JP2008296166A - Purification method for wastewater discharged from spirit production facility - Google Patents

Purification method for wastewater discharged from spirit production facility Download PDF

Info

Publication number
JP2008296166A
JP2008296166A JP2007146909A JP2007146909A JP2008296166A JP 2008296166 A JP2008296166 A JP 2008296166A JP 2007146909 A JP2007146909 A JP 2007146909A JP 2007146909 A JP2007146909 A JP 2007146909A JP 2008296166 A JP2008296166 A JP 2008296166A
Authority
JP
Japan
Prior art keywords
wastewater
waste water
centrifugal separation
filtration
distilled liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007146909A
Other languages
Japanese (ja)
Inventor
Nolasco Hipolito Cirilo
ノラスコ イポリト シリロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON POLY GLU CO Ltd
NIPPON POLY-GLU CO Ltd
Poly Glu De Mexico SA De Cv
Poly-Glu De Mexico SA De Cv
Original Assignee
NIPPON POLY GLU CO Ltd
NIPPON POLY-GLU CO Ltd
Poly Glu De Mexico SA De Cv
Poly-Glu De Mexico SA De Cv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON POLY GLU CO Ltd, NIPPON POLY-GLU CO Ltd, Poly Glu De Mexico SA De Cv, Poly-Glu De Mexico SA De Cv filed Critical NIPPON POLY GLU CO Ltd
Priority to JP2007146909A priority Critical patent/JP2008296166A/en
Publication of JP2008296166A publication Critical patent/JP2008296166A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification method for wastewater which can easily and stably treat wastewater discharged from a spirit production facility, containing pollutants having a very high COD concentration of more than 60,000 mg/l to be converted into almost colorless and transparent wastewater which can be discharged to the outside and has a COD concentration of about 2,000-3,000 mg/l. <P>SOLUTION: The purification method for wastewater comprises the coagulant adding process for mixing a coagulant mainly comprising crosslinked polyglutamic acid with wastewater, a first centrifugal separation process for removing solids in the wastewater from the coagulant adding process, a chemical treatment process for adding an alkali agent and hydrogen peroxide to the wastewater from the centrifugal separation process to decompose organic matter in the wastewater, second and third centrifugal separation processes for removing solids in the wastewater from the chemical treatment process, and the first filtration-absorption process and a second filtration-absorption process for purifying the wastewater from the third centrifugal separation process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ウイスキーやテキーラ、コニャック、焼酎等の蒸留酒の製造施設から排出された廃水の処理方法の改良に関するものであり、廃水中に含まれる高濃度の有機物等を効率よく除去して無色透明に近い廃水に処理出来るようにした蒸留酒製造施設から出た廃水の浄化処理方法に関するものである。   The present invention relates to an improvement of a method for treating wastewater discharged from a manufacturing facility for distilled liquor such as whiskey, tequila, cognac, and shochu, and efficiently removes high-concentration organic substances and the like contained in the wastewater. The present invention relates to a method for purifying wastewater discharged from a distilled liquor manufacturing facility that can be treated into nearly transparent wastewater.

ウイスキーや焼酎等の蒸留酒製造施設から排出される廃水には、多量の有機物が含まれており、また、それ等の有機物の中には、難分解性の着色性物質が比較的多量に含まれている。そのため、蒸留酒製造施設から出る高濃度の汚濁物質(例えばCOD値が60000mg/l以上)を含んだ廃水は、単に廃水に従前の生物処理を施したり、沈澱処理や濾過処理を施しただけでは、これを十分に浄化することが困難で、透明に近い廃水とすることが出来ないと云う問題がある。   Wastewater discharged from whiskey, shochu and other distilled liquor production facilities contains a large amount of organic substances, and these organic substances contain a relatively large amount of persistent colorants. It is. For this reason, wastewater containing high-concentration pollutants (for example, COD values of 60000 mg / l or more) from distilled liquor production facilities cannot be obtained by simply subjecting the wastewater to biological treatment, precipitation treatment or filtration treatment. However, there is a problem that it is difficult to sufficiently purify this, and it is impossible to make the waste water nearly transparent.

そのため、沈澱装置や生物処理装置、オゾン発生装置、濾過装置、吸着装置等を組合せた構造の複雑な大型処理装置を用いたり、或いは難分解性物質(着色性物質)を分解する微生物を用いた処理装置が、蒸留酒製造施設等の廃水処理用として開発されている。   For this reason, a complex large-scale treatment device combined with a precipitation device, a biological treatment device, an ozone generation device, a filtration device, an adsorption device, etc., or a microorganism that decomposes a hardly decomposable substance (coloring substance) is used. Treatment equipment has been developed for the treatment of wastewater from distilled liquor manufacturing facilities and the like.

しかし、前者の沈澱装置やオゾン発生器、濾過装置、吸着装置等から成る一次処理装置や二次処理装置、三次処理装置等を組み合せた大型処理装置は、設備費が高額になるうえ、装置の運転管理に手数がかかり過ぎると云う問題を有している。   However, large processing equipment that combines primary processing equipment, secondary processing equipment, tertiary processing equipment, etc., consisting of the former precipitation equipment, ozone generator, filtration equipment, adsorption equipment, etc., increases the equipment cost and equipment costs. There is a problem that operation management takes too much time.

また、後者の難分解性物質を分解する微生物を用いた処理装置は、処理に要する時間が長いために設備の小型化が困難で、設備費が高騰するうえ微生物の管理が極めて難しいと云う問題を有している。   In addition, the latter treatment apparatus using microorganisms that decompose the hardly decomposable substance has a problem that it is difficult to reduce the size of the equipment due to the long time required for the treatment, the equipment cost increases, and the management of microorganisms is extremely difficult. have.

このように、アルコール発酵工程を備えた施設から排出される高濃度の汚濁物質を含有した廃水の浄化処理は、極めて困難なものであって、これ等の廃水を簡単且つ円滑に、しかも安定して浄化処理できるようにした処理方法の開発が待たれている。   In this way, purification of wastewater containing high-concentration pollutants discharged from facilities equipped with an alcohol fermentation process is extremely difficult, and these wastewaters can be easily and smoothly made stable. Therefore, development of a treatment method that can be purified is awaited.

特開2002−223746号JP 2002-223746 A 特開2003−274929号JP 2003-274929 A

本発明は、蒸留酒製造施設から排出される極めて高濃度の汚濁物質を含んだ廃水の浄化処理に於ける上述の如き問題、即ち(i)構造の複雑な大型処理装置を必要とするため、設備費が高騰したり、装置の運転管理に多くの手数を必要とすること、(ii)微生物を用いる処理装置では、処理に長時間を必要とするうえ、微生物の管理に手数がかかること等の問題を解決せんとするものであり、極めて高濃度の汚濁物質を含んだ廃水を構造の簡単な安価な処理装置でもって、簡単且つ高能率で、しかも安定して透明に近い廃水にまで浄化処理することができるようにした、蒸留酒製造施設から出た廃水の浄化処理方法を提供することを発明の主目的とするものである。   The present invention requires the above-mentioned problem in the purification treatment of wastewater containing extremely high concentration of pollutant discharged from the distilled liquor production facility, that is, (i) a complicated large-scale treatment device having a structure is required. Equipment costs soar or require a lot of manpower to manage the operation of the equipment. (Ii) A processing device that uses microorganisms requires a long time for processing and manpower management. In order to solve this problem, wastewater containing extremely high-concentration pollutants can be purified to simple, highly efficient, stable and nearly transparent wastewater with an inexpensive treatment device with a simple structure. The main object of the present invention is to provide a method for purifying wastewater discharged from a distilled liquor production facility so that it can be treated.

