹達社製)が挙げられ、水酸基末端液状ポリイソプレンとしては、poly-ip(出光興産社製)が挙げられ、水添処理した水酸基末端ポリジエン化合物としては、エポール(出光興産社製)、NISSO−PB GI−1000、GI−2000、GI−3000(日本曹達社製)等が挙げられる。
As the resin component used in the first foamed solid lubricant that can be used in the present invention, it is preferable to use a urethane resin that is excellent in heat resistance and flexibility and can be reduced in cost. The hydroxyl group-containing component that forms the urethane resin is preferably a liquid rubber having a hydroxyl group in the molecule. This liquid rubber has a polymer main chain composed of hydrocarbons, and a hydroxyl value of 25 to 110 mg KOH at the end of the main chain. A liquid rubber having a hydroxyl group in an amount of / g 2 is preferable. When the hydroxyl value is less than 25 mg KOH / g, foaming / curing is not sufficient, and when the hydroxyl value exceeds 110 mg KOH / g, the elasticity of the foamed solid lubricant may be lost.
This liquid rubber is a hydroxyl group-terminated diene polymer having a number average molecular weight of 1000 to 3,500 having a hydroxyl group at the main chain terminal of a butadiene or isoprene polymer, or a modified hydroxyl group-terminated diene polymer obtained by hydrogenating the diene polymer. Coalescence can be used.
As the hydroxyl-terminated liquid polybutadiene, poly-bd R45HT (made by Idemitsu Kosan Co., Ltd.), poly-bd R15HT (made by Idemitsu Kosan Co., Ltd.), NISSO-PB G-1000, G-2000, G-3000 (made by Nippon Soda Co., Ltd.) are available. Examples of the hydroxyl group-terminated liquid polyisoprene include poly-ip (manufactured by Idemitsu Kosan Co., Ltd.). Examples of the hydrogenated hydroxyl group-terminated polydiene compound include Epol (manufactured by Idemitsu Kosan Co., Ltd.), NISSO-PB GI-1000, GI-2000, GI-3000 (made by Nippon Soda Co., Ltd.), etc. are mentioned.

また、これら水酸基末端ポリジエン化合物または水添処理した水酸基末端ポリジエン化合物の末端水酸基をイソシアネート基やエポキシ基などで一部変性した水酸基末端ポリジエン化合物または水添処理した水酸基末端ポリジエン化合物も水酸基が末端に含まれれば使用することができる。製造された発泡体の物性を制御するなどの目的でこれら化合物を2種類以上混合して用いてもよい。   Further, the hydroxyl group-terminated polydiene compound or the hydroxyl group-terminated polydiene compound obtained by partially modifying the terminal hydroxyl group of the hydroxyl-terminated polydiene compound or the hydrogenated hydroxyl-terminated polydiene compound with an isocyanate group or an epoxy group or the hydrogenated hydroxyl-terminated polydiene compound is also included at the terminal. If it can be used. Two or more of these compounds may be mixed and used for the purpose of controlling the physical properties of the produced foam.

上記水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体は、後述する炭化水素から構成されるパラフィン系やナフテン系の鉱物油からなる潤滑成分と分子構造が類似するので、潤滑成分を構成する分子との化学的親和性に優れ、水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体と潤滑成分分子とが比較的弱い相互作用によって絡み合っていると考えられる。そのため多くの潤滑成分をその水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体の分子内に含浸させることが可能であり、高い潤滑成分保持性を発揮することができる。これに熱や遠心力などの強い力を加えることで、水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体と潤滑成分の相互作用が壊され、潤滑成分を徐放させることができる。   The hydroxyl group-terminated polydiene polymer or the hydrogenated hydroxyl group-terminated polydiene polymer has a molecular structure similar to that of a lubricating component composed of paraffinic or naphthenic mineral oil composed of hydrocarbons, which will be described later. It is considered that the hydroxyl group-terminated polydiene polymer or the hydrogenated hydroxyl group-terminated polydiene polymer and the lubricating component molecule are intertwined by a relatively weak interaction. Therefore, many lubricating components can be impregnated in the molecule of the hydroxyl-terminated polydiene polymer or the hydrogenated hydroxyl-terminated polydiene polymer, and high lubricating component retention can be exhibited. By applying a strong force such as heat or centrifugal force to this, the interaction between the hydroxyl-terminated polydiene polymer or the hydrogenated hydroxyl-terminated polydiene polymer and the lubricating component is broken, and the lubricating component can be released gradually. it can.

液状ゴムを硬化させる硬化剤としての分子内にイソシアネート基を有する有機化合物は、液状ゴム内の水酸基と反応し、分子鎖を延長させ、または架橋させるイソシアネート化合物であれば、特に制限なく使用できる。好ましいイソシアネート化合物としては、ポリイソシアネート類を挙げることができる。ポリイソシアネート類は後述する発泡剤となる水と反応して気体を発生させることができるので特に好ましい。
ポリイソシアネート類としては、ポリイソシアネートおよび/または分子内に2個以上のイソシアネート基を有するプレポリマーが挙げられる。
The organic compound having an isocyanate group in the molecule as a curing agent for curing the liquid rubber can be used without particular limitation as long as it is an isocyanate compound that reacts with a hydroxyl group in the liquid rubber to extend the molecular chain or crosslink. Preferred isocyanate compounds include polyisocyanates. Polyisocyanates are particularly preferable because they can react with water to be a foaming agent described later to generate gas.
Examples of the polyisocyanates include polyisocyanates and / or prepolymers having two or more isocyanate groups in the molecule.

ポリイソシアネート類は芳香族、脂肪族、または脂環族ポリイソシアネート類を挙げることができる。
芳香族ポリイソシアネート類としては、トリレンジイソシアネート(以下、TDIと記す)、ジフェニルメタンジイソシアネート(以下、MDIと記す)、TDIの多量体、MDIの多量体、ナフタレンジイソシアネート(NDI)、フェニレンジイソシアネート、ジフェニレンジイソシアネート等が挙げられる。
脂肪族ポリイソシアネート類としては、オクタデカメチレンジイソシアネート、デカメチレンジイソシアネート、へキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。
脂環族ポリイソシアネート類としては、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
また、上記ポリイソシアネート類とトリメチロールプロパンなどのポリオールとの付加物も使用できる。
液状ゴムの末端官能基である水酸基との反応を高温度で行なう場合は、フェノール類、ラクタム類、アルコール類、オキシム類などのブロック剤でイソシアネート基をブロックしたブロックイソシアネート等を使用することができる。
Polyisocyanates can include aromatic, aliphatic, or alicyclic polyisocyanates.
Aromatic polyisocyanates include tolylene diisocyanate (hereinafter referred to as TDI), diphenylmethane diisocyanate (hereinafter referred to as MDI), TDI multimer, MDI multimer, naphthalene diisocyanate (NDI), phenylene diisocyanate, diphenylene. Diisocyanate etc. are mentioned.
Examples of the aliphatic polyisocyanates include octadecamethylene diisocyanate, decamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and xylylene diisocyanate.
Examples of the alicyclic polyisocyanates include isophorone diisocyanate and dicyclohexylmethane diisocyanate.
Further, an adduct of the above polyisocyanate and a polyol such as trimethylolpropane can also be used.
When the reaction with the hydroxyl group that is the terminal functional group of the liquid rubber is performed at a high temperature, a blocked isocyanate in which an isocyanate group is blocked with a blocking agent such as phenols, lactams, alcohols, and oximes can be used. .

水酸基末端ポリジエン系重合体と反応させる場合、ポリイソシアネート類の中で芳香族ポリイソシアネート類が好ましく、更には水酸基末端ポリジエン系重合体等との発泡性および反応性に優れるTDIが好ましい。   In the case of reacting with a hydroxyl group-terminated polydiene polymer, aromatic polyisocyanates are preferred among the polyisocyanates, and TDI having excellent foamability and reactivity with the hydroxyl group-terminated polydiene polymer is preferred.

分子内に2個以上のイソシアネート基を有するプレポリマーとしては、イソシアネート基の割合が 2.5〜5.0 NCO%からなるプレポリマーであれば使用できる。なお、NCO%はプレポリマー中におけるNCO基としての重量%である。2.5〜5.0 NCO%のプレポリマーは水酸基末端ポリジエン系重合体等と反応して弾力性に富んだウレタンを得ることができる。
プレポリマー類には重合させるモノマーの種類によりPPG系、PTMG系、エステル系、カプロラクトン系などに分類される。PPG系にはタケネートL-1170(三井化学ポリウレタン社製)、L-1158(三井化学ポリウレタン社製)があり、PTMG系にはコロネート4090(日本ポリウレタン社製)などがある。また、エステル系としてはコロネート4047(日本ポリウレタン社製)などがあり、カプロラクトン系にはタケネートL-1350(三井化学ポリウレタン社製)、タケネートL-1680(三井化学ポリウレタン社製)、サイアナプレン7-QM(三井化学ポリウレタン社製)、プラクセルEP1130(ダイセル化学工業社製)などを挙げることができる。上記プレポリマーは、目的に応じて2種類以上を混合して使用することもできる。
As the prepolymer having two or more isocyanate groups in the molecule, any prepolymer having an isocyanate group ratio of 2.5 to 5.0 NCO% can be used. In addition, NCO% is the weight% as an NCO group in a prepolymer. A 2.5 to 5.0 NCO% prepolymer can react with a hydroxyl group-terminated polydiene polymer or the like to obtain a urethane having high elasticity.
Prepolymers are classified into PPG type, PTMG type, ester type, caprolactone type, etc., depending on the type of monomer to be polymerized. There are Takenate L-1170 (manufactured by Mitsui Chemicals Polyurethanes) in the PPG system and L-1158 (manufactured by Mitsui Chemicals Polyurethanes), and Coronate 4090 (manufactured by Nippon Polyurethanes) in the PTMG system. Coronate 4047 (manufactured by Nippon Polyurethane Co., Ltd.) is used as the ester system, and Takenate L-1350 (manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.), Takenate L-1680 (manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.), and Sianaprene 7-QM are used as caprolactones. (Mitsui Chemical Polyurethane Co., Ltd.), Plaxel EP1130 (Daicel Chemical Industries Co., Ltd.) and the like. Two or more kinds of the above prepolymers can be mixed and used according to the purpose.

