JP2008297427A - Method for producing phosphor and production device - Google Patents

Method for producing phosphor and production device Download PDF

Info

Publication number
JP2008297427A
JP2008297427A JP2007144819A JP2007144819A JP2008297427A JP 2008297427 A JP2008297427 A JP 2008297427A JP 2007144819 A JP2007144819 A JP 2007144819A JP 2007144819 A JP2007144819 A JP 2007144819A JP 2008297427 A JP2008297427 A JP 2008297427A
Authority
JP
Japan
Prior art keywords
phosphor
gap
conductive fiber
raw material
fiber layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007144819A
Other languages
Japanese (ja)
Inventor
Takeko Matsumura
竹子 松村
Hidenori Kurihara
英紀 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINERVA LIGHT LAB
MINERVA LIGHT LABORATORY
Original Assignee
MINERVA LIGHT LAB
MINERVA LIGHT LABORATORY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINERVA LIGHT LAB, MINERVA LIGHT LABORATORY filed Critical MINERVA LIGHT LAB
Priority to JP2007144819A priority Critical patent/JP2008297427A/en
Publication of JP2008297427A publication Critical patent/JP2008297427A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of easily and rapidly producing a phosphor, and a production device suitable to execute the method. <P>SOLUTION: The method comprises steps of making a phosphor raw material containing a compound constituting a phosphor base body and an activator element exist in an insulating cavity between conductive fiber layers; irradiating the conductive fiber layers with electromagnetic wave to generate electric discharge within the cavity; and producing the phosphor from the phosphor raw material by the effect thereof. As the conductive fiber layer, a carbon fiber layer is preferred, and a felty carbon fiber layer is particularly preferred. As the electromagnetic wave, microwave is preferred. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディスプレイパネル等の表示装置や蛍光ランプ等の照明装置等の電気機器に広く使用できる蛍光体の製造方法および製造装置に関する。   The present invention relates to a phosphor manufacturing method and a manufacturing apparatus that can be widely used in electrical equipment such as a display device such as a display panel and a lighting device such as a fluorescent lamp.

蛍光体の製造方法としては、種々の方法が開示されており、例えば、固相法、イオン注入法等が挙げられる。
固相法とは、蛍光体母体を構成する元素を含む化合物と賦活剤元素を含む化合物とを所定量混合し、所定の温度で所定時間焼成して、固相間反応により蛍光体を得る方法である(蛍光体ハンドブック)。例えば、特許文献1には、硫化亜鉛に銅化合物とハロゲン化合物とを混合し、焼成することにより蛍光体を製造する方法が記載されている。特許文献2には、酸化カルシウム粉末、フッ化ユウロピウム粉末、酸化マグネシウム粉末および二酸化珪素粉末を混合して焼成することにより蛍光体粉末を製造する方法が記載されている。
イオン注入法とは、蛍光体母体を構成する元素を含む化合物に賦活剤元素をイオン化させて加速し打ち込むことにより蛍光体を得る方法である。例えば、特許文献3および特許文献4には、イオン注入法を用いた蛍光体製造方法およびイオン注入装置が記載されている。
特開平7−62341号公報 特開2006−265307号公報 特公昭53−17624号公報 特開平6−179869号公報
Various methods are disclosed as a method for producing a phosphor, and examples thereof include a solid phase method and an ion implantation method.
The solid phase method is a method in which a predetermined amount of a compound containing an element constituting the phosphor matrix and a compound containing an activator element are mixed and fired at a predetermined temperature for a predetermined time to obtain a phosphor by an intersolid reaction. (Phosphor handbook). For example, Patent Document 1 describes a method of manufacturing a phosphor by mixing a copper compound and a halogen compound in zinc sulfide and firing the mixture. Patent Document 2 describes a method for producing a phosphor powder by mixing and baking calcium oxide powder, europium fluoride powder, magnesium oxide powder and silicon dioxide powder.
The ion implantation method is a method for obtaining a phosphor by ionizing and accelerating an activator element into a compound containing an element constituting the phosphor matrix. For example, Patent Document 3 and Patent Document 4 describe a phosphor manufacturing method and an ion implantation apparatus using an ion implantation method.
JP-A-7-62341 JP 2006-265307 A Japanese Patent Publication No.53-17624 Japanese Patent Laid-Open No. 6-179869

しかしながら、特許文献1および特許文献2に記載されたような固相法では、非酸化雰囲気下での気相における数時間の焼成処理を有するため、工程が複雑で時間がかかり、製造コストもかかる。
また、特許文献3に記載されたイオン注入法では、処理時間を短くするためイオン電流を高くすると、蛍光体の結晶の表面が分解溶融してしまうという問題がある。この問題を解決するため、特許文献4に記載されたように、間歇的なイオン注入と冷却を行うことによっても、注入時間は4時間程度を要している。さらに、イオン注入法による蛍光体製造装置は、母体結晶基板を収納する真空装置と、活性剤のイオン源部と、イオン化した活性剤を引き出すイオン引出し部等を有しており、高価である。
However, the solid-phase methods as described in Patent Document 1 and Patent Document 2 have a baking process of several hours in a gas phase in a non-oxidizing atmosphere, so that the process is complicated and time-consuming, and the manufacturing cost is also high. .
Further, the ion implantation method described in Patent Document 3 has a problem that when the ion current is increased to shorten the processing time, the surface of the phosphor crystal is decomposed and melted. In order to solve this problem, as described in Patent Document 4, intermittent ion implantation and cooling also require an implantation time of about 4 hours. Furthermore, a phosphor manufacturing apparatus using an ion implantation method is expensive because it includes a vacuum apparatus that houses a base crystal substrate, an ion source part of an activator, and an ion extraction part that extracts ionized activator.

したがって、本発明は、従来よりも簡便な方法で迅速に蛍光体を製造できる方法、および前記方法を実施するのに適した製造装置を提供することを課題とする。   Therefore, an object of the present invention is to provide a method capable of quickly producing a phosphor by a simpler method than before and a production apparatus suitable for carrying out the method.

本発明者らは、前記課題を解決するために種々検討した結果、蛍光体の母体を構成する化合物および発光中心となる賦活剤元素とを含む蛍光体原料に、放電とそれに伴う熱を作用させることによって、短時間で蛍光体を製造することに成功し、前記課題を解決した。   As a result of various studies to solve the above-mentioned problems, the present inventors cause discharge and heat accompanying it to act on a phosphor material containing a compound constituting the phosphor matrix and an activator element serving as a light emission center. As a result, the phosphor was successfully manufactured in a short time, and the problems were solved.

