JP2008297470A - Thermal decomposition oil recovery system - Google Patents

Thermal decomposition oil recovery system Download PDF

Info

Publication number
JP2008297470A
JP2008297470A JP2007145896A JP2007145896A JP2008297470A JP 2008297470 A JP2008297470 A JP 2008297470A JP 2007145896 A JP2007145896 A JP 2007145896A JP 2007145896 A JP2007145896 A JP 2007145896A JP 2008297470 A JP2008297470 A JP 2008297470A
Authority
JP
Japan
Prior art keywords
stage
pyrolysis
oil
pyrolysis oil
oil recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007145896A
Other languages
Japanese (ja)
Other versions
JP5117113B2 (en
Inventor
Hidekazu Sugiyama
英一 杉山
Tadashi Imai
正 今井
Takeshi Noma
毅 野間
Kazutaka Koshiro
和高 小城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007145896A priority Critical patent/JP5117113B2/en
Publication of JP2008297470A publication Critical patent/JP2008297470A/en
Application granted granted Critical
Publication of JP5117113B2 publication Critical patent/JP5117113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in conventional methods fractionating recovered thermal decomposition oil obtained by thermal decomposition of a mixture of organic materials, depending on the characters the system tends to be a complicated system. <P>SOLUTION: The thermal decomposition oil recovery system which recovers thermally decomposed oil from generated thermally decomposed gas, comprises a first step thermal decomposition oil recovery loop 12 having a thermal decomposition gas ejector 14a condensing the thermal decomposition gas generated by thermally decomposing mixed organic materials with a recovered decomposition oil, a decomposed oil tank 15a storing the condensed thermal decomposition oil, and a decomposition oil coolor 18a for cooling the condensed thermally decomposed oil, and a second step thermal decomposition oil recovering loop 13 having a thermal decomposition gas ejector 14b condensing the thermal decomposition gas which could not be condensed by the thermal decomposition gas ejector with the decomposition oil, a decomposition oil tank 15b storing the condensed thermally decomposed oil condensed by the gas ejector and a decomposition oil cooler 18b cooling the thermally decomposed oil. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、混合有機物処理材料を熱分解することにより生成する熱分解ガスから油回収する熱分解油回収システムに関する。   The present invention relates to a pyrolysis oil recovery system that recovers oil from a pyrolysis gas generated by pyrolyzing a mixed organic matter treatment material.

近年、多量に排出されるプラスチックを始めとする廃棄物に対し所定の処理を施して資源として利用する各種の手法の提案がなされている。また、その一例として、バイオマス(木材、汚泥、家畜糞尿、生ゴミ等)や廃プラスチック等の有機物処理材料を熱分解処理して、熱分解ガスと熱分解残渣とを生成し、熱分解ガスは凝縮することにより熱分解油として回収し、残渣は所定の処理をすることにより炭化物として利用することが考えられている。
この中でも、有機物処理材料として廃プラスチックを用いると、高効率で熱分解油を回収できるので、このような廃プラスチックを熱分解油化処理する装置に関しては多くの提案がなされ、実用化している。こうした装置としては、例えば特許文献1〜3が知られている。
In recent years, various methods have been proposed for applying predetermined processing to wastes such as plastics discharged in large quantities and using them as resources. In addition, as an example, pyrolysis treatment of organic matter treatment materials such as biomass (wood, sludge, livestock manure, garbage, etc.) and waste plastic produces pyrolysis gas and pyrolysis residue. It is considered that it is recovered as a pyrolysis oil by condensing, and the residue is used as a carbide by performing a predetermined treatment.
Among these, when waste plastic is used as the organic material treatment material, pyrolyzed oil can be recovered with high efficiency. Therefore, many proposals have been made and put to practical use regarding an apparatus for pyrolyzing oil into such waste plastic. For example, Patent Documents 1 to 3 are known as such devices.

また、バイオマスや廃棄物などの有機性処理物から高付加価値カーボン等を製造する方法として、有機性処理物を急速に熱分解した後に急冷して液化を行いその液化物に含まれる不純物を取り除き、その液化物を還元雰囲気の高温炉に投入することにより気相成長法によるナノカーボン生成を行う装置が提案されている。また、熱分解した後に熱分解ガスをそのまま還元雰囲気の高温炉に投入することにより気相成長法によるナノカーボン生成を行う装置に関しても提案がなされている。   In addition, as a method of producing high-value-added carbon from organically processed products such as biomass and waste, the organically processed products are rapidly pyrolyzed and then rapidly cooled to liquefy them to remove impurities contained in the liquefied products. An apparatus has been proposed in which the liquefied product is introduced into a high-temperature furnace in a reducing atmosphere to generate nanocarbon by a vapor phase growth method. There has also been proposed an apparatus for generating nanocarbon by vapor phase growth by putting pyrolysis gas into a high-temperature furnace in a reducing atmosphere after pyrolysis.

この熱分解技術において、処理材質が単一でない場合、例えば、包装材工場等からの混合廃材(紙、プラスチック類が混在した材料)から製造されたRPF(Refuse Paper & Plastic Fuel;固形燃料)、或いは、建材工場等からの廃プラスチックと木材が混合した混合廃材等をまとめて熱分解処理すると、プラスチック類と紙,木材等との熱分解温度の違いにより、低温領域で紙,木材等が熱分解され、高温領域でプラスチック類が熱分解される特性となる。   In this pyrolysis technology, if the treatment material is not a single material, for example, RPF (Refuse Paper & Plastic Fuel) manufactured from mixed waste materials (materials mixed with paper and plastics) from packaging factories, etc. Or, if mixed waste materials such as waste plastic and wood mixed from building materials factories are pyrolyzed together, the paper, wood, etc. will heat up in the low temperature region due to the difference in the thermal decomposition temperature between plastics and paper, wood, etc. It is decomposed and plastics are thermally decomposed in a high temperature region.

また、まとめて回収する熱分解油は、プラスチック類と紙,木材等との混合比率により、軽質系の油とタール分の多い重質系の油に混合して回収されてしまう。混合廃材の熱分解温度により特性は異なるが、軽質系の油は流動点が低く常温でも流動性を有し燃焼しやすい。また、タール分の多い重質系の油は微小固形分が混じり流動点が高く、常温では流動性がなく通常のバーナでは燃焼しにくい。このように、軽質系,重質系の油には夫々の特性がある。   Further, the pyrolyzed oil collected in a collective manner is collected by being mixed with light oil and heavy oil with a large amount of tar, depending on the mixing ratio of plastics and paper, wood, and the like. Although the characteristics differ depending on the thermal decomposition temperature of the mixed waste material, light oils have a low pour point and are fluid and easy to burn at room temperature. In addition, heavy oils with a high tar content are mixed with fine solids, have a high pour point, are not fluid at ordinary temperatures, and are difficult to burn with a normal burner. Thus, light and heavy oils have their own characteristics.

この為、混合廃材を熱分解してまとめて回収した分解油の取扱いが難しい。従って、回収分解油を貯留タンクからポンプで移送する場合、よく攪拌しないと軽質系の油しか移送できず、タール分の多い重質系の油が移送できない。或いは、生成油を燃焼させるとき、軽質系の油は良く燃焼するが、タール分の多い重質系の油が下流に機器類に影響を及ぼす場合もあり得る。例えば、ポンプ内にスラッジ分が蓄積し磨耗の原因になることや、熱交換器内に蓄積することや、ボイラーの燃料として利用する場合に、バーナノズル内にタール分が混入しノズルが磨耗する等の問題が生じる。   For this reason, it is difficult to handle the cracked oil collected by thermally decomposing the mixed waste material. Therefore, when the recovered cracked oil is transferred from the storage tank by a pump, only light oil can be transferred unless well stirred, and heavy oil with a large amount of tar cannot be transferred. Alternatively, when the product oil is burned, light oils burn well, but heavy oils with a high tar content may affect the equipment downstream. For example, sludge accumulates in the pump and causes wear, accumulates in the heat exchanger, and when used as fuel for a boiler, tar is mixed into the burner nozzle and the nozzle wears out. Problem arises.

また、不純物はスラッジ分に多く混入する為、タール分の多い重質系の分解油には不純物が多く混入する傾向にある。この為、分解油の中でも軽質系の分解油については不純物が少なく軽質系の分解油を還元雰囲気の高温炉に投入することにより気相成長法によるナノカーボン生成を行うことはできるが、タール分の多い重質系の分解油ではナノカーボン生成を行うことは難しいという問題もある。   In addition, since a large amount of impurities are mixed in the sludge, a large amount of impurities tend to be mixed in heavy cracked oil with a large amount of tar. For this reason, among the cracked oils, light cracked oil has few impurities, and it is possible to generate nanocarbon by vapor phase growth method by putting the light cracked oil into a high temperature furnace in a reducing atmosphere. There is also a problem that it is difficult to produce nanocarbon with heavy cracked oil with a large amount.