末端水酸基を有する水酸基末端ポリジエン系重合体または水添処理した水酸基末端ポリジエン系重合体とイソシアネート基を有するイソシアネート化合物との配合割合は、水酸基(−OH)とイソシアネート基(−NCO)との当量比で(OH/NCO)=1/( 1.0〜2.0 )の範囲が好ましく、特に優れた発泡性および弾力性を考慮すると、(OH/NCO)=1/( 1.1〜1.9 )の範囲が好ましい。(OH/NCO)が 1/2.0 より小さいときはイソシアネート基が過剰となり、架橋密度が大きく弾性に劣る場合がある。また、(OH/NCO)が 1/1.0 より大きいときには架橋するイソシアネート基が不足するため硬化が十分でなくなる。   The blending ratio of the hydroxyl group-terminated polydiene polymer having a terminal hydroxyl group or the hydrogenated hydroxyl group-terminated polydiene polymer and the isocyanate compound having an isocyanate group is equivalent ratio of hydroxyl group (—OH) to isocyanate group (—NCO). The range of (OH / NCO) = 1 / (1.0 to 2.0) is preferable, and the range of (OH / NCO) = 1 / (1.1 to 1.9) is preferable in consideration of particularly excellent foamability and elasticity. When (OH / NCO) is smaller than 1 / 2.0, the isocyanate group becomes excessive, the crosslink density is large, and the elasticity may be poor. On the other hand, when (OH / NCO) is greater than 1 / 1.0, the crosslinking is insufficient and curing is not sufficient.

第1の発泡固形潤滑剤に使用できる潤滑成分は、発泡体を形成する固形成分を溶解しないものであれば使用することができる。潤滑成分としては、炭化水素系潤滑油、炭化水素系グリース、または炭化水素系潤滑油と炭化水素系グリースとの混合物が挙げられる。
炭化水素系潤滑油としては、パラフィン系やナフテン系の鉱物油、炭化水素系合成油、GTL基油等が挙げられる。これらは単独でも混合油としても使用できる。
炭化水素系グリースは炭化水素油を基油とするグリースであり、基油としては上述の炭化水素系潤滑油を挙げることができる。増ちょう剤としては、リチウム石けん、リチウムコンプレックス石けん、カルシウム石けん、カルシウムコンプレックス石けん、アルミニウム石けん、アルミニウムコンプレックス石けん等の石けん類、ジウレア化合物、ポリウレア化合物等のウレア系化合物が挙げられるが、特に限定されるものではない。ジウレア化合物はジイソシアネートとモノアミンの反応で、ポリウレア化合物はジイソシアネートとポリアミンの反応で、それぞれ得られる。
The lubricating component that can be used for the first foamed solid lubricant can be used as long as it does not dissolve the solid component that forms the foam. Examples of the lubricating component include hydrocarbon-based lubricants, hydrocarbon-based greases, and mixtures of hydrocarbon-based lubricants and hydrocarbon-based greases.
Examples of the hydrocarbon-based lubricating oil include paraffinic and naphthenic mineral oils, hydrocarbon-based synthetic oils, GTL base oils, and the like. These can be used alone or as a mixed oil.
The hydrocarbon-based grease is a grease having a hydrocarbon oil as a base oil, and examples of the base oil include the above-described hydrocarbon-based lubricating oil. Examples of the thickener include lithium soaps, lithium complex soaps, calcium soaps, calcium complex soaps, aluminum soaps, aluminum complex soaps, and other urea compounds such as diurea compounds and polyurea compounds. It is not a thing. The diurea compound is obtained by the reaction of diisocyanate and monoamine, and the polyurea compound is obtained by the reaction of diisocyanate and polyamine.

上記潤滑成分には、炭化水素系合成ワックス、ポリエチレンワックス、高級脂肪酸エステル系ワックス、高級脂肪酸アミド系ワックス、ケトン・アミン類、水素硬化油などを混合して使用することができる。   As the lubricating component, hydrocarbon synthetic wax, polyethylene wax, higher fatty acid ester wax, higher fatty acid amide wax, ketone / amines, hydrogenated oil, and the like can be mixed and used.

第1の発泡固形潤滑剤を発泡させる手段は、原料にイソシアネート化合物を用いることから、イソシアネート化合物と反応して二酸化炭素ガスを発生させる水を用いることが好ましい。   Since the means for foaming the first foamed solid lubricant uses an isocyanate compound as a raw material, it is preferable to use water that reacts with the isocyanate compound to generate carbon dioxide gas.

第1の発泡固形潤滑剤は、上記潤滑成分と、液状ゴムと、硬化剤と、発泡剤とを含む混合物を発泡・硬化させて得られる。
上記潤滑成分の配合割合は、混合物全体に対して、40〜80 重量%である。潤滑成分が 40 重量%未満であると、潤滑油などの供給量が少なく発泡固形潤滑剤としての機能を発揮できず、80 重量%より多いときには固化しなくなる。
上記液状ゴムの配合割合は、混合物全体に対して、5〜45 重量%、好ましくは 9〜42 重量%である。5 重量%より少ないときは固化しないため発泡固形潤滑剤としての機能を持たず、45 重量%より多いときには潤滑剤の供給が少なく、発泡固形潤滑剤としての機能を持たない。
The first solid foam lubricant is obtained by foaming and curing a mixture containing the above-described lubricating component, liquid rubber, a curing agent, and a foaming agent.
The blending ratio of the lubricating component is 40 to 80% by weight based on the entire mixture. When the lubricating component is less than 40% by weight, the supply amount of lubricating oil and the like is so small that it cannot function as a foamed solid lubricant, and when it exceeds 80% by weight, it does not solidify.
The blending ratio of the liquid rubber is 5 to 45% by weight, preferably 9 to 42% by weight, based on the entire mixture. When it is less than 5% by weight, it does not solidify, so it does not have a function as a foamed solid lubricant. When it is more than 45% by weight, the supply of the lubricant is small and it does not function as a foamed solid lubricant.

第1の発泡固形潤滑剤において発泡倍率は 1.1〜50 倍であることが好ましく、より好ましくは 1.1〜10 倍である。発泡倍率 1.1 倍未満の場合は気泡体積が小さく、外部応力が加わったときに変形を許容できない。また、50 倍をこえる場合は外部応力に耐える強度を得ることが困難となる。   In the first foamed solid lubricant, the expansion ratio is preferably 1.1 to 50 times, more preferably 1.1 to 10 times. When the expansion ratio is less than 1.1 times, the bubble volume is small and deformation cannot be allowed when external stress is applied. If it exceeds 50 times, it will be difficult to obtain the strength to withstand external stress.

また、第1の発泡固形潤滑剤の硬化速度を促進させるために、3級アミン系触媒や有機金属触媒などを用いることができる。使用する3級アミン系触媒としてはモノアミン類、ジアミン類、トリアミン類、環状アミン類、アルコールアミン類、エーテルアミン類などが挙げられる。また、有機金属触媒としてはスタナオクタエート、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンメルカプチド、ジブチルチンチオカルボキシレート、ジブチルチンマレエート、ジオクチルチンジメルカプチド、ジオクチルチンチオカルボキシレートなどが挙げられる。また、反応のバランスを整えるなどの目的でこれら複数種類を混合して用いてもよい。   Moreover, in order to accelerate the curing rate of the first foamed solid lubricant, a tertiary amine catalyst, an organometallic catalyst, or the like can be used. Examples of the tertiary amine catalyst used include monoamines, diamines, triamines, cyclic amines, alcohol amines, ether amines and the like. Examples of the organometallic catalyst include stanaoctaate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin maleate, dioctyltin dimercaptide, dioctyltin thiocarboxylate and the like. Moreover, you may mix and use these multiple types for the purpose of adjusting the balance of reaction.