すなわち本発明は、蛍光体の母体を構成する化合物と賦活剤元素とを含む蛍光体原料を導電性繊維層に挟まれた絶縁性の空隙内に存在させ、前記導電性繊維層に電磁波を照射して当該空隙内に放電を発生させ、その作用によって前記蛍光体原料から蛍光体を製造することを特徴とする蛍光体の製造方法である。   That is, in the present invention, a phosphor raw material containing a compound constituting a phosphor matrix and an activator element is present in an insulating gap sandwiched between conductive fiber layers, and the conductive fiber layer is irradiated with electromagnetic waves. Then, the phosphor is produced from the phosphor raw material by generating discharge in the gap, and the phosphor production method.

導電性繊維層は、密に絡まった導電性繊維からなる層であり、層表面には導電性繊維の先端が多数突出している。したがって、当該導電性繊維層に電磁波を照射すると、導電性繊維層は電磁波を吸収し、層表面に突出している繊維の先端に電解が集中するため、導電性繊維層に挟まれた絶縁性の空隙(ギャップ)内に放電が発生する。また、放電エネルギーは熱エネルギーに変わるため、空隙内は高温となる。
したがって、蛍光体の母体を構成する化合物と発光中心となる賦活剤元素とを含む蛍光体原料を導電性繊維層に挟まれた空隙内に配置して、導電性繊維層に電磁波を照射すると、蛍光体母体は、放電による電子アタックを受け、表面構造が荒れ、その母体表面に、賦活剤元素が高温により融解し、蛍光体が生成する。
The conductive fiber layer is a layer made of closely entangled conductive fibers, and a large number of conductive fiber tips protrude from the surface of the layer. Therefore, when the conductive fiber layer is irradiated with an electromagnetic wave, the conductive fiber layer absorbs the electromagnetic wave, and electrolysis concentrates on the tip of the fiber protruding on the surface of the layer, so that the insulating property sandwiched between the conductive fiber layers is Discharge occurs in the gap. Further, since the discharge energy is changed to thermal energy, the gap is at a high temperature.
Therefore, when the phosphor material containing the compound constituting the phosphor matrix and the activator element serving as the emission center is disposed in the gap sandwiched between the conductive fiber layers, and the conductive fiber layer is irradiated with electromagnetic waves, The phosphor matrix is subjected to an electronic attack due to electric discharge and has a rough surface structure, and the activator element melts at a high temperature on the surface of the matrix, thereby generating a phosphor.

本発明はまた、前記方法を行う装置に関し、反応容器を備えた蛍光体の製造装置であって、前記反応容器内には、導電性繊維層に挟まれた絶縁性の空隙が形成されており、前記空隙内に蛍光体原料を供給する蛍光体原料導入手段と、前記絶縁性の空隙内に放電を生じさせるよう前記導電性繊維層に電磁波を照射する電磁波照射手段とを備えたことを特徴とする蛍光体の製造装置に関する。   The present invention also relates to an apparatus for performing the above-described method, which is a phosphor manufacturing apparatus provided with a reaction vessel, and an insulating gap sandwiched between conductive fiber layers is formed in the reaction vessel. A phosphor material introduction means for supplying a phosphor material into the gap, and an electromagnetic wave irradiation means for irradiating the conductive fiber layer with an electromagnetic wave so as to cause a discharge in the insulating gap. The present invention relates to a phosphor manufacturing apparatus.

本発明の方法および装置によれば、導電性繊維層に挟まれた空隙に蛍光体原料を存在させた状態で、導電性繊維層に電磁波を照射するといった簡易な操作だけで蛍光体を製造することができる。また、非常に短時間で蛍光体を製造することができる。   According to the method and apparatus of the present invention, a phosphor is manufactured by a simple operation such as irradiating an electromagnetic wave on a conductive fiber layer in a state where the phosphor raw material is present in a gap sandwiched between the conductive fiber layers. be able to. In addition, the phosphor can be manufactured in a very short time.

本発明による蛍光体の製造方法の基本的な工程を図1に示す。なお、図1のフローチャートは例示的なものであり、本発明の製造方法は図1の工程に限定されない。   FIG. 1 shows the basic steps of the phosphor manufacturing method according to the present invention. Note that the flowchart of FIG. 1 is exemplary, and the manufacturing method of the present invention is not limited to the process of FIG.

本発明による蛍光体の製造方法では放電が発生することが重要である。大気中で電磁波を照射して高温にしただけでは蛍光体を製造することはできない。例えば蛍光体原料を電子るつぼに入れてマイクロ波を照射した場合、蛍光体原料は高温になるが、短時間での蛍光体の生成は確認されなかった。
これは、蛍光体の生成には、放電と熱の両方が作用していることを示している。この放電と熱エネルギーは、電磁波出力、導電性繊維の電磁波吸収性能並びに空隙の幅(あるいは空隙の体積)および導電性繊維層の体積により定まる。すなわち、電磁波出力が一定で空隙の体積が増加すると、放電頻度が減少するため、断熱性が一定であると、それに伴い、空隙内の温度も低くなる。したがって、所望の蛍光体製造に必要とされる反応温度および空隙の体積等に併せて、電磁波出力を調節することが好ましい。
In the phosphor manufacturing method according to the present invention, it is important that discharge occurs. A phosphor cannot be produced simply by irradiating an electromagnetic wave in the atmosphere to raise the temperature. For example, when the phosphor material is put in an electronic crucible and irradiated with microwaves, the phosphor material becomes high temperature, but the generation of the phosphor in a short time was not confirmed.
This indicates that both discharge and heat act on the generation of the phosphor. This discharge and thermal energy are determined by the electromagnetic wave output, the electromagnetic wave absorption performance of the conductive fiber, the width of the void (or the volume of the void), and the volume of the conductive fiber layer. That is, when the electromagnetic wave output is constant and the gap volume is increased, the discharge frequency is decreased. Therefore, if the heat insulation is constant, the temperature in the gap is also lowered accordingly. Therefore, it is preferable to adjust the electromagnetic wave output in accordance with the reaction temperature and the void volume required for producing the desired phosphor.