更に、まとめて回収した分解油から軽質系の分解油、重質系の分解油に分留するには、スラッジ除去フィルター、遠心分離機等のスラッジ除去手段によりスラッジ分を分離除去し、更に蒸留処理し、手間をかけて蒸留、分離しなくてはならず、設備が複雑化し、熱分解連続運転処理には適さない等の大きな問題もある。
特許3340412号 特許3397764号 特許3435399号
Furthermore, to fractionate the recovered cracked oil into light cracked oil and heavy cracked oil, the sludge is separated and removed by sludge removal means such as a sludge removal filter and centrifuge, and further distilled. It must be treated, distilled and separated by labor, and the equipment is complicated, and there are also major problems such as being unsuitable for the thermal decomposition continuous operation treatment.
Japanese Patent No. 3340412 Japanese Patent No. 3399764 Japanese Patent No. 3435399

本発明は上記事情を考慮してなされたもので、プラスチック類と紙、木材等が混在するような混合有機物材料を熱分解処理し熱分解ガスから油回収する熱分解処理システムにおいて、紙、木材等の熱分解に由来する熱分解油Aと、プラスチック類等の熱分解に由来する熱分解油Bとに分離凝縮回収したり、或いは、紙等の熱分解に由来する熱分解油Aと、木材等の熱分解に由来する熱分解油Bと、プラスチック類等の熱分解に由来する熱分解油Cとに分離凝縮回収するような、熱分解油の特性毎に別々に回収できる熱分解油回収システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a pyrolysis processing system for recovering oil from pyrolysis gas by thermally decomposing mixed organic material in which plastics, paper, wood, etc. are mixed, paper, wood The thermal decomposition oil A derived from thermal decomposition such as, and the thermal decomposition oil B derived from thermal decomposition of plastics, etc. Pyrolysis oil that can be recovered separately for each characteristic of pyrolysis oil such as pyrolysis oil B derived from pyrolysis of wood, etc. and pyrolysis oil C derived from pyrolysis of plastics, etc. The purpose is to provide a collection system.

(1) 請求項1記載の本発明に係る熱分解油回収システムは、熱分解装置に投入された混合有機物処理材料を熱分解ガスと残渣とに熱分解する熱分解装置の生成熱分解ガスからの油を回収する熱分解油回収システムにおいて、前記熱分解装置で発生し外部に導出される初段熱分解ガスを初段回収分解油で直接噴霧接触し凝縮させる初段熱分解ガスエジェクタと、この初段熱分解ガスエジェクタにて凝縮した初段熱分解油を貯留する初段分解油タンクと、凝縮した初段熱分解油を冷却する初段分解油冷却器とを有する初段熱分解油回収ループと、初段熱分解油回収ループの初段熱分解ガスエジェクタにて凝縮しきれなかった初段熱分解ガスを後段分解油で直接噴霧接触し凝縮させる後段熱分解ガスエジェクタと、この後段熱分解ガスエジェクタにて凝縮した後段熱分解油を貯留する後段分解油タンクと、凝縮した後段熱分解油を冷却する後段分解油冷却器とを有する後段熱分解油回収ループとの2熱分解油回収ループの組合せで、生成熱分解ガスから2段階で熱分解油を回収することを特徴とする。   (1) The pyrolysis oil recovery system according to the present invention described in claim 1 is based on the pyrolysis gas produced by the pyrolysis apparatus that pyrolyzes the mixed organic matter processing material put into the pyrolysis apparatus into pyrolysis gas and residue. In the pyrolysis oil recovery system for recovering the oil, the first-stage pyrolysis gas ejector for directly spray-contacting and condensing the first-stage pyrolysis gas generated in the pyrolysis apparatus and led to the outside with the first-stage recovery cracked oil, and this first-stage heat First-stage pyrolysis oil recovery loop having a first-stage cracking oil tank that stores first-stage pyrolysis oil condensed in the cracked gas ejector, and a first-stage cracking oil cooler that cools the condensed first-stage pyrolysis oil, and first-stage pyrolysis oil recovery In the first-stage pyrolysis gas ejector that directly condenses the first-stage pyrolysis gas that could not be condensed in the first-stage pyrolysis gas ejector of the loop by spraying with the latter-stage cracking oil, and in this latter-stage pyrolysis gas ejector. A combination of a two-stage pyrolysis oil recovery loop having a latter-stage cracking oil tank that stores condensed latter-stage pyrolysis oil and a latter-stage pyrolysis oil recovery loop that cools the condensed latter-stage pyrolysis oil; The pyrolysis oil is recovered from the produced pyrolysis gas in two stages.

(2) 請求項2記載の本発明に係る熱分解油回収システムは、熱分解装置に投入された混合有機物処理材料を熱分解ガスと残渣とに熱分解する熱分解装置の生成熱分解ガスからの油を回収する熱分解回収システムにおいて、前記熱分解装置で発生し外部に導出される第1段熱分解ガスを第1段回収分解油で直接噴霧接触し凝縮させる第1段熱分解ガスエジェクタと、第1段熱分解ガスエジェクタにて凝縮した第1段熱分解油を貯留する第1段分解油タンクと、凝縮した第1段熱分解油を冷却する第1段分解油冷却器とを有する第1段熱分解油回収ループと、前記第1段熱分解油回収ループと同様な機器構成を有する第2段熱分解油回収ループと、この第2段熱分解油回収ループの下流側に1つ以上設けられた,前記第1段熱分解油回収ループと同様な機器構成を有する第n段熱分解油回収ループ(但し、nは3以上の整数)との3つ以上の熱分解油回収ループの組合せで、生成熱分解ガスから複数段階で熱分解油を回収することを特徴とする。   (2) The pyrolysis oil recovery system according to the present invention as set forth in claim 2 is based on the pyrolysis gas produced by the pyrolysis apparatus that pyrolyzes the mixed organic matter treatment material put into the pyrolysis apparatus into pyrolysis gas and residue. In the pyrolysis recovery system for recovering oil, the first-stage pyrolysis gas ejector for directly spray-contacting and condensing the first-stage pyrolysis gas generated in the pyrolysis apparatus and led to the outside with the first-stage recovery cracked oil A first-stage cracked oil tank that stores the first-stage pyrolyzed oil condensed in the first-stage pyrolyzed gas ejector, and a first-stage cracked oil cooler that cools the condensed first-stage pyrolyzed oil A first-stage pyrolysis oil recovery loop, a second-stage pyrolysis oil recovery loop having the same equipment configuration as the first-stage pyrolysis oil recovery loop, and a downstream side of the second-stage pyrolysis oil recovery loop Same as the first stage pyrolysis oil recovery loop, provided at least one A combination of three or more pyrolysis oil recovery loops with an n-th stage pyrolysis oil recovery loop (where n is an integer of 3 or more) having such a device configuration, and pyrolysis oil in multiple stages from the generated pyrolysis gas It is characterized by collect | recovering.

(3) 請求項3記載の本発明に係る熱分解油回収システムは、前記(2)のシステムにおいて、前記第1段熱分解油回収ループでの第1段熱分解ガスエジェクタにて直接噴霧接触させる第1段熱分解油の設定温度、前記第2段熱分解油回収ループでの第2段熱分解ガスエジェクタにて直接噴霧接触させる第2段熱分解油の設定温度、及び、前記第n段熱分解油回収ループでの第n段熱分解ガスエジェクタにて直接噴霧接触させる第n段熱分解油の設定温度と、複数段熱分解油の設定温度を有機物処理材料に応じて変更できるようにしたことを特徴とする。   (3) The pyrolysis oil recovery system according to the present invention described in claim 3 is the system of (2), in which the first stage pyrolysis gas ejector in the first stage pyrolysis oil recovery loop is in direct spray contact. A set temperature of the first stage pyrolysis oil to be sprayed, a set temperature of the second stage pyrolysis oil to be directly brought into spray contact with the second stage pyrolysis gas ejector in the second stage pyrolysis oil recovery loop, and the n th It is possible to change the set temperature of the nth stage pyrolysis oil and the set temperature of the multistage pyrolysis oil that are directly sprayed in contact with the nth stage pyrolysis gas ejector in the staged pyrolysis oil recovery loop depending on the organic matter treatment material. It is characterized by that.

(4) 請求項4記載の本発明に係る熱分解油回収システムは、前記(2)もしくは(3)のシステムにおいて、前記第1段熱分解油回収ループでの第1段熱分解ガスエジェクタにて直接噴霧接触させる第1段熱分解油の設定循環流量、前記第2段熱分解油回収ループでの第2段熱分解ガスエジェクタにて直接噴霧接触させる第2段熱分解油の設定循環流量、及び、前記第n段熱分解油回収ループでの第n段熱分解ガスエジェクタにて直接噴霧接触させる第n段熱分解油の設定循環流量と、複数段熱分解油の設定循環流量を有機物処理材料に応じて変更できるようにしたことを特徴とする。   (4) The pyrolysis oil recovery system according to the present invention described in claim 4 is the system according to (2) or (3), wherein the first stage pyrolysis gas ejector in the first stage pyrolysis oil recovery loop is used. Set circulation flow rate of the first stage pyrolysis oil to be directly spray contacted, and set circulation flow rate of the second stage pyrolysis oil to be directly spray contacted by the second stage pyrolysis gas ejector in the second stage pyrolysis oil recovery loop And the set circulation flow rate of the n-th stage pyrolysis oil and the set circulation flow rate of the multi-stage pyrolysis oil that are directly sprayed in contact with the n-th stage pyrolysis gas ejector in the n-th stage pyrolysis oil recovery loop It can be changed according to the processing material.

