JP2008296139A - Cleaning method or coating method of passage inwall surface - Google Patents

Cleaning method or coating method of passage inwall surface Download PDF

Info

Publication number
JP2008296139A
JP2008296139A JP2007145048A JP2007145048A JP2008296139A JP 2008296139 A JP2008296139 A JP 2008296139A JP 2007145048 A JP2007145048 A JP 2007145048A JP 2007145048 A JP2007145048 A JP 2007145048A JP 2008296139 A JP2008296139 A JP 2008296139A
Authority
JP
Japan
Prior art keywords
wall surface
liquid
cleaning
flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007145048A
Other languages
Japanese (ja)
Inventor
Masaki Tsuchiya
政季 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007145048A priority Critical patent/JP2008296139A/en
Publication of JP2008296139A publication Critical patent/JP2008296139A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method or a coating method of a passage inwall surface, which enables not only a cleaning of the inwall surface of the passage, but also a coating, by flowing a liquid on the inwall surface of the passage formed in a substrate such as a synthetic resin, glass, and silicone, and adjusting a capillary number (=viscosity×current speed/boundary tension) of the liquid. <P>SOLUTION: The cleaning method of the inwall surface of the passage comprises the step of injecting the liquid to the inwall surface of a passage having an equivalent diameter of 1.5 mm or less and of cleaning the inwall surface of the passage. The cleaning method of the passage inwall surface is characterized in that the inwall surface of the passage is cleaned by adjusting the capillary number (=viscosity×current speed/boundary tension) of the liquid, or the coating method comprises the step of coating the inwall surface of the passage by the same method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、相当直径1.5mm以下の流路の内壁面を洗浄または塗布する際に用いる、液体のキャピラリ数(=粘度×流速/界面張力)を調整する事により、流路の内壁面を洗浄または塗布する流路内壁面の洗浄方法または塗布方法に関する。   In the present invention, the inner wall surface of the flow path is adjusted by adjusting the number of capillaries (= viscosity × flow velocity / interface tension) of the liquid used when cleaning or coating the inner wall surface of the flow path having an equivalent diameter of 1.5 mm or less. The present invention relates to a cleaning method or a coating method for an inner wall surface of a flow path to be cleaned or applied.

従来、ミリサイズ以下での流路の内壁面の洗浄方法としては、洗浄液を流路の内壁面に流し、流動のせん断力や化学反応を利用した方法が用いられている。   Conventionally, as a method for cleaning the inner wall surface of a flow channel having a size of less than or equal to millimeter size, a method using a cleaning liquid flowing on the inner wall surface of the flow channel and utilizing a flow shear force or a chemical reaction is used.

例えば、分岐における合流後の流路において、流路に洗浄液を流し、層流、若しくは層流から乱流への遷移領域の流れにおいて発生する渦、また洗浄流体に気体を混入させて流路の内壁面を洗浄する方法が知られている。(例えば、特許文献1参照。)。   For example, in a flow path after merging in a branch, a cleaning liquid is flowed in the flow path, and vortices generated in a laminar flow, or a flow in a transition region from laminar flow to turbulent flow, or gas is mixed into the cleaning fluid to A method for cleaning the inner wall surface is known. (For example, refer to Patent Document 1).

さらに、マイクロ反応器もしくはミニ反応器を、制御装置を用いてガス圧のサージを伴う制御された圧力の増加により流路の内壁面を洗浄する方法も知られている。(例えば、特許文献2参照。)。   Furthermore, a method of cleaning an inner wall surface of a flow path by controlling a micro reactor or a mini reactor with a controlled pressure increase accompanied by a surge of gas pressure using a control device is also known. (For example, refer to Patent Document 2).

以下に先行技術文献を示す。
特開2005−501696号公報 特開2006−272268号公報
Prior art documents are shown below.
JP 2005-501696 A JP 2006-272268 A

ところで、従来、流路の内壁面の洗浄方法は、上述したように洗浄流体に気体を混入させて流路の内壁面を洗浄するか、または、制御装置を用いてガス圧のサージを伴う制御された圧力の増加により流路の内壁面を洗浄するなど、あくまでも流路の内壁面の洗浄方法であった。   By the way, conventionally, the cleaning method of the inner wall surface of the flow path is a method in which a gas is mixed into the cleaning fluid to clean the inner wall surface of the flow path as described above, or control with a surge of gas pressure using a control device. The cleaning method for the inner wall surface of the flow path is merely a method of cleaning the inner wall surface of the flow path by increasing the applied pressure.

本発明は、上記従来の問題に鑑みてなされたものであり、その課題とするところは、合成樹脂やガラス、シリコン等の基板に形成した流路の内壁面に液体を流し、その液体のキャピラリ数(=粘度×流速/界面張力)を調整する事により、流路の内壁面を洗浄するだけでなく、塗工もできる流路内壁面の洗浄方法または塗工方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and the object of the present invention is to cause a liquid to flow on the inner wall surface of a flow path formed on a substrate of synthetic resin, glass, silicon, or the like, and the capillary of the liquid The purpose of the present invention is to provide a cleaning method or coating method for the inner wall surface of the flow channel that can be coated as well as cleaning the inner wall surface of the flow channel by adjusting the number (= viscosity × flow velocity / interface tension). To do.

上記問題点を解決するために、本発明の請求項1に係る発明は、
流路の相当直径が1.5mm以下である1本の流路の内壁面に液体を注入して流路の内壁面を洗浄する流路内壁面の洗浄方法であって、前記液体のキャピラリ数(=粘度×流速/界面張力)を調整する事により流路の内壁面が洗浄されることを特徴とする流路内壁面の洗浄方法である。
In order to solve the above problems, the invention according to claim 1 of the present invention provides:
A method for cleaning an inner wall surface of a flow channel by injecting a liquid into an inner wall surface of one flow channel having an equivalent diameter of 1.5 mm or less and cleaning the inner wall surface of the flow channel, wherein the number of capillaries of the liquid The flow path inner wall surface cleaning method is characterized in that the inner wall surface of the flow path is cleaned by adjusting (= viscosity × flow velocity / interface tension).

次に、本発明の請求項2に係る発明は、
前記流路の内壁面に注入される液体は混和しない2種類以上が連結されていることを特徴とする請求項1に記載の流路内壁面の洗浄方法である。
Next, the invention according to claim 2 of the present invention is as follows:
2. The method for cleaning an inner wall surface of a channel according to claim 1, wherein two or more types of liquids injected into the inner wall surface of the channel are not mixed.

次に、本発明の請求項3に係る発明は、
流路の相当直径が1.5mm以下である1本の流路の内壁面に液体を注入して流路の内壁面を塗布する流路内壁面の塗布方法であって、前記液体のキャピラリ数(=粘度×流速/界面張力)を調整する事により流路の内壁面が塗布されることを特徴とする流路内壁面の塗布方法である。
Next, the invention according to claim 3 of the present invention is
A method for applying an inner wall surface of a flow channel by injecting a liquid into an inner wall surface of one flow channel having an equivalent diameter of 1.5 mm or less and applying the inner wall surface of the flow channel, wherein the number of capillaries of the liquid The method of applying the inner wall surface of the flow path is characterized in that the inner wall surface of the flow path is applied by adjusting (= viscosity × flow velocity / interface tension).

次に、本発明の請求項4に係る発明は、
前記流路の内壁面に注入される液体は混和しない2種類以上が連結されていることを特徴とする請求項3に記載の流路内壁面の塗布方法である。
Next, the invention according to claim 4 of the present invention is
4. The method for coating the inner wall surface of the channel according to claim 3, wherein two or more kinds of liquids injected into the inner wall surface of the channel are not mixed.

本発明の流路内壁面の洗浄または塗布方法は以上の構成からなるの液体のキャピラリ数を調整する事により、流路の内壁面を容易に、且つ、洗浄または塗工することができる。   The method for cleaning or coating the inner wall surface of the flow path of the present invention can easily clean or coat the inner wall surface of the flow path by adjusting the number of capillaries of the liquid having the above configuration.

本発明の流路内壁面の洗浄または塗布方法を実施の形態に沿って以下に詳細に説明する。   The cleaning or coating method for the inner wall surface of the flow path of the present invention will be described in detail below along the embodiments.

本発明の流路内壁面の洗浄または塗布方法は流路となる内壁面を形成前に、内壁面を洗浄または塗布する条件をあらかじめ後述する実施例1に示すように数値計算によって求めておく事が好ましい。   In the method for cleaning or applying the inner wall surface of the flow path according to the present invention, before forming the inner wall surface that becomes the flow path, the conditions for cleaning or applying the inner wall surface are obtained in advance by numerical calculation as shown in Example 1 described later. Is preferred.

このとき、数値計算に必要なデータは、モデルの形状と寸法、液体の密度、界面張力、表面張力、粘度、液量、流路内壁面における接触角、境界条件、初期条件等である。   At this time, data necessary for the numerical calculation are model shape and size, liquid density, interfacial tension, surface tension, viscosity, liquid volume, contact angle on the inner wall surface of the flow path, boundary conditions, initial conditions, and the like.

前記流路の内壁面4〜7の形成は、例えば、シリコン基板やガラス基板の場合、半導体の微細加工技術により作製される。また、ポリプロピレン等に代表される合成樹脂の場合は、熱転写や成形加工等によって作製される。   For example, in the case of a silicon substrate or a glass substrate, the inner wall surfaces 4 to 7 of the flow path are formed by a semiconductor microfabrication technique. In the case of a synthetic resin typified by polypropylene or the like, it is produced by thermal transfer or molding.

また、流路の内壁面4〜7に2種類の連結した液体を注入する場合、前方に流す液体の表面張力が後方より小さい液体を流す事が好ましい。さらに、液体は、ニュートン流体が好ましい。   Moreover, when inject | pouring two types of connected liquid into the inner wall surfaces 4-7 of a flow path, it is preferable to flow the liquid whose surface tension of the liquid sent ahead is smaller than back. Furthermore, the liquid is preferably a Newtonian fluid.

前記数値計算によって求めたキャピラリ数により、一本の流路の内壁面4〜7を洗浄または塗布する。このとき、温度が一定で且つニュートン流体であれば、界面張力と、粘度は、ほぼ一定であるので、流速を変えてキャピラリ数を調整する。   The inner wall surfaces 4 to 7 of one channel are washed or applied according to the number of capillaries obtained by the numerical calculation. At this time, if the temperature is constant and the Newtonian fluid is used, the interfacial tension and the viscosity are almost constant, so the number of capillaries is adjusted by changing the flow rate.

以下に、本発明の具体的実施例を挙げて、さらに詳しく説明するが、それに限定されものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited thereto.

本発明の流路内壁面4〜7の洗浄または塗布方法は上述したように洗浄または塗布する条件を数値計算によってあらかじめ求めておく事が好ましい。以下に、計算例を示す。   In the method for cleaning or applying the flow path inner wall surfaces 4 to 7 according to the present invention, it is preferable to obtain the conditions for cleaning or applying in advance by numerical calculation as described above. An example of calculation is shown below.

前記計算に際し、解析ソフトとして、Fluent inc.社製のFluent Release 6.2.16を使用した。また、数値計算に必要なデータは、モデルの形状と寸法、液体の密度、界面張力、表面張力、粘度、液量、流路表面における接触角、境界条件、初期条件等である。そして、今回、温度は計算しない。   In the calculation, as the analysis software, Fluent Inc. Fluent Release 6.2.16 manufactured by the company was used. Data necessary for the numerical calculation includes model shape and size, liquid density, interfacial tension, surface tension, viscosity, liquid amount, contact angle on the flow path surface, boundary conditions, initial conditions, and the like. And this time, temperature is not calculated.

また、今回、図1または図2に示すような流路に、混和しない2つの連結した液体を流
した。このときの、キャピラリ数の違いによる液体の流れ方の計算結果例を以下に示す。また、液体1は、水の物性値とした。
In addition, two immiscible liquids that have not been mixed are allowed to flow through the flow channel as shown in FIG. 1 or FIG. An example of the calculation result of how the liquid flows due to the difference in the number of capillaries at this time is shown below. In addition, the liquid 1 has water physical property values.

<計算モデル、液体の物性値、初期条件を以下に示す>
・流路寸法
長方形断面形状1.0mm(A)×0.5mm(B)×30mm(C)(図1、図2に示す。)。
・各液体の物性値
液体1の物性値:密度998kg/m3、粘度1.0 mPa・s。
液体2の物性値:密度840kg/m3、粘度24.0 mPa・s。
・液量
液体1:1.5μL、液体2:3.5μL。
・表面張力
液体1 70.0mN/m。
液体2 20.0mN/m。
<Calculation model, liquid properties and initial conditions are shown below>
-Channel dimension Rectangular cross-sectional shape 1.0 mm (A) x 0.5 mm (B) x 30 mm (C) (shown in FIGS. 1 and 2).
-Physical property value of each liquid Physical property value of liquid 1: density 998 kg / m 3 , viscosity 1.0 mPa · s.
Physical properties of liquid 2: density 840 kg / m 3 , viscosity 24.0 mPa · s.
Liquid quantity liquid 1: 1.5 μL, liquid 2: 3.5 μL.
-Surface tension liquid 1 70.0 mN / m.
Liquid 2 20.0 mN / m.

<空気に対する接触角>
液体1 95°(全ての面)、液体2 12°(全ての面)。
液体2に対する液体1の接触角:170°(面1から3)、90°(面4)。
・液体2と液体1の界面張力
20から50mN/m。
・初期条件と境界条件条件
図3に示す。
<Contact angle to air>
Liquid 1 95 ° (all sides), Liquid 2 12 ° (all sides).
The contact angle of the liquid 1 with respect to the liquid 2 is 170 ° (surfaces 1 to 3) and 90 ° (surface 4).
-Interfacial tension between liquid 2 and liquid 1 20 to 50 mN / m.
• Initial conditions and boundary condition conditions are shown in FIG.

<キャピラリ数>
・キャピラリ数は以下の式のとおりである。
キャピラリ数=η×V/γ
η:液体2の粘度、V:流速、γ:界面張力。
<Number of capillaries>
・ The number of capillaries is as follows.
Number of capillaries = η × V / γ
η: viscosity of liquid 2, V: flow velocity, γ: interfacial tension.

また、パラメータとして液体1と液体2の界面張力と流速を変えて計算した。そして、キャピラリ数により流路表面を洗浄または塗布する条件を求めた。   In addition, the calculation was performed by changing the interfacial tension and flow velocity of liquid 1 and liquid 2 as parameters. Then, the conditions for washing or coating the flow path surface were determined by the number of capillaries.

<洗浄または塗布する条件>
・条件A:キャピラリ数が4.8×10-2以上のとき。
液体1は液体2の後方にあり、液体2が壁面に付着しながら移動する。そのため液体1の前方にある液体2は、進むにつれ減少する。
<Conditions for cleaning or application>
-Condition A: When the number of capillaries is 4.8 × 10 −2 or more.
The liquid 1 is behind the liquid 2, and the liquid 2 moves while adhering to the wall surface. Therefore, the liquid 2 in front of the liquid 1 decreases as it advances.

<条件Aのときの計算例>
界面張力50mN/m、流速100mm/s、キャピラリ数4.8×10-2のときの計算例を図4から図6に示す。また、図6に示すように断面図を見ると、上に2つの通路が出来る。この通路から液体2が壁面に付着しながら進んでいく。
・条件B:キャピラリ数が2.8×10-2未満のとき。
液体1は液体2を追い越さないで連結したまま進む。
<Example of calculation when Condition A>
FIGS. 4 to 6 show calculation examples when the interfacial tension is 50 mN / m, the flow rate is 100 mm / s, and the number of capillaries is 4.8 × 10 −2 . Moreover, when a cross-sectional view is seen as shown in FIG. 6, two passages are formed on the top. The liquid 2 proceeds from this passage while adhering to the wall surface.
Condition B: When the number of capillaries is less than 2.8 × 10 −2 .
Liquid 1 travels connected without passing over liquid 2.

<条件Bのときの計算例>
また、界面張力20mN/m、流速4.44mm/s、キャピラリ数5.328×10-3、連結された2つの液体が出口付近まで進んだときの計算結果を図7から図9に示す。条件Aと違い図9の断面を見ると通路ができない流路を進んでも液体2が後方に行くことなく、また、流路表面に、ほとんど付着することなく進んでいく。
<Calculation example for condition B>
7 to 9 show the calculation results when the interfacial tension is 20 mN / m, the flow rate is 4.44 mm / s, the number of capillaries is 5.328 × 10 −3 , and the two connected liquids travel to the vicinity of the outlet. When the cross section of FIG. 9 is seen unlike the condition A, the liquid 2 does not go to the rear even if it goes through the flow path where the passage is not possible, and hardly goes to the surface of the flow path.

<計算結果>
この計算結果より、条件Aのとき流路表面を塗布、条件Bのとき流路表面を洗浄する条件となる。また、温度が一定で且つニュートン流体であれば、界面張力、粘度は、ほぼ一定であるので、流速を変えてキャピラリ数を調整し、流路の内壁面を洗浄または塗布する事ができる。
<Calculation result>
From this calculation result, the condition is that the flow path surface is applied when the condition A is satisfied and the flow path surface is cleaned when the condition B is satisfied. Further, if the temperature is constant and the Newtonian fluid is used, the interfacial tension and viscosity are almost constant. Therefore, the number of capillaries can be adjusted by changing the flow rate, and the inner wall surface of the flow path can be washed or applied.

本発明の流路内壁面の洗浄または塗布方法の流路内壁面の一実施例の断面を示す断面図である。It is sectional drawing which shows the cross section of one Example of the flow-path inner wall surface of the washing | cleaning or application | coating method of the flow-path inner wall surface of this invention. 本発明の流路内壁面の洗浄または塗布方法の流路の一実施例の概略を示す概略図である。It is the schematic which shows the outline of one Example of the flow path of the washing | cleaning or application | coating method of the flow-path inner wall surface of this invention. 本発明の流路内壁面の洗浄または塗布方法の計算初期状態と境界条件の一実施例を説明するための概略図である。It is the schematic for demonstrating one Example of the calculation initial state and boundary condition of the washing | cleaning or application | coating method of the flow-path inner wall surface of this invention. 本発明の流路内壁面の塗布方法の流路の内壁面を塗布するときの計算別条件等を説明するための説明図(界面張力50mN/m、流速100mm/s、0.17169sのときの計算結果その1)である。Explanatory drawing for demonstrating the conditions according to calculation etc. when apply | coating the inner wall surface of the flow path of the coating method of the inner surface of a flow path of this invention (at the time of interface tension 50mN / m, flow velocity 100mm / s, 0.17169s) The calculation result is 1). 本発明の流路内壁面の塗布方法の流路の内壁面を塗布するときの計算別条件等を説明するための他の説明図(界面張力50mN/m、流速100mm/s、0.17169sのときの計算結果その2)である。Other explanatory views (interfacial tension of 50 mN / m, flow velocity of 100 mm / s, 0.17169 s) for explaining calculation-specific conditions when applying the inner wall surface of the flow channel in the coating method of the inner wall surface of the flow channel of the present invention. This is the result of calculation 2). 本発明の流路内壁面の塗布方法の流路の内壁面を塗布するときの計算別条件等を説明するためのまた他の説明図(界面張力50mN/m、流速100mm/s、0.17169sのときの流路断面)である。Other explanatory views for explaining calculation-specific conditions when applying the inner wall surface of the flow channel in the flow channel inner wall surface coating method of the present invention (interfacial tension 50 mN / m, flow velocity 100 mm / s, 0.17169 s) (Cross-sectional view of the flow path). 本発明の流路内壁面の洗浄方法の流路の内壁面を洗浄するときの計算別条件等を説明するためのさらにまた他の説明図(界面張力20mN/m、流速4.44mm/s、2.0012sのときの計算結果その1)である。Still another explanatory diagram for explaining the calculation-specific conditions when the inner wall surface of the flow path of the flow path inner wall surface cleaning method of the present invention is cleaned (interfacial tension 20 mN / m, flow velocity 4.44 mm / s, The calculation result at the time of 2.0012s is 1). 本発明の流路内壁面の洗浄方法の流路の内壁面を洗浄するときの計算別条件等を説明するためのまたさらに他の説明図(界面張力20mN/m、流速4.44mm/s、2.0012sのときの計算結果その2)Still another explanatory view for explaining the conditions according to calculation when cleaning the inner wall surface of the flow path in the cleaning method of the inner wall surface of the flow path of the present invention (interfacial tension 20 mN / m, flow velocity 4.44 mm / s, 2. Calculation results for 0012s (2) 本発明の流路内壁面の洗浄方法の流路の内壁面を洗浄するときの計算別条件等を説明するためのまた他の説明図(界面張力20mN/m、流速4.44mm/s、2.0012sのときの流路断面)である。Other explanatory views for explaining the calculation-specific conditions when cleaning the inner wall surface of the flow path in the flow path inner wall surface cleaning method of the present invention (interfacial tension 20 mN / m, flow velocity 4.44 mm / s, 2 . Section of the channel at the time of.

符号の説明Explanation of symbols

1…液体
2…液体
3…空気
4…面1
5…面2
6…面3
7…面4
A…幅(1mm)
B…高さ(0.5mm)
C…長さ(30mm)
D…液体1(3mm)
E…液体2(7mm)
DESCRIPTION OF SYMBOLS 1 ... Liquid 2 ... Liquid 3 ... Air 4 ... Surface 1
5 ... Surface 2
6 ... surface 3
7 ... Surface 4
A ... Width (1mm)
B ... Height (0.5mm)
C ... Length (30mm)
D ... Liquid 1 (3mm)
E ... Liquid 2 (7mm)

Claims (4)

流路の相当直径が1.5mm以下である1本の流路の内壁面に液体を注入して流路の内壁面を洗浄する流路内壁面の洗浄方法であって、前記液体のキャピラリ数(=粘度×流速/界面張力)を調整する事により流路の内壁面が洗浄されることを特徴とする流路内壁面の洗浄方法。   A method for cleaning an inner wall surface of a flow channel by injecting a liquid into an inner wall surface of one flow channel having an equivalent diameter of 1.5 mm or less and cleaning the inner wall surface of the flow channel, wherein the number of capillaries of the liquid A method for cleaning an inner wall surface of a flow path, wherein the inner wall surface of the flow path is cleaned by adjusting (= viscosity × flow velocity / interface tension). 前記流路の内壁面に注入される液体は混和しない2種類以上が連結されていることを特徴とする請求項1に記載の流路内壁面の洗浄方法。   2. The method for cleaning an inner wall surface of a channel according to claim 1, wherein two or more kinds of liquids that are not mixed are connected to the inner wall surface of the channel. 流路の相当直径が1.5mm以下である1本の流路の内壁面に液体を注入して流路の内壁面を塗布する流路内壁面の塗布方法であって、前記液体のキャピラリ数(=粘度×流速/界面張力)を調整する事により流路の内壁面が塗布されることを特徴とする流路内壁面の塗布方法。   A method for applying an inner wall surface of a flow channel by injecting a liquid into an inner wall surface of one flow channel having an equivalent diameter of 1.5 mm or less and applying the inner wall surface of the flow channel, wherein the number of capillaries of the liquid A method for applying an inner wall surface of a channel, wherein the inner wall surface of the channel is applied by adjusting (= viscosity × flow velocity / interface tension). 前記流路の内壁面に注入される液体は混和しない2種類以上が連結されていることを特徴とする請求項3に記載の流路内壁面の塗布方法。   The method for applying an inner wall surface of a flow path according to claim 3, wherein two or more kinds of liquids that are not mixed are connected to the inner wall surface of the flow path.
JP2007145048A 2007-05-31 2007-05-31 Cleaning method or coating method of passage inwall surface Pending JP2008296139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145048A JP2008296139A (en) 2007-05-31 2007-05-31 Cleaning method or coating method of passage inwall surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145048A JP2008296139A (en) 2007-05-31 2007-05-31 Cleaning method or coating method of passage inwall surface

Publications (1)

Publication Number Publication Date
JP2008296139A true JP2008296139A (en) 2008-12-11

Family

ID=40170172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145048A Pending JP2008296139A (en) 2007-05-31 2007-05-31 Cleaning method or coating method of passage inwall surface

Country Status (1)

Country Link
JP (1) JP2008296139A (en)

Similar Documents

Publication Publication Date Title
Baroud et al. Dynamics of microfluidic droplets
Cao et al. Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels
van Steijn et al. Flows around confined bubbles and their importance in triggering pinch-off
Yu et al. Experiment and lattice Boltzmann simulation of two-phase gas–liquid flows in microchannels
EP2812103B1 (en) Droplet formation using fluid breakup
Kenney et al. Large Deborah number flows around confined microfluidic cylinders
JP5335784B2 (en) Generation of monodisperse droplets
Abate et al. Air-bubble-triggered drop formation in microfluidics
Tarchichi et al. New regime of droplet generation in a T-shape microfluidic junction
Bashir et al. Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method
Boruah et al. Wettability-mediated dynamics of two-phase flow in microfluidic T-junction
Azarmanesh et al. Passive microinjection within high-throughput microfluidics for controlled actuation of droplets and cells
Wu et al. Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision
Wu et al. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics
Chen et al. Pressure-driven microfluidic droplet formation in Newtonian and shear-thinning fluids in glass flow-focusing microchannels
Sen et al. Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications
Kumar et al. Droplet formation under wall slip in a microfluidic T-junction
Jena et al. Effect of channel width on droplet generation inside T-junction microchannel
Magnini et al. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows
Puccetti et al. Flow patterns of an air–water mixture at the exit of a micro T-junction
Li et al. A geometrical criterion for the dynamic snap-off event of a non-wetting droplet in a rectangular pore–throat microchannel
Zamula et al. Experimental study of the multiphase flow in a pore doublet model
Chen et al. Control of droplet generation in flow-focusing microfluidic device with a converging-diverging nozzle-shaped section
Wang et al. Flow regimes of the immiscible liquids within a rectangular microchannel
Ronshin et al. Investigation of two-phase flow regimes in square minichannels with different mixers created using additive technologies