本発明にかかる導電性繊維層には、放電を発生させるために空隙の絶縁を破る電圧を蓄積できる静電容量が必要であり、また、高温を維持する断熱性を有するための厚みが必要である。そのため、本発明にかかる導電性繊維層は、0.5mm以上の厚みを有することが好ましく、また、一辺0.5mmの立方体以上の体積を有することが好ましい。電磁波出力、空隙の幅との関係により、好ましい導電性繊維層の厚み/体積は異なるが、例えば、電磁波出力500〜1000W、空隙の幅0.5〜5mmで2つの導電性繊維層を配置する場合、それぞれの導電性繊維層は、厚み約5〜10mm/体積約400〜約13,000mm程度とすることが好ましく、厚み約5〜10mm/体積500〜7000mmとすることがより好ましい。導電性繊維層の形状は特に限定されないが、直方体形状のように角のある形状の場合は角部分でスパークが発生しやすいので角を丸めることが好ましい。 The conductive fiber layer according to the present invention requires a capacitance capable of storing a voltage that breaks the insulation of the gap in order to generate a discharge, and also needs a thickness to have a heat insulation property that maintains a high temperature. is there. Therefore, the conductive fiber layer according to the present invention preferably has a thickness of 0.5 mm or more, and preferably has a volume of a cube having a side of 0.5 mm or more. Although the preferred thickness / volume of the conductive fiber layer varies depending on the relationship between the electromagnetic wave output and the gap width, for example, two conductive fiber layers are disposed with an electromagnetic wave output of 500 to 1000 W and a gap width of 0.5 to 5 mm. In this case, each conductive fiber layer preferably has a thickness of about 5 to 10 mm / volume of about 400 to about 13,000 mm 3, and more preferably a thickness of about 5 to 10 mm / volume of 500 to 7000 mm 3 . The shape of the conductive fiber layer is not particularly limited, but in the case of a shape having a corner such as a rectangular parallelepiped shape, it is preferable to round the corner because sparks are likely to occur at the corner.

導電性繊維層としては、炭素繊維層が好ましい。特に、フェルト状の炭素繊維層が好ましい。炭素繊維層は導電性が高いため、電磁波を吸収しやすい。また、断熱性が高いため、放電により生じる熱を空隙内から外側に逃がしにくく、空隙内を高温(1000℃以上)に保つことができる一方、炭素繊維層の外側は高温になりにくいため、扱いやすく安全である。また、熱安定性が高いため、継続使用に適している。特に、高温焼成した炭素繊維は熱安定性が高く好ましい。また、炭素繊維層に挟まれた空隙は、還元雰囲気となるため、硫化物系の蛍光体のように酸化により失活する蛍光体でも安定して製造することができる。
特に、フェルト状の炭素繊維層(カーボンフェルト)は3次元構造で表面積が広く、層表面に先鋭な繊維先端が多数存在するため、電磁波吸収および放電発生に好適である。
導電性繊維としては、他にスチールウール、銅繊維、タングステンワイヤーも使用できる。また、これらの繊維を併用して用いることもできる。
As the conductive fiber layer, a carbon fiber layer is preferable. In particular, a felt-like carbon fiber layer is preferable. Since the carbon fiber layer has high conductivity, it easily absorbs electromagnetic waves. In addition, since heat insulation is high, it is difficult for heat generated by discharge to escape from the inside of the gap to the outside, and the inside of the gap can be kept at a high temperature (1000 ° C. or higher), while the outside of the carbon fiber layer is difficult to reach a high temperature. Easy and safe. Moreover, since it has high thermal stability, it is suitable for continuous use. In particular, carbon fibers fired at high temperature are preferable because of high thermal stability. Moreover, since the space | gap pinched | interposed between the carbon fiber layers becomes a reducing atmosphere, even a phosphor deactivated by oxidation, such as a sulfide-based phosphor, can be stably produced.
In particular, a felt-like carbon fiber layer (carbon felt) has a three-dimensional structure, a large surface area, and a large number of sharp fiber tips on the surface of the layer. Therefore, it is suitable for electromagnetic wave absorption and discharge generation.
In addition, steel wool, copper fiber, and tungsten wire can be used as the conductive fiber. These fibers can also be used in combination.

本発明において、導電性繊維層に挟まれた空隙とは、二つの導電性繊維層に挟まれた空隙だけでなく、三つ、あるいは四つの導電性繊維層で三方あるいは四方を囲まれた空隙も含み、あるいは一つの導電性繊維層の中をくりぬいて、各導電性繊維層が通電しないように切断した空隙等も含む。空隙の絶縁性は、放電が発生する程度であればよい。空隙の幅は、電磁波出力、導電性繊維の種類および導電性繊維層の厚み/体積との関係により好ましい距離が異なるが、例えば、電磁波出力500〜1000Wで厚み5〜10mm、体積500〜7000mmのカーボンフェルトを2つ用いた場合、好ましい空隙の幅は0.4〜5mmであり、より好ましくは0.5〜3mm、特に好ましくは0.7〜1.5mmである。 In the present invention, the space sandwiched between the conductive fiber layers is not only the space sandwiched between the two conductive fiber layers, but also the space surrounded by three or four sides by three or four conductive fiber layers. Or a void cut by cutting through one conductive fiber layer so that each conductive fiber layer is not energized. The insulating property of the air gap may be such that discharge is generated. The preferred width of the gap varies depending on the relationship between the electromagnetic wave output, the type of conductive fiber, and the thickness / volume of the conductive fiber layer. For example, the electromagnetic wave output is 500 to 1000 W, the thickness is 5 to 10 mm, and the volume is 500 to 7000 mm 3. When two carbon felts are used, the preferred gap width is 0.4 to 5 mm, more preferably 0.5 to 3 mm, and particularly preferably 0.7 to 1.5 mm.

本発明の特徴の一つとして、蛍光体生成反応が進行する場となる絶縁性の空隙を、還元性の導電性繊維層で囲むことができるため、反応を還元雰囲気下にて進行できることが挙げられる。そのため本発明の製造方法は、Sn2+、Eu2+、Ce3+、Tb3+などを賦活剤とする蛍光体、あるいはCaS系、ZnS系などの硫化物を母体とする蛍光体のように還元雰囲気中で製造する必要がある蛍光体を製造するのに特に好適である。
ZnS系蛍光体を例にとって説明すると、母体であるZnSを大気中で普通に焼成すると、酸化されてZnOになり、蛍光体が失活しやすいが、本発明の方法では、ZnSが維持されるため、高収率で蛍光体を製造することができる。また、従来の固相法(焼成法)では、還元ガスとしてHを含むNや、硫化水素などを用いていたため、手間がかかるだけでなく、危険を伴っていたが、本発明では還元性雰囲気にするために還元ガスを用いる必要がないため、安全かつ簡易に蛍光体を製造することができる。
One of the features of the present invention is that the insulating voids where the phosphor formation reaction proceeds can be surrounded by the reducing conductive fiber layer, so that the reaction can proceed in a reducing atmosphere. It is done. Therefore, the production method of the present invention is a phosphor using Sn 2+ , Eu 2+ , Ce 3+ , Tb 3+ or the like as an activator, or a phosphor based on a sulfide such as CaS or ZnS. It is particularly suitable for producing a phosphor that needs to be produced in a reducing atmosphere.
In the case of a ZnS-based phosphor, for example, when the base ZnS is baked normally in the atmosphere, it is oxidized to ZnO, and the phosphor is easily deactivated. However, in the method of the present invention, ZnS is maintained. Therefore, the phosphor can be manufactured with high yield. Further, in the conventional solid phase method (firing method), N 2 containing H 2 or hydrogen sulfide is used as a reducing gas, which is not only troublesome but also dangerous. Since it is not necessary to use a reducing gas in order to obtain a neutral atmosphere, the phosphor can be manufactured safely and easily.