(5) 請求項5記載の本発明に係る熱分解油回収システムは、前記(2)〜(4)のいずれかのシステムにおいて、前記各段或いは特定の段数の熱分解油回収ループにて凝縮しきれないオフガス成分を、熱分解装置の加熱用バーナの助燃用燃料として活用することを特徴とする。   (5) The pyrolysis oil recovery system according to the present invention as set forth in claim 5 is the system according to any one of the above (2) to (4), wherein condensation is performed in each stage or a specific number of pyrolysis oil recovery loops. An off-gas component that cannot be exhausted is utilized as an auxiliary fuel for a heating burner of a thermal decomposition apparatus.

(6) 請求項6記載の本発明に係る熱分解油回収システムは、前記(1)〜(5)のいずれかのシステムにおいて、前記各段或いは特定の段数の熱分解油回収ループにて回収した熱分解油は、熱分解装置の加熱用バーナの主燃料として活用し、これとは異なる各段或いは特定の段数の熱分解油回収ループにて回収した熱分解油を用いて、高付加価値カーボンの製造に供することを特徴とする。   (6) The pyrolysis oil recovery system according to the present invention described in claim 6 is the system according to any one of the above (1) to (5), and is recovered by each of the stages or the pyrolysis oil recovery loop of a specific number of stages. The pyrolysis oil is used as the main fuel for the heating burner of the pyrolysis equipment, and it is highly value-added using the pyrolysis oil collected in the pyrolysis oil recovery loop of each stage different from this or a specific number of stages. It is characterized by being used for the production of carbon.

上記の発明によれば、プラスチック類と紙、木材等が混在するような混合有機物材料を熱分解処理し熱分解ガスから油回収する熱分解処理システムにおいて、紙、木材等の熱分解に由来する熱分解油Aと、プラスチック類等の熱分解に由来する熱分解油Bとに分離凝縮回収したり、或いは、紙等の熱分解に由来する熱分解油Aと、木材等の熱分解に由来する熱分解油Bと、プラスチック類等の熱分解に由来する熱分解油Cとに分離凝縮回収することができる。また、熱分解油の特性毎に別々に回収できるシンプルな熱分解油回収システムを提供することができる。   According to the above invention, in the thermal decomposition processing system for thermally decomposing mixed organic material such as plastics, paper, wood, etc. and recovering oil from the pyrolysis gas, it is derived from thermal decomposition of paper, wood, etc. Separated and recovered into pyrolysis oil A and pyrolysis oil B derived from pyrolysis of plastics, etc., or derived from pyrolysis oil A derived from pyrolysis of paper, etc., and pyrolysis of wood, etc. It is possible to separate and recover the pyrolysis oil B and the pyrolysis oil C derived from the pyrolysis of plastics. Moreover, the simple pyrolysis oil collection | recovery system which can be collect | recovered separately for every characteristic of pyrolysis oil can be provided.

更に、熱分解油回収段階で生成する凝縮しきれないオフガス成分を、熱分解炉の加熱用バーナの助燃用燃料として活用すること等により、エネルギー回収効率を高めた熱分解油回収システムを提供することができる。
更には、熱分解油回収段階で回収した熱分解油から特定の段数の熱分解油回収ループにて回収した熱分解油を用いること等により、高付加価値カーボンの製造が行いやすい熱分解油回収システムを提供することができる。
Furthermore, a pyrolysis oil recovery system with improved energy recovery efficiency is provided by utilizing off-gas components that cannot be condensed in the pyrolysis oil recovery stage as auxiliary fuel for the heating burner of the pyrolysis furnace. be able to.
Furthermore, by using pyrolysis oil collected in the pyrolysis oil recovery loop of a specific number of stages from the pyrolysis oil collected in the pyrolysis oil recovery stage, it is easy to produce high added value carbon. A system can be provided.

以下、本発明の熱分解油回収システムについて更に詳しく説明する。
次に、本発明の実施形態を、図面を参照して説明する。なお、本実施形態は下記に述べる内容に限定されない。
(第1の実施形態):(請求項1に対応)
図1(A),(B)を参照する。ここで、図1(A)は本発明の第1の実施形態に係る熱分解油回収システムのフローの全体図、図1(B)は図1(A)の第1段熱分解ガスエジェクタの詳細図を示す。
Hereinafter, the pyrolysis oil recovery system of the present invention will be described in more detail.
Next, embodiments of the present invention will be described with reference to the drawings. Note that the present embodiment is not limited to the content described below.
(First Embodiment): (Corresponding to Claim 1)
Reference is made to FIGS. Here, FIG. 1 (A) is a general view of the flow of the pyrolysis oil recovery system according to the first embodiment of the present invention, and FIG. 1 (B) is the first stage pyrolysis gas ejector of FIG. 1 (A). Detailed view is shown.

図中の符番1は材料投入装置を示し、該装置1内にはモータ2により駆動するスクリュー(図示せず)が配置されている。材料投入装置1には、プラスチック類と紙、木材等とが混在するような混合有機物材料(原料)が原料投入ホッパー3より、サークルフィーダー5a,第1のバルブ6aが介装された第1の配管4aより供給される。また、材料投入装置1には、添加剤が添加剤投入ホッパー7より、サークルフィーダー5b,第1のバルブ6bが介装された第2の配管4bより供給される。   Reference numeral 1 in the figure denotes a material feeding device, and a screw (not shown) driven by a motor 2 is arranged in the device 1. In the material input device 1, a mixed organic material (raw material) in which plastics, paper, wood, etc. are mixed is supplied from a raw material input hopper 3 by a circle feeder 5a and a first valve 6a. Supplied from the pipe 4a. In addition, the additive is supplied to the material charging device 1 from the additive charging hopper 7 through the second pipe 4b in which the circle feeder 5b and the first valve 6b are interposed.

材料投入装置1では、モータ2の駆動により回転するスクリューにより投入された原料及び添加剤(例えば消石灰)が混合され、混合された混合有機物処理材料が隣接する熱分解炉(熱分解装置)8に送られる。熱分解炉8の外周部にはヒータ9が設けられている。熱分解炉8内には、モータ10により駆動されて回転するドラム(図示せず)が設置されており、このドラム内で材料投入装置1から供給される混合有機物処理材料が熱分解される。   In the material charging apparatus 1, raw materials and additives (for example, slaked lime) charged by a screw that is rotated by driving of a motor 2 are mixed, and the mixed organic matter processing material is mixed in an adjacent pyrolysis furnace (pyrolysis apparatus) 8. Sent. A heater 9 is provided on the outer periphery of the pyrolysis furnace 8. A drum (not shown) that is driven and rotated by a motor 10 is installed in the pyrolysis furnace 8, and the mixed organic matter processing material supplied from the material charging device 1 is pyrolyzed in this drum.

熱分解炉8に投入された混合有機物処理材料は、ヒータ9により加熱されて熱分解され、熱分解ガスと残渣に分離される。残渣は、第3のバルブ6cを経て残渣受け容器11に収容される。生成された熱分解ガスは、第1段熱分解油回収ループ12と、このループ12の下流側の第2段熱分解油回収ループ13との2つのループの組合せにより、2段階で熱分解油として凝縮回収される。   The mixed organic matter processing material charged into the pyrolysis furnace 8 is heated and decomposed by the heater 9 and separated into pyrolysis gas and residue. The residue is accommodated in the residue receiving container 11 through the third valve 6c. The generated pyrolysis gas is decomposed in two stages by the combination of two loops, a first stage pyrolysis oil recovery loop 12 and a second stage pyrolysis oil recovery loop 13 downstream of the loop 12. As condensed and recovered.

第1段熱分解油回収ループ12は、第1段熱分解ガスエジェクタ14a、第1段分解油タンク15a、第4のバルブ6d、第5のバルブ6e、フィルター16,オイル循環ポンプ17a、第6のバルブ6f、及び第1段分解油冷却器18aの順にループ状に介装した配管19aを備えている。なお、バルブ6e,6fは、フィルター16を交換するときのメンテナンス用バルブとして利用するものである。第6のバルブ6fと第1段分解冷却器18a間からの分岐した配管19aと、第1段分解油タンク15aは、第7のバルブ6gを介装したバイパス配管18により接続されている。ここで、バイパス配管20は、分解油タンク15aから分解油冷却器18aに送られる凝縮した熱分解油の流量調整を行うものである。   The first-stage pyrolysis oil recovery loop 12 includes a first-stage pyrolysis gas ejector 14a, a first-stage cracking oil tank 15a, a fourth valve 6d, a fifth valve 6e, a filter 16, an oil circulation pump 17a, and a sixth The valve 6f and the first stage cracked oil cooler 18a are provided with a pipe 19a interposed in a loop shape in this order. The valves 6e and 6f are used as maintenance valves when the filter 16 is replaced. The branched pipe 19a from between the sixth valve 6f and the first stage cracking cooler 18a and the first stage cracked oil tank 15a are connected by a bypass pipe 18 having a seventh valve 6g interposed therebetween. Here, the bypass pipe 20 adjusts the flow rate of the condensed thermal cracked oil sent from the cracked oil tank 15a to the cracked oil cooler 18a.