本発明における第2の発泡固形潤滑剤の樹脂成分として使用できるウレタンプレポリマーは、活性水素基を有する化合物とポリイソシアネートとの反応によって得られ、イソシアネート基は、分子鎖末端であっても、あるいは分子鎖内から分岐した側鎖末端に含まれていてもよい。また、ウレタンプレポリマーは分子鎖内にウレタン結合を有していてもよい。
反応するモノマー(=活性水素基を有する化合物)の種類によって、カプロラクトン系、エステル系、エーテル系などに分類される。エーテル系にはタケネートL-1170(三井化学ポリウレタン社製)、L-1158(三井化学ポリウレタン社製)、コロネート4090(日本ポリウレタン社製)がある。また、エステル系としてはコロネート4047(日本ポリウレタン社製)などがあり、カプロラクトン系にはタケネートL-1350(三井化学ポリウレタン社製)、タケネートL-1680(三井化学ポリウレタン社製)、サイアナプレン7-QM(三井化学ポリウレタン社製)、プラクセルEP1130(ダイセル化学工業社製)などが挙げられる。
また、末端基をイソシアネート基に変性したオリゴマーやプレポリマー化合物も使用することができる。このような化合物としては末端イソシアネート変性ポリエーテルポリオールや水酸基末端ポリブタジエンのイソシアネート変性体が挙げられる。末端イソシアネート変性ポリエーテルポリオールにはコロネート1050(日本ポリウレタン社製)などが挙げられる。また、水酸基末端ポリブタジエンのイソシアネート変性体には poly−bd MC50(出光興産社製)や poly−bd HTP9(出光興産社製)が挙げられる。
これらウレタンプレポリマーは目的とする機械的性質などに応じて2種類以上を混合して使用することができる。
The urethane prepolymer that can be used as the resin component of the second foamed solid lubricant in the present invention is obtained by reacting a compound having an active hydrogen group with a polyisocyanate, and the isocyanate group may be a molecular chain terminal, or It may be contained at the end of the side chain branched from the molecular chain. The urethane prepolymer may have a urethane bond in the molecular chain.
Depending on the type of monomer (= compound having an active hydrogen group) to be reacted, it is classified into caprolactone, ester and ether. Ether ethers include Takenate L-1170 (Mitsui Chemical Polyurethane), L-1158 (Mitsui Chemical Polyurethane), and Coronate 4090 (Nippon Polyurethane). Coronate 4047 (manufactured by Nippon Polyurethane Co., Ltd.) is used as the ester system, and Takenate L-1350 (manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.), Takenate L-1680 (manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.), and Sianaprene 7-QM are used as caprolactones. (Manufactured by Mitsui Chemicals Polyurethane), Plaxel EP1130 (manufactured by Daicel Chemical Industries) and the like.
Moreover, the oligomer and prepolymer compound which modified the terminal group into the isocyanate group can also be used. Examples of such a compound include a terminal isocyanate-modified polyether polyol and an isocyanate-modified product of a hydroxyl group-terminated polybutadiene. Examples of the terminal isocyanate-modified polyether polyol include Coronate 1050 (manufactured by Nippon Polyurethane Co., Ltd.). Moreover, poly-bd MC50 (made by Idemitsu Kosan Co., Ltd.) and poly-bd HTP9 (made by Idemitsu Kosan Co., Ltd.) are mentioned as the isocyanate modified body of hydroxyl-terminated polybutadiene.
These urethane prepolymers can be used in combination of two or more depending on the desired mechanical properties.

第2の発泡固形潤滑剤は、イソシアネート基含有量が 2 重量%以上 6 重量%未満のウレタンプレポリマーを使用できる。イソシアネート基(NCO)の含有量が 2 重量%未満であると発泡性と弾力性の両立が難しくなるし、6 重量%以上であると硬度が大きくなりすぎて反発弾性が大きくなり外力による変形を受けるときに発熱等を起こしやすくなる。
また、イソシアネート基は、フェノール類、ラクタム類、アルコール類、オキシム類などのブロック剤でイソシアネート基をブロックしたブロックイソシアネート等を使用することができる。
As the second foamed solid lubricant, a urethane prepolymer having an isocyanate group content of 2 wt% or more and less than 6 wt% can be used. If the isocyanate group (NCO) content is less than 2% by weight, it will be difficult to achieve both foamability and elasticity, and if it is more than 6% by weight, the hardness will be too high and the rebound resilience will increase and deformation due to external force will occur. It becomes easy to generate heat when receiving.
Moreover, the isocyanate group can use the block isocyanate etc. which blocked the isocyanate group with blocking agents, such as phenols, lactams, alcohols, and oximes.

上記ウレタンプレポリマーを硬化させる硬化剤としては、活性水素を有する化合物が好ましく、官能基がアミノ基であるポリアミノ化合物、官能基が水酸基であるポリオール化合物が挙げられる。
ポリアミノ化合物としては、3,3′-ジクロロ-4,4′-ジアミノジフェニルメタン(以下、MOCAと記す)、3,3′-ジメチル-4,4′-ジアミノジフェニルメタン、3,3′-ジメトキシ-4,4′-ジアミノジフェニルメタン、4,4′-ジアミノ-3,3′-ジエチル-5,5′-ジメチルジフェニルメタン、トリメチレン-ビス-(4-アミノベンゾアート)、ビス(メチルチオ)-2,4-トルエンジアミン、ビス(メチルチオ)-2,6-トルエンジアミン、メチルチオトルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミンに代表される芳香族ポリアミノ化合物が挙げられる。
The curing agent for curing the urethane prepolymer is preferably a compound having active hydrogen, and examples thereof include a polyamino compound having a functional group as an amino group and a polyol compound having a functional group as a hydroxyl group.
Polyamino compounds include 3,3'-dichloro-4,4'-diaminodiphenylmethane (hereinafter referred to as MOCA), 3,3'-dimethyl-4,4'-diaminodiphenylmethane, and 3,3'-dimethoxy-4. , 4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, trimethylene-bis- (4-aminobenzoate), bis (methylthio) -2,4- Aromatics typified by toluenediamine, bis (methylthio) -2,6-toluenediamine, methylthiotoluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine Examples include polyamino compounds.

上記ポリアミノ化合物の中でも芳香族アミノ化合物が低コストであり、物性が優れているため、好ましく、特にアミノ基の隣接位に置換基を有する芳香族ジアミノ化合物が好ましい。第2の発泡固形潤滑剤においては、発泡と共に硬化させる工程を経るため、隣接位の置換基によりアミノ基の反応性が抑制されるためと考えられる。   Among the polyamino compounds, aromatic amino compounds are preferable because of low cost and excellent physical properties, and aromatic diamino compounds having a substituent at the position adjacent to the amino group are particularly preferable. In the 2nd foaming solid lubricant, since it passes through the process of hardening with foaming, it is thought that the reactivity of an amino group is suppressed by the substituent of an adjacent position.

ウレタンプレポリマーをポリアミノ化合物で硬化させるとウレタンおよびウレア結合を分子内に有する発泡固形潤滑剤となる。ウレア結合を生成させることによって分子中のウレタン結合密度を下げることになり、伸びや反発弾性が向上する。また、ウレア結合を生成させることによって剛性を与えることができる。   When the urethane prepolymer is cured with a polyamino compound, it becomes a foamed solid lubricant having urethane and urea bonds in the molecule. By generating urea bonds, the urethane bond density in the molecule is lowered, and elongation and impact resilience are improved. Moreover, rigidity can be provided by generating a urea bond.

ポリオール化合物としては、1,4-ブタングリコールやトリメチロールプロパンに代表される低分子ポリオール、ポリエーテルポリオール、ひまし油系ポリオール、ポリエステル系ポリオールが挙げられる。ポリオール化合物の中では、ポリエーテルポリオール、トリメチロールプロパンが好ましい。   Examples of the polyol compound include low molecular polyols such as 1,4-butane glycol and trimethylolpropane, polyether polyols, castor oil polyols, and polyester polyols. Among the polyol compounds, polyether polyol and trimethylolpropane are preferable.

ウレタンプレポリマーに含まれるイソシアネート基(−NCO)と、該イソシアネート基と反応する硬化剤の官能基との割合は、官能基がアミノ基または水酸基である場合、当量比で(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲である。
ウレタンプレポリマーに含まれるイソシアネート基と硬化剤のアミノ基(−NH2)または水酸基(−OH)、そして発泡剤である水の水酸基(−OH)との割合で発泡固形潤滑剤の発泡倍率や柔軟性、弾力性等が定まる。硬化剤のアミノ基(−NH2)または水酸基(−OH)とウレタンプレポリマーのイソシアネート基(−NCO)とを当量で反応させると、発泡剤である水と反応するイソシアネート基(−NCO)が消失してしまうため、(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲が好ましい。また、発泡剤である水の水酸基と、硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7〜2.0)の範囲である。
上記範囲よりも硬化剤の量が少なくなると発泡固形潤滑剤の強度等の物性が著しく低下するばかりでなく、ウレタンエラストマーとして硬化しない場合もある。
The ratio of the isocyanate group (—NCO) contained in the urethane prepolymer and the functional group of the curing agent that reacts with the isocyanate group is an equivalent ratio when the functional group is an amino group or a hydroxyl group (functional group of the curing agent). /NCO)=1/(1.1 to 2.5).
The ratio of the isocyanate group contained in the urethane prepolymer, the amino group (—NH 2 ) or hydroxyl group (—OH) of the curing agent, and the hydroxyl group of water (—OH) as the foaming agent, Flexibility, elasticity, etc. are determined. When the amino group (—NH 2 ) or hydroxyl group (—OH) of the curing agent is reacted with the isocyanate group (—NCO) of the urethane prepolymer in an equivalent amount, an isocyanate group (—NCO) that reacts with water as the foaming agent is formed. Since it will disappear, the range of (functional group of curing agent / NCO) = 1 / (1.1 to 2.5) is preferable. Moreover, the ratio of the hydroxyl group of water which is a foaming agent and the functional group of a hardening | curing agent is the range of (hydroxyl group of water / functional group of a hardening | curing agent) = 1 / (0.7-2.0) by an equivalent ratio.
If the amount of the curing agent is less than the above range, not only the physical properties such as the strength of the foamed solid lubricant are remarkably lowered, but also the urethane elastomer may not be cured.