本発明の蛍光体原料には、蛍光体の母体を構成する化合物と賦活剤元素が含まれる。前記母体構成化合物や賦活剤元素としては、従来から行われている固相法(焼成法)において蛍光体原料として使用されている母体構成化合物および賦活剤元素を使用することができる。例えば、母体構成化合物としては、硫化亜鉛、硫化バリウム、硫化カルシウム等が挙げられる。賦活剤元素としては、銅、銀、ユーロピウム等が挙げられる。また、賦活剤元素にはいわゆる共賦活剤となる元素(例えばZnS:Ag,ClにおけるCl、ZnS:Cu,AlにおけるAlなど)も含まれる。賦活剤元素は元素の種類や反応条件等によりそのまま添加しても、あるいは賦活剤元素を含む化合物の形で添加してもよい。また、通常の固相法と同様、反応を促進・安定化・補助するための助剤を添加してもよい。例えば融剤(ハロゲン化物など)を加えてもよく、またこの他に、反応を補助する物質として、硫化水素等の還元性気体やアルミニウムフィルム等の還元性フィルムを加えることもできる。母体構成化合物と賦活剤の混合比、融剤等の助剤の要否等は従来の固相法と同じでよい。
蛍光体原料の形状は、粉末状であってもフィルム形状等であってもよく、蛍光体原料や製造条件に合わせて適宜調節すればよい。一般的には粉末状あるいは粒子状が好ましい。また、蛍光体原料にもよるが、一般的に、粒子径が小さい方が蛍光強度の高いものができる。好ましい粒子径は8.6メッシュ以下、特に好ましくは74メッシュ〜600メッシュである。また、必要に応じて加温し、蛍光体原料に吸着している水や空気を除くことが好ましい。
The phosphor material of the present invention contains a compound constituting the phosphor matrix and an activator element. As the matrix constituting compound and the activator element, a matrix constituting compound and an activator element used as a phosphor raw material in a solid phase method (firing method) conventionally performed can be used. For example, examples of the matrix constituting compound include zinc sulfide, barium sulfide, calcium sulfide and the like. Examples of the activator element include copper, silver, and europium. In addition, the activator elements include elements that are so-called coactivators (for example, Cl in ZnS: Ag, Cl, Al in ZnS: Cu, Al, and the like). The activator element may be added as it is depending on the type of element, reaction conditions, or the like, or may be added in the form of a compound containing the activator element. Moreover, you may add the adjuvant for accelerating, stabilizing, and assisting reaction like a normal solid-phase method. For example, a flux (such as a halide) may be added, and a reducing gas such as hydrogen sulfide or a reducing film such as an aluminum film may be added as a substance for assisting the reaction. The mixing ratio between the matrix constituent compound and the activator, the necessity of an auxiliary agent such as a flux, and the like may be the same as those in the conventional solid phase method.
The shape of the phosphor material may be a powder or a film shape, and may be appropriately adjusted according to the phosphor material and production conditions. Generally, a powder form or a particulate form is preferable. Further, although depending on the phosphor material, generally, the smaller the particle diameter, the higher the fluorescence intensity. The preferred particle size is 8.6 mesh or less, particularly preferably 74 mesh to 600 mesh. Moreover, it is preferable to heat as needed and to remove water and air adsorbed on the phosphor material.

本発明で使用される電磁波は、周波数等特に限定されないが、好ましくは300MHz〜300GHzのマイクロ波である。価格や量産性等の要因からは、特に電子レンジ等で使用されている2.45GHzのマイクロ波が好ましい。したがって、本発明の方法には、マルチモードの電磁波照射装置を使用することもできる。反応に必要な温度に応じて反応温度を変えることができるため、出力が調整できる電磁波照射装置がより好ましい。
適切な条件の下では、硫化亜鉛系の蛍光体であれば1分以内、硫化バリウム系であれば数分といった非常に短い時間で蛍光体を製造することが可能である。電磁波の照射方向等は特に限定されず、導電性繊維層に確実に照射されればよい。
The electromagnetic wave used in the present invention is not particularly limited in frequency and the like, but is preferably a microwave of 300 MHz to 300 GHz. In view of factors such as price and mass productivity, a 2.45 GHz microwave used in a microwave oven is particularly preferable. Therefore, a multimode electromagnetic wave irradiation apparatus can also be used in the method of the present invention. Since the reaction temperature can be changed according to the temperature required for the reaction, an electromagnetic wave irradiation device capable of adjusting the output is more preferable.
Under appropriate conditions, it is possible to produce a phosphor in a very short time, such as within one minute for a zinc sulfide-based phosphor and several minutes for a barium sulfide-based phosphor. The irradiation direction of the electromagnetic wave is not particularly limited, and it is sufficient that the conductive fiber layer is reliably irradiated.

本発明の製造装置において使用される反応容器の材質は、耐熱強化ガラス、石英等が好ましい。
また、前記反応容器内において、一つの通路状の空隙が形成されるよう導電性繊維層を配置すれば、固体のように流動性の低い原料を、確実に空隙内に供給するのに好適であり、また、生成物の回収漏れを防ぎやすい。特に、希土類等の原料や性能が確保された蛍光体は高価なので、確実に反応を進行させ、確実に生成物を回収することが望まれるが、上記装置はこのような高価な固体の取り扱いに非常に適している。
The material of the reaction vessel used in the production apparatus of the present invention is preferably heat-resistant tempered glass or quartz.
In addition, if the conductive fiber layer is arranged in the reaction vessel so that one passage-like gap is formed, it is suitable for reliably supplying a raw material having low fluidity such as a solid into the gap. In addition, it is easy to prevent the product from being leaked. In particular, since raw materials such as rare earths and phosphors with secured performance are expensive, it is desirable to proceed the reaction reliably and reliably recover the product, but the above apparatus is used for handling such expensive solids. Very suitable.