前記熱分解ガスエジェクタ14aは、図1(B)に示すように噴射孔(図示せず)を有した噴射スプレーノズル21を有し、熱分解炉8から矢印Xのように投入された熱分解ガスに回収分解油を矢印Yのように送って直接噴射して接触し、直接冷却凝縮させるようになっている。前記分解油タンク15aは、ガスエジェクタ14aで凝縮した第1段熱分解油を一次貯留する。前記冷却器18aは、凝縮した第1段熱分解油をフィルター16で不純物を除去した後、冷却する役目をもつ。熱分解ガスエジェクタ14aで凝縮しきれなかった熱分解ガスは、分解油タンク15aから矢印Zのように第2段熱分解ガスエジェクタ14bに供給される。   The pyrolysis gas ejector 14a has an injection spray nozzle 21 having injection holes (not shown) as shown in FIG. 1 (B), and the pyrolysis introduced from the pyrolysis furnace 8 as indicated by an arrow X. The recovered cracked oil is sent to the gas as indicated by the arrow Y and directly injected and contacted to directly cool and condense. The cracked oil tank 15a primarily stores the first-stage pyrolyzed oil condensed by the gas ejector 14a. The cooler 18a serves to cool the condensed first-stage pyrolysis oil after removing impurities by the filter 16. The pyrolysis gas that could not be condensed by the pyrolysis gas ejector 14a is supplied from the cracking oil tank 15a to the second stage pyrolysis gas ejector 14b as indicated by an arrow Z.

第2段熱分解油回収ループ13は、第2段熱分解ガスエジェクタ14b、第2段分解油タンク15b、第8のバルブ6h、第9のバルブ6i、オイル循環ポンプ17b、第10のバルブ6j、及び第2段分解油冷却器18bを反時計周りにループ状に介装した配管19bを備えている。なお、第2段熱分解ガスエジェクタ14bも、第1段熱分解ガスエジェクタ14aと同様な構成になっている。但し、図1(B)の矢印Xのように送られるのは、熱分解ガスの代わりに凝縮しきれなかった熱分解ガスとなる。尚、バイパス配管20に相当するものは記載省略している。   The second stage pyrolysis oil recovery loop 13 includes a second stage pyrolysis gas ejector 14b, a second stage cracking oil tank 15b, an eighth valve 6h, a ninth valve 6i, an oil circulation pump 17b, and a tenth valve 6j. , And a pipe 19b in which the second-stage cracked oil cooler 18b is looped in a counterclockwise direction. The second stage pyrolysis gas ejector 14b has the same configuration as the first stage pyrolysis gas ejector 14a. However, what is sent as indicated by an arrow X in FIG. 1B is a pyrolysis gas that could not be condensed instead of the pyrolysis gas. Note that the description corresponding to the bypass pipe 20 is omitted.

第2段熱分解回収ループ13の下流側には、オフガス燃焼炉22が配置されている。この燃焼炉22の出口側には、希釈空気流入用ダンパー23が設けられている。燃焼炉22には、主バーナ24と、燃焼炉22の起動時に使用する補助バーナ25が燃焼炉22に隣接して設けられている。主バーナ22には、第2段分解油タンク15bからのオフガス(H,CO等の分解油として凝縮しなかったガス分)が、第11のバルブ6kを介装した配管19cより供給されるようになっている。 An off-gas combustion furnace 22 is disposed downstream of the second stage pyrolysis recovery loop 13. A dilution air inflow damper 23 is provided on the outlet side of the combustion furnace 22. The combustion furnace 22 is provided with a main burner 24 and an auxiliary burner 25 used when starting the combustion furnace 22 adjacent to the combustion furnace 22. The main burner 22 is supplied with off-gas from the second-stage cracked oil tank 15b (gas that has not been condensed as cracked oil such as H 2 and CO) from a pipe 19c interposed with an eleventh valve 6k. It is like that.

第1段熱分解回収ループ12,第2段熱分解回収ループ13において、回収分解油、オフガスが流れる配管,例えば配管19a,19b,19h,バイパス配管20や、油が通過する全ての機器,例えばエジェクタ14a,14b、タンク15a,15b、オイル循環ポンプ17a,17b等には、油をスムーズに流動させるための加熱源、例えばヒータ,スチームトレース等の加熱部材及び保温部材(図示せず)が設けられている。   In the first stage pyrolysis recovery loop 12 and the second stage pyrolysis recovery loop 13, the recovered cracked oil, piping through which off-gas flows, such as pipes 19a, 19b, 19h, bypass pipe 20, and all devices through which oil passes, for example, The ejectors 14a and 14b, the tanks 15a and 15b, the oil circulation pumps 17a and 17b, and the like are provided with a heating source for smoothly flowing the oil, for example, a heating member such as a heater and a steam trace, and a heat retaining member (not shown). It has been.

図1中の符番26は、燃焼兼希釈空気ブロワを示す。このブロワ26と前記燃焼炉22は希釈用のバルブ27aを介装した配管19dにより接続され、希釈用空気がブロワ26から燃焼炉22に送られる。また、ブロワ26は配管19eにより主バーナ24と接続されているとともに、バルブ27bを介装した配管19fにより補助バーナ25と接続されている。図1中の符番28はLPG等を収容した燃料タンクであり、減圧弁29,流量調節弁30を介装した配管19gにより、補助バーナ25を備えたライン32に接続されている。前記燃焼炉22には、外気ガスファン31が接続されている。なお、図1中の符番33a,33bは、排出管34a,34bに夫々介装されたタンク内分解油排出バルブを示す。   Reference numeral 26 in FIG. 1 indicates a combustion and dilution air blower. The blower 26 and the combustion furnace 22 are connected by a pipe 19d having a dilution valve 27a interposed therebetween, and dilution air is sent from the blower 26 to the combustion furnace 22. The blower 26 is connected to the main burner 24 by a pipe 19e, and is connected to the auxiliary burner 25 by a pipe 19f with a valve 27b interposed. A reference numeral 28 in FIG. 1 denotes a fuel tank containing LPG or the like, and is connected to a line 32 having an auxiliary burner 25 by a pipe 19g having a pressure reducing valve 29 and a flow rate adjusting valve 30 interposed therebetween. An external gas fan 31 is connected to the combustion furnace 22. Note that reference numerals 33a and 33b in FIG. 1 denote in-tank cracked oil discharge valves interposed in the discharge pipes 34a and 34b, respectively.

上述したように、第1の実施形態に係る熱分解油回収システムは、主に第1段熱分解ガスエジェクタ14a、第1段分解油タンク15a及び第1段分解油冷却器18aを備えた第1段熱分解油回収ループ12と、主に第2段熱分解ガスエジェクタ14b、第2段分解油タンク15b及び第2段分解油冷却器18bを備えた第1段熱分解油回収ループ13の2ループの組合せで、生成熱分解ガスから2段階で熱分解油を回収するようになっている。このような構成にすることにより、次に挙げる効果を有する。   As described above, the pyrolysis oil recovery system according to the first embodiment mainly includes the first stage pyrolysis gas ejector 14a, the first stage cracking oil tank 15a, and the first stage cracking oil cooler 18a. A first-stage pyrolysis oil recovery loop 12, and a first-stage pyrolysis oil recovery loop 13 mainly including a second-stage pyrolysis gas ejector 14b, a second-stage cracking oil tank 15b, and a second-stage cracking oil cooler 18b. By combining two loops, the pyrolysis oil is recovered from the generated pyrolysis gas in two stages. By adopting such a configuration, the following effects are obtained.

即ち、例えば、プラスチック類と紙、木材等とが混在するような混合有機物材料を熱分解処理し熱分解ガスから油回収する熱分解油回収システムにおいて、まず1ループ目において紙、木材等の熱分解に由来する熱分解油Aを排出管33aから回収し、2ループ目においてプラスチック類等の熱分解に由来する熱分解油Bを排出管33bから回収することができ、特性の異なる熱分解油Aと熱分解油Bを分離回収することができる。これにより、熱分解油の特性毎に別々に回収できるシンプルな熱分解油回収システムを提供することができる。   That is, for example, in a pyrolysis oil recovery system in which a mixed organic material in which plastics and paper, wood, etc. are mixed is pyrolyzed and oil is recovered from the pyrolysis gas, first, heat of paper, wood, etc. is recovered in the first loop. Pyrolysis oil A derived from decomposition can be recovered from the discharge pipe 33a, and pyrolysis oil B derived from the thermal decomposition of plastics and the like can be recovered from the discharge pipe 33b in the second loop. A and pyrolysis oil B can be separated and recovered. Thereby, the simple pyrolysis oil collection | recovery system which can be collect | recovered separately for every characteristic of pyrolysis oil can be provided.