本発明は、先ず、蒸留酒製造設備からの廃水に凝集剤、例えばポリグルタミン酸架橋物を主体とする生分解性の凝集剤(日本ポリグル株式会社製・以下、PGα21Caと呼ぶ)を添加すると共に、当該凝集剤を添加した廃水を遠心分離処理して廃水内の凝集物(固形物)を除去し、次に、凝集物(固形物)を除去した後の廃水内の残留有機物をアルカリ剤と過酸化水素とを用いて化学的に分解させ、更に、化学的に処理をした後の廃水から固形物を遠心分離により除去すると共に、この固形物を除去したあとの廃水を濾過、吸着処理して残留有機物を除去することにより、蒸留酒製造設備から出る高濃度の汚濁物質を含んだ廃水をほぼ透明に近い廃水にまで高能率で、安価に、しかも安定して処理することを可能にしたものである。   In the present invention, firstly, a flocculant, for example, a biodegradable flocculant mainly composed of a cross-linked polyglutamic acid (manufactured by Japan Polyglu Co., Ltd., hereinafter referred to as PGα21Ca) is added to waste water from a distilled liquor production facility, The wastewater to which the flocculant is added is centrifuged to remove the aggregates (solid matter) in the wastewater, and then the residual organic matter in the wastewater after the removal of the aggregates (solid matter) is treated with an alkali agent. It is chemically decomposed with hydrogen oxide, and solids are removed from the wastewater after chemical treatment by centrifugation, and the wastewater after removing the solids is filtered and adsorbed. By removing residual organic matter, wastewater containing high-concentration pollutants from distilled liquor production facilities can be treated efficiently, inexpensively, and stably to nearly transparent wastewater. It is.

即ち、本願発明は、蒸留酒製造施設から出た高濃度の汚濁物質を含んだ廃水に凝集剤を混合する凝集剤添加工程と、凝集剤添加工程からの廃水内の固形物を除去する第1遠心分離工程と、遠心分離工程からの廃水にアルカリ剤と過酸化水素を加えて廃水内の有機物を分解させる化学処理工程と、化学処理工程からの廃水内の固形物を除去する第2遠心分離工程及び第3遠心分離工程と、第3遠心分離工程からの廃水を浄化処理する第1濾過・吸着工程及び第2濾過・吸着工程とから構成したことを特徴とする蒸留酒製造施設から出た廃水の浄化処理方法である。   That is, the present invention relates to a flocculant addition step of mixing a flocculant with wastewater containing high-concentration pollutant discharged from a distilled liquor manufacturing facility, and a first step of removing solids in the wastewater from the flocculant addition step. Centrifugation step, chemical treatment step of decomposing organic matter in waste water by adding alkaline agent and hydrogen peroxide to waste water from the centrifugation step, and second centrifugation to remove solid matter in waste water from chemical treatment step A distilled liquor manufacturing facility characterized in that it comprises a first filtration / adsorption process and a second filtration / adsorption process for purifying the waste water from the third centrifugation process and the third centrifugation process. This is a method for purifying wastewater.

凝集剤添加工程で添加する凝集剤としては、ポリグルタミン酸架橋物を主体とする凝集剤が望ましく、また、ポリグルタミン酸架橋物を主体とする凝集剤の混合量は、廃水内の凝集剤の濃度が150ppmとなる量とするのが望ましい。   As the flocculant to be added in the flocculant addition step, a flocculant mainly composed of a polyglutamic acid cross-linked product is desirable, and the amount of the flocculant mainly composed of the polyglutamic acid cross-linked product is determined by the concentration of the flocculant in the waste water. The amount is preferably 150 ppm.

また、凝集剤添加工程からの廃水を処理する第1遠心分離工程は、廃水温度40〜60℃、遠心分離力2500〜3500G及び遠心分離時間6〜8分間で廃水を処理する遠心分離工程とするのが望ましい。   Moreover, the 1st centrifugation process which processes the wastewater from a coagulant | flocculant addition process is set as the centrifugation process which processes wastewater by wastewater temperature 40-60 degreeC, the centrifugal force 2500-50500G, and the centrifugation time 6-8 minutes. Is desirable.

更に、前記第1遠心分離工程と化学処理工程との間に、廃水内へ重金属除去剤(キレート剤)として、廃水内濃度が1wt%となる量のジエチレントリアミン5酢酸を添加するようにした重金属除去剤添加工程を設けるのが望ましい。   Furthermore, between the first centrifugation step and the chemical treatment step, heavy metal removal is performed by adding diethylenetriaminepentaacetic acid in an amount of 1 wt% in the wastewater as a heavy metal removal agent (chelating agent) into the wastewater. It is desirable to provide an agent addition step.

前記化学処理工程は、廃水内へ過酸化水素と、ケイ酸ナトリウムと苛性ソーダと水とを混合して成るアルカリ剤溶液とを攪拌混合して廃水のPH値をほぼ10.8程度に自動調整すると共に、温度を40〜60℃に保持した状態で廃水内の有機物を分解する化学処理工程とするのが望ましい。   In the chemical treatment process, hydrogen peroxide, sodium silicate, caustic soda, and an alkali solution formed by mixing water are stirred and mixed into the waste water to automatically adjust the PH value of the waste water to about 10.8. At the same time, it is desirable to use a chemical treatment step for decomposing organic substances in the wastewater while maintaining the temperature at 40 to 60 ° C.

前記第2遠心分離工程からの廃水に、廃水内濃度が0.5wt%となる量の酸化カルシウムを添加する酸化カルシウム添加工程を設けるのが望ましい。   It is desirable to provide a calcium oxide addition step of adding calcium oxide in an amount such that the concentration in the waste water is 0.5 wt% to the waste water from the second centrifugation step.

第2遠心分離工程及び第3遠心分離工程は、遠心分離力2500〜3500G及び遠心分離時間6〜8分間で廃水を処理する遠心分離工程とするのが望ましい。   It is desirable that the second centrifugation step and the third centrifugation step are centrifugal steps in which waste water is treated with a centrifugal force of 2500 to 3500 G and a centrifugal time of 6 to 8 minutes.

前記第1濾過・吸着工程の上流側に、第3遠心分離工程からの廃水に硫酸を添加して廃水のPH値をほぼ7.0に調整する硫酸添加工程を設けるのが望ましい。   It is desirable to provide a sulfuric acid addition step for adjusting the PH value of the waste water to approximately 7.0 by adding sulfuric acid to the waste water from the third centrifugation step on the upstream side of the first filtration / adsorption step.