特に、前記絶縁性の空隙を縦方向に形成し、当該空隙の上部に原料導入部を設置し、下部に生成物回収部を設置し、原料導入部と生成物回収部それぞれを空隙と連通させ、原料導入部から前記空隙に投入された原料が、導電性繊維層の空隙に狭まれた状態で保持されるよう、導電性繊維層を近接させて配置すれば、蛍光体原料を導入部から投入するだけで原料を放電領域に滞留させることができ好ましい。好ましい空隙の幅は、蛍光体原料の状態によっても異なるが、例えば原料が粉末状の場合は、0.5〜1.5mmである。導電性繊維層の表面には多数の繊維先端が突出しているため、蛍光体の保持に効果的である。また、導電性繊維層同士は一部短絡していても放電が発生するので、下部の導電性繊維を接触させて空隙の下端部を塞ぎ、蛍光体原料の落下を防止してもよい。
原料導入部や生成物回収部は絶縁性の空隙と直接連通する構成としても他の部材を介在させて連通する構成としてもよい。例えば原料導入部と空隙の間にガラス管を配置して連通させてもよい。
In particular, the insulating gap is formed in the vertical direction, the raw material introduction part is installed at the upper part of the gap, the product recovery part is installed at the lower part, and the raw material introduction part and the product recovery part are communicated with the gap. If the conductive fiber layer is disposed close to the raw material introduced into the gap from the raw material introduction part so as to be held in a state of being narrowed in the gap of the conductive fiber layer, the phosphor raw material is removed from the introduction part. It is preferable that the raw material can be retained in the discharge region simply by charging. The preferred width of the gap varies depending on the state of the phosphor raw material, but is, for example, 0.5 to 1.5 mm when the raw material is powdery. Many fiber tips protrude from the surface of the conductive fiber layer, which is effective for holding the phosphor. Further, since the discharge occurs even if the conductive fiber layers are partially short-circuited, the lower end portion of the gap may be closed by contacting the lower conductive fibers to prevent the phosphor raw material from dropping.
The raw material introduction section and the product recovery section may be configured to communicate directly with the insulating gap or may be configured to communicate with each other through other members. For example, a glass tube may be arranged and communicated between the raw material introduction part and the gap.

前記装置において、反応生成物の回収は、反応終了後に蛍光体が劣化しない有機溶剤(例えば石油エーテル等)を空隙に流して反応生成物を生成物回収部に洗い出すことによって行うことができる。洗い出した反応生成物は、有機溶剤と分離して自然乾燥することにより、変質させることなく、回収することができる。または空隙内へ気体を送風することによって、生成物回収部に蛍光体を送り出してもよい。このような構成とすれば、導電性繊維層を動かすことなく生成した蛍光体を取り出せるため、操作が簡便である。   In the apparatus, the reaction product can be recovered by flowing an organic solvent (for example, petroleum ether) in which the phosphor does not deteriorate after completion of the reaction into the gap and washing out the reaction product in the product recovery unit. The washed out reaction product can be recovered without alteration by separating it from an organic solvent and naturally drying it. Or you may send out a fluorescent substance to a product collection | recovery part by ventilating gas in a space | gap. With such a configuration, since the generated phosphor can be taken out without moving the conductive fiber layer, the operation is simple.

本発明の製造装置を連続式の装置とする場合は、導電性繊維層に挟まれた空隙内で蛍光体を移動させる手段を設けることが好ましく、不活性輸送媒体で原料を流動させ、所定の反応時間の間、蛍光体原料が導電性繊維層に挟まれた空隙内に保持されるよう制御できることが好ましい。輸送媒体としては、セラミックス等を用いることができる。例えば、水平方向に移動するベルトコンベア式のセラミックス製のスライド床を形成し、その両側に導電性繊維層を配置して、所定の時間蛍光体原料が導電性繊維層に挟まれた空隙内に存在するよう、導電性繊維層の長さおよび移動速度をコントロールして、原料を移動させながら反応を進行させることにより、大量生産が可能な連続式の装置を構成することができる。   In the case where the production apparatus of the present invention is a continuous apparatus, it is preferable to provide means for moving the phosphor within the gap sandwiched between the conductive fiber layers. It is preferable that the phosphor raw material can be controlled to be held in the voids sandwiched between the conductive fiber layers during the reaction time. Ceramics or the like can be used as the transport medium. For example, a belt conveyor type ceramic sliding floor that moves in the horizontal direction is formed, conductive fiber layers are arranged on both sides thereof, and the phosphor material is sandwiched between the conductive fiber layers for a predetermined time. A continuous apparatus capable of mass production can be configured by controlling the length and moving speed of the conductive fiber layer so as to exist and allowing the reaction to proceed while moving the raw material.

赤色蛍光体の製造
蛍光体製造装置は、図3に示すように、2.45GHzマイクロ波発信器と、同軸管によりチューナーを介して接続された共鳴器(クロニクス技研株式会社製)とからなる電磁波照射装置を備え、前記共鳴器を通したガラス管(反応容器)内に2500℃焼成カーボンフェルト(長さ40mm×幅15mm×厚み0.5mm)が2つ近接して配置されて絶縁性の空隙を形成している(カーボンフェルト間の距離は約1mmとした)。そして、カーボンフェルト間の空隙内に蛍光体原料を供給するための原料収納部が反応容器の上部に設けられており、当該原料収納部はガラス細管により前記空隙と連通され、蛍光体原料を確実に空隙内に供給する原料導入部を構成している。反応容器の下端は生成物回収器と連通している。
Production of red phosphor As shown in FIG. 3, the phosphor production apparatus comprises an electromagnetic wave comprising a 2.45 GHz microwave transmitter and a resonator (manufactured by Cronics Giken Co., Ltd.) connected via a tuner by a coaxial tube. An irradiating device is provided, and a 2500 ° C. calcined carbon felt (length 40 mm × width 15 mm × thickness 0.5 mm) is disposed in close proximity in a glass tube (reaction vessel) through which the resonator is passed, so that an insulating gap is provided. (The distance between the carbon felts was about 1 mm). A raw material storage unit for supplying the phosphor raw material into the gap between the carbon felts is provided in the upper part of the reaction vessel, and the raw material storage unit is communicated with the gap by a glass thin tube to ensure the phosphor raw material. The raw material introduction part supplied into the gap is configured. The lower end of the reaction vessel communicates with the product collector.