これにより、従来のように熱分解処理して回収した分解油から軽質系の分解油、重質系の分解油を蒸留,分留するような場合と比較して、スラッジ除去フィルター、遠心分離機等のスラッジ除去手段によりスラッジ分を分離除去し、更に蒸留処理し、手間をかけて蒸留,分留するような設備が不要になり、設備が簡素化でき、熱分解連続運転処理に適したシステムとすることが可能となる。   As a result, sludge removal filters and centrifuges can be used compared to the case of distilling and fractionating light cracked oil and heavy cracked oil from cracked oil recovered by thermal cracking as in the past. A system suitable for continuous pyrolysis operation, which eliminates the need for equipment that separates and removes sludge by means of sludge removal, etc., further distills, distills and fractionates by labor, simplifies the equipment. It becomes possible.

(第2の実施形態):(請求項2に対応)
図2を参照する。図2は、第2の実施形態に係る熱分解油回収システムのフローの全体図を示すもので、3ループの組合せで生成熱分解ガスから3段階で熱分解油を回収することを特徴とする。但し、図1と同部材は同符番を付して説明を省略する。
Second Embodiment: (Corresponding to Claim 2)
Please refer to FIG. FIG. 2 shows an overall view of the flow of the pyrolysis oil recovery system according to the second embodiment, wherein the pyrolysis oil is recovered in three stages from the generated pyrolysis gas in a combination of three loops. . However, the same members as those in FIG.

図中の符番35は、第3段熱分解油回収ループを示す。このループ35は、第1段熱分解ガスエジェクタ14c、第1段分解油タンク15c、第12のバルブ6l、第13のバルブ6m、オイル循環ポンプ17c、第14のバルブ6n、及び第1段分解油冷却器18cを反時計周りにループ状に介装した配管19iを備えている。なお、図中の符号Z’は、第2段熱分解油回収ループ13の第2分解油冷却器18bで凝縮しきれなかった熱分解ガスが送られる方向を示す。また、図2中の符番33cは排出管34cに介装されたバルブを、符番19jは第2段分解油タンク15bと第3段熱分解ガスエジェクタ14cを接続する配管、符番19kは第1段分解油タンク15cと主バルブ24を接続する第11のバルブ6kを介装した配管を示す。   Reference numeral 35 in the figure indicates a third-stage pyrolysis oil recovery loop. The loop 35 includes a first stage pyrolysis gas ejector 14c, a first stage cracking oil tank 15c, a twelfth valve 61, a thirteenth valve 6m, an oil circulation pump 17c, a fourteenth valve 6n, and a first stage cracking. A pipe 19i in which the oil cooler 18c is looped counterclockwise is provided. In addition, the code | symbol Z 'in a figure shows the direction where the pyrolysis gas which was not able to condense in the 2nd cracked oil cooler 18b of the 2nd stage | stage pyrolyzed oil recovery loop 13 is sent. In FIG. 2, reference numeral 33c denotes a valve interposed in the discharge pipe 34c, reference numeral 19j denotes a pipe connecting the second stage cracked oil tank 15b and the third stage pyrolysis gas ejector 14c, and reference numeral 19k denotes The piping which interposed the 11th valve | bulb 6k which connects the 1st stage | paragraph cracked oil tank 15c and the main valve 24 is shown.

上述したように、第2の実施形態に係る熱分解油回収システムは、主に第1段熱分解ガスエジェクタ14a、第1段分解油タンク15a及び第1段分解油冷却器18aを備えた第1段熱分解油回収ループ12と、主に第2段熱分解ガスエジェクタ14b、第2段分解油タンク15b及び第2段分解油冷却器18bを備えた第1段熱分解油回収ループ13と、主に第3段熱分解ガスエジェクタ14c、第2段分解油タンク15c及び第2段分解油冷却器18cを備えた第1段熱分解油回収ループ35との3ループの組合せで、生成熱分解ガスから3段階で熱分解油を回収するようになっている。従って、次に挙げる効果を有する。   As described above, the pyrolysis oil recovery system according to the second embodiment mainly includes the first stage pyrolysis gas ejector 14a, the first stage cracking oil tank 15a, and the first stage cracking oil cooler 18a. A first stage pyrolysis oil recovery loop 12, and a first stage pyrolysis oil recovery loop 13 mainly including a second stage pyrolysis gas ejector 14b, a second stage cracking oil tank 15b, and a second stage cracking oil cooler 18b; The heat generated by the combination of the three-stage pyrolysis oil recovery loop 35 including the third-stage pyrolysis gas ejector 14c, the second-stage cracking oil tank 15c, and the second-stage cracking oil cooler 18c. Pyrolysis oil is recovered from cracked gas in three stages. Therefore, it has the following effects.

即ち、プラスチック類と紙、木材等とが混在するような混合有機物処理材料を熱分解処理し熱分解ガスから油回収する熱分解処理システムにおいて、紙等の熱分解に由来する熱分解油Aと、木材等の熱分解に由来する熱分解油Bと、プラスチック類等の熱分解に由来する熱分解油Cとに分離凝縮回収することができ、特性の異なる熱分解油Aと熱分解油Bと熱分解油Cを分離回収することができる。具体的には、熱分解油Aは排出管34aより、熱分解油Bは排出管34bより、熱分解油Cは排出管34cより回収することができる。これにより、熱分解油の特性毎に別々に回収できるシンプルな熱分解油回収システムを提供することができる。   That is, in a pyrolysis processing system for recovering oil from pyrolysis gas by treating a mixed organic matter treatment material in which plastics and paper, wood, etc. are mixed, pyrolysis oil A derived from pyrolysis of paper etc. It can be separated, condensed and recovered into pyrolysis oil B derived from pyrolysis of wood, etc. and pyrolysis oil C derived from pyrolysis of plastics, etc., and pyrolysis oil A and pyrolysis oil B having different characteristics And pyrolysis oil C can be separated and recovered. Specifically, the pyrolysis oil A can be recovered from the discharge pipe 34a, the pyrolysis oil B can be recovered from the discharge pipe 34b, and the pyrolysis oil C can be recovered from the discharge pipe 34c. Thereby, the simple pyrolysis oil collection | recovery system which can be collect | recovered separately for every characteristic of pyrolysis oil can be provided.

これにより、従来のように熱分解処理して回収した分解油から軽質系の分解油,中質系の分解油,重質系の分解油というように細かく蒸留,分留するような場合と比較して、スラッジ除去フィルター、遠心分離機等のスラッジ除去手段によりスラッジ分を分離除去し、更に蒸留処理し、手間をかけて蒸留,分留するような設備が不要になり、設備が簡素化でき、熱分解連続運転処理に適したシステムとすることが可能となる。   Compared to the conventional case of distilling and fractionating finely from cracked oil recovered by pyrolysis treatment to light cracked oil, medium cracked oil, heavy cracked oil as in the past. In addition, the equipment for separating and removing the sludge by means of sludge removal such as a sludge removal filter, centrifuge, etc., further distilling, distilling and fractionating by labor is not required, and the equipment can be simplified. Thus, a system suitable for the thermal decomposition continuous operation process can be obtained.

(第3の実施形態):(請求項3に対応)
図3を参照する。図3は、第3の実施形態に係る熱分解油回収システムのフローの全体図を示すもので、3ループの組合せで生成熱分解ガスから3段階で熱分解油を回収するとともに、各段の熱分解油の設定温度を有機物処理材料に応じて変更できるようにしたことを特徴とする。但し、図1及び図2と同部材は同符番を付して説明を省略する。
(Third Embodiment): (Corresponding to Claim 3)
Please refer to FIG. FIG. 3 shows an overall flow diagram of the pyrolysis oil recovery system according to the third embodiment. The pyrolysis oil is recovered in three stages from the generated pyrolysis gas in a combination of three loops. It is characterized in that the set temperature of the pyrolysis oil can be changed according to the organic matter treatment material. However, the same members as those in FIG. 1 and FIG.

図中の符番41a,41b,41cは、夫々第1段分解油冷却器18a,第2段分解油冷却器18b,第3段分解油冷却器18cに夫々配置された分解油の温度を測定する温度計を示す。温度計41aにより、第1段熱分解ガスエジェクタ14aで直接噴霧接触させる第1段熱分解油の設定温度をT(例えば100℃)に設定する。温度計41bにより、第2段熱分解ガスエジェクタ14bで直接噴霧接触させる第2段熱分解油の設定温度をT(例えば80℃)に設定する。温度計41cにより、第3段熱分解ガスエジェクタ14cで直接噴霧接触させる第1段熱分解油の設定温度をT(例えば50℃)に設定する。このように、第3の実施形態では、分解油の設定温度を混合有機物処理材料に応じてT,T,Tと変更できるようにしている。 Reference numerals 41a, 41b, and 41c in the figure measure the temperatures of cracked oils disposed in the first stage cracked oil cooler 18a, the second stage cracked oil cooler 18b, and the third stage cracked oil cooler 18c, respectively. A thermometer is shown. The set temperature of the first stage pyrolysis oil to be directly sprayed and contacted by the first stage pyrolysis gas ejector 14a is set to T 1 (for example, 100 ° C.) by the thermometer 41a. The set temperature of the second stage pyrolysis oil to be directly sprayed and contacted by the second stage pyrolysis gas ejector 14b is set to T 2 (for example, 80 ° C.) by the thermometer 41b. The set temperature of the first stage pyrolysis oil to be directly sprayed and contacted by the third stage pyrolysis gas ejector 14c is set to T 3 (for example, 50 ° C.) by the thermometer 41c. Thus, in the third embodiment, the set temperature of the cracked oil can be changed to T 1 , T 2 , and T 3 according to the mixed organic matter processing material.