第2の発泡固形潤滑剤に使用できる潤滑成分は、第1の発泡固形潤滑剤と同様に、発泡体を形成する固形成分を溶解しないものであれば使用することができる。潤滑成分としては、例えば潤滑油、グリース、ワックスなどを単独でもしくは混合して使用できる。特に好ましいものとして炭化水素系潤滑油、炭化水素系グリース、または炭化水素系潤滑油と炭化水素系グリースとの混合物が挙げられる。
炭化水素系潤滑油としては、第1の発泡固形潤滑剤と同様のものを使用できる。また、エステル系合成油、エーテル系合成油、フッ素油、シリコーン油等も使用することができる。これらは単独でも混合油としても使用できる。
グリースとしては第1の発泡固形潤滑剤と同様のグリースの他に、エステル系合成油、エーテル系合成油、GTL基油、フッ素油、シリコーン油等を基油としたグリースも使用できる。
また、第1の発泡固形潤滑剤と同様の炭化水素系合成ワックス、ポリエチレンワックス、高級脂肪酸エステル系ワックス、高級脂肪酸アミド系ワックス、ケトン・アミン類、水素硬化油などを混合して使用することができる。
The lubricating component that can be used in the second foamed solid lubricant can be used as long as it does not dissolve the solid component that forms the foam, like the first foamed solid lubricant. As the lubricating component, for example, lubricating oil, grease, wax or the like can be used alone or in combination. Particularly preferred are hydrocarbon-based lubricants, hydrocarbon-based greases, or mixtures of hydrocarbon-based lubricants and hydrocarbon-based greases.
As the hydrocarbon-based lubricant, the same one as the first foamed solid lubricant can be used. In addition, ester synthetic oils, ether synthetic oils, fluorine oils, silicone oils and the like can also be used. These can be used alone or as a mixed oil.
As the grease, in addition to the grease similar to the first foamed solid lubricant, a grease based on ester synthetic oil, ether synthetic oil, GTL base oil, fluorine oil, silicone oil or the like can be used.
In addition, the same hydrocarbon-based synthetic wax, polyethylene wax, higher fatty acid ester-based wax, higher fatty acid amide-based wax, ketone / amines, hydrogenated oil, and the like as the first foamed solid lubricant may be used. it can.

第2の発泡固形潤滑剤を発泡させる発泡剤としては、原料にイソシアネート化合物を用いることから、イソシアネート化合物と反応して二酸化炭素ガスを発生させる水を用いることが好ましい。
また、第2の発泡固形潤滑剤の硬化速度を促進させるために、上述した3級アミン系触媒や有機金属触媒などを用いることができる。
As the foaming agent for foaming the second foamed solid lubricant, since an isocyanate compound is used as a raw material, it is preferable to use water that reacts with the isocyanate compound to generate carbon dioxide gas.
Moreover, in order to accelerate the curing rate of the second foamed solid lubricant, the above-described tertiary amine catalyst, organometallic catalyst, or the like can be used.

第2の発泡固形潤滑剤は、上記潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させて得られる。
上記潤滑成分の配合割合は、混合物全体に対して、 30 重量%〜70 重量%、好ましくは 40 重量%〜60 重量%である。潤滑成分が 30 重量%未満であると、潤滑油などの供給量が少なく発泡固形潤滑剤としての機能を発揮できず、70 重量%より多いときには固化しない場合がある。
The second foamed solid lubricant is obtained by foaming and curing a mixture containing the lubricating component, the resin component, the curing agent, and the foaming agent.
The blending ratio of the lubricating component is 30% to 70% by weight, preferably 40% to 60% by weight, based on the entire mixture. If the lubricating component is less than 30% by weight, the supply amount of lubricating oil or the like is so small that it cannot function as a foamed solid lubricant, and if it exceeds 70% by weight, it may not solidify.

第2の発泡固形潤滑剤の発泡後の連続気泡率は 50%以上であり、好ましくは 50 %以上 90 %以下である。連続気泡率が 50%未満の場合は、樹脂成分(固形成分)の潤滑油が一時的に独立気泡中に取り込まれている割合が多くなり、必要な時に外部へ供給されない場合がある。なお、90%をこえると、潤滑剤の保油性の低下および潤滑剤の放出量が多くなることで長期使用に不利となったり、発泡固形潤滑剤自体の強度(耐久性)が低下したりするおそれがある。   The open cell ratio of the second foamed solid lubricant after foaming is 50% or more, preferably 50% or more and 90% or less. When the open cell ratio is less than 50%, the ratio of the resin component (solid component) lubricating oil temporarily taken up into the closed cells increases and may not be supplied to the outside when necessary. If it exceeds 90%, the oil retention of the lubricant will decrease and the amount of lubricant released will increase, which will be disadvantageous for long-term use, and the strength (durability) of the foamed solid lubricant itself will decrease. There is a fear.

第2の発泡固形潤滑剤の連続気泡率は以下の手順で算出できる。
(1)発泡硬化した発泡固形潤滑剤を適当な大きさにカットし、試料Aを得る。試料Aの重量を測定する。
(2)Aを 3 時間ソックスレー洗浄(溶剤:石油ベンジン)する。その後 80℃で 2 時間恒温槽に放置し、有機溶剤を完全に乾燥させ、試料Bを得る。試料Bの重量を測定する。
(3)連続気泡率を以下の手順で算出する。
連続気泡率=(1−(試料Bの樹脂成分重量−試料Aの樹脂成分重量)/試料Aの潤滑成分重量)×100
なお、試料A、Bの樹脂成分重量、潤滑成分重量は、試料A、Bの重量に組成の仕込み割合を乗じて算出する。
連続していない独立気泡中に取り込まれた潤滑成分は 3 時間ソックスレー洗浄では外部へ放出されないため試料Bの重量を減少させることがないので、上記の操作で試料Bの重量減少分は連続気泡からの潤滑成分の放出によるものとして連続気泡率が算出できる。
The open cell ratio of the second solid foam lubricant can be calculated by the following procedure.
(1) The foamed solid lubricant that has been foam-cured is cut into an appropriate size to obtain sample A. The weight of sample A is measured.
(2) A is soxhlet washed (solvent: petroleum benzine) for 3 hours. Thereafter, the sample is left in a thermostatic bath at 80 ° C. for 2 hours to completely dry the organic solvent, and sample B is obtained. The weight of sample B is measured.
(3) The open cell ratio is calculated by the following procedure.
Open cell ratio = (1− (weight of resin component of sample B−weight of resin component of sample A) / weight of lubricating component of sample A) × 100
The resin component weight and the lubrication component weight of Samples A and B are calculated by multiplying the weights of Samples A and B by the composition charge ratio.
Lubricating components taken into discontinuous closed cells are not released to the outside by Soxhlet cleaning for 3 hours, so the weight of sample B is not reduced. The open cell ratio can be calculated as a result of the release of the lubricating component.

なお、第1および第2の発泡固形潤滑剤には必要に応じて顔料や帯電防止剤、難燃剤、防黴剤、補強剤、無機充填剤、老化防止剤、フィラーなどの各種添加剤等を添加することができる。補強剤としてはカーボンブラック、ホワイトカーボン、コロイダルシリカなどが挙げられ、無機充填剤としては炭酸カルシウム、硫酸バリウム、タルク、クレイ、硅石粉などが挙げられる。
さらに二硫化モリブデン、グラファイト等の固体潤滑剤、有機モリブデン等の摩擦調整剤、アミン、脂肪酸、油脂類等の油性剤、アミン系、フェノール系などの酸化防止剤、石油スルフォネート、ジノニルナフタレンスルフォネート、ソルビタンエステルなどの錆止め剤、イオウ系、イオウ−リン系などの極圧剤、有機亜鉛、リン系などの摩耗防止剤、ベンゾトリアゾール、亜硝酸ソーダなどの金属不活性剤、ポリメタクリレート、ポリスチレンなどの粘度指数向上剤などの各種添加剤を含んでいてもよい。
The first and second foamed solid lubricants may contain various additives such as pigments, antistatic agents, flame retardants, antifungal agents, reinforcing agents, inorganic fillers, anti-aging agents, and fillers as necessary. Can be added. Examples of the reinforcing agent include carbon black, white carbon, colloidal silica, and examples of the inorganic filler include calcium carbonate, barium sulfate, talc, clay, and meteorite powder.
In addition, solid lubricants such as molybdenum disulfide and graphite, friction modifiers such as organic molybdenum, oily agents such as amines, fatty acids and oils, antioxidants such as amines and phenols, petroleum sulfonates, dinonylnaphthalene sulfone Rust inhibitors such as nates and sorbitan esters, extreme pressure agents such as sulfur and sulfur-phosphorus, antiwear agents such as organic zinc and phosphorus, metal deactivators such as benzotriazole and sodium nitrite, polymethacrylate, polystyrene Various additives such as a viscosity index improver such as

第1および第2の発泡固形潤滑剤は、潤滑油などの潤滑成分存在下で発泡反応と硬化反応とを同時に行なう反応型含浸法を用いることが、潤滑成分の高充填化と材料物性の高伸化を同時に両立させるためには望ましい。これは発泡体形成段階において発泡体に形成された気泡に潤滑剤が均一に含浸されるとともに、潤滑成分が発泡・硬化した固形成分内に吸蔵されることにより潤滑剤の高充填化と材料物性の高伸化が両立するものと考えられる。
これに対してあらかじめ発泡体を製造しておき、これに潤滑剤を含浸させる後含浸法では潤滑剤保持力が十分でなく、短時間で潤滑剤が放出され長期的に使用すると潤滑剤が供給不足となる。
For the first and second foamed solid lubricants, it is possible to use a reactive impregnation method in which a foaming reaction and a curing reaction are simultaneously performed in the presence of a lubricating component such as a lubricating oil. It is desirable to achieve both elongation simultaneously. This is because the lubricant is uniformly impregnated into the foam formed in the foam during the foam formation stage, and the lubricant is occluded in the foamed / cured solid component, so that the lubricant is highly filled and the material properties It is considered that the high elongation of both is compatible.
On the other hand, after the foam is manufactured in advance, the post-impregnation method in which the lubricant is impregnated does not have sufficient lubricant holding power, and the lubricant is released in a short period of time and supplied when used for a long time. It becomes insufficient.

潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を混合する方法は、特に限定されることなく、例えばヘンシェルミキサー、リボンミキサー、ジューサーミキサー、ミキシングヘッド等、一般に用いられる撹拌機を使用して混合することができる。
上記混合物は、市販のシリコーン系整泡剤などの界面活性剤を使用し、各原料分子を均一に分散させておくことが好ましい。また、この整泡剤の種類によって表面張力を制御し、生じる気泡の種類を連続気泡または独立気泡に制御することが可能となる。このような界面活性剤としては陰イオン系界面活性剤、非イオン系界面活性剤、陽イオン系界面活性剤、両性界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤などが挙げられる。
A method of mixing the mixture containing the lubricating component, the resin component, the curing agent, and the foaming agent is not particularly limited, and a commonly used agitator such as a Henschel mixer, a ribbon mixer, a juicer mixer, a mixing head, or the like. Can be mixed using.
The mixture preferably uses a surfactant such as a commercially available silicone foam stabilizer, and each raw material molecule is preferably dispersed uniformly. Further, the surface tension can be controlled by the type of the foam stabilizer, and the type of the generated bubbles can be controlled to open cells or closed cells. Examples of such surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, silicone surfactants, and fluorine surfactants.

発泡固形潤滑剤は、旋回軸受の内部に潤滑成分および樹脂成分を含む混合物を流し込んだ後、発泡・硬化させてもよく、また常圧で発泡・硬化した後に裁断や研削等で所定形状に後加工し、軸受内部に組み込むこともできる。
形状が複雑な軸受内部に容易に充填することが可能であり、発泡成形体を得るための成形金型や研削工程等も不要であることから、本発明では、混合物を発泡・硬化前に軸受内部に流し込み、該軸受内部において発泡・硬化させる方法を採用することが好ましい。該方法を採用することで、製造工程が簡易となり低コスト化が図れる。
The foamed solid lubricant may be foamed and cured after pouring a mixture containing a lubricating component and a resin component into the slewing bearing, and after foaming and curing at normal pressure, it can be cut into a predetermined shape by cutting or grinding It can be machined and incorporated into the bearing.
Since it is possible to easily fill the inside of a bearing having a complicated shape and there is no need for a molding die or a grinding process for obtaining a foamed molded product, in the present invention, the mixture is mixed before foaming and curing. It is preferable to adopt a method of pouring into the interior and foaming and curing inside the bearing. By adopting this method, the manufacturing process is simplified and the cost can be reduced.

発泡・硬化時において発泡により多孔質化される際に生成させる気泡は気泡が連通している連続気泡であることが好ましく、外部応力によって潤滑成分を樹脂の表面から連続気泡を介して外部に直接供給するためである。気泡間が連通していない独立気泡の場合は固形成分中の潤滑油の全量が一時的に独立気泡中に隔離され気泡間での移動が困難となり、必要なときに転動体周囲等に十分供給されない場合がある。   It is preferable that the bubbles to be generated when foamed by foaming at the time of foaming / curing are open cells that communicate with each other, and the lubricating component can be directly removed from the surface of the resin via the open cells by external stress. This is to supply. In the case of closed cells where the bubbles do not communicate with each other, the entire amount of lubricating oil in the solid component is temporarily isolated in the closed cells, making it difficult to move between the bubbles and supplying them around the rolling elements when necessary. May not be.

実施例1〜実施例15および比較例1〜比較例4
実施例1〜実施例15および比較例1〜比較例4に用いた潤滑成分、液状ゴム、硬化剤、発泡剤、触媒を以下に示す。なお、( )内は表中での略号を表す。
潤滑成分
潤滑油(潤滑油):タービン100(新日本石油社製)
潤滑グリース(グリース1):NTG2218M(協同油脂社製)
液状ゴム
水酸基末端ポリブタジエン(PBOH1):Poly-bd R45HT(水酸基価:46.6 mg KOH/g、数平均分子量:2,800、出光興産社製)
水酸基末端ポリブタジエン(PBOH2):Poly-bd R15HT(水酸基価:102.7 mg KOH/g 、数平均分子量:1,200、出光興産社製)
水酸基末端ポリイソプレン(PipOH):Poly-ip(水酸基価:46.6 mg KOH/g 、数平均分子量:2,500、出光興産社製)
水添水酸基末端ポリイソプレン(HPipOH):エポール(水酸基価:50.5 mg KOH/g 、数平均分子量:2,500、出光興産社製)
硬化剤
イソシアネート化合物(TDI):コロネートT-80(日本ポリウレタン社製)
エラストマ1(UE1):コロネート4090(4.4 NCO% 日本ポリウレタン社製)
エラストマ2(UE2):プラクセルEP1130(3.3 NCO% ダイセル化学工業社製)
発泡剤(発泡剤) イオン交換水
整泡剤(整泡剤) SRX298(東レダウ社製)
触媒(触媒1) DM70(東ソー社製)
Examples 1 to 15 and Comparative Examples 1 to 4
The lubricating components, liquid rubber, curing agent, foaming agent, and catalyst used in Examples 1 to 15 and Comparative Examples 1 to 4 are shown below. In addition, () represents an abbreviation in the table.
Lubricating component Lubricating oil (lubricating oil): Turbine 100 (manufactured by Nippon Oil Corporation)
Lubricating grease (Grease 1): NTG2218M (manufactured by Kyodo Yushi Co., Ltd.)
Liquid rubber Hydroxyl-terminated polybutadiene (PBOH1): Poly-bd R45HT (hydroxyl value: 46.6 mg KOH / g, number average molecular weight: 2,800, manufactured by Idemitsu Kosan Co., Ltd.)
Hydroxyl-terminated polybutadiene (PBOH2): Poly-bd R15HT (hydroxyl value: 102.7 mg KOH / g, number average molecular weight: 1,200, manufactured by Idemitsu Kosan Co., Ltd.)
Hydroxyl-terminated polyisoprene (PipOH): Poly-ip (hydroxyl value: 46.6 mg KOH / g, number average molecular weight: 2,500, manufactured by Idemitsu Kosan Co., Ltd.)
Hydrogenated hydroxyl-terminated polyisoprene (HPipOH): Epol (hydroxyl value: 50.5 mg KOH / g, number average molecular weight: 2,500, manufactured by Idemitsu Kosan Co., Ltd.)
Curing agent Isocyanate compound (TDI): Coronate T-80 (manufactured by Nippon Polyurethane Co., Ltd.)
Elastomer 1 (UE1): Coronate 4090 (4.4 NCO% made by Nippon Polyurethane)
Elastomer 2 (UE2): Plaxel EP1130 (3.3 NCO% manufactured by Daicel Chemical Industries)
Foaming agent (foaming agent) Ion exchange water foam stabilizer (foam stabilizer) SRX298 (manufactured by Toray Dow)
Catalyst (Catalyst 1) DM70 (manufactured by Tosoh Corporation)

硬化剤(イソシアネート)を除く配合材料を表1〜表3に示す配合割合でよく混合し、最後に硬化剤を加えて素早く混合した混合物 40 g を、ポリテトラフルオロエチレン樹脂製容器(直径 70 mm×高さ 150 mm )に充填した。数秒後に発泡反応が始まり、常温で数時間放置し硬化させて円柱試験片を得た。この試験片を目視および光学顕微鏡を用いて観察した。試験片に 30 Nの力を試験片の円柱軸方向に印加したときに油が滲み出す形状の弾性ゴムの発泡体であるものを優れた発泡固形潤滑剤であると評価して「○」印を、また、発泡体として硬化しない場合、潤滑油が分離したり放出したりしない場合を「×」印を付して表1〜表3に併記した。
また、「○」印と評価された試験片は試験片の円柱軸方向に 20 %伸張させても油が滲み出すことはなかった。
Mix well the compounding materials except the curing agent (isocyanate) at the blending ratios shown in Tables 1 to 3, and finally add 40 g of the mixture that was quickly mixed by adding the curing agent to a polytetrafluoroethylene resin container (70 mm in diameter). × Height 150 mm). After a few seconds, the foaming reaction started and allowed to stand at room temperature for several hours to be cured to obtain a cylindrical test piece. This test piece was observed visually and using an optical microscope. Evaluated as an excellent foamed solid lubricant that is an elastic rubber foam in which oil oozes out when a force of 30 N is applied to the specimen in the direction of the cylinder axis of the specimen. Further, when not cured as a foam, cases where the lubricating oil does not separate or release are marked with “x” and are also shown in Tables 1 to 3.
In addition, the test piece evaluated as “◯” showed no oil oozing even when it was stretched by 20% in the cylindrical axis direction of the test piece.