前記第1濾過・吸着工程は、濾過、吸着剤として炭酸カルシウムと珪藻土とを充填したカラムを用いた濾過吸着工程とするのが望ましい。   The first filtration / adsorption process is preferably a filtration / adsorption process using a column packed with calcium carbonate and diatomaceous earth as an adsorbent.

前記第2濾過・吸着工程は、濾過・吸着剤として活性炭を充填したカラムを用いた濾過・吸着工程とするのが望ましい。   The second filtration / adsorption step is preferably a filtration / adsorption step using a column filled with activated carbon as a filtration / adsorbent.

本発明では基本的に、従前から広く活用されている固形物を除去する遠心分離処理と、有機物の化学的分解処理と、固形物の濾過及び吸着処理とを有機的に組み合せすることより廃水の浄化処理方法を構成すると共に、この浄化処理方法を用いて蒸留酒製造施設から出た高濃度廃水を処理するようにしている。
その結果、本発明の浄化処理方法は、従前の慣用技術をベースにして実施することができ、高能率でしかも安定した廃水の浄化処理が可能となる。
Basically, in the present invention, waste water is obtained by organically combining a centrifugal separation process for removing solids, which has been widely used in the past, a chemical decomposition process for organic substances, and a filtration and adsorption process for solid substances. While constituting the purification treatment method, this purification treatment method is used to treat high-concentration wastewater from the distilled liquor manufacturing facility.
As a result, the purification treatment method of the present invention can be carried out based on the conventional technique, and a highly efficient and stable wastewater purification treatment can be performed.

また、本発明では、最初に廃水内へ生分解性の凝集剤PGα21Caを混合すると共に、その混合濃度や混合温度を最適値に保持するようにしている。そのため、廃水内の有機物を効率よく迅速に凝集させることができると共に、遠心分離処理によって凝集物(固形物)を容易に除去することが可能となる。   In the present invention, the biodegradable flocculant PGα21Ca is first mixed into the wastewater, and the mixing concentration and mixing temperature are maintained at optimum values. Therefore, the organic matter in the waste water can be efficiently and quickly aggregated, and the aggregate (solid matter) can be easily removed by the centrifugal separation process.

更に、本発明では、ポリグルタミン酸架橋物を主体とする生分解性凝集剤による凝集処理と、有機物の化学的分解処理と、分解後の固形物を除去する遠心分離処理と、残留固形物を除去する濾過及び吸着処理とを組み合せ使用するようにしているため、COD値が60000〜65000mg/lの極めて高濃度の汚濁物質を含有する蒸留酒製造プロセスからの廃水(ヴィナサス・Vinasses)をCOD2000〜3000mg/lのほぼ無色、無臭の廃水にまで浄化処理することができる。   Furthermore, in the present invention, a coagulation treatment with a biodegradable coagulant mainly composed of a polyglutamic acid cross-linked product, a chemical decomposition treatment of organic matter, a centrifugation treatment for removing the solid matter after decomposition, and a residual solid matter are removed. The waste water from the distilled liquor manufacturing process (Vinassas Vinasses) containing very high concentration pollutants with COD values of 60000-65000 mg / l is COD 2000-3000 mg. It is possible to purify the wastewater to almost colorless, odorless waste water of / l.

以下、図面に基づいて本発明の廃水の浄化処理方法を説明する。
図1は、本発明による蒸留酒製造施設から出た廃水の浄化処理方法の工程図である。ここでは、メキシコ国に於ける蒸留酒(テキーラ)の最終製造工程から排出された温度約80℃の廃水Aが処理対象となっている。即ち、この廃水Aは、アガペ芋を主成分とする原材料を発酵させ、これを蒸留処理した後の多量の植物繊維を含んだ茶色状の液体であって、高濃度のアルコール発酵残渣を含んだ廃液であり、ヴィナサス(Vinasses)と呼ばれているものである。また、このヴィナサスの汚濁のレベルは、COD(化学的酸素要求量)値で60000〜65000mg/l程度で、PH値は約3〜3.5である。
Hereinafter, the method for purifying wastewater of the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram of a method for purifying wastewater discharged from a distilled liquor manufacturing facility according to the present invention. Here, wastewater A having a temperature of about 80 ° C. discharged from the final production process of distilled liquor (tequila) in Mexico is the object of treatment. That is, this waste water A is a brown liquid containing a large amount of plant fiber after fermenting a raw material mainly composed of agape rice cake and subjecting it to distillation, and contains a high concentration of alcohol fermentation residue. It is a waste liquid and is called Vinasses. Further, the contamination level of this Vinasas is about 60000-65000 mg / l in terms of COD (chemical oxygen demand) value, and the PH value is about 3-3.5.

廃水Aの浄化処理に際しては、先ず、凝集剤添加工程1に於いて、廃水A内へ凝集剤Bが混合・攪拌され、次に、第1遠心分離工程2において、凝集物の分離、除去が行われる。
使用する凝集剤Bは、本件出願人が先に開発して実用に供している商品名PGα21Caと呼ばれる粉体状凝集剤であり、生分解性を有するγ−ポリグルタミン酸を主体とする新規な自然分解性の物質であり、下記の構造式であらわされるものである。
In the purification treatment of the waste water A, first, the flocculant B is mixed and stirred in the waste water A in the flocculant addition step 1, and then in the first centrifugal separation step 2, the flocculant is separated and removed. Done.
The flocculant B used is a powdery flocculant called PGα21Ca, which was previously developed and put to practical use by the applicant of the present invention, and is a novel natural substance mainly composed of biodegradable γ-polyglutamic acid. It is a degradable substance and is represented by the following structural formula.

当該凝集用薬剤Bは、下記の各成分含有量(wt%)を有している。
PGα21=14%、C=0.5%、O=45%、Na=8%、Al=0.5%、Si=12%、Cl=0.4、Ca=15%、K=0.1%、Fe=15%。
また、凝集剤B内のO、Ca、Fe、Si等は通常2CaSO4・H2O、NaCO3・H2O、NaSO4、MgSO4、6H2O、Al2(SO4)・18H2O等の化学構造式で表される物質の型で、当該凝集剤内に含まれている。
The aggregating agent B has the following component contents (wt%).
PGα21 = 14%, C = 0.5%, O = 45%, Na = 8%, Al = 0.5%, Si = 12%, Cl = 0.4, Ca = 15%, K = 0.1 %, Fe = 15%.
O, Ca, Fe, Si, etc. in the flocculant B are usually 2CaSO 4 · H 2 O, NaCO 3 · H 2 O, NaSO 4 , MgSO 4 , 6H 2 O, Al 2 (SO 4 ) · 18H 2. A type of substance represented by a chemical structural formula such as O and contained in the flocculant.