第3の実施形態に係る熱分解油回収システムによれば、プラスチック類と紙、木材等とが混在するような混合有機物処理材料を熱分解処理し熱分解ガスから油回収する熱分解処理システムにおいて、紙等の熱分解に由来する熱分解油Aと、木材等の熱分解に由来する熱分解油Bと、プラスチック類等の熱分解に由来する熱分解油Cとに分離凝縮回収することができ、特性の異なる熱分解油Aと熱分解油Bと熱分解油Cのように分離回収する際に、各成分(留分)を凝縮させるに夫々の最適な温度に制御することができ、各段毎に取りたい成分(留分)毎の熱分解油を回収することができるシンプルな熱分解油回収システムを提供することができる
(第4の実施形態):(請求項4に対応)
図4を参照する。図4は、第4の実施形態に係る熱分解油回収システムのフローの全体図を示すもので、3ループの組合せで生成熱分解ガスから3段階で熱分解油を回収するとともに、各段の熱分解油の循環流量を有機物処理材料に応じて変更できるようにしたことを特徴とする。但し、図1及び図2と同部材は同符番を付して説明を省略する。
According to the pyrolysis oil recovery system according to the third embodiment, in the pyrolysis processing system for thermally decomposing a mixed organic matter treatment material in which plastics, paper, wood, and the like are mixed, and recovering the oil from the pyrolysis gas It can be separated, condensed and recovered into pyrolysis oil A derived from pyrolysis of paper, pyrolysis oil B derived from pyrolysis of wood, etc., and pyrolysis oil C derived from pyrolysis of plastics, etc. It is possible to control each of the components (fractions) to an optimum temperature when separating and recovering them, such as pyrolysis oil A, pyrolysis oil B, and pyrolysis oil C with different characteristics. A simple pyrolysis oil recovery system capable of recovering pyrolysis oil for each component (fraction) desired to be taken at each stage can be provided (fourth embodiment): (corresponding to claim 4)
Please refer to FIG. FIG. 4 shows an overall flow diagram of the pyrolysis oil recovery system according to the fourth embodiment. The pyrolysis oil is recovered in three stages from the generated pyrolysis gas in a combination of three loops. The circulation flow rate of the pyrolysis oil can be changed according to the organic matter treatment material. However, the same members as those in FIG. 1 and FIG.

図中の符番42a,42b,42cは、夫々第1段熱分解油回収ループ12の配管19a,第2段熱分解油回収ループ13の配管19b,第3段熱分解油回収ループ35の配管19iに夫々配置された第1段熱分解油,第2段熱分解油,第3段熱分解油の流量計を示す。流量計42aにより、第1段熱分解ガスエジェクタ14aで直接噴霧接触させる第1段熱分解油の流量をFに設定する。流量計42bにより、第2段熱分解ガスエジェクタ14bで直接噴霧接触させる第2段熱分解油の循環流量をFに設定する。流量計42cにより、第3段熱分解ガスエジェクタ14cで直接噴霧接触させる第1段熱分解油の循環流量をFに設定する。このように、熱分解油の循環流量を有機物処理材料に応じてF,F,Fと変更できるようにした。 Reference numerals 42a, 42b, and 42c in the figure indicate a pipe 19a of the first stage pyrolysis oil recovery loop 12, a pipe 19b of the second stage pyrolysis oil recovery loop 13, and a pipe of the third stage pyrolysis oil recovery loop 35, respectively. The flowmeters of the first-stage pyrolysis oil, the second-stage pyrolysis oil, and the third-stage pyrolysis oil respectively arranged at 19i are shown. The flowmeter 42a, sets the flow rate of the first stage pyrolysis oil to direct spray contact with the first stage pyrolysis gas ejector 14a to F 1. The flow rate of the second stage pyrolysis oil that is directly sprayed in contact with the second stage pyrolysis gas ejector 14b is set to F 2 by the flow meter 42b. The flowmeter 42c, sets the circulation flow rate of the first stage pyrolysis oil to direct spray contact with the third stage pyrolysis gas ejector 14c to F 3. As described above, the circulation flow rate of the pyrolysis oil can be changed to F 1 , F 2 , and F 3 in accordance with the organic matter processing material.

第4の実施形態に係る熱分解油回収システムによれば、プラスチック類と紙、木材等とが混在するような混合有機物処理材料を熱分解処理し熱分解ガスから油回収する熱分解処理システムにおいて、紙、木材等の熱分解に由来する熱分解油Aと、プラスチック類等の熱分解に由来する熱分解油Bとに分離凝縮回収する際に、第1段熱分解油の設定循環流量、第2段熱分解油の設定循環流量等、各段の熱分解油の設定循環流量を最適な流量に設定でき、各段毎に取りたい成分毎の熱分解油を回収することができるシンプルな熱分解油回収システムが得られる。   According to the pyrolysis oil recovery system according to the fourth embodiment, in the pyrolysis processing system for thermally decomposing a mixed organic material treatment material in which plastics, paper, wood, and the like are mixed, and recovering the oil from the pyrolysis gas When separating and condensing the pyrolysis oil A derived from the thermal decomposition of paper, wood, etc. and the pyrolysis oil B derived from the thermal decomposition of plastics, etc., the set circulation flow rate of the first stage pyrolysis oil, The set circulation flow rate of each stage of pyrolysis oil, such as the set circulation flow rate of the second stage pyrolysis oil, can be set to the optimum flow rate, and it is simple to recover the pyrolysis oil for each component that you want to take at each stage A pyrolysis oil recovery system is obtained.

(第5の実施形態):(請求項5に対応)
図5を参照する。図5は、第5の実施形態に係る熱分解油回収システムのフローの全体図を示すもので、3ループの組合せで生成熱分解ガスから3段階で熱分解油を回収するとともに、各段あるいは特定の段数の熱分解油回収ループにて凝縮しきれないオフガス成分を熱分解炉の加熱用バーナの助燃用燃料として活用するようにしたことを特徴とする。但し、図1及び図2と同部材は同符番を付して説明を省略する。図中の矢印43は、排熱利用先を示す。
(Fifth Embodiment): (Corresponding to Claim 5)
Please refer to FIG. FIG. 5 shows an overall view of the flow of the pyrolysis oil recovery system according to the fifth embodiment. The pyrolysis oil is recovered in three stages from the generated pyrolysis gas in a combination of three loops. An off-gas component that cannot be condensed in the pyrolysis oil recovery loop having a specific number of stages is used as an auxiliary fuel for the heating burner of the pyrolysis furnace. However, the same members as those in FIG. 1 and FIG. An arrow 43 in the figure indicates a waste heat utilization destination.

第5の実施形態に係る熱分解油回収システムによれば、熱分解油回収段階で生成する凝縮しきれないオフガス成分を、熱分解炉8の加熱用バーナの助燃用燃料として活用すること等により、エネルギー回収効率を高めた熱分解油回収システムを得ることができる。   According to the pyrolysis oil recovery system according to the fifth embodiment, the off-gas component that cannot be condensed in the pyrolysis oil recovery stage is used as an auxiliary fuel for the heating burner of the pyrolysis furnace 8. In addition, it is possible to obtain a pyrolysis oil recovery system with improved energy recovery efficiency.

(第6の実施形態):(請求項6に対応)
図6を参照する。図6は、第6の実施形態に係る熱分解油回収システムのフローの全体図を示すもので、第1段,第3段熱分解油回収ループにて回収した熱分解油は熱分解炉の加熱用バーナの主燃料として活用し、第2段熱分解油回収ループにて回収した熱分解油を高付加価値カーボン製造用に用いたことを特徴とする。但し、図1及び図2と同部材は同符番を付して説明を省略する。
(Sixth embodiment): (corresponding to claim 6)
Please refer to FIG. FIG. 6 shows an overall flow diagram of the pyrolysis oil recovery system according to the sixth embodiment. The pyrolysis oil recovered in the first and third stage pyrolysis oil recovery loops is the same as that of the pyrolysis furnace. It is used as a main fuel for a heating burner and is characterized in that the pyrolysis oil recovered in the second stage pyrolysis oil recovery loop is used for the production of high value-added carbon. However, the same members as those in FIG. 1 and FIG.

図中の矢印44は、高付加価値カーボン製造用の熱分解油を示す。ここで、高付加価値カーボンとしては、例えばカーボンナノチューブ(CNT)、ナノカーボン、カーボンブラックが挙げられ、夫々のカーボンを生成するのに最適な成分(留分)の油がある。   An arrow 44 in the figure indicates a pyrolysis oil for producing high-value-added carbon. Here, examples of the high-value-added carbon include carbon nanotubes (CNT), nanocarbons, and carbon black, and there are oils having optimum components (fractions) for producing the respective carbons.