Figure 2008298123
Figure 2008298123
Figure 2008298123
Figure 2008298123
Figure 2008298123
Figure 2008298123

表1〜表3に示すように、実施例1〜実施例15の発泡固形潤滑剤では指で押したとき相当する力を加えたときに油が滲み出す形状の弾性ゴムの発泡体であり、優れた発泡固形潤滑剤であると認められたが、比較例1〜比較例4では発泡はしたものの一部固化せず、発泡固形潤滑剤としては機能しないことがわかった。
次に、実施例1〜実施例15の発泡固形潤滑剤成分を図1に示す旋回軸受1の固定輪・旋回輪2、3と転動体4とに囲まれた軸受空間に注入して常温で数時間放置し硬化させ、発泡固形潤滑剤6を封入してなる旋回軸受を得た。
この旋回軸受は軸受内部に発泡固形潤滑剤が封入されているので、潤滑剤の漏れがなく、長寿命化が図れる。
As shown in Tables 1 to 3, the foamed solid lubricants of Examples 1 to 15 are elastic rubber foams in which oil oozes out when a corresponding force is applied when pressed with a finger. Although it was recognized as an excellent foamed solid lubricant, in Comparative Examples 1 to 4, it was found that although foamed, it did not partially solidify and function as a foamed solid lubricant.
Next, the foamed solid lubricant components of Examples 1 to 15 are injected into a bearing space surrounded by the fixed and slewing rings 2 and 3 of the slewing bearing 1 and the rolling elements 4 shown in FIG. It was allowed to stand for several hours and cured to obtain a slewing bearing in which the foamed solid lubricant 6 was enclosed.
In this slewing bearing, since the foamed solid lubricant is sealed inside the bearing, there is no leakage of the lubricant and the life can be extended.

実施例16〜実施例35および比較例5〜比較例7に用いた潤滑成分、ウレタンプレポリマー、硬化剤、発泡剤、触媒を以下に示す。なお、( )内は表中での略号を表す。
潤滑成分
潤滑油(潤滑油1):タービン100(パラフィン系鉱油、新日本石油社製)
潤滑油(潤滑油2):クリセフ150(ナフテン系鉱油、新日本石油社製)
潤滑油(潤滑油3):シンフルード801(ポリ-α-オレフィン、新日鐵化学社製)
潤滑グリース(グリース2):パイロノックユニバーサルN6C(新日本石油社製)
ウレタンプレポリマー
カプロラクタン系ウレタンプレポリマー1(プレポリマー1):プラクセルEP1130(NCO 3.3%、ダイセル化学工業社製)
エーテル系ウレタンプレポリマー(プレポリマー2):コロネート4090(NCO 4.3%、日本ポリウレタン社製)
エステル系ウレタンプレポリマー(プレポリマー3):コロネート4047(NCO 4.3%、日本ポリウレタン社製)
カプロラクタン系ウレタンプレポリマー(プレポリマー4):タケネートL-1350(NCO 2.3%、三井化学ポリウレタン社製)
エーテル系ウレタンプレポリマー(プレポリマー5):タケネートL-1170(NCO 2.4%、三井化学ポリウレタン社製)
カプロラクタン系ウレタンプレポリマー(プレポリマー6):タケネートL-1680(NCO 3.2%、三井化学ポリウレタン社製)
カプロラクタン系ウレタンプレポリマー(プレポリマー7):サイアナプレン7-QM(NCO 2.3%、三井化学ポリウレタン社製)
エーテル系ウレタンプレポリマー(プレポリマー8):タケネートL-1158(NCO 4.4%、三井化学ポリウレタン社製)
硬化剤
MOCA(MOCA):イハラキュアミンMT(イハラケミカル社製)
トリメチレン-ビス-(4-アミノベンゾアート)(CUA-4):CUA-4(イハラケミカル社製)
ビス(メチルチオ)-2,4-トルエンジアミン、ビス(メチルチオ)-2,6-トルエンジアミンおよびメチルチオトルエンジアミンの混合物(エタキュア300):エタキュア300(アルベマール社製)
トリメチロールプロパン:試薬
発泡剤(発泡剤) イオン交換水
整泡剤(整泡剤) SRX298(東レダウ社製)
触媒(触媒1) DM70(東ソー社製)
The lubricating components, urethane prepolymers, curing agents, foaming agents, and catalysts used in Examples 16 to 35 and Comparative Examples 5 to 7 are shown below. In addition, () represents an abbreviation in the table.
Lubricating component Lubricating oil (lubricating oil 1): Turbine 100 (paraffinic mineral oil, manufactured by Nippon Oil Corporation)
Lubricating oil (lubricating oil 2): Crisef 150 (Naphthenic mineral oil, manufactured by Nippon Oil Corporation)
Lubricating oil (lubricating oil 3): Sinfluid 801 (poly-α-olefin, manufactured by Nippon Steel Chemical Co., Ltd.)
Lubricating grease (Grease 2): Pyronock Universal N6C (manufactured by Nippon Oil Corporation)
Urethane prepolymer Caprolactan-based urethane prepolymer 1 (prepolymer 1): Plaxel EP1130 (NCO 3.3%, manufactured by Daicel Chemical Industries)
Ether-based urethane prepolymer (Prepolymer 2): Coronate 4090 (NCO 4.3%, manufactured by Nippon Polyurethane)
Ester urethane prepolymer (Prepolymer 3): Coronate 4047 (NCO 4.3%, manufactured by Nippon Polyurethane Co., Ltd.)
Caprolactan urethane prepolymer (Prepolymer 4): Takenate L-1350 (NCO 2.3%, manufactured by Mitsui Chemicals Polyurethanes)
Ether-based urethane prepolymer (Prepolymer 5): Takenate L-1170 (NCO 2.4%, manufactured by Mitsui Chemicals Polyurethanes)
Caprolactan urethane prepolymer (Prepolymer 6): Takenate L-1680 (NCO 3.2%, manufactured by Mitsui Chemicals Polyurethanes)
Caprolactan urethane prepolymer (Prepolymer 7): Cyanaprene 7-QM (NCO 2.3%, manufactured by Mitsui Chemicals Polyurethanes)
Ether-based urethane prepolymer (Prepolymer 8): Takenate L-1158 (NCO 4.4%, manufactured by Mitsui Chemicals Polyurethanes)
Hardener MOCA (MOCA): Iharacamine MT (manufactured by Ihara Chemical)
Trimethylene-bis- (4-aminobenzoate) (CUA-4): CUA-4 (manufactured by Ihara Chemical)
Mixture of bis (methylthio) -2,4-toluenediamine, bis (methylthio) -2,6-toluenediamine and methylthiotoluenediamine (Etacure 300): Etacure 300 (manufactured by Albemarle)
Trimethylolpropane: Reagent blowing agent (foaming agent) Ion exchange water foam stabilizer (foam stabilizer) SRX298 (manufactured by Toray Dow)
Catalyst (Catalyst 1) DM70 (manufactured by Tosoh Corporation)

実施例16〜18、21、22、24、25、27〜32、34〜35、比較例5〜7
80℃のポリテトラフルオロエチレン製ビーカ(直径 70 mm×高さ 150 mm )内で、硬化剤、アミン触媒および発泡剤を除く原料を表4〜表6に示す配合割合でよく混合した。次に、120℃で溶解したMOCAをビーカ内に投入してよく攪拌した。続いてアミン触媒および発泡剤(比較例6のみ発泡剤なし)を投入し攪拌した。数秒後に発泡反応が始まり、100℃で 30 分間放置し硬化させて円柱試験片を得た。この試験片を目視および光学顕微鏡を用いて観察した。試験片に 30 Nの力を試験片の円柱軸方向に印加したときに油が滲み出す形状の弾性ゴムの発泡体であるものを優れた発泡固形潤滑剤であると評価して「○」印を、それ以外のものは「△」印またはコメントを表4〜表6に併記した。
また、連続気泡率を上述の方法で、遠心力油分離評価を以下の方法で測定した。結果を表4〜表6に併記した。
遠心力油分離評価試験
潤滑剤の徐放性を調べるために、遠心力油分離を測定した。遠心力油分離はロータ半径 75 mm、回転速度 1500 rpm の条件で 1 時間回転させた時の油充填量に対する油減少率を示した。
Examples 16-18, 21, 22, 24, 25, 27-32, 34-35, Comparative Examples 5-7
In a polytetrafluoroethylene beaker (diameter 70 mm × height 150 mm) at 80 ° C., the raw materials excluding the curing agent, amine catalyst and blowing agent were mixed well in the blending ratios shown in Tables 4 to 6. Next, MOCA dissolved at 120 ° C. was put into a beaker and well stirred. Subsequently, an amine catalyst and a foaming agent (only Comparative Example 6 had no foaming agent) were added and stirred. After a few seconds, the foaming reaction started, and it was allowed to stand at 100 ° C. for 30 minutes to cure to obtain a cylindrical test piece. This test piece was observed visually and using an optical microscope. Evaluated as an excellent foamed solid lubricant that is an elastic rubber foam in which oil oozes out when a force of 30 N is applied to the specimen in the direction of the cylinder axis of the specimen. In other cases, “Δ” mark or comments are also shown in Tables 4 to 6.
Further, the open cell ratio was measured by the above-described method, and the centrifugal oil separation evaluation was measured by the following method. The results are shown in Tables 4-6.
Centrifugal oil separation evaluation test Centrifugal oil separation was measured in order to examine the sustained release of the lubricant. Centrifugal oil separation showed the oil reduction rate relative to the oil filling amount when rotated for 1 hour under the conditions of a rotor radius of 75 mm and a rotation speed of 1500 rpm.

実施例19
100℃のポリテトラフルオロエチレン製ビーカ(直径 70 mm×高さ 150 mm )内で、硬化剤、アミン触媒および発泡剤を除く原料を表4に示す配合割合でよく混合した。次に、140℃で溶解したトリメチレン-ビス(4-アミノベンゾアート)をビーカ内に投入し、よく攪拌した。続いてアミン触媒および発泡剤を投入し攪拌した。数秒後に発泡反応が始まり、100℃で 30 分間放置し硬化させて円柱試験片を得た。この試験片を目視および光学顕微鏡を用いて観察した。試験片に 30 Nの力を試験片の円柱軸方向に印加したときに油が滲み出す形状の弾性ゴムの発泡体であるものを優れた発泡固形潤滑剤であると評価して「○」印を表4に併記した。
Example 19
In a polytetrafluoroethylene beaker (diameter 70 mm × height 150 mm) at 100 ° C., the raw materials excluding the curing agent, amine catalyst and blowing agent were mixed well in the blending ratio shown in Table 4. Next, trimethylene-bis (4-aminobenzoate) dissolved at 140 ° C. was put into a beaker and stirred well. Subsequently, an amine catalyst and a blowing agent were added and stirred. After a few seconds, the foaming reaction started, and it was allowed to stand at 100 ° C. for 30 minutes to cure to obtain a cylindrical test piece. This test piece was observed visually and using an optical microscope. Evaluated as an excellent foamed solid lubricant by an elastic rubber foam that exudes oil when a force of 30 N is applied to the specimen in the direction of the cylinder axis of the specimen. Is also shown in Table 4.

実施例20、26、33
80℃のポリテトラフルオロエチレン製ビーカ(直径 70 mm×高さ 150 mm )内で、硬化剤、アミン触媒および発泡剤を除く原料を表4〜表6に示す配合割合でよく混合した。次に、エタキュア300をビーカ内に投入し、よく攪拌した。続いてアミン触媒および発泡剤を投入し攪拌した。数秒後に発泡反応が始まり、100℃で30 分間放置し硬化させて円柱試験片を得た。この試験片を目視および光学顕微鏡を用いて観察した。試験片に 30 Nの力を試験片の円柱軸方向に印加したときに油が滲み出す形状の弾性ゴムの発泡体であるものを優れた発泡固形潤滑剤であると評価して「○」印を表4〜表6に併記した。
Examples 20, 26, 33
In a polytetrafluoroethylene beaker (diameter 70 mm × height 150 mm) at 80 ° C., the raw materials excluding the curing agent, amine catalyst and blowing agent were mixed well in the blending ratios shown in Tables 4 to 6. Next, Etacure 300 was put into a beaker and stirred well. Subsequently, an amine catalyst and a blowing agent were added and stirred. After a few seconds, the foaming reaction started, and it was left to cure at 100 ° C. for 30 minutes to obtain a cylindrical test piece. This test piece was observed visually and using an optical microscope. Evaluated as an excellent foamed solid lubricant by an elastic rubber foam that exudes oil when a force of 30 N is applied to the specimen in the direction of the cylinder axis of the specimen. Are also shown in Tables 4-6.

実施例23
100℃のポリテトラフルオロエチレン製ビーカ(直径70 mm×高さ 150 mm )内で、硬化剤、アミン触媒および発泡剤を除く原料を表5に示す配合割合でよく混合した。次に、トリメチロールプロパンをビーカ内に投入し、よく攪拌した。続いてアミン触媒および発泡剤を投入し攪拌した。数秒後に発泡反応が始まり、100℃で 30 分間放置し硬化させて円柱試験片を得た。この試験片を目視および光学顕微鏡を用いて観察した。試験片に 30 Nの力を試験片の円柱軸方向に印加したときに油が滲み出す形状の弾性ゴムの発泡体であるものを優れた発泡固形潤滑剤であると評価して「○」印を表5に併記した。
Example 23
In a polytetrafluoroethylene beaker (diameter: 70 mm × height: 150 mm) at 100 ° C., raw materials excluding the curing agent, amine catalyst and foaming agent were mixed well at the blending ratio shown in Table 5. Next, trimethylolpropane was put into the beaker and stirred well. Subsequently, an amine catalyst and a blowing agent were added and stirred. After a few seconds, the foaming reaction started, and it was allowed to stand at 100 ° C. for 30 minutes to cure to obtain a cylindrical test piece. This test piece was observed visually and using an optical microscope. Evaluated as an excellent foamed solid lubricant that is an elastic rubber foam in which oil oozes out when a force of 30 N is applied to the specimen in the direction of the cylinder axis of the specimen. Is also shown in Table 5.

Figure 2008298123
Figure 2008298123
Figure 2008298123
Figure 2008298123
Figure 2008298123
Figure 2008298123

表4〜表6に示すように、実施例16〜実施例35では指で押したとき相当する力を加えたときに油が滲み出す形状の弾性ゴムの発泡体であり、優れた発泡固形潤滑剤であると認められたが、比較例5では発泡はしたものの一部固化せず、また比較例6では樹脂分と潤滑剤が分離してしまい発泡固形潤滑剤としては機能しないことがわかった。比較例7は、弾性に欠けた。また、実施例16〜実施例35は、遠心力下において潤滑剤成分が(即時に発泡体より抜け出てしまわず)徐放されることがわかった。
次に、実施例16〜実施例35の発泡固形潤滑剤成分を図1に示す旋回軸受1の固定輪・旋回輪2、3と転動体4とに囲まれた軸受空間に注入して 100℃で 30 分間放置し硬化させ、発泡固形潤滑剤6を封入してなる旋回軸受を得た。
この旋回軸受は軸受内部に発泡固形潤滑剤がを封入されているので、潤滑剤の漏れがなく、長寿命化が図れる。
As shown in Tables 4 to 6, Examples 16 to 35 are elastic rubber foams in which oil oozes out when a corresponding force is applied when pressed with a finger, and excellent foam solid lubrication. In Comparative Example 5, it was found that although foamed, it did not partially solidify, and in Comparative Example 6, the resin component and the lubricant were separated and did not function as a foamed solid lubricant. . Comparative Example 7 lacked elasticity. Further, in Examples 16 to 35, it was found that the lubricant component was gradually released under the centrifugal force (without immediately leaving the foam).
Next, the foamed solid lubricant components of Examples 16 to 35 are injected into the bearing space surrounded by the fixed and slewing rings 2 and 3 of the slewing bearing 1 and the rolling elements 4 shown in FIG. And allowed to cure for 30 minutes to obtain a slewing bearing in which foamed solid lubricant 6 was enclosed.
In this slewing bearing, since the foamed solid lubricant is sealed inside the bearing, there is no leakage of the lubricant and the life can be extended.

本発明の旋回軸受は発泡固形潤滑剤を軸受内部空間に封入しているので、長寿命であり、かつ潤滑成分の軸受外部への漏れを防止できる。このため、高荷重、低速揺動で使用される医療用C型アームに用いられる旋回軸受に好適に利用できる。   Since the slewing bearing of the present invention encloses the foamed solid lubricant in the inner space of the bearing, it has a long life and can prevent leakage of lubricating components to the outside of the bearing. For this reason, it can utilize suitably for the slewing bearing used for the medical C-type arm used by high load and low-speed rocking | fluctuation.

C型アームを含む医療用CTスキャナ装置の一例を示す図である。It is a figure which shows an example of the medical CT scanner apparatus containing a C-type arm. 図1におけるC型アームの一部切欠き図(A部)である。FIG. 2 is a partially cutaway view (part A) of the C-arm in FIG. 1.