前記廃水A内に含まれる有機物(汚濁物質)の除去効率は、主として凝集剤Bの添加量と廃水Aの温度と遠心分離機の作動条件に大きく依存する。そのため、凝集剤Bの添加量、廃水Aの処理温度及び分離機の運転時間等が汚濁の除去効率に及ぼす影響を調査した。   The removal efficiency of organic substances (pollutant substances) contained in the waste water A largely depends on the amount of the flocculant B added, the temperature of the waste water A, and the operating conditions of the centrifuge. Therefore, the effects of the addition amount of the flocculant B, the treatment temperature of the waste water A, the operation time of the separator, etc. on the pollution removal efficiency were investigated.

図2は、分離機としてデカンタ型の遠心分離機(decantor)を用いた場合の廃水A内のNTU値(Nephelometric Turbidify Unit・比濁分析の汚濁単位)と、分離処理時間(min)と、遠心分離力(G)との関係を示すものであり、図2からも明らかなように、遠心分離機の回転速度は有機物の除去に大きな影響を与えるものであり、電力消費量や分離処理した廃水AのNTU値等から判断して、2500〜3500Gの遠心分離力で7.5〜10分間(望ましくは、3300G程度の遠心分離力で7.5分間)の遠心分離処理を行うのが望ましい。尚、本実施形態では、遠心分離機としてデカンタ型の遠心分離機を用いているが、使用する遠心分離機の形式は、如何なるものであっても良い。   FIG. 2 shows the NTU value (Nephelometric Turbidity Unit / turbidimetric unit of turbidimetric analysis) in the waste water A, the separation processing time (min), the centrifugation time when the decanter type centrifuge is used as the separator. FIG. 2 shows the relationship with the separation force (G). As is clear from FIG. 2, the rotational speed of the centrifuge has a great influence on the removal of organic substances. Judging from the NTU value of A, etc., it is desirable to perform centrifugation for 7.5 to 10 minutes with a centrifugal force of 2500 to 3500 G (preferably 7.5 minutes with a centrifugal force of about 3300 G). In this embodiment, a decanter type centrifuge is used as the centrifuge, but any type of centrifuge may be used.

次に、凝集剤(PGα21Ca)Bの最適な混合量を調査するために、廃水(ヴィナサス)A内への凝集剤Bの混合量と、3300Gの遠心分離力で7.5分間分離処理を行った場合のNTU値を調査した。   Next, in order to investigate the optimum mixing amount of the flocculant (PGα21Ca) B, separation processing is performed for 7.5 minutes with the mixing amount of the flocculant B in the waste water (Vinousus) A and the centrifugal force of 3300G. The NTU value was investigated.

図2はその結果を示すものであり、凝集剤Bの混合量は、凝集剤濃度が100〜150ppmになる程度の量とするのが、適当であることが判る。凝集剤Bの混合量が過大になると、逆に廃水AのNTU値を増大させることになるからである。   FIG. 2 shows the results, and it can be seen that it is appropriate that the amount of the flocculant B mixed is such that the flocculant concentration is 100 to 150 ppm. This is because if the amount of the flocculant B is excessive, the NTU value of the wastewater A is increased.

更に、温度が、廃水(ヴィナサス)A内の有機物に対する凝集剤(PGα21Ca)Bの凝集性能に及ぼす影響を調査した。具体的には、廃水A内の凝集剤濃度を約100ppmに及び遠心分離力を約2500G程度にして、7.5分間固形物の遠心分離処理を行ったときの、廃水Aの温度℃とNTU値の関係を調査した。   Furthermore, the influence of the temperature on the aggregation performance of the flocculant (PGα21Ca) B with respect to the organic matter in the wastewater (Vinousus) A was investigated. Specifically, the temperature of the waste water A when the concentration of the flocculant in the waste water A is about 100 ppm and the centrifugal force is about 2500 G and the solid is centrifuged for 7.5 minutes. The relationship between values was investigated.

図4はその結果を示すものであり、凝集剤Bは廃水Aの温度が40℃〜60℃の場合により高い凝集性能を発揮することが判る。   FIG. 4 shows the results, and it can be seen that the flocculant B exhibits higher flocculation performance when the temperature of the wastewater A is 40 ° C. to 60 ° C.

上記、図2乃至図4の結果から、第1遠心分離工程2において最高の分離性能が得られるのは、廃水Aの温度が50〜60℃、凝集剤Bの添加量が100〜150ppm、遠心分離力が3300G及び遠心分離時間が7.5分間であることが判明した。   From the results shown in FIGS. 2 to 4, the highest separation performance is obtained in the first centrifugation step 2 because the temperature of the wastewater A is 50 to 60 ° C., the addition amount of the flocculant B is 100 to 150 ppm, The separation power was found to be 3300 G and the centrifugation time was 7.5 minutes.

前記第2遠心分離工程2で凝集物(固形物)が除去された廃水Aは、茶色がかった液体であり、その内部には有機物から成る各種の着色成分が含まれている。
当該第2遠心分離工程2で固形物が除去された廃水A1は、重金属除去剤添加工程3を経て化学処理工程4へ送られ、ここで所謂有機物の酸化還元反応による分解が行われる。
The waste water A from which aggregates (solid matter) have been removed in the second centrifugation step 2 is a brownish liquid, and various colored components made of organic matter are contained therein.
The waste water A 1 from which the solid matter has been removed in the second centrifugation step 2 is sent to the chemical treatment step 4 through the heavy metal removing agent addition step 3, where decomposition by a so-called redox reaction of organic matter is performed.

前記重金属除去剤添加工程3は、廃水A1内の重金属をキレート化して除去するために必要な工程であり、当該工程3は、廃水A1内に重金属が含有されている場合に設けられるものである。 The heavy metal removing agent adding step 3 is a step necessary for chelating and removing the heavy metal in the wastewater A 1 , and the step 3 is provided when the heavy water is contained in the waste water A 1 . It is.

具体的には、ジエチレントリアミン5酢酸(Dietilen tetra amine Pentacetic(DTPA)が重金属除去剤(キレート剤)Cとして廃水A1内へ適宜量混入される。 Specifically, diethylenetriamine pentaacetic acid (Dietilen tetra amine Pentacetic (DTPA) is mixed proper amount into the waste water A 1 as the heavy metal scavenging agent (chelator) C.

前記化学処理工程4は、過酸化水素を添加したアルカリシステムにより起生する有機物の酸化還元反応が基本となっており、ここで有機物の分解が行われる。   The chemical treatment step 4 is based on an oxidation-reduction reaction of an organic substance generated by an alkaline system to which hydrogen peroxide is added, and the organic substance is decomposed here.

図5に示すように、第1遠心分離機11により固形物(スラッジ)S1が除去された廃水A1に、重金属除去剤槽12から重金属除去剤(DTPA)が約0.1wt%の割合で混合され、その後廃水A1は攪拌混合槽13へ投入される。 As shown in FIG. 5, the ratio of the heavy metal removing agent (DTPA) from the heavy metal removing agent tank 12 to the waste water A 1 from which the solid matter (sludge) S 1 has been removed by the first centrifuge 11 is about 0.1 wt%. Then, the waste water A 1 is put into the stirring and mixing tank 13.

一方、ケイ酸ナトリウム槽15には41ボーメのケイ酸ナトリウムDが、また、苛性ソーダ槽16には50%濃度の苛性ソーダ(水酸化ナトリウム)Eが貯留されており、更に、前記ケイ酸ナトリウムDと苛性ソーダEと水Wを1:3:4の容積比率で混合して成るアルカリ剤Gが、アルカリ剤槽17内に準備されている。   On the other hand, 41 baume sodium silicate D is stored in the sodium silicate tank 15, and 50% sodium hydroxide (sodium hydroxide) E is stored in the caustic soda tank 16. Further, the sodium silicate D and An alkaline agent G obtained by mixing caustic soda E and water W at a volume ratio of 1: 3: 4 is prepared in the alkaline agent tank 17.

尚、前記41Be(ボーメ度41)のケイ酸ナトリウムDは比重1.38g/cm3、SiO2/Na2Oの重量比3.22のケイ酸ナトリウムを意味するものである。また、当該ケイ酸ナトリウムDは、苛性ソーダEと混合する前に水Wに溶解させる必要がある。 The sodium silicate D having 41Be (Baume degree 41) means sodium silicate having a specific gravity of 1.38 g / cm 3 and a weight ratio of SiO 2 / Na 2 O of 3.22. In addition, the sodium silicate D needs to be dissolved in the water W before being mixed with the caustic soda E.

前記アルカリ剤(溶液)Gは、攪拌反応槽13内の廃水A1のPH値が10.8となるまで、ポンプP1により攪拌反応槽13内へ自動的に送り込まれる。尚、PH値を約10.8に保持するのは、PH値が10.8の近傍に於いて、もっとも効率よく有機物の分解が行われるからである。 The alkaline agent (solution) G is automatically fed into the stirring reaction tank 13 by the pump P 1 until the PH value of the waste water A 1 in the stirring reaction tank 13 becomes 10.8. The reason why the PH value is maintained at about 10.8 is that organic substances are most efficiently decomposed when the PH value is around 10.8.

また、攪拌反応槽13へは、過酸化水素槽18から過酸化水素HがポンプP2により送られる。
この過酸化水素の添加は、廃水A1のCOD値が80000mg/lより高くしても1wt%以下の量であり、過酸化水素Hが攪拌反応槽13へ加えられて化学反応が始まると、PH値は直ちにPH=8位まで減少する。
Further, hydrogen peroxide H is sent from the hydrogen peroxide tank 18 to the stirring reaction tank 13 by the pump P 2 .
The hydrogen peroxide is added in an amount of 1 wt% or less even if the COD value of the wastewater A 1 is higher than 80000 mg / l. When the hydrogen peroxide H is added to the stirring reaction tank 13 and the chemical reaction starts, The PH value immediately decreases to PH = 8.

極端なPH値の減少は好ましくないので、これを避けるために、ペーハコントローラ19が設けられていて、アルカリ剤Gを自動的に供給することによりPH値を10.8近傍に自動的に維持するようにしている。また、この化学反応の間、廃水A1中のポリフェノール等の溶解性物質に起因する沈殿物が形成される。 Since an extreme decrease in PH value is not desirable, a pH controller 19 is provided to avoid this, and the pH value is automatically maintained in the vicinity of 10.8 by automatically supplying the alkaline agent G. I am doing so. Also, during this chemical reaction, the precipitate resulting from the soluble substances, such as polyphenols in waste water A 1 is formed.

尚、図5において、19aは攪拌反応槽13内に設けたPH値検出用の電極であり、両ポンプP1、P2はPH値が設定範囲内になるようにPHコントローラ19を介して発停制御される。
又、攪拌反応槽13内に於ける化学反応(有機物の分解反応)は温度に大きく影響されるものであるため、廃水A1の温度を前述のように50〜60℃に保持するための温度調整装置(図示省略)が設けられている。
In FIG. 5, reference numeral 19a denotes an electrode for detecting the PH value provided in the stirring reaction tank 13. Both pumps P 1 and P 2 are generated via the PH controller 19 so that the PH value is within the set range. The stop is controlled.
Further, since the chemical reaction (decomposition reaction of organic matter) in the stirring reaction tank 13 is greatly influenced by the temperature, the temperature for maintaining the temperature of the waste water A 1 at 50 to 60 ° C. as described above. An adjusting device (not shown) is provided.

より具体的には、過酸化水素Hの添加により、攪拌反応槽13内に於いては、
22+OH→OOH-+H2O・・・・(1)
22→H2O+1/2O2 ・・・・(2)
なる反応を通してアクティブなイオンペルヒドロキシル(OOH-)が生成され、これが廃水A1中の有機物を分解処理すると想定されている。
即ち、前記ケイ酸ナトリウムDはポルヒドロキシル基(OOH-)を生み出すための駆動力としてのアルカリ剤Gを提供すると共に、過酸化水素H22の分解を緩和するための緩衝剤として機能するものである。
また、50%苛性ソーダEはペルヒドロキシル基(OOH-)を生み出すための駆動力としてのアルカリ剤Gを提供するものである。
更に、過酸化水素H22はイオンペルヒドロキシル基(OOH-)を生み出すための酸素を提供するものである。
More specifically, by adding hydrogen peroxide H, in the stirred reaction tank 13,
H 2 O 2 + OH → OOH + H 2 O (1)
H 2 O 2 → H 2 O + 1 / 2O 2 (2)
It is assumed that active ionic perhydroxyl (OOH ) is generated through this reaction, which decomposes organic matter in the wastewater A 1 .
That is, the sodium silicate D provides an alkaline agent G as a driving force for generating a porhydroxyl group (OOH ) and functions as a buffering agent for alleviating the decomposition of hydrogen peroxide H 2 O 2. Is.
Further, 50% caustic soda E provides an alkaline agent G as a driving force for generating a perhydroxyl group (OOH ).
Furthermore, hydrogen peroxide H 2 O 2 provides oxygen to generate ionic perhydroxyl groups (OOH ).

前記化学処理工程4で廃水A1内の有機物が分解された廃水A1は、引き続き第2遠心分離処理工程5に於いて、有機物の分解により生じた固形物(凝集物)の除去する処理を受ける。そのあと、この廃水A2に酸化カルシウム添加工程6に於いて、0.5g/l(0.5w%)の割合で酸化カルシウム(CaO)Iが添加され、廃水A2中の不溶性物質が凝集される。そして、この廃水A2は次の第3遠心分離工程7へ供給され、ここで固形物(凝集物)が除去される。 The waste water A 1 in which the organic matter in the waste water A 1 is decomposed in the chemical treatment step 4 is subsequently subjected to a treatment for removing solids (aggregates) generated by the decomposition of the organic matter in the second centrifugal separation treatment step 5. receive. Then, at this waste water A 2 calcium oxide addition step 6, 0.5 g / l the ratio of calcium oxide (CaO) I of (0.5 w%) was added, the insoluble material in the waste water A 2 aggregation Is done. Then, the waste water A 2 is supplied to the third centrifugation step 7 follows, where the solid (aggregates) are removed.

更に、前記第3遠心分離工程7で固形物が除去された廃水A3には、硫酸添加工程8に於いて適宜量の硫酸Jが添加され、廃水A3のPHが約8に調整される。 Further, wherein the third centrifugation step 7 wastewater A 3 which solids have been removed by, is added an appropriate amount of sulfuric J In sulfuric acid addition step 8, PH wastewater A 3 is adjusted to about 8 .

PHが約8に調整された廃水A3は、炭酸カルシウムとセライト(珪藻土)を充填したカラムを用いる第1濾過・吸着工程9及び活性炭を充填したカラムを用いる第2濾過・吸着工程10において、固形物等の濾過・吸着による除去処理を受け、清浄な透明色の処理済み廃水A4となって外部へ排出されて行く。 Waste water A 3 having a pH adjusted to about 8 is used in a first filtration / adsorption process 9 using a column packed with calcium carbonate and celite (diatomaceous earth) and a second filtration / adsorption process 10 using a column charged with activated carbon. After being subjected to a removal treatment by filtration and adsorption of solids, etc., it is treated as waste water A 4 having a clean transparent color and discharged to the outside.

図6は、図1の化学処理工程4から第2濾過・吸着処理工程10までを実施するための各処理装置の配置を示す系統図である。
図6を参照して、化学処理工程4の攪拌反応槽13からの廃水A2は、第2遠心分離機21に於いて、3500Gの遠心分離力で約7.5分間遠心分離され、スラッジS2が除去される。
FIG. 6 is a system diagram showing the arrangement of each processing apparatus for performing the chemical processing step 4 to the second filtration / adsorption processing step 10 of FIG.
Referring to FIG. 6, the waste water A 2 from the stirring reaction tank 13 in the chemical treatment step 4 is centrifuged in the second centrifuge 21 with a centrifugal force of 3500 G for about 7.5 minutes, and the sludge S 2 is removed.

第2遠心分離機21からの廃水A2は、不溶解性化合物沈澱槽22へ導入され、ここで、廃水A2内へ酸化カルシウム槽28から0.5g/lの割合で酸化カルシウム(CaO)Iが添加される。
上記酸化カルシウム(CaO)Iの添加により、廃水A2内の不溶解性成分の大部分は凝結され、固形物となる。
Waste water A 2 from the second centrifuge 21 is introduced into the insoluble compound precipitation tank 22 where calcium oxide (CaO) is fed into the waste water A 2 from the calcium oxide tank 28 at a rate of 0.5 g / l. I is added.
By the addition of the calcium oxide (CaO) I, most of the insoluble components in the wastewater A 2 are condensed and become solid matter.

その後、廃水A2は第3遠心分離機23へ送られ、ここで前記第2遠心分離機21と同条件下で廃水A2を遠心分離することにより、スラッジS3が除去される。 Thereafter, the waste water A 2 is sent to the third centrifuge 23 where the sludge S 3 is removed by centrifuging the waste water A 2 under the same conditions as the second centrifuge 21.

第3遠心分離機23からの廃水A2は、引き続きペーハ調整槽24へ送られ、ここで硫酸貯槽29から硫酸(H2SO4)Jを供給することにより、そのPHが7.0まで低下(中和)される。 Waste water A 2 from the third centrifuge 23 is continuously sent to the pH adjusting tank 24, and by supplying sulfuric acid (H 2 SO 4 ) J from the sulfuric acid storage tank 29, its PH is lowered to 7.0. (Neutralized).

前記PH7.0に調整されたペーハ調整槽24からの廃水A3は、引き続いて炭酸カルシウムCa(CO23とセライト(珪藻土)を夫々0.5g/lの割合で混合して成る充填剤Kを充填した第1濾過・吸着カラム25及び活性炭Lを充填して成る第2濾過・吸着カラム26を通して固形物の濾過・吸着による除去が行われ、処理済み廃水A4が処理済み水槽27へ回収される。 The waste water A 3 from the pH adjusting tank 24 adjusted to PH 7.0 is a filler obtained by mixing calcium carbonate Ca (CO 2 ) 3 and celite (diatomaceous earth) at a rate of 0.5 g / l. The solid matter is removed by filtration and adsorption through the first filtration / adsorption column 25 filled with K and the second filtration / adsorption column 26 filled with activated carbon L, and the treated wastewater A 4 is transferred to the treated water tank 27. To be recovered.

尚、前記第1濾過・吸着カラム25内の充填材Kは、大幅な圧力降下によって廃水A3の流通量が大きく制限されないように、カラムの床に300g/lの量の砂で形成した砂床を配置するなど、その充填構造に工夫が加えられている。 The packing material K in the first filtration / adsorption column 25 is sand formed of 300 g / l of sand on the column floor so that the flow rate of the wastewater A 3 is not greatly limited by a large pressure drop. Ingenuity has been added to the filling structure, such as placing a floor.

この実施形態においては、COD値が60000〜65000mg/lのヴィナサス廃水Aを、COD値が2000〜3000mg/lの透明な廃水A4にまで、処理することが出来た。 In this embodiment, the Vinasasu wastewater A of COD values 60000~65000mg / l, COD value until a clear wastewater A 4 of 2000~3000mg / l, was able to process.

図7は処理前の廃水A(ヴィナサス)の外観を示すものであり、また、図8は当該廃水Aの処理済み廃水A4の外観写真である。図7及び図8からも判るように、本発明によれば、比較的簡単な廃水処理方法によりアルコール発酵を利用する蒸留酒製造設備等からの高濃度の汚濁物質を含有する廃水Aを迅速且つ安価に処理することが可能となる。 FIG. 7 shows the appearance of the waste water A (Vinousus) before treatment, and FIG. 8 is a photograph of the appearance of the treated waste water A 4 of the waste water A. As can be seen from FIG. 7 and FIG. 8, according to the present invention, waste water A containing high-concentration pollutants from a distilled liquor production facility or the like using alcohol fermentation by a relatively simple waste water treatment method can be quickly and It becomes possible to process at low cost.

本発明は、蒸留酒製造設備のみならず、アルコール発酵工程を備えた設備を利用するあらゆる産業設備へ適用することができるものである。   The present invention can be applied not only to distilled liquor production equipment but also to any industrial equipment that uses equipment equipped with an alcohol fermentation process.

本発明による蒸留酒製造施設から出た廃水の処理工程図である。It is a treatment process figure of the wastewater which came out of the distilled liquor manufacturing facility by this invention. 廃水A内の固形物を遠心分離機で分離処理した場合の遠心分離力Gと処理時間tと汚濁単位NTDとの関係を示す線図である。It is a diagram which shows the relationship between the centrifugal separation force G at the time of isolate | separating the solid substance in the wastewater A with a centrifuge, the processing time t, and the pollution unit NTD. 3300Gの遠心分離力でもって分離処理を7.5分間行った時の、廃水A内へ凝集剤濃度と汚濁単位NTUとの関係を示す線図である。It is a diagram which shows the relationship between the coagulant | flocculant density | concentration in waste water A, and the pollution unit NTU when the separation process is performed for 7.5 minutes with the centrifugal force of 3300G. 2500Gの遠心分離でもって分離処理を7.5分間行った時の、凝集剤濃度100ppmの廃水Aの温度と汚濁単位NTUとの関係を示す線図である。It is a diagram which shows the relationship between the temperature of the wastewater A with a flocculent density | concentration of 100 ppm, and the pollution unit NTU when the separation process is performed for 7.5 minutes by centrifugation of 2500G. 図1の凝集剤添加工程1から化学処理工程4までを実施するための各処理装置の配置系統図である。It is an arrangement | positioning systematic diagram of each processing apparatus for implementing from the flocculant addition process 1 of FIG. 1 to the chemical treatment process 4. FIG. 図1の化学処理工程4から第2吸着処理工程までを実施するための各処理装置の配置を示す系統図である。It is a systematic diagram which shows arrangement | positioning of each processing apparatus for implementing from the chemical treatment process 4 of FIG. 1 to a 2nd adsorption treatment process. メキシコ国アトトルニコのテキーラ製造設備から排出された廃水Aの外観を示すものである。It shows the external appearance of waste water A discharged from a tequila manufacturing facility in Attorico, Mexico. 図7の廃水Aを処理した後の処理済み廃水A4の外観を示すものである。It shows the appearance of the treated waste water A 4 after processing wastewater A in FIG.

符号の説明Explanation of symbols

A・・処理対象の廃水
1〜A3・・廃水
4・・処理済み廃水
B・・ポリグルタミン酸架橋物を主体とする凝集剤(PGα21Ca)
C・・重金属除去剤(キレート剤)
1〜S3・・スラッジ(凝集・固形物)
D・・41Beケイ酸ナトリウム
E・・50%苛性ソーダ(50%水酸化ナトリウム)
F・・工場
G・・アルカリ剤
H・・過酸化水素
I・・酸化カルシウム(CaO)
J・・硫酸(H2SO4
K・・充填剤(炭酸カルシウム +珪藻土)
L・・活性炭
W・・水
1〜P4・・ポンプ
1・・凝集剤添加工程
2・・第1遠心分離工程
3・・重金属除去剤添加工程
4・・化学処理工程
5・・第2遠心分離工程
6・・酸化カルシウム添加工程
7・・第3遠心分離工程
8・・硫酸添加工程
9・・第1吸着工程
10・・第2吸着工程
11・・第1遠心分離機(遠心脱水器)
12・・重金属除去剤槽(キレート剤槽)
13・・攪拌反応槽
14・・凝集剤槽
15・・ケイ酸ナトリウム槽
16・・苛性ソーダ(水酸化ナトリウム)槽
17・・アルカリ剤槽
18・・過酸化水素槽
19・・PHコントローラ
19a・・電極
20・・水槽
21・・第2遠心分離機
22・・沈澱槽
23・・第3遠心分離機
24・・PH調整槽
25・・第1濾過・吸着カラム
26・・第2濾過・吸着カラム
27・・処理済み水槽
28・・酸化カルシウム槽(CaO槽)
29・・硫酸貯槽(H2SO4槽)
A · · processed wastewater A 1 to A 3 · · wastewater A 4 · · treated wastewater B · · polyglutamic acid crosslinked product coagulant mainly of (PGα21Ca)
C. Heavy metal remover (chelating agent)
S 1 to S 3 .. Sludge (aggregation / solid matter)
D · · · 41Be sodium silicate E · · 50% sodium hydroxide (50% sodium hydroxide)
F. Factory G. Alkaline H. Hydrogen peroxide I. Calcium oxide (CaO)
J ・ ・ Sulfuric acid (H 2 SO 4 )
K ... Filler (calcium carbonate + diatomaceous earth)
L ・ ・ Activated carbon W ・ ・ Water P 1 ~ P 4・ ・ Pump 1 ・ ・ Flocculant addition process 2 ・ ・ First centrifugal separation process 3 ・ ・ Heavy metal removal agent addition process 4 ・ ・ Chemical treatment process 5 ・ ・Centrifugation step 6 ··· Calcium oxide addition step ··· Third centrifugation step 8 · · Sulfuric acid addition step 9 · · First adsorption step 10 · · Second adsorption step 11 · · First centrifuge (centrifugal dehydrator )
12 .. Heavy metal removal agent tank (chelating agent tank)
13. · Stirring reaction tank 14 ·· Flocculant tank 15 ·· Sodium silicate tank 16 ·· Caustic soda (sodium hydroxide) tank 17 ·· Alkaline agent tank 18 ·· Hydrogen peroxide tank 19 ·· PH controller 19a ·· Electrode 20, Water tank 21, Second centrifuge 22, Precipitation tank 23, Third centrifuge 24, PH adjustment tank 25, First filtration, Adsorption column 26, Second filtration, Adsorption column 27..Processed water tank 28..Calcium oxide tank (CaO tank)
29. ・ Sulfuric acid storage tank (H 2 SO 4 tank)

Claims (11)

廃水に凝集剤を混合する凝集剤添加工程と、凝集剤添加工程からの廃水内の固形物を除去する第1遠心分離工程と、遠心分離工程からの廃水にアルカリ剤と過酸化水素を加えて廃水内の有機物を分解させる化学処理工程と、化学処理工程からの廃水内の固形物を除去する第2遠心分離工程及び第3遠心分離工程と、第3遠心分離工程からの廃水を浄化処理する第1濾過・吸着工程と、第1濾過・吸着工程からの廃水を浄化処理する第2濾過・吸着工程とから構成したことを特徴とする蒸留酒製造施設から出た廃水の浄化処理方法。   Adding a coagulant to the waste water, adding a coagulant to the waste water, a first centrifugation step for removing solids in the waste water from the coagulant addition step, and adding an alkali agent and hydrogen peroxide to the waste water from the centrifugation step; A chemical treatment step for decomposing organic matter in the wastewater, a second centrifugal separation step and a third centrifugal separation step for removing solid matter in the wastewater from the chemical treatment step, and a purification treatment of the wastewater from the third centrifugal separation step A method for purifying wastewater from a distilled liquor manufacturing facility, comprising a first filtration / adsorption step and a second filtration / adsorption step for purifying wastewater from the first filtration / adsorption step. 凝集剤添加工程を、廃水にポリグルタミン酸架橋物を主体とする凝集剤を混合するものとした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The method for purifying wastewater from a distilled liquor manufacturing facility according to claim 1, wherein the flocculant adding step is performed by mixing the flocculant mainly composed of a polyglutamic acid crosslinked product with the wastewater. 凝集剤添加工程で添加する凝集剤の混合量は、廃水内の凝集剤の濃度が120ppm〜150ppmとなる量とした請求項2に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The method for purifying wastewater discharged from a distilled liquor manufacturing facility according to claim 2, wherein the amount of the flocculant added in the flocculant addition step is such that the concentration of the flocculant in the wastewater is 120 ppm to 150 ppm. 凝集剤添加工程からの廃水の第1遠心分離工程は、廃水温度40〜60℃、遠心分離力2500〜3500g及び遠心分離時間6〜8分間で廃水を処理する遠心分離工程とするようにした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The first centrifugal separation step of the waste water from the flocculant addition step is a centrifugal separation step for treating the waste water at a waste water temperature of 40 to 60 ° C., a centrifugal separation force of 2500 to 3500 g, and a centrifugal separation time of 6 to 8 minutes. A method for purifying wastewater discharged from a distilled liquor manufacturing facility according to Item 1. 遠心分離工程と化学処理工程との間に、廃水内へ重金属除去剤として、廃水内濃度が1wt%となる量のジエチレントリアミンペンタアセテート(DIETHYLENETRIAMINEPENTAACETATE・DTPA)を添加する重金属除去剤添加工程を設けるようにした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。 A heavy metal removal agent addition step is added between the centrifugal separation step and the chemical treatment step to add diethylenetriaminepentaacetate (DIETHYLENETRIAMEPENTAACEATE / DTPA) in an amount of 1 wt% in the wastewater as a heavy metal removal agent in the wastewater. A method for purifying wastewater discharged from the distilled liquor manufacturing facility according to claim 1. 化学処理工程を、廃水内へ過酸化水素と、ケイ酸ナトリウムと苛性ソーダと水とを混合して成るアルカリ剤溶液とを攪拌混合して廃水のPH値をほぼ9〜11程度に自動調整すると共に、温度を40〜60℃に保持した状態で廃水内の有機物を分解する化学処理工程とするようにした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   In the chemical treatment process, hydrogen peroxide, sodium silicate, caustic soda and water are mixed with an alkali agent solution in the waste water, and the pH value of the waste water is automatically adjusted to about 9 to 11 by stirring and mixing. The method for purifying wastewater discharged from a distilled liquor manufacturing facility according to claim 1, wherein a chemical treatment step is performed for decomposing organic substances in the wastewater while maintaining the temperature at 40 to 60 ° C. 第2遠心分離工程からの廃水に、廃水内濃度が0.5wt%となる量の酸化カルシウムを添加する酸化カルシウム添加工程を設けるようにした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The wastewater discharged from the distilled liquor manufacturing facility according to claim 1, wherein a calcium oxide addition step is added to the wastewater from the second centrifugal separation step to add calcium oxide in an amount such that the concentration in the wastewater is 0.5 wt%. Purification treatment method. 第2遠心分離工程及び第3遠心分離工程は、遠心分離力2500〜3500G及び遠心分離時間6〜8分間で廃水を処理する遠心分離工程とするようにした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The distilled liquor manufacturing facility according to claim 1, wherein the second centrifugal separation step and the third centrifugal separation step are centrifugal separation steps for treating wastewater with a centrifugal force of 2500 to 3500G and a centrifugal separation time of 6 to 8 minutes. Purification method of waste water from 第3遠心分離工程からの廃水に、硫酸を添加して廃水のPH値をほぼ7.0に調整する硫酸添加工程を設けるようにした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The wastewater discharged from the spirits production facility according to claim 1, wherein a sulfuric acid addition step is provided in which wastewater from the third centrifugal separation step is added with sulfuric acid to adjust the PH value of the wastewater to approximately 7.0. Purification treatment method. 第1濾過・吸着工程は、濾過、吸着剤として炭酸カルシウムと珪藻土とを充填したカラムを用いた濾過・吸着工程とした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The first filtration / adsorption step is a purification treatment method of wastewater discharged from a distilled liquor manufacturing facility according to claim 1, wherein the first filtration / adsorption step is a filtration / adsorption step using a column packed with calcium carbonate and diatomaceous earth as an adsorbent. 第2濾過・吸着工程は、濾過・吸着剤として活性炭を充填したカラムを用いた濾過・吸着工程とした請求項1に記載の蒸留酒製造施設から出た廃水の浄化処理方法。   The method for purifying wastewater discharged from a distilled liquor production facility according to claim 1, wherein the second filtration / adsorption step is a filtration / adsorption step using a column filled with activated carbon as a filtration / adsorbent.
JP2007146909A 2007-06-01 2007-06-01 Purification method for wastewater discharged from spirit production facility Pending JP2008296166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146909A JP2008296166A (en) 2007-06-01 2007-06-01 Purification method for wastewater discharged from spirit production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146909A JP2008296166A (en) 2007-06-01 2007-06-01 Purification method for wastewater discharged from spirit production facility

Publications (1)

Publication Number Publication Date
JP2008296166A true JP2008296166A (en) 2008-12-11

Family

ID=40170196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146909A Pending JP2008296166A (en) 2007-06-01 2007-06-01 Purification method for wastewater discharged from spirit production facility

Country Status (1)

Country Link
JP (1) JP2008296166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104203478A (en) * 2012-03-29 2014-12-10 大阳日酸株式会社 Semiautomatic welding system, conversion adapter kit, and welding torch
CN112607962A (en) * 2020-12-04 2021-04-06 上海天汉环境资源有限公司 Emulsion wastewater treatment method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104203478A (en) * 2012-03-29 2014-12-10 大阳日酸株式会社 Semiautomatic welding system, conversion adapter kit, and welding torch
CN112607962A (en) * 2020-12-04 2021-04-06 上海天汉环境资源有限公司 Emulsion wastewater treatment method and system

Similar Documents

Publication Publication Date Title
JP3883445B2 (en) Sewage treatment equipment
CN110844922A (en) Method and equipment for recycling industrial waste salt
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JP2004058047A (en) Treatment method and equipment for organic waste liquid
CN1215997C (en) Water treating technology by reinforced membrane biological reactor
CN106745965A (en) A kind of fracture acidizing method for treating waste liquid
JP2009274008A (en) Wastewater treatment apparatus and wastewater treatment method
CN102936074A (en) Pretreatment method of epoxy type plasticizer production wastewater
CN102942281A (en) Treatment method of high-concentration mixing organic acid waste water
CN102976537B (en) Comprehensive physical and chemical treatment device and method of organic silicon wastewater
TWI540103B (en) Method for removing boron from a boron-containing wastewater
CN110104836A (en) A kind of enhanced processing method suitable for water-base cutting fluid waste water
CN101708927B (en) Method for deeply processing waste water from paper making
CN101148299A (en) Method for governing glass fibre industrial waste water
CN211688283U (en) Resourceful treatment device of industry waste salt
JP2008296166A (en) Purification method for wastewater discharged from spirit production facility
US20040217062A1 (en) Method for removing metal from wastewater
CN212269808U (en) Reverse osmosis strong brine processing system
CN107032536A (en) A kind of method that tandem integral type air supporting removes COD in citrus waste water
CN108218146A (en) A kind for the treatment of process and processing system of rubber chemicals class high concentrated organic wastewater
WO2021255541A1 (en) Plant for purifying wastewater
JPH10249384A (en) Treatment of concentrated suspended matter-containing waste water
CN112794472A (en) Concentration system and concentration method for high-salinity wastewater
CN114620852A (en) Treatment method of wastewater from process for producing rubber vulcanization accelerator CBS by oxidation method
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water