第6の実施形態に係る熱分解油回収システムによれば、第1段,第3段熱分解油回収ループにて回収した熱分解油は熱分解炉の加熱用バーナの主燃料として活用し、第2段熱分解油回収ループにて回収した熱分解油を高付加価値カーボンの製造に供することができる。このように、熱分解油回収段階で回収した熱分解油から特定の段数の特定の成分(留分)の熱分解油を抽出することができ、この成分(留分)の熱分解油を用いることにより、より最適な高付加価値カーボンの製造に供することができる。   According to the pyrolysis oil recovery system according to the sixth embodiment, the pyrolysis oil recovered in the first and third stage pyrolysis oil recovery loops is utilized as the main fuel for the heating burner of the pyrolysis furnace, The pyrolysis oil recovered in the second stage pyrolysis oil recovery loop can be used for the production of high value-added carbon. Thus, the pyrolysis oil of a specific component (fraction) of a specific number of stages can be extracted from the pyrolysis oil recovered in the pyrolysis oil recovery stage, and the pyrolysis oil of this component (fraction) is used. As a result, it can be used for the production of more optimal high value-added carbon.

第6の実施形態では、第1,第3段熱分解油回収ループにて回収した熱分解油を熱分解炉の加熱用バーナの主燃料として活用し、第2段熱分解油回収ループにて回収した熱分解油を高付加価値カーボンの製造に供する場合について述べたが、これに限らない。例えば、他の各段或いは特定の段数の熱分解油回収ループにて回収した熱分解油を、熱分解装置の加熱用バーナの主燃料として活用し、これとは異なる各段或いは特定の段数の熱分解油回収ループにて回収した熱分解油を用いて、高付加価値カーボンの製造に供してもよい。   In the sixth embodiment, the pyrolysis oil recovered in the first and third stage pyrolysis oil recovery loops is used as the main fuel for the heating burner of the pyrolysis furnace, and in the second stage pyrolysis oil recovery loop. Although the case where the recovered pyrolysis oil is used for the production of high value-added carbon has been described, the present invention is not limited to this. For example, the pyrolysis oil collected in the pyrolysis oil recovery loop of each other stage or a specific number of stages is utilized as the main fuel of the heating burner of the pyrolysis apparatus, and each stage different from this or a specific number of stages The pyrolysis oil recovered in the pyrolysis oil recovery loop may be used for the production of high added value carbon.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。具体的には、上記実施形態では、2段または3段までの熱分解回収ループにて回収した熱分解油の利用について述べたが、これに限らず、4段以上の熱分解回収ループにて回収した熱分解油を利用する場合でもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment. Specifically, in the above embodiment, the use of the pyrolysis oil collected in the pyrolysis recovery loop of two or three stages has been described, but not limited to this, in the pyrolysis recovery loop of four or more stages. The recovered pyrolysis oil may be used.

本発明の第1の実施形態における熱分解油回収システムのフロー図。The flowchart of the pyrolysis oil collection | recovery system in the 1st Embodiment of this invention. 本発明の第2の実施形態における熱分解油回収システムのフロー図。The flowchart of the pyrolysis oil collection | recovery system in the 2nd Embodiment of this invention. 本発明の第3の実施形態における熱分解油回収システムのフロー図。The flowchart of the pyrolysis oil collection | recovery system in the 3rd Embodiment of this invention. 本発明の第4の実施形態における熱分解油回収システムのフロー図。The flowchart of the pyrolysis oil collection | recovery system in the 4th Embodiment of this invention. 本発明の第5の実施形態における熱分解油回収システムのフロー図。The flowchart of the pyrolysis oil collection | recovery system in the 5th Embodiment of this invention. 本発明の第6の実施形態における熱分解油回収システムのフロー図。The flowchart of the pyrolysis oil collection | recovery system in the 6th Embodiment of this invention.

符号の説明Explanation of symbols

1…材料投入装置、3…原料投入ホッパー、4a,4b,19a〜19g,34a〜34c…配管、6a〜6n,27a,27b,30,33a〜33c…バルブ、8…熱分解炉(熱分解装置)、9…ヒータ、12…第1段熱分解油回収ループ、13…第2段熱分解油回収ループ,14a,14b,14c…熱分解ガスエジェクタ、15a,15b,15c…分解油タンク、17a,17b,17c…オイル循環ポンプ、18a,18b,18c…分解油冷却器、24…主バーナ、25…補助バーナ、29…減圧弁、30…流量調節弁、35…第3段熱分解油回収ループ。   DESCRIPTION OF SYMBOLS 1 ... Material input apparatus, 3 ... Raw material input hopper, 4a, 4b, 19a-19g, 34a-34c ... Piping, 6a-6n, 27a, 27b, 30, 33a-33c ... Valve, 8 ... Pyrolysis furnace (thermal decomposition Apparatus), 9 ... heater, 12 ... first stage pyrolysis oil recovery loop, 13 ... second stage pyrolysis oil recovery loop, 14a, 14b, 14c ... pyrolysis gas ejector, 15a, 15b, 15c ... cracking oil tank, 17a, 17b, 17c ... oil circulation pump, 18a, 18b, 18c ... cracked oil cooler, 24 ... main burner, 25 ... auxiliary burner, 29 ... pressure reducing valve, 30 ... flow control valve, 35 ... third stage pyrolysis oil Collection loop.

Claims (6)