符号の説明Explanation of symbols

1 旋回軸受
2 固定輪
3 旋回輪
4 転動体
5 シール部材
6 発泡固形潤滑剤
11 X線発生装置
12 検出器
13 C型アーム
14 フレーム
15 被検体位置移動手段
16 被検体
17 椅子
DESCRIPTION OF SYMBOLS 1 slewing bearing 2 fixed wheel 3 slewing wheel 4 rolling element 5 seal member 6 foamed solid lubricant 11 X-ray generator 12 detector 13 C-type arm 14 frame 15 subject position moving means 16 subject 17 chair 17

Claims (12)

外径面に軌道面を有する固定輪と、該固定輪を略中央に内包する旋回輪と、前記固定輪と旋回輪との間に介在する複数の転動体と、前記固定輪と旋回輪との両端面をシールで封止し、この封止された空間に発泡固形潤滑剤を封入してなる旋回軸受において、
前記発泡固形潤滑剤は、潤滑成分と、樹脂成分と、硬化剤と、発泡剤とを含む混合物を発泡・硬化させてなる発泡固形潤滑剤であることを特徴とする旋回軸受。
A fixed ring having a raceway surface on the outer diameter surface, a turning wheel containing the fixed ring substantially in the center, a plurality of rolling elements interposed between the fixed wheel and the turning wheel, the fixed wheel and the turning wheel, In the slewing bearing formed by sealing both end faces of the seal with a seal and enclosing the foamed solid lubricant in the sealed space,
The slewing bearing is characterized in that the foamed solid lubricant is a foamed solid lubricant obtained by foaming and curing a mixture containing a lubricating component, a resin component, a curing agent, and a foaming agent.
前記旋回輪が被検体の検査または治療に用いられる医療用C型アームを支持することを特徴とする請求項1記載の旋回軸受。   The slewing bearing according to claim 1, wherein the slewing ring supports a medical C-type arm used for examination or treatment of a subject. 前記潤滑成分は炭化水素系潤滑油および炭化水素系グリースから選ばれた少なくとも1つの潤滑成分であり、
前記樹脂成分は、高分子主鎖が炭化水素から構成され、該主鎖末端に水酸基価が 25〜110 mg KOH/g となる量の水酸基を有する液状ゴムであり、
前記硬化剤は分子内にイソシアネート基を有する有機化合物であり、
前記発泡剤が水であり、
前記液状ゴムと前記硬化剤との割合は、前記液状ゴムに含まれる水酸基と前記硬化剤に含まれるイソシアネート基とが当量比で(OH/NCO)=1/( 1.0〜2.0 )の範囲であり、
前記混合物は、混合物全体に対して、前記潤滑成分を 40〜80 重量%、前記液状ゴムを 5〜45 重量%含むことを特徴とする請求項1または請求項2記載の旋回軸受。
The lubricating component is at least one lubricating component selected from a hydrocarbon-based lubricating oil and a hydrocarbon-based grease;
The resin component is a liquid rubber in which the polymer main chain is composed of hydrocarbons and has hydroxyl groups in an amount such that the hydroxyl value is 25 to 110 mg KOH / g at the ends of the main chain.
The curing agent is an organic compound having an isocyanate group in the molecule,
The blowing agent is water;
The ratio of the liquid rubber and the curing agent is such that the hydroxyl group contained in the liquid rubber and the isocyanate group contained in the curing agent are in an equivalent ratio of (OH / NCO) = 1 / (1.0 to 2.0). ,
The slewing bearing according to claim 1, wherein the mixture contains 40 to 80% by weight of the lubricating component and 5 to 45% by weight of the liquid rubber with respect to the whole mixture.
前記液状ゴムがブタジエンもしくはイソプレンの重合体の主鎖末端に水酸基を有する数平均分子量 1000〜3500 の水酸基末端ジエン系重合体、または該ジエン系重合体を水添処理した変性水酸基末端ジエン系重合体であることを特徴とする請求項3記載の旋回軸受。   The liquid rubber is a hydroxyl group-terminated diene polymer having a number average molecular weight of 1000 to 3,500 having a hydroxyl group at the main chain end of a butadiene or isoprene polymer, or a modified hydroxyl group-terminated diene polymer obtained by hydrogenating the diene polymer. The slewing bearing according to claim 3, wherein 前記分子内にイソシアネート基を持つ有機化合物は、分子内に2個以上のイソシアネート基を有し、イソシアネート基の割合が 2.5〜5.0 NCO%からなるプレポリマーであることを特徴とする請求項3または請求項4記載の旋回軸受。   The organic compound having an isocyanate group in the molecule is a prepolymer having two or more isocyanate groups in the molecule and a ratio of isocyanate groups of 2.5 to 5.0 NCO%. The slewing bearing according to claim 4. 前記分子内にイソシアネート基を持つ有機化合物は、芳香族ポリイソシアネートであることを特徴とする請求項3または請求項4記載の旋回軸受。   The slewing bearing according to claim 3 or 4, wherein the organic compound having an isocyanate group in the molecule is an aromatic polyisocyanate. 前記潤滑成分は潤滑油およびグリースから選ばれた少なくとも1つの潤滑成分であり、
前記樹脂成分は、イソシアネート基含有量が 2 重量%以上 6 重量%未満のウレタンプレポリマーであり、
前記発泡剤が水であり、
前記混合物は、混合物全体に対して、前記潤滑成分を 30〜70 重量%含み、発泡後の連続気泡率が 50%以上であることを特徴とする請求項1または請求項2記載の旋回軸受。
The lubricating component is at least one lubricating component selected from lubricating oil and grease;
The resin component is a urethane prepolymer having an isocyanate group content of 2 wt% or more and less than 6 wt%,
The blowing agent is water;
3. The slewing bearing according to claim 1, wherein the mixture includes 30 to 70 wt% of the lubricating component with respect to the entire mixture, and an open cell ratio after foaming is 50% or more.
前記ウレタンプレポリマーは、エステル系ウレタンプレポリマー、カプロラクトン系ウレタンプレポリマー、およびエーテル系ウレタンプレポリマーから選ばれた少なくとも1つのウレタンプレポリマーであることを特徴とする請求項7記載の旋回軸受。   The slewing bearing according to claim 7, wherein the urethane prepolymer is at least one urethane prepolymer selected from an ester urethane prepolymer, a caprolactone urethane prepolymer, and an ether urethane prepolymer. 前記イソシアネート基と、該イソシアネート基と反応する前記硬化剤の官能基との割合が当量比で(硬化剤の官能基/NCO)=1/(1.1〜2.5)の範囲であることを特徴とする請求項7または請求項8記載の旋回軸受。   The ratio of the isocyanate group and the functional group of the curing agent that reacts with the isocyanate group is an equivalent ratio (functional group of the curing agent / NCO) = 1 / (1.1 to 2.5). The slewing bearing according to claim 7 or 8. 前記水の水酸基と、前記硬化剤の官能基との割合が当量比で(水の水酸基/硬化剤の官能基)=1/(0.7〜2.0)の範囲であることを特徴とする請求項7ないし請求項9のいずれか一項記載の旋回軸受。   The ratio of the hydroxyl group of the water to the functional group of the curing agent is an equivalent ratio (water hydroxyl group / functional group of the curing agent) = 1 / (0.7 to 2.0). The slewing bearing according to any one of claims 9 to 9. 前記硬化剤が芳香族ポリアミノ化合物であることを特徴とする請求項7ないし請求項10のいずれか一項記載の旋回軸受。   The slewing bearing according to any one of claims 7 to 10, wherein the curing agent is an aromatic polyamino compound. 前記芳香族ポリアミノ化合物がアミノ基の隣接位に置換基を有する芳香族ポリアミノ化合物であることを特徴とする請求項11記載の旋回軸受。   The slewing bearing according to claim 11, wherein the aromatic polyamino compound is an aromatic polyamino compound having a substituent at a position adjacent to an amino group.
JP2007142694A 2007-05-29 2007-05-29 Turning bearing Pending JP2008298123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142694A JP2008298123A (en) 2007-05-29 2007-05-29 Turning bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142694A JP2008298123A (en) 2007-05-29 2007-05-29 Turning bearing

Publications (1)

Publication Number Publication Date
JP2008298123A true JP2008298123A (en) 2008-12-11

Family

ID=40171836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142694A Pending JP2008298123A (en) 2007-05-29 2007-05-29 Turning bearing

Country Status (1)

Country Link
JP (1) JP2008298123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179311A (en) * 2010-02-02 2011-09-15 Izumi Kako:Kk Resin member, method for manufacturing the same, molding die, flange joint, wheelchair, and garage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179311A (en) * 2010-02-02 2011-09-15 Izumi Kako:Kk Resin member, method for manufacturing the same, molding die, flange joint, wheelchair, and garage

Similar Documents

Publication Publication Date Title
US8118682B2 (en) Universal joint and method for production thereof
EP1961802A1 (en) Porous solid lubricant, bearing, and constant velocity universal joint
WO2008072607A1 (en) Lubricating system, bearing utilizing the system, universal joint utilizing the system, and process for production thereof
JP2008298116A (en) Rolling bearing for tenter clip
JP5600380B2 (en) Lubrication system
JP2007247887A (en) Constant velocity universal joint
JP5346566B2 (en) Porous solid lubricant encapsulated bearing and method for manufacturing the same
JP2008298123A (en) Turning bearing
JP2008298120A (en) Bearing unit and roll for continuous casting equipment
JP2008298121A (en) Tapered roller bearing
JP2008297375A (en) Lubricating system
JP2008298117A (en) Rolling bearing for ct scanner
JP5362191B2 (en) Foamed solid lubricant encapsulated bearing and manufacturing method thereof
JP2008296234A (en) Sealing device for roll neck journal box
JP2008297374A (en) Machine element part
JP2008298118A (en) Rolling bearing for roll neck
JP2008298119A (en) Rolling bearing for roll neck
JP2008297731A (en) Base isolation device
EP2119762A1 (en) Lubrication system and universal joints with the system
JP5363711B2 (en) Solid solid foam lubricant and universal joint
JP2009210116A (en) Universal joint
JP4999553B2 (en) Universal joint
JP2010018734A (en) Foamed solid lubricant, and universal joint and bearing enclosed with the lubricant
JP5288829B2 (en) Lubrication system
JP2008297366A (en) Bearing holding foamed solid lubricant sealed therein