蛍光体母体構成化合物として硫化亜鉛を、賦活剤元素としてマンガンを、助剤として塩化マグネシウムをモル比1:0.15:0.1で混合し、メノウ乳鉢で粉砕して蛍光体原料を作製した。
この蛍光体原料を導入部からカーボンフェルトピースに挟まれた絶縁性の空隙内に投入し、2.45GHzマイクロ波100Wを30秒間照射した。蛍光体原料はカーボンフェルトピース間に保持され、反応時間の間中、カーボンフェルトピース間に存在していた。照射後、原料導入部から有機溶剤を流し、反応生成物を生成物回収器に洗い出して回収した。有機溶剤と反応生成物を分離した後、反応生成物にブラックライトを照射し、発光スペクトルを測定した。図2Aのような発光スペクトルが観測され、赤色蛍光体(ZnS:Mn)の生成が確認された(図2A)。
A phosphor raw material was prepared by mixing zinc sulfide as a phosphor matrix constituent compound, manganese as an activator element, and magnesium chloride as an auxiliary agent in a molar ratio of 1: 0.15: 0.1 and pulverizing in an agate mortar. .
This phosphor material was introduced into the insulating gap sandwiched between the carbon felt pieces from the introduction portion, and irradiated with 2.45 GHz microwave 100 W for 30 seconds. The phosphor material was held between the carbon felt pieces and was present between the carbon felt pieces throughout the reaction time. After the irradiation, an organic solvent was poured from the raw material introduction part, and the reaction product was washed out and collected in a product collector. After separating the organic solvent and the reaction product, the reaction product was irradiated with black light, and an emission spectrum was measured. An emission spectrum as shown in FIG. 2A was observed, confirming the formation of a red phosphor (ZnS: Mn) (FIG. 2A).

緑色蛍光体の製造
蛍光体製造装置は、実施例1と同様のものを用いた。
蛍光体母体構成化合物として硫化亜鉛を、賦活剤元素として銅を、助剤として塩化マグネシウムをモル比1:0.01:0.1で混合し、メノウ乳鉢で粉砕して蛍光体原料を作製した。
この蛍光体原料を導入部からカーボンフェルトピースに挟まれた絶縁性の空隙内に投入し、2.45GHzマイクロ波100Wを40秒間照射した。蛍光体原料はカーボンフェルトピース間に保持され、反応時間の間中、カーボンフェルトピース間に存在していた。照射後、原料導入部から有機溶剤を流し、反応生成物を生成物回収器に洗い出し、有機溶剤と反応生成物を分離した後、反応生成物にブラックライトを照射し、発光スペクトルを測定した。約500nmをピークとする発光スペクトルが観測され、緑色蛍光体(ZnS:Cu)の生成が確認された(図2B)。
Production of Green Phosphor A phosphor production apparatus similar to that used in Example 1 was used.
A phosphor raw material was prepared by mixing zinc sulfide as a phosphor matrix constituent compound, copper as an activator element, and magnesium chloride as an auxiliary agent in a molar ratio of 1: 0.01: 0.1 and pulverizing in an agate mortar. .
This phosphor material was introduced from the introduction part into an insulating gap sandwiched between carbon felt pieces, and irradiated with 2.45 GHz microwave 100 W for 40 seconds. The phosphor material was held between the carbon felt pieces and was present between the carbon felt pieces throughout the reaction time. After the irradiation, an organic solvent was poured from the raw material introduction part, the reaction product was washed out into a product collector, the organic solvent and the reaction product were separated, the reaction product was irradiated with black light, and an emission spectrum was measured. An emission spectrum having a peak at about 500 nm was observed, confirming the formation of a green phosphor (ZnS: Cu) (FIG. 2B).

青色蛍光体の製造
蛍光体製造装置は、実施例1と同様のものを用いた。
蛍光体母体構成化合物として硫化バリウムを、賦活剤元素を含む化合物として酸化ユーロピウムを、助剤として硫黄を1:0.1:0.2で混合し、メノウ乳鉢で粉砕した。さらに助剤として破砕したアルミニウムフィルム片を加えて蛍光体原料を作製した。
この蛍光体原料を導入部からカーボンフェルトピース間に配置し、2.45GHzマイクロ波100Wを120秒間照射した。照射後、送風により反応生成物を回収した。この反応生成物にブラックライトを照射し、発光スペクトルを測定した。約475nmをピークとする発光スペクトルが観測され、青色蛍光体(BaS:Eu)の生成が確認された(図2C)。
Production of Blue Phosphor A phosphor production apparatus similar to that used in Example 1 was used.
Barium sulfide was mixed as a phosphor matrix constituent compound, europium oxide as a compound containing an activator element, and sulfur as an auxiliary agent were mixed at 1: 0.1: 0.2, and pulverized in an agate mortar. Further, a phosphor material was prepared by adding a crushed aluminum film piece as an auxiliary agent.
This phosphor raw material was disposed between the carbon felt pieces from the introduction part, and irradiated with 2.45 GHz microwave 100 W for 120 seconds. After irradiation, the reaction product was recovered by blowing air. The reaction product was irradiated with black light, and an emission spectrum was measured. An emission spectrum having a peak at about 475 nm was observed, confirming the formation of a blue phosphor (BaS: Eu) (FIG. 2C).

実施例1〜3により、本発明の製造方法によれば、導電性繊維層に挟まれた空隙に蛍光体原料を存在させて電磁波を照射するといった非常に簡単な操作によって、わずか30秒〜120秒といった非常に短い時間で蛍光体を製造できることが分かった。   According to Examples 1 to 3, according to the production method of the present invention, it is only 30 seconds to 120 seconds by a very simple operation of irradiating an electromagnetic wave with a phosphor raw material present in a gap sandwiched between conductive fiber layers. It was found that the phosphor can be manufactured in a very short time such as seconds.

また、実施例1〜3によって、本発明によりRGB(赤・緑・青)の3色全ての蛍光体を製造できることが分かった。また、実施例1〜3で製造したRGBの各蛍光体を混合することにより、白色の蛍光を発する蛍光組成物を得ることができた。   Moreover, it turned out that the phosphor of all three colors of RGB (red, green, blue) can be manufactured by Examples 1-3 by Examples 1-3. Moreover, the fluorescent composition which emits white fluorescence was able to be obtained by mixing each fluorescent substance of RGB manufactured in Examples 1-3.

実施例2で蛍光体原料として使用した母体構成化合物(ZnS)と生成した蛍光体について、XRDスペクトルを測定した。原料として用いたZnSのスペクトルを図4Aに、生成した蛍光体のスペクトルを図4Bに示す。図4に示すように、ZnSはせん亜鉛鉱型から、ウルツ鉱型に転移しているが、蛍光体母体(ZnS)は維持されており、酸化による副生成物(ZnO)は生成されていない。従って本発明の製造方法によって製造された蛍光体は純度が高いことが分かる。   The XRD spectrum was measured for the matrix-forming compound (ZnS) used as the phosphor material in Example 2 and the produced phosphor. The spectrum of ZnS used as a raw material is shown in FIG. 4A, and the spectrum of the produced phosphor is shown in FIG. 4B. As shown in FIG. 4, ZnS has transitioned from the zincblende type to the wurtzite type, but the phosphor matrix (ZnS) is maintained, and no by-product (ZnO) due to oxidation is generated. . Therefore, it can be seen that the phosphor produced by the production method of the present invention has high purity.

製造条件の検討
導電性繊維層の体積、空隙の幅(ギャップ距離)を変更して、好ましい製造条件を検討した。導電性繊維層として、フェルト状の炭素繊維層(カーボンフェルト:CF)を用い、電磁波照射装置として電子レンジを用いた。電子レンジの庫中で、円柱状のカーボンフェルト2つを、円柱周縁部分にセラミックス性の部材を介在させることによって、一定の間隔(ギャップ距離)をとって上下に重ね、CFに挟まれた絶縁性の空隙(ギャップ)を形成し、2.45GHz・700Wにてマイクロ波を照射した。CFの円柱直径、CF間ギャップ距離を適宜変更し、60秒間電磁波照射を行った時点のギャップ内温度を電子レンジに設けたのぞき窓から赤外線サーモグラフィーにより測定した。
Examination of production conditions Preferred production conditions were examined by changing the volume of the conductive fiber layer and the width of the gap (gap distance). A felt-like carbon fiber layer (carbon felt: CF) was used as the conductive fiber layer, and a microwave oven was used as the electromagnetic wave irradiation device. In a microwave oven, two cylindrical carbon felts are stacked vertically with a certain distance (gap distance) by interposing a ceramic member at the periphery of the cylinder, and sandwiched between CFs. A void was formed and irradiated with microwaves at 2.45 GHz · 700 W. The cylinder diameter of CF and the gap distance between CFs were appropriately changed, and the temperature in the gap at the time when electromagnetic wave irradiation was performed for 60 seconds was measured by infrared thermography from the observation window provided in the microwave oven.

実験の結果、CF間ギャップ距離が小さいほど、ギャップ内の温度は高温となる傾向を示した。一方、CF間ギャップ距離を固定し、CF円柱直径を徐々に大きくした場合、最初は円柱直径が大きくなるにつれてギャップ内温度が上昇する傾向を示したが、ある点を境として、直径が大きくなるにつれてギャップ内温度が低下する傾向に転じた。また、ギャップ内に熱を閉じこめて高温を維持するためには、CFの断熱性も重要であり、CFの厚みが0.5mm以上あることが好ましかった。CF間ギャップ距離を1〜5mm、CFの厚みを5〜10mm、CFの体積を1500〜7000mm程度とすれば、ギャップ内の測定温度は約900℃〜約1500℃に達し、各種の蛍光体を短時間で製造することができた。 As a result of the experiment, the smaller the gap distance between the CFs, the higher the temperature in the gap. On the other hand, when the gap distance between CFs was fixed and the CF cylinder diameter was gradually increased, the temperature within the gap tended to increase as the cylinder diameter first increased. However, the diameter increased at a certain point. As the temperature in the gap decreased, the temperature began to decrease. In addition, in order to keep heat in the gap and maintain a high temperature, the heat insulating property of CF is also important, and the thickness of CF is preferably 0.5 mm or more. If the gap distance between CFs is 1 to 5 mm, the thickness of CF is 5 to 10 mm, and the volume of CF is about 1500 to 7000 mm 3 , the measurement temperature in the gap reaches about 900 ° C. to about 1500 ° C., and various phosphors Could be manufactured in a short time.

実施例5の結果から、本発明の製造方法では、CFの体積やCF間ギャップ距離を適切な範囲とするだけで、わずか60秒でギャップ内の測定温度が1000℃以上の高温に達することが分かった。ギャップ内の実際の温度は、サーモグラフィーによる測定温度よりさらに高いと考えられる。蛍光体の製造に最適な温度は、蛍光体の種類によって異なるため、製造する蛍光体によって温度を変更する必要があるが、本実施例の結果から、温度制御はギャップ距離や導電性繊維層の体積を変えることによって適宜調節可能であることが明らかになった。また、短時間で高温に達するのは、放電エネルギーが熱エネルギーに変わるためと考えられるため、反応に十分な放電が起こっていることが分かる。   From the results of Example 5, in the manufacturing method of the present invention, the measurement temperature in the gap can reach a high temperature of 1000 ° C. or more in only 60 seconds only by setting the volume of CF and the gap distance between CFs to appropriate ranges. I understood. The actual temperature in the gap is considered to be higher than the temperature measured by thermography. Since the optimum temperature for manufacturing the phosphor varies depending on the type of the phosphor, it is necessary to change the temperature depending on the phosphor to be manufactured. From the results of this example, the temperature control is based on the gap distance and the conductive fiber layer. It was revealed that the volume can be adjusted appropriately by changing the volume. Further, it is considered that the high temperature is reached in a short time because the discharge energy is changed to thermal energy, and thus it is understood that a sufficient discharge is generated for the reaction.

上述したように、本発明の製造方法では、導電性繊維層の体積や空隙の幅を変更するだけで適切な温度や放電頻度の調整が可能であるため、本発明の方法は、電磁波出力調整が不可能な装置を用いても実施することができ、汎用性にも非常に優れている。
なお、当然のことながら、電磁波出力の調整が可能な装置を用いて、電磁波出力によって温度や放電頻度を制御してもよい。
As described above, in the production method of the present invention, it is possible to adjust the appropriate temperature and discharge frequency only by changing the volume of the conductive fiber layer and the width of the gap. However, it can be carried out using an apparatus that is impossible, and is extremely excellent in versatility.
As a matter of course, the temperature and the discharge frequency may be controlled by the electromagnetic wave output using an apparatus capable of adjusting the electromagnetic wave output.

本発明の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of this invention. (A)は実施例1で製造した赤色蛍光体の蛍光スペクトル、(B)は実施例2で製造した緑色蛍光体の蛍光スペクトル、(C)は実施例3で製造した青色蛍光体の蛍光スペクトルである。(A) is the fluorescence spectrum of the red phosphor produced in Example 1, (B) is the fluorescence spectrum of the green phosphor produced in Example 2, and (C) is the fluorescence spectrum of the blue phosphor produced in Example 3. It is. Aは実施例で使用した装置の模式図並びに反応容器の縦断面図であり、Bは反応容器のX−X線での横断面図である。A is a schematic view of the apparatus used in the examples and a longitudinal sectional view of the reaction vessel, and B is a transverse sectional view of the reaction vessel taken along line XX. (A)はマイクロ波照射前のZnSのXRD スペクトル、(B)はマイクロ波照射後のZnSのXRDスペクトルである。(A) is an XRD spectrum of ZnS before microwave irradiation, and (B) is an XRD spectrum of ZnS after microwave irradiation.

Claims (5)

蛍光体の母体を構成する化合物と賦活剤元素とを含む蛍光体原料を導電性繊維層に挟まれた絶縁性の空隙内に存在させ、前記導電性繊維層に電磁波を照射して当該空隙内に放電を発生させ、その作用によって前記蛍光体原料から蛍光体を製造することを特徴とする蛍光体の製造方法。   A phosphor raw material containing a compound constituting the matrix of the phosphor and an activator element is present in an insulating gap sandwiched between the conductive fiber layers, and the conductive fiber layer is irradiated with electromagnetic waves in the gaps. A method for producing a phosphor, comprising: generating a discharge in the phosphor and producing a phosphor from the phosphor raw material by the action thereof. 前記導電性繊維層がフェルト状の炭素繊維層である、請求項1に記載の蛍光体の製造方法。   The method for producing a phosphor according to claim 1, wherein the conductive fiber layer is a felt-like carbon fiber layer. 前記電磁波がマイクロ波である、請求項1または2に記載の蛍光体の製造方法。   The manufacturing method of the fluorescent substance of Claim 1 or 2 whose said electromagnetic waves are a microwave. 反応容器を備えた蛍光体の製造装置であって、前記反応容器内には、導電性繊維層に挟まれた絶縁性の空隙が形成されており、前記空隙内に蛍光体原料を供給する蛍光体原料導入手段と、前記絶縁性の空隙内に放電を生じさせるよう前記導電性繊維層に電磁波を照射する電磁波照射手段とを備えたことを特徴とする蛍光体の製造装置。   A phosphor manufacturing apparatus including a reaction vessel, wherein an insulating gap sandwiched between conductive fiber layers is formed in the reaction vessel, and a fluorescent material for supplying a phosphor material in the gap A phosphor manufacturing apparatus comprising: a body material introducing means; and an electromagnetic wave irradiating means for irradiating the conductive fiber layer with an electromagnetic wave so as to cause a discharge in the insulating gap. 前記絶縁性の空隙が縦方向に形成され、当該空隙の上部に原料導入部が、下部に生成物回収部が設置され、前記原料導入部から前記空隙に投入された原料が、前記導電性繊維層に狭まれた状態で保持されることによって前記空隙内に留まり、反応進行後に前記空隙の上部から、気体あるいは有機溶剤からなる輸送媒体を流すことによって反応生成物を前記生成物回収部に輸送することを特徴とする請求項4に記載の製造装置。   The insulating gap is formed in the vertical direction, the raw material introduction part is installed in the upper part of the gap, the product recovery part is installed in the lower part, and the raw material introduced into the gap from the raw material introduction part is the conductive fiber. The reaction product is transported to the product recovery section by flowing a transport medium composed of a gas or an organic solvent from the upper part of the gap after the reaction proceeds by being held in a state of being narrowed by a layer. The manufacturing apparatus according to claim 4, wherein:
JP2007144819A 2007-05-31 2007-05-31 Method for producing phosphor and production device Pending JP2008297427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144819A JP2008297427A (en) 2007-05-31 2007-05-31 Method for producing phosphor and production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144819A JP2008297427A (en) 2007-05-31 2007-05-31 Method for producing phosphor and production device

Publications (1)

Publication Number Publication Date
JP2008297427A true JP2008297427A (en) 2008-12-11

Family

ID=40171233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144819A Pending JP2008297427A (en) 2007-05-31 2007-05-31 Method for producing phosphor and production device

Country Status (1)

Country Link
JP (1) JP2008297427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420978B1 (en) 2013-05-28 2014-07-17 주식회사 포스포 An apparatus for synthesizing phospor using dielectric barrier discharge and a method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420978B1 (en) 2013-05-28 2014-07-17 주식회사 포스포 An apparatus for synthesizing phospor using dielectric barrier discharge and a method using the same

Similar Documents

Publication Publication Date Title
Li et al. Host-sensitized luminescence in LaNbO 4: Ln 3+(Ln 3+= Eu 3+/Tb 3+/Dy 3+) with different emission colors
Li et al. Photo-/cathodoluminescence and energy transfer properties of novel Ce 3+ singly doped and Ce 3+/Tb 3+ codoped NaBaScSi 2 O 7 phosphors
Chen et al. Persistent and photo-stimulated luminescence in Ce 3+/Cr 3+ activated Y 3 Al 2 Ga 3 O 12 phosphors and transparent phosphor-in-glass
Li et al. Sol–gel synthesis, structure and photoluminescence properties of nanocrystalline Lu2MoO6: Eu
Park et al. Characterization of YVO4: Eu3+, Sm3+ red phosphor quick synthesized by microwave rapid heating method
Kshatri et al. Effects of Dy concentration on luminescent properties of SrAl2O4: Eu phosphors
Raman et al. Synthesis and spectroscopic investigations on Pr3+-doped LiPbB5O9 phosphor: a blue converting red phosphor for white LEDs
Yang et al. Comparison of the photoluminescence properties of Eu2+, Mn2+ co-doped M5 (PO4) 3Cl (M= Ca, Sr, Ba)
Romero et al. Strong blue and white photoluminescence emission of BaZrO3 undoped and lanthanide doped phosphor for light emitting diodes application
Zhang et al. Energy transfer and luminescent properties of a green-to-red color tunable Tb3+, Eu3+ co-doped K2Y (WO4)(PO4) phosphor
Das et al. Novel green phosphorescence from pristine ZnO quantum dots: tuning of correlated color temperature
Yan et al. VUV–vis photoluminescence, low-voltage cathodoluminescence and electron-vibrational interaction of Mn2+ in Ba2MgSi2O7
Si et al. Synthesis and photoluminescence of host-sensitized MgNb2O6 based phosphors
Zhu et al. Fine-tuning of multiple upconversion emissions by controlling the crystal phase and morphology between GdF 3: Yb 3+, Tm 3+ and GdOF: Yb 3+, Tm 3+ nanocrystals
Watras et al. The role of the Ca vacancy in the determination of the europium position in the energy gap, its valence state and spectroscopic properties in KCa (PO3) 3
WO2008013243A1 (en) Phosphor precursor manufacturing method
JP2008297427A (en) Method for producing phosphor and production device
US10450198B2 (en) Method for producing conductive mayenite type compound
JP2004026608A (en) Electrically conductive inorganic compound including alkali metal
Han et al. β-Zn3BPO7: Mn2+: A novel rare-earth-free possible deep-red emitting phosphor
JPH09310067A (en) Production of luminescent material
Bordun et al. Photo-and cathodoluminescence of ZnGa 2 O 4: Cr thin films
JP2006335898A (en) Phosphor for low energy electron beam, phosphor paste and fluorescent display device
KR101420978B1 (en) An apparatus for synthesizing phospor using dielectric barrier discharge and a method using the same
Liu et al. Crystal growth and photoluminescence properties of truncated cubic BaMgAl10O17: Eu2+ phosphors for three-dimensional plasma display panels