熱分解装置に投入された混合有機物処理材料を熱分解ガスと残渣とに熱分解する熱分解装置の生成熱分解ガスからの油を回収する熱分解油回収システムにおいて、
前記熱分解装置で発生し外部に導出される初段熱分解ガスを初段回収分解油で直接噴霧接触し凝縮させる初段熱分解ガスエジェクタと、この初段熱分解ガスエジェクタにて凝縮した初段熱分解油を貯留する初段分解油タンクと、凝縮した初段熱分解油を冷却する初段分解油冷却器とを有する初段熱分解油回収ループと、
初段熱分解油回収ループの初段熱分解ガスエジェクタにて凝縮しきれなかった初段熱分解ガスを後段分解油で直接噴霧接触し凝縮させる後段熱分解ガスエジェクタと、この後段熱分解ガスエジェクタにて凝縮した後段熱分解油を貯留する後段分解油タンクと、凝縮した後段熱分解油を冷却する後段分解油冷却器とを有する後段熱分解油回収ループとの
2熱分解油回収ループの組合せで、生成熱分解ガスから2段階で熱分解油を回収することを特徴とする熱分解油回収システム。
In the pyrolysis oil recovery system for recovering oil from the pyrolysis gas produced by the pyrolysis device that pyrolyzes the mixed organic matter treatment material put into the pyrolysis device into pyrolysis gas and residue,
A first-stage pyrolysis gas ejector that directly spray-contacts and condenses first-stage pyrolysis gas generated in the pyrolysis device and led out to the outside with first-stage recovery cracked oil, and first-stage pyrolysis oil condensed in the first-stage pyrolysis gas ejector A first-stage cracked oil recovery loop having a first-stage cracked oil tank to be stored and a first-stage cracked oil cooler that cools the condensed first-stage cracked oil;
A first-stage pyrolysis gas ejector that condenses the first-stage pyrolysis gas that could not be condensed by the first-stage pyrolysis oil ejector in the first-stage pyrolysis oil ejector loop by direct spray contact with the latter-stage cracking oil, and condenses in this latter-stage pyrolysis gas ejector. Generated by a combination of a two-stage pyrolysis oil recovery loop having a latter-stage cracking oil tank that stores the latter-stage pyrolysis oil and a latter-stage cracking oil recovery loop that cools the condensed latter-stage pyrolysis oil. A pyrolysis oil recovery system for recovering pyrolysis oil from pyrolysis gas in two stages.
熱分解装置に投入された混合有機物処理材料を熱分解ガスと残渣とに熱分解する熱分解装置の生成熱分解ガスからの油を回収する熱分解回収システムにおいて、
前記熱分解装置で発生し外部に導出される第1段熱分解ガスを第1段回収分解油で直接噴霧接触し凝縮させる第1段熱分解ガスエジェクタと、第1段熱分解ガスエジェクタにて凝縮した第1段熱分解油を貯留する第1段分解油タンクと、凝縮した第1段熱分解油を冷却する第1段分解油冷却器とを有する第1段熱分解油回収ループと、
前記第1段熱分解油回収ループと同様な機器構成を有する第2段熱分解油回収ループと、
この第2段熱分解油回収ループの下流側に1つ以上設けられた,前記第1段熱分解油回収ループと同様な機器構成を有する第n段熱分解油回収ループ(但し、nは3以上の整数)との
3つ以上の熱分解油回収ループの組合せで、生成熱分解ガスから複数段階で熱分解油を回収することを特徴とする熱分解油回収システム。
In the pyrolysis recovery system for recovering oil from the pyrolysis gas produced by the pyrolysis device that pyrolyzes the mixed organic matter treatment material put into the pyrolysis device into pyrolysis gas and residue,
A first-stage pyrolysis gas ejector for directly spraying and condensing first-stage pyrolysis gas generated in the pyrolysis apparatus and led out to the outside with first-stage recovered cracked oil; and a first-stage pyrolysis gas ejector A first stage pyrolysis oil recovery loop having a first stage cracked oil tank for storing condensed first stage pyrolysis oil, and a first stage cracked oil cooler for cooling the condensed first stage pyrolysis oil;
A second-stage pyrolysis oil recovery loop having the same equipment configuration as the first-stage pyrolysis oil recovery loop;
One or more n-th stage pyrolysis oil recovery loops having the same equipment configuration as the first stage pyrolysis oil recovery loop provided at one or more downstream sides of the second stage pyrolysis oil recovery loop (where n is 3 A pyrolysis oil recovery system for recovering pyrolysis oil in multiple stages from the generated pyrolysis gas in combination of three or more pyrolysis oil recovery loops.
前記第1段熱分解油回収ループでの第1段熱分解ガスエジェクタにて直接噴霧接触させる第1段熱分解油の設定温度、前記第2段熱分解油回収ループでの第2段熱分解ガスエジェクタにて直接噴霧接触させる第2段熱分解油の設定温度、及び、前記第n段熱分解油回収ループでの第n段熱分解ガスエジェクタにて直接噴霧接触させる第n段熱分解油の設定温度と、複数段熱分解油の設定温度を有機物処理材料に応じて変更できるようにしたことを特徴とする請求項2記載の熱分解油回収システム。 The first stage pyrolysis oil set in the first stage pyrolysis oil ejecting loop in the first stage pyrolysis oil ejector loop, and the second stage pyrolysis in the second stage pyrolysis oil recovery loop. The set temperature of the second stage pyrolysis oil that is directly sprayed in contact with the gas ejector, and the nth stage pyrolysis oil that is directly sprayed in contact with the nth stage pyrolysis gas ejector in the nth stage pyrolysis oil recovery loop. The pyrolysis oil recovery system according to claim 2, wherein the set temperature of the multistage pyrolysis oil and the preset temperature of the multistage pyrolysis oil can be changed according to the organic matter treatment material. 前記第1段熱分解油回収ループでの第1段熱分解ガスエジェクタにて直接噴霧接触させる第1段熱分解油の設定循環流量、前記第2段熱分解油回収ループでの第2段熱分解ガスエジェクタにて直接噴霧接触させる第2段熱分解油の設定循環流量、及び、前記第n段熱分解油回収ループでの第n段熱分解ガスエジェクタにて直接噴霧接触させる第n段熱分解油の設定循環流量と、複数段熱分解油の設定循環流量を有機物処理材料に応じて変更できるようにしたことを特徴とする請求項2もしくは請求項3記載の熱分解油回収システム。 The set circulation flow rate of the first stage pyrolysis oil to be directly sprayed in contact with the first stage pyrolysis gas ejector in the first stage pyrolysis oil recovery loop, the second stage heat in the second stage pyrolysis oil recovery loop The set circulation flow rate of the second-stage pyrolysis oil that is directly sprayed in contact with the cracked gas ejector, and the n-th stage heat that is directly sprayed in contact with the nth-stage pyrolysis gas ejector in the nth-stage pyrolysis oil recovery loop. 4. The pyrolysis oil recovery system according to claim 2, wherein the set circulation flow rate of the cracked oil and the set circulation flow rate of the multi-stage pyrolysis oil can be changed according to the organic matter treatment material. 前記各段或いは特定の段数の熱分解油回収ループにて凝縮しきれないオフガス成分を、熱分解装置の加熱用バーナの助燃用燃料として活用することを特徴とする請求項2乃至4のいずれかに記載の熱分解油回収システム。 5. The off-gas component that cannot be condensed in each stage or a specific number of pyrolysis oil recovery loops is utilized as a fuel for combustion in a heating burner of a pyrolysis apparatus. The pyrolysis oil recovery system described in 1. 前記各段或いは特定の段数の熱分解油回収ループにて回収した熱分解油は、熱分解装置の加熱用バーナの主燃料として活用し、これとは異なる各段或いは特定の段数の熱分解油回収ループにて回収した熱分解油を用いて、高付加価値カーボンの製造に供することを特徴とする請求項1乃至5のいずれかに記載の熱分解油回収システム。 The pyrolysis oil recovered in the pyrolysis oil recovery loop of each stage or a specific number of stages is used as the main fuel for the heating burner of the pyrolysis apparatus, and each stage or a specific number of pyrolysis oils different from this is used. The pyrolysis oil recovery system according to any one of claims 1 to 5, wherein the pyrolysis oil recovered in the recovery loop is used for the production of high value-added carbon.
JP2007145896A 2007-05-31 2007-05-31 Pyrolysis oil recovery system Expired - Fee Related JP5117113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145896A JP5117113B2 (en) 2007-05-31 2007-05-31 Pyrolysis oil recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145896A JP5117113B2 (en) 2007-05-31 2007-05-31 Pyrolysis oil recovery system

Publications (2)

Publication Number Publication Date
JP2008297470A true JP2008297470A (en) 2008-12-11
JP5117113B2 JP5117113B2 (en) 2013-01-09

Family

ID=40171275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145896A Expired - Fee Related JP5117113B2 (en) 2007-05-31 2007-05-31 Pyrolysis oil recovery system

Country Status (1)

Country Link
JP (1) JP5117113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578933A (en) * 2021-08-10 2021-11-02 杭州美天环境治理有限公司 Elementary self-circulation treatment system for household garbage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143872A (en) * 1994-11-22 1996-06-04 Hitachi Zosen Corp Pyrolizer for plastic
JP2001059089A (en) * 1999-08-23 2001-03-06 Nippon Shoene Kankyo Seihin:Kk Process and apparatus for converting plastic waste into oil
JP2004018563A (en) * 2002-06-12 2004-01-22 Toshiba Corp Apparatus for disposal of waste plastic
JP2004238600A (en) * 2003-02-06 2004-08-26 Kankyo Kaihatsu Kenkyusho:Kk Method for liquefying plastic
JP2006016594A (en) * 2004-06-03 2006-01-19 Toshiba Corp System and method for converting waste plastic to oil
JP2007112879A (en) * 2005-10-19 2007-05-10 Toshiba Corp System and method for thermal decomposition treatment of waste product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143872A (en) * 1994-11-22 1996-06-04 Hitachi Zosen Corp Pyrolizer for plastic
JP2001059089A (en) * 1999-08-23 2001-03-06 Nippon Shoene Kankyo Seihin:Kk Process and apparatus for converting plastic waste into oil
JP2004018563A (en) * 2002-06-12 2004-01-22 Toshiba Corp Apparatus for disposal of waste plastic
JP2004238600A (en) * 2003-02-06 2004-08-26 Kankyo Kaihatsu Kenkyusho:Kk Method for liquefying plastic
JP2006016594A (en) * 2004-06-03 2006-01-19 Toshiba Corp System and method for converting waste plastic to oil
JP2007112879A (en) * 2005-10-19 2007-05-10 Toshiba Corp System and method for thermal decomposition treatment of waste product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578933A (en) * 2021-08-10 2021-11-02 杭州美天环境治理有限公司 Elementary self-circulation treatment system for household garbage
CN113578933B (en) * 2021-08-10 2022-12-02 杭州美天环境治理有限公司 Elementary self-circulation treatment system for household garbage

Also Published As

Publication number Publication date
JP5117113B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
US11248184B2 (en) Gasification system
US7794689B2 (en) Method for steam reforming carbonaceous material
JP2018525510A (en) Process for producing highly biogenic Fischer-Tropsch liquid derived from municipal solid waste (MSW) feedstock
US9938188B2 (en) Method and apparatus for baking clinker
JP5706294B2 (en) Catalytic reactor
JPWO2010119973A1 (en) Hydrocarbon oil production system and method for producing hydrocarbon oil
JP4855539B2 (en) Biomass utilization apparatus using pulverized coal combustion boiler and biomass utilization method using the same
JP4357517B2 (en) Nanocarbon generator
SE532711C2 (en) Process and plant for producing synthesis gas
JP5117113B2 (en) Pyrolysis oil recovery system
WO2016102621A1 (en) Optimized process and installation for melting vitrifiable material in a flame-fired furnace
SE1001004A1 (en) Production of carbon in indirect heated gasification
US20060219544A1 (en) Process for producing synthetic oil from solid hydrocarbon resources
EP3992268B1 (en) Conversion of solid waste into syngas and hydrogen
CN112368236B (en) Method for producing hydrogen using biomass as raw material
EP3858950A1 (en) A pyrolysis system, a method for producing purified pyrolysis gas and pyrolysis liquids and use of a pyrolysis system
JP2009215445A (en) Method and system for reforming pyrolysis gas
TWM500107U (en) Multifunction thermal reaction device
TWI617357B (en) Multifunction thermal reaction device
JP2000129269A (en) Method for recovering coal rapid thermal decomposition tar
JP2009209300A (en) Production process of carbonized material and fuel gas from organic waste as raw material
CZ20004560A3 (en) Liquefaction process of solid organic materials
SE532711C3 (en)
WO2012011800A1 (en) System and method for thermal cracking of a hydrocarbons comprising mass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees