JP2008296061A - Circulatory dynamics measuring instrument - Google Patents

Circulatory dynamics measuring instrument Download PDF

Info

Publication number
JP2008296061A
JP2008296061A JP2008239037A JP2008239037A JP2008296061A JP 2008296061 A JP2008296061 A JP 2008296061A JP 2008239037 A JP2008239037 A JP 2008239037A JP 2008239037 A JP2008239037 A JP 2008239037A JP 2008296061 A JP2008296061 A JP 2008296061A
Authority
JP
Japan
Prior art keywords
blood
circulation
blood pressure
signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008239037A
Other languages
Japanese (ja)
Other versions
JP4388585B2 (en
Inventor
Norihiko Nakamura
敬彦 中村
Minao Yamamoto
三七男 山本
Hiroyuki Muramatsu
博之 村松
Takashi Nakamura
隆 仲村
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008239037A priority Critical patent/JP4388585B2/en
Publication of JP2008296061A publication Critical patent/JP2008296061A/en
Application granted granted Critical
Publication of JP4388585B2 publication Critical patent/JP4388585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulatory dynamics measuring instrument which enters wave motions from a biological surface noninvasively, analyzes the condition of blood and so on from movement and location by reflecting it on a body fluid flowing through a living body, and measures circulatory dynamics correctly without being affected by blood pressure when assessing health condition seeking the circulatory dynamics. <P>SOLUTION: A circulatory dynamics measuring instrument has a means which sends and receives wave motion from a skin surface and detects circulatory dynamics in a living body noninvasively and a means which detects the blood pressure of a measurement site as basic construction. The measurement is carried out precisely by using a correction coefficient calculated from a vascular diameter and average blood-pressure value calculated from a maximum blood-pressure value and a minimum blood-pressure value for correction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生体中を循環する体液および循環器を構成する組織の測定装置にかかわり、特に血液の状態を把握し健康の評価、疾患の診断、薬品の効果の評価等を行う技術に関する。   The present invention relates to a body fluid that circulates in a living body and a tissue measuring device that constitutes a circulatory organ, and more particularly to a technique for grasping the state of blood and evaluating health, diagnosing diseases, evaluating drug effects, and the like.

従来、生体の健康の評価、疾患の診断、生体への薬品の影響の把握等を行うために、血液の情報を利用するいろいろな方法が行われている。例えば医療的には、生体から血液を採集し、その血液を成分分析装置にかけて血液中に含まれるいろいろな血液成分の割合から循環動態を求めて健康状態を評価するといった方法等がある。従来例としては、菊池佑二氏が「毛細血管モデルを用いた全血流動性の測定」というタイトルで発表した方法、すなわち被検者から血液を採取し、リソグラフィックな手法で製作されたマイクロチャネルアレイを用いて、定圧下の血流の通過時間から血液レオロジーを計測する方法が知られている。(例えば非特許文献1参照)
菊池佑二、「血液レオロジー計測装置MC−FANによる食品機能性の迅速・定量評価」、食品研究成果情報、独立行政法人食品総合研究所、平成10年、No.11
Conventionally, various methods using blood information have been performed in order to evaluate the health of a living body, diagnose a disease, grasp the influence of a drug on a living body, and the like. For example, medically, there is a method in which blood is collected from a living body, and the blood is applied to a component analyzer to obtain a circulatory dynamic from the ratio of various blood components contained in the blood to evaluate the health state. As a conventional example, a method announced by Keiji Kikuchi in the title of “Measurement of whole blood fluidity using a capillary model”, that is, a microchannel that is collected from a subject and manufactured using a lithographic technique A method for measuring blood rheology from the passage time of blood flow under constant pressure using an array is known. (For example, see Non-Patent Document 1)
Keiji Kikuchi, “Rapid and Quantitative Evaluation of Food Functionality Using Blood Rheology Measurement Device MC-FAN”, Food Research Result Information, National Food Research Institute, 1998, No. 11

本発明が解決しようとする課題は、採血せずに、個体差を考慮して、健康状態や循環動態を評価することである。   The problem to be solved by the present invention is to evaluate health condition and circulatory dynamics in consideration of individual differences without blood collection.

従来のようなマイクロチャネルアレイを用いた血液レオロジー測定法では、どうしても被検者から血液を採取するために、注射針を用いて肘部に針を刺し、採血を行わなければならない。従って、食品成分の血液レオロジーへの影響をみるためのinvivo試験を行うとしても、同じ人から1日何回も血液採取を行うことができず、連続試験が困難であるという問題がある。また、医療機関を離れて個人が自宅等で自ら採血をして血液レオロジー測定を行おうとしても、従来例のようなマイクロチャネルアレイを用いた一方法では、自宅に機器を置くこともできず、適切な処理もできないため、医療機関でしか測定ができないという問題もある。   In the conventional blood rheology measurement method using a microchannel array, in order to collect blood from a subject, blood must be collected by inserting a needle into the elbow using an injection needle. Therefore, even if an in vivo test is performed to see the effect of food ingredients on blood rheology, blood cannot be collected from the same person several times a day, and there is a problem that continuous tests are difficult. In addition, even if an individual leaves the medical institution to collect blood at home or the like and perform blood rheology measurement, one method using a microchannel array as in the conventional example cannot place the device at home. There is also a problem that measurement cannot be performed only at a medical institution because appropriate processing cannot be performed.

上記課題を解決する手段は、生体の皮膚面から超音波等の波動を送信して反射してくる超音波を受信し、血管を流れる血液の流速をドップラシフト信号の形態で検出し、検出されたドップラシフト信号から血流速度の時間的変化成分を求め、その変化成分から循環動態の1つである血液レオロジーを測定し健康状態を評価する、という手段である。具体的には、脈拍が一拍打つ間の血流速度成分の最大速度成分から血液レオロジーを求め、その結果、血液レオロジーが小さいという結果になると健康であるという評価を出すような評価方法を行う。   Means for solving the above problem is to detect and detect the flow velocity of blood flowing through a blood vessel in the form of a Doppler shift signal by transmitting ultrasonic waves reflected from the skin surface of a living body and receiving the reflected ultrasonic waves. This is a means for obtaining a temporal change component of the blood flow velocity from the Doppler shift signal and measuring a blood rheology which is one of the circulatory dynamics from the change component to evaluate the health condition. Specifically, blood rheology is obtained from the maximum velocity component of the blood flow velocity component during a single pulse, and as a result, if the result is that the blood rheology is small, an evaluation method is performed to give an evaluation that the blood is healthy. .

ここで、血液レオロジーを求める際には、血管を流れる血液の流速を正確に求めることが重要となる。しかし血流の流れは血圧の影響を大きく受ける。そこで、血液の流れを正確に求めるためには、血圧の影響を補正する必要がある。これは、次に示すポアユイズの式から容易に推測できる。   Here, when determining blood rheology, it is important to accurately determine the flow velocity of blood flowing through a blood vessel. However, blood flow is greatly affected by blood pressure. Therefore, in order to accurately determine the blood flow, it is necessary to correct the influence of blood pressure. This can be easily inferred from the following Poire's equation.

Q=πr4・△P/(8ηl) (式1)
ここで、Qは流量、rは管の内径、ηは流体の粘度、lは管の長さ、△Pは圧力差であ
る。また、Qは最大速度Vm、菅の内径rを用いて、
Q=πr2Vm/2 (式2)
と表すことができる。この2式を整理すると、式3が得られる。
Q = πr 4・ △ P / (8ηl) (Formula 1)
Here, Q is the flow rate, r is the inner diameter of the tube, η is the viscosity of the fluid, l is the length of the tube, and ΔP is the pressure difference. Q is the maximum speed Vm and the inner diameter r of the rod,
Q = πr 2 Vm / 2 (Formula 2)
It can be expressed as. If these two formulas are arranged, formula 3 is obtained.

Vm/△P=A・1/η (A=r2/4l) (式3)
式3に示されるように、流速と圧力差と粘度に関係があることがわかる。このことを生体情報に置き換えて考えると、血管を流れる流速と血圧と血液レオロジーに相関があるといえる。例えば、血液レオロジーが同じ様な血液でも、血圧が異なると、血管を流れる流速は異なり、血管を流れる流速からだけでは、正確な血液レオロジーを求めることは難しい。即ち、生体内の情報を得ようとするときには、血圧を考慮することなしに、血管を流れる血液の流速から正確な循環動態を求めることは難しいといえる。
Vm / △ P = A ・ 1 / η (A = r 2 / 4l) (Formula 3)
As shown in Equation 3, it can be seen that there is a relationship between the flow rate, the pressure difference, and the viscosity. When this is replaced with biological information, it can be said that there is a correlation between the flow velocity flowing through the blood vessel, blood pressure, and blood rheology. For example, even blood having similar blood rheology has different blood flow rates when blood pressure is different, and it is difficult to obtain accurate blood rheology only from the flow velocity flowing through the blood vessels. That is, when obtaining in-vivo information, it can be said that it is difficult to obtain accurate circulation dynamics from the flow velocity of blood flowing through a blood vessel without considering blood pressure.

また、血圧の影響を補正する場合、どのような血圧値(例えば、最高血圧値や最低血圧値)を用いて補正を行えばよいか分らない。本発明では補正を行う際、その人の血圧の代表値として平均血圧値を考えた。平均血圧値は標準生理学などに掲載されている式4で表現される。   In addition, when correcting the influence of blood pressure, it is not known what blood pressure value (for example, maximum blood pressure value or minimum blood pressure value) should be used for correction. In the present invention, when correction is performed, an average blood pressure value is considered as a representative value of the person's blood pressure. The average blood pressure value is expressed by Equation 4 published in standard physiology and the like.

Pm=Pd+Pp/3 (式4)
ここでPmは平均血圧値、Pdは拡張期血圧、Ppは脈圧である。ただし、この式は上腕部での測定には合致するものである。例えば、頚動脈等の大動脈や指先部の細動脈には適用できない。即ち、式4は上腕部位で測定した平均血圧値となるが、その他の部位で測定した平均血圧値にはならない。なぜなら、血圧の波形は図12に示すように、部位によって異なり、波形の重心となる平均血圧値も異なるためである。
Pm = Pd + Pp / 3 (Formula 4)
Here, Pm is an average blood pressure value, Pd is a diastolic blood pressure, and Pp is a pulse pressure. However, this equation agrees with the measurement at the upper arm. For example, it cannot be applied to the aorta such as the carotid artery or the arteriole at the fingertip. That is, Equation 4 is an average blood pressure value measured at the upper arm region, but is not an average blood pressure value measured at other regions. This is because, as shown in FIG. 12, the blood pressure waveform varies depending on the region, and the average blood pressure value that is the center of gravity of the waveform also varies.

故に、式4により求めた平均血圧値を用いて補正を行い、正確に血液レオロジーを求めるためには、必ず上腕部で測定しなければならないという制限をうける。   Therefore, in order to perform correction using the average blood pressure value obtained by Equation 4 and accurately obtain the blood rheology, there is a limitation that the upper arm portion must always be measured.

そこで、測定部位を選ばす、平均血圧値を求めて、血液レオロジーを正確に求めるためには、次のような手段を用いる。   Therefore, the following means are used to select the measurement site, to obtain the average blood pressure value, and to obtain the blood rheology accurately.

まず、血圧の測定部内に循環動態の測定部を設ける。これにより、血圧の測定部と循環動態の測定部が合致するので、血液レオロジーを評価する際に、血圧による影響を正確に補正することができる。   First, a hemodynamic measurement unit is provided in the blood pressure measurement unit. As a result, the blood pressure measurement unit and the circulatory dynamics measurement unit match, so that when blood rheology is evaluated, the influence of blood pressure can be accurately corrected.

血圧による影響を補正するための血圧値には、平均血圧値を用いる。最高血圧値や最低血圧値のみでは、その人の血圧を表現しきれているとは言えないので、両方を含む式によって平均血圧値を求めて用いる。   An average blood pressure value is used as a blood pressure value for correcting the influence of blood pressure. Since it cannot be said that the person's blood pressure can be expressed only by the maximum blood pressure value or the minimum blood pressure value, the average blood pressure value is obtained and used by an expression including both.

血圧測定部が上腕である場合は式4で求められることが経験的にわかっている。これは上腕部位での血圧波形からも確認されている。しかし、他の部位では血圧波形がことなるので、それにあう平均血圧値を求める式を用意した。   It has been empirically known that when the blood pressure measurement unit is the upper arm, it can be obtained by Equation 4. This is also confirmed from the blood pressure waveform at the upper arm region. However, since blood pressure waveforms are different in other parts, an expression for obtaining an average blood pressure value corresponding thereto is prepared.

補正に用いる平均血圧値は、血圧測定部で求めた最高血圧値と最低血圧値と、循環動態の測定部で求めた血管径から決定される補正係数Cを用い、式5から求める。   The average blood pressure value used for correction is obtained from Equation 5 using the maximum blood pressure value and minimum blood pressure value obtained by the blood pressure measurement unit and the correction coefficient C determined from the blood vessel diameter obtained by the circulation dynamics measurement unit.

Pm=Pd+(Ps-Pd)/C (式5)
ここで、Pdは最低血圧値、Psは最高血圧値、Cは血管径から求めた補正係数である。例えば上腕部位の場合はC=3を用いればよい。また、大動脈の場合にはC=2を用いれば、また、末梢動脈ではC=4を用いればよい。これらの値を用いると、血圧波形の重心から求める平均血圧値と同じになる。
Pm = Pd + (Ps-Pd) / C (Formula 5)
Here, Pd is the minimum blood pressure value, Ps is the maximum blood pressure value, and C is a correction coefficient obtained from the blood vessel diameter. For example, in the case of the upper arm part, C = 3 may be used. Further, C = 2 may be used for the aorta, and C = 4 may be used for the peripheral artery. When these values are used, the average blood pressure value obtained from the center of gravity of the blood pressure waveform is the same.

また、血管径と血圧は関係があることは標準生理学などに記載されており、血管径を測定することで、血圧波形を推測できる。その推測された血圧波形の平均血圧値は式5によって求める。補正係数Cは血圧波形によってきまるので、血管径を測定することで、補正係数Cを決めることが可能になる。従って、式5を用いることにより、部位を選ばず、平均血圧値を求めることができ、精度よく血液レオロジーを求めることが可能になる。   Moreover, it is described in standard physiology etc. that a blood vessel diameter and a blood pressure are related, and a blood pressure waveform can be estimated by measuring a blood vessel diameter. The average blood pressure value of the estimated blood pressure waveform is obtained by Equation 5. Since the correction coefficient C depends on the blood pressure waveform, the correction coefficient C can be determined by measuring the blood vessel diameter. Therefore, by using Equation 5, it is possible to obtain an average blood pressure value without selecting a region, and to obtain blood rheology with high accuracy.

以上の結果、血圧測定部及び循環動態の測定部が限定されず、測定部位がどこであっても、精度よく健康状態を評価することができるようになる。   As a result, the blood pressure measurement unit and the circulatory dynamics measurement unit are not limited, and the health condition can be accurately evaluated regardless of the measurement site.

本発明によれば、生体表面から内部に波動を送受信して前記生体内部の循環動態の情報を検出する測定装置に、循環動態を検出する機能と生体の血圧を検出する機能を提供し、血管径から求めた補正係数を用いて算出する平均血圧値を用いることにより、高精度な循環動態の測定を求めることが可能となった。また、採血せずに測定できるため、連続試験が容易になり、測定場所の制限を受けず、自宅などでも測定が可能となった。   According to the present invention, a measuring device that detects information on the circulatory dynamics inside the living body by transmitting and receiving waves from the surface of the living body to the inside is provided with a function for detecting the circulatory dynamics and a function for detecting the blood pressure of the living body. By using the mean blood pressure value calculated using the correction coefficient obtained from the diameter, it is possible to obtain a highly accurate measurement of circulatory dynamics. In addition, since measurement can be performed without blood collection, continuous testing is facilitated, measurement is not limited, and measurement can be performed at home.

本発明の循環動態測定装置の基本構成は、皮膚面から波動を送受信して生体内の循環動態を非侵襲的に検出する手段(循環センサ)と、測定部位の血圧を検出する手段(血圧測定部)を有するものである。   The basic configuration of the circulatory dynamics measuring apparatus according to the present invention includes a means (circulation sensor) for non-invasively detecting circulatory dynamics in a living body by transmitting and receiving waves from the skin surface, and a means for detecting blood pressure at a measurement site (blood pressure measurement) Part).

循環センサは皮膚面から波動の送受信をすることにより、血流速度、血流量、血管径、血管厚などの生体情報を検出する。血流速度変化は、ドップラ効果によって生ずるドップラシフト量を測定することにより、血管径は、血管に反射して返ってくる時間の遅れを測定することにより、検出される。なお、血流速度検出に用いる波動には超音波が使用されるのが一般的であるが、レーザ等他の波動を用いることも可能である。   The circulation sensor detects biological information such as blood flow velocity, blood flow volume, blood vessel diameter, and blood vessel thickness by transmitting and receiving waves from the skin surface. The change in blood flow velocity is detected by measuring the amount of Doppler shift caused by the Doppler effect, and the blood vessel diameter is detected by measuring the time delay reflected back to the blood vessel. In general, an ultrasonic wave is used for a wave used for blood flow velocity detection, but other waves such as a laser may be used.

また、血圧測定部内に循環センサを配置することで、正確に血圧の影響を補正する。また、血圧の補正に用いる平均血圧値は式5を用いて求める。   In addition, by arranging a circulation sensor in the blood pressure measurement unit, the influence of blood pressure is accurately corrected. Further, the average blood pressure value used for correcting the blood pressure is obtained using Equation 5.

次に、本発明の循環動態測定装置の測定原理について説明する。循環動態測定方法は、脈拍の拍動時にあらわれる循環成分の時間変化の形から循環動態を求めるものである。具体的には循環動態として血液のレオロジーを求める。図1に血流速度の脈拍拍動に伴う時間変化のグラフを示す。血液レオロジーの特徴成分として、平均血圧値で補正した最大血流速度Vxがあげられ、血液レオロジーと最大血流速度Vxが相関関係にある。   Next, the measurement principle of the circulatory dynamics measuring apparatus of the present invention will be described. The method for measuring circulatory dynamics is to determine the circulatory dynamics from the form of the temporal change of the circulatory component that appears during the pulsation of the pulse. Specifically, blood rheology is sought as circulatory dynamics. FIG. 1 shows a graph of the time change associated with the pulsation of the blood flow velocity. A characteristic component of blood rheology is the maximum blood flow velocity Vx corrected by the average blood pressure value, and the blood rheology and the maximum blood flow velocity Vx are correlated.

以下、添付図面を参照して、本発明の実施の形態に係る循環動態測定装置について説明する。
(実施例)
図2は生体2と圧力測定部4の外観を示した図である。生体2の部位としては首、上腕、手首、指先などの比較的露出しやすい場所が挙げられる。
Hereinafter, a circulatory dynamics measuring apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
(Example)
FIG. 2 is a view showing the appearance of the living body 2 and the pressure measuring unit 4. Examples of the part of the living body 2 include relatively easily exposed places such as a neck, an upper arm, a wrist, and a fingertip.

図3は生体2と循環動態測定装置の循環センサ1、圧力測定部4、生体内の血管21を示す1例である。循環センサ1は送受信部が生体方向に向くように設置され、生体表面に接するように配置されている。本実施例においては超音波を用いて送受信を行う。循環センサ1は圧力測定部4内に配置することで、血流測定部の血圧値を測定できるようになる。マイクロホン42と循環センサ1は測定する血管21を観測できる位置にあれば、血流の流れる方向との関係は特にない。即ち、血流が流れてくる方向(心臓に近い方)にマイクロホン42があっても、循環センサ1があっても良い。マイクロホン42と循環センサ1の順番と測定結果には因果関係はない。   FIG. 3 shows an example of the living body 2, the circulation sensor 1 of the circulatory dynamics measuring device, the pressure measuring unit 4, and the blood vessel 21 in the living body. Circulation sensor 1 is installed so that the transmission / reception unit faces the living body, and is arranged so as to be in contact with the surface of the living body. In this embodiment, transmission and reception are performed using ultrasonic waves. The circulation sensor 1 is arranged in the pressure measurement unit 4 so that the blood pressure value of the blood flow measurement unit can be measured. If the microphone 42 and the circulation sensor 1 are at a position where the blood vessel 21 to be measured can be observed, there is no particular relationship with the direction of blood flow. That is, the microphone 42 or the circulation sensor 1 may be provided in the direction of blood flow (closer to the heart). There is no causal relationship between the order of the microphone 42 and the circulation sensor 1 and the measurement result.

図3に示した循環センサ1は樹脂13中に送信用圧電素子11及び受信用圧電素子12を固定している例であるが、図4に示す循環センサ1でもよい。図4に示す循環センサ1は送信用圧電素子11及び受信用圧電素子12が超音波の伝播を減衰する基板14上に導電性接着剤15で固定されている。用いる基板としては例えばガラエポ基板があげられる。樹脂中に圧電素子を固定する方法よりも精度良く圧電素子を配置でき、超音波が減衰する基板を用いることでノイズを抑えることができ、SN比の高い循環センサ1が作製できる。送信用圧電素子11及び受信用圧電素子12は基板14上の図示しないパターンとワイヤーボンド16によって接続され、送信用圧電素子11及び受信用圧電素子12を駆動することが可能になっている。また、送信用圧電素子11及び受信用圧電素子12は樹脂17でコーティングされている。樹脂13は送信用圧電素子11及び受信用圧電素子12を保護し、さらに生体との音響整合を取ることによって、超音波を効率よく生体内に送受信している。樹脂13は多層構造にするとよく、生体と接する層には生体のしわや皮膚燐による空気層を無くすような柔らかい樹脂を用いると、空気層による超音波の減衰がなくなり、効率よく送受信できる。   The circulation sensor 1 shown in FIG. 3 is an example in which the transmission piezoelectric element 11 and the reception piezoelectric element 12 are fixed in the resin 13, but the circulation sensor 1 shown in FIG. In the circulation sensor 1 shown in FIG. 4, a transmitting piezoelectric element 11 and a receiving piezoelectric element 12 are fixed with a conductive adhesive 15 on a substrate 14 that attenuates the propagation of ultrasonic waves. An example of the substrate to be used is a glass epoxy substrate. The piezoelectric element can be arranged with higher accuracy than the method of fixing the piezoelectric element in the resin, the noise can be suppressed by using a substrate that attenuates the ultrasonic wave, and the circulation sensor 1 having a high SN ratio can be manufactured. The transmitting piezoelectric element 11 and the receiving piezoelectric element 12 are connected to a pattern (not shown) on the substrate 14 by a wire bond 16 so that the transmitting piezoelectric element 11 and the receiving piezoelectric element 12 can be driven. The transmitting piezoelectric element 11 and the receiving piezoelectric element 12 are coated with a resin 17. The resin 13 protects the transmitting piezoelectric element 11 and the receiving piezoelectric element 12 and further transmits and receives ultrasonic waves efficiently in the living body by achieving acoustic matching with the living body. The resin 13 may have a multi-layer structure, and if a soft resin that eliminates the wrinkles of the living body or the air layer due to skin phosphorus is used for the layer in contact with the living body, the ultrasonic wave is not attenuated by the air layer, and transmission and reception can be performed efficiently.

実施例の循環動態測定装置の信号処理部3の内部構成と、信号処理部3と循環センサ1及び圧力測定部4の接続状態を示すブロック図を図5に示す。図示するように、信号処理部3は、駆動部31、受信部32、信号演算部33、出力部34、圧力信号受信部35によって概略構成されている。   FIG. 5 shows a block diagram showing an internal configuration of the signal processing unit 3 of the circulatory dynamics measuring apparatus according to the embodiment and a connection state of the signal processing unit 3, the circulation sensor 1 and the pressure measuring unit 4. As shown in the figure, the signal processing unit 3 is roughly configured by a drive unit 31, a reception unit 32, a signal calculation unit 33, an output unit 34, and a pressure signal reception unit 35.

実施例の駆動部31は循環センサ1に設置された送信用圧電素子11を振動させ、超音波を血管21に向けて入射するための駆動電圧を送信する。受信部32は循環センサ1に設置された受信用圧電素子12が超音波を受信した時に発生する電圧を受信する。また、圧力測定部4が測定した血圧値は電圧に変換され、その信号を圧力信号受信部35が受信する。圧力測定部4は、圧迫帯41、圧力操作部(図示省略)、マイクロホン42からなる。圧迫帯41の圧力は圧力操作部によって調整される。また、圧力操作部は圧迫帯41の圧力値を測定している。圧迫帯41の圧力を生体2の最高血圧値以上にすると血管21内の血流は止まり、血管からの音がなくなる。また、圧迫帯41の圧力を生体2の最低血圧値以下にしても、血管からの音がなくなる。この音をマイクロホン42で検出し、圧力信号受信部35は最高血圧値と最低血圧値のデータを信号演算部33に送る。   The driving unit 31 according to the embodiment vibrates the transmitting piezoelectric element 11 installed in the circulation sensor 1 and transmits a driving voltage for making an ultrasonic wave incident on the blood vessel 21. The receiving unit 32 receives a voltage generated when the receiving piezoelectric element 12 installed in the circulation sensor 1 receives an ultrasonic wave. The blood pressure value measured by the pressure measuring unit 4 is converted into a voltage, and the pressure signal receiving unit 35 receives the signal. The pressure measurement unit 4 includes a compression band 41, a pressure operation unit (not shown), and a microphone 42. The pressure of the compression band 41 is adjusted by the pressure operation unit. Further, the pressure operation unit measures the pressure value of the compression band 41. When the pressure of the compression band 41 is set to be equal to or higher than the maximum blood pressure value of the living body 2, the blood flow in the blood vessel 21 is stopped, and sound from the blood vessel is eliminated. Further, even if the pressure of the compression band 41 is set to be equal to or lower than the minimum blood pressure value of the living body 2, there is no sound from the blood vessels. This sound is detected by the microphone 42, and the pressure signal receiving unit 35 sends the data of the maximum blood pressure value and the minimum blood pressure value to the signal calculation unit 33.

圧力測定部4は、図6に示すようなものでもよい。図6での圧力測定部4は、圧迫帯41、圧力操作部(図示省略)、振動センサ43からなる。圧迫帯41は圧力操作部によって圧力が調整される。また、圧力操作部は圧迫帯41の圧力値を測定している。圧迫帯41の圧力を生体2の最高血圧値以上にすると血管21内の血流は止まる。その後圧迫帯41の圧力を下げていくと、血流の流れに伴って、振動が大きくなり、さらに下げていくと振動が急に小さくなる。この振動を振動センサ46で検出し、振動が大きくなった圧力を最高血圧値、振動が小さくなる圧力を最低血圧値として、圧力信号受信部35は信号演算部33に信号を送信する。図6のような構造にすることで、振動センサ43は図示するように圧迫帯41と管で接続され、振動が伝われば、圧迫帯41近傍にある必要性はなく、構造を簡易化できるという利点がある。   The pressure measuring unit 4 may be as shown in FIG. The pressure measurement unit 4 in FIG. 6 includes a compression band 41, a pressure operation unit (not shown), and a vibration sensor 43. The pressure of the compression band 41 is adjusted by the pressure operation unit. In addition, the pressure operation unit measures the pressure value of the compression band 41. When the pressure in the compression band 41 is made higher than the maximum blood pressure value of the living body 2, the blood flow in the blood vessel 21 stops. Thereafter, when the pressure of the compression band 41 is lowered, the vibration increases with the blood flow, and when further lowered, the vibration suddenly decreases. This vibration is detected by the vibration sensor 46, and the pressure signal receiving unit 35 transmits a signal to the signal calculating unit 33 with the pressure at which the vibration is increased as the highest blood pressure value and the pressure at which the vibration is reduced as the lowest blood pressure value. With the structure as shown in FIG. 6, the vibration sensor 43 is connected to the compression band 41 with a pipe as shown in the figure, and if vibration is transmitted, there is no need to be near the compression band 41 and the structure can be simplified. There are advantages.

また、圧力測定部4は、図7のようなものでもよい。図7の圧力測定部4は、圧迫帯41、圧力操作部(図示省略)、圧力センサ44からなる。圧迫帯41は圧力操作部によって圧力を生体の最高血圧値以下に調整される。圧迫帯41は生体2を平らに圧迫することができ、血管21上に配置された圧力センサ44が血管21の脈動に対応する圧力即ち脈圧を検出する。この方式では非観血ながら一心拍ごとの圧力波形を得ることができる。圧力信号受信部35は信号演算部33に圧力波形の信号を送信する。   Further, the pressure measuring unit 4 may be as shown in FIG. The pressure measurement unit 4 in FIG. 7 includes a compression band 41, a pressure operation unit (not shown), and a pressure sensor 44. In the compression band 41, the pressure is adjusted to be equal to or lower than the maximum blood pressure value of the living body by the pressure operation unit. The compression band 41 can press the living body 2 flatly, and a pressure sensor 44 disposed on the blood vessel 21 detects a pressure corresponding to the pulsation of the blood vessel 21, that is, a pulse pressure. With this method, it is possible to obtain a pressure waveform for each heartbeat while non-invasive. The pressure signal receiver 35 transmits a pressure waveform signal to the signal calculator 33.

信号演算部33は、内部に備えた記憶領域(図示省略)に記憶されている処理プログラムを実行することによって、循環動態の測定に関する各種処理を実行し、その処理結果を出力部34に出力する。また、信号演算部33は、受信用圧電素子12から発せられた超音波の周波数と受信された超音波の周波数を比較する事により、血流によるドップラ効果を算出する。そして、周波数の変化より血管21を流れる血流速度を算出し、その速度の時間変化を求める。また、信号演算部33では、生体内の血圧は、緊張等によって変化するのに伴って、血流速度が変化するので、圧力測定部4から得られた信号を用いて、速度の時間変化を補正する演算を実行する。従って、緊張等による影響、個体差による血圧の影響を補正することができ、正確な血液レオロジーを求めることができる。例えば、本当は同じような血液レオロジーを持ちながら、血圧値が違うために血流速が異なる場合、血流速のみから血液レオロジーを求めと異なった血液レオロジーとなってしまい、正確な判断ができないが、血圧値を測定することで、このようなことは防げる。また、血流測定部と血圧測定部を異なる部位で測定する場合、例えば血圧測定を上腕部で行い、血流測定を指先部で行って補正するのでは、上腕部と指先部の血圧値は異なるので血液レオロジーを求めるのに正確に反映できない。しかし、本実施例のようにすることで、これらの問題を解決できる。そして、脈拍の拍動時にあらわれる血流速度の時間変化の形が、血液のレオロジーと相関関係があり、この脈拍拍動時にあらわれる血流速度変化から循環動態として血液レオロジーを求めている。例えば、血流変化が大きければ、血液の粘度が低い状態であるといえる。   The signal calculation unit 33 executes various processes related to the measurement of circulatory dynamics by executing a processing program stored in a storage area (not shown) provided therein, and outputs the processing results to the output unit 34. . In addition, the signal calculation unit 33 calculates the Doppler effect due to blood flow by comparing the frequency of the ultrasonic wave emitted from the receiving piezoelectric element 12 with the frequency of the received ultrasonic wave. Then, the blood flow velocity flowing through the blood vessel 21 is calculated from the change in frequency, and the time change of the velocity is obtained. Further, in the signal calculation unit 33, the blood flow velocity changes as the blood pressure in the living body changes due to tension or the like, and therefore the time change of the velocity is calculated using the signal obtained from the pressure measurement unit 4. Execute the calculation to be corrected. Therefore, it is possible to correct the influence of tension or the like and the influence of blood pressure due to individual differences, and an accurate blood rheology can be obtained. For example, if the blood flow rate is different because the blood pressure values are different while actually having the same blood rheology, the blood rheology will be different from the blood flow rate only from the blood flow rate, and accurate judgment cannot be made. By measuring the blood pressure value, this can be prevented. Also, when measuring the blood flow measurement unit and the blood pressure measurement unit at different sites, for example, if blood pressure measurement is performed at the upper arm part and blood flow measurement is performed at the fingertip part, the blood pressure values at the upper arm part and the fingertip part are Because it is different, it cannot be accurately reflected in determining blood rheology. However, these problems can be solved by using the present embodiment. The shape of the temporal change in blood flow velocity that appears during the pulsation of the pulse has a correlation with the rheology of blood, and the blood rheology is obtained as the circulation dynamics from the change in blood flow velocity that appears during the pulsation. For example, if the blood flow change is large, it can be said that the blood has a low viscosity.

信号演算部33で平均血圧値Pmを求めるときは式5を用いる。   When obtaining the average blood pressure value Pm by the signal calculation unit 33, Expression 5 is used.

Cは循環センサ1の送信用圧電素子11からパルスで超音波を送信し、受信用圧電素子12で受信する時間を測定することで血管径を測定し、Cを決定する。Cは整数である必要はなく、血管径に応じて適当なC、例えばC=3.5などを用いてPmを決定する。式5のように平均血圧値を求めることで、測定部位によらず平均血圧値を式5で求められる。この平均血圧値を利用して、血流速度の補正を行い、血液レオロジーを求める。   C transmits ultrasonic waves in a pulse from the transmitting piezoelectric element 11 of the circulation sensor 1 and measures the time of reception by the receiving piezoelectric element 12, thereby measuring the diameter of the blood vessel and determining C. C does not need to be an integer, and Pm is determined by using an appropriate C such as C = 3.5 according to the blood vessel diameter. By calculating the average blood pressure value as in Expression 5, the average blood pressure value can be determined in Expression 5 regardless of the measurement site. Using this average blood pressure value, blood flow velocity is corrected and blood rheology is obtained.

次に、本発明の装置を用いたレオロジー測定装置の結果及び精度の評価を行った結果を示す。リファレンスデータとして、従来例にあげたマイクロチャネルアレイを用いた血液レオロジー測定装置(MC-FAN)の測定結果を用いた。MC-FANは、採血した血液をマイクロチャネルアレイに流し、血液の通過時間から血液レオロジーを評価する装置である。被験者10人のMC-FANでの全血通過時間と最大血流速度Vxと血圧値(最高血圧値と最低血圧値)の測定データを図11に示す。測定部位は左手の人差し指であった。最大血流速度Vxは、循環センサ1から得られるドップラシフト量から求めた。   Next, the results of the rheology measurement apparatus using the apparatus of the present invention and the results of the evaluation of accuracy are shown. As reference data, the measurement results of a blood rheology measurement device (MC-FAN) using the microchannel array described in the conventional example were used. MC-FAN is a device that allows blood collected to flow through a microchannel array and evaluates blood rheology from the passage time of blood. FIG. 11 shows measurement data of whole blood passage time, maximum blood flow velocity Vx, and blood pressure values (maximum blood pressure value and minimum blood pressure value) in MC-FAN of 10 subjects. The measurement site was the left index finger. The maximum blood flow velocity Vx was obtained from the Doppler shift amount obtained from the circulation sensor 1.

血圧値で補正しない場合の結果を図8に、本方法によって求めた結果を図10に示す。血圧値で補正しない場合でも最大血流速度Vxと全血通過時間に相関はあるが、異常値が認められた。これは血圧の個体差の影響によるもので、本方法のようにすることで、このような問題は除去できる。   FIG. 8 shows the result when the blood pressure value is not corrected, and FIG. 10 shows the result obtained by this method. Even when the blood pressure value was not corrected, there was a correlation between the maximum blood flow velocity Vx and the whole blood passage time, but an abnormal value was observed. This is due to the influence of individual differences in blood pressure, and such a problem can be eliminated by using this method.

また、平均血圧値を用いて補正する場合において、一般的に知られている式4を用いたときの結果を図9に、本方法によって求めた結果を図10に示す。補正の具体的な方法としては、最大血流速度Vxに求めた平均血圧値の逆数を掛けることによって求めた。図10では、血管径から求めた補正係数に2.5を用いた。このときの相関係数R2を比較すると、式4で補正した場合はR2=0.7195、本方法での結果の場合はR2=0.7255であった。このことから、最大血流速度Vxを本方法によって求める平均血圧値で補正することの有効性がいえる。 Further, in the case of correction using the average blood pressure value, FIG. 9 shows the result when using the generally known expression 4, and FIG. 10 shows the result obtained by this method. As a specific method of correction, it was obtained by multiplying the maximum blood flow velocity Vx by the reciprocal of the obtained average blood pressure value. In FIG. 10, 2.5 is used as the correction coefficient obtained from the blood vessel diameter. Comparing the correlation coefficient R 2 in this case, when corrected by equation 4 for R 2 = .7195, results of the present method was R 2 = .7255. From this, it can be said that it is effective to correct the maximum blood flow velocity Vx with the average blood pressure value obtained by this method.

本発明の循環動態測定装置が計測する血流速度の脈拍拍動に伴う時間変化のグラフである。It is a graph of the time change accompanying the pulse beat of the blood flow velocity which the circulatory dynamics measuring device of the present invention measures. 本実施例について、生体と血圧測定部の外観を示した図である。It is the figure which showed the external appearance of the biological body and the blood-pressure measurement part about a present Example. 実施例について、生体と循環センサと血圧測定部の関係を示した図である。It is the figure which showed the relationship between a biological body, a circulation sensor, and a blood-pressure measurement part about an Example. 循環センサの1例を示す図である。It is a figure which shows one example of a circulation sensor. 実施例について、信号処理部の内部構成と、循環センサと血圧測定部との接続状態を示すブロック図である。It is a block diagram which shows the connection state of the internal structure of a signal processing part, and a circulation sensor and a blood-pressure measurement part about an Example. 血圧測定部の1例を示す図である。It is a figure which shows one example of a blood-pressure measurement part. 血圧測定部の1例を示す図である。It is a figure which shows one example of a blood-pressure measurement part. 補正していないときの最大血流速度Vxと全血通過時間の関係を示す図である。It is a figure which shows the relationship between the maximum blood flow velocity Vx when not correct | amending, and the whole blood passage time. 式4を用いて求めた平均血圧値で補正したときの最大血流速度Vxと全血通過時間の関係を示す図である。It is a figure which shows the relationship between the maximum blood flow velocity Vx when corrected with the average blood pressure value calculated | required using Formula 4, and whole blood passage time. 本方法を用いて補正したときの最大血流速度Vxと全血通過時間の関係を示す図である。It is a figure which shows the relationship between the maximum blood flow velocity Vx when corrected using this method, and whole blood passage time. 測定データの表を示した図である。It is the figure which showed the table | surface of measurement data. 血管径と圧力波形の関係を示した図である。It is the figure which showed the relationship between the blood vessel diameter and a pressure waveform.

符号の説明Explanation of symbols

1 循環センサ
2 生体
3 信号処理部
4 圧力測定部
11 送信用圧電素子
12 受信用圧電素子
13 樹脂
14 基板
15 導電性接着剤
16 ワイヤーボンド
21 血管
31 駆動部
32 受信部
33 信号演算部
34 出力部
35 圧力信号受信部
41 圧迫帯
42 マイクロホン
43 振動センサ
44 圧力センサ
DESCRIPTION OF SYMBOLS 1 Circulation sensor 2 Living body 3 Signal processing part 4 Pressure measurement part 11 Transmission piezoelectric element 12 Reception piezoelectric element 13 Resin 14 Substrate 15 Conductive adhesive 16 Wire bond 21 Blood vessel 31 Drive part 32 Reception part 33 Signal calculation part 34 Output part 35 Pressure Signal Receiver 41 Compression Belt 42 Microphone 43 Vibration Sensor 44 Pressure Sensor

Claims (7)

生体表面から生体内部の血液に波動を送受信して、生体内部を循環する血液の循環動態を検出する循環動態測定装置において、
前記循環動態を検出する循環センサと、
前記循環センサを駆動させる駆動部と、
前記循環センサからの信号を受信する循環信号受信部と、
前記循環センサの側方に配置され、前記生体の血圧を測定するために用いられる血流状態検出部と、
前記血流状態検出部の検出に基づき血圧を測定する血圧測定部からの信号を受信する圧力信号受信部と、
前記駆動部と、前記循環信号受信部と、前記圧力信号受信部と、から得られるデータを用いて前記循環動態に関する処理プログラムを実行する信号演算部と、
前記信号演算部による処理結果を出力する出力部とを有し、
前記信号演算部は、前記循環センサにより検出される前記生体内の血管を流れる血流速度と相関する値と、前記血圧測定部から得られる血圧値及び前記循環センサが計測した血管の血管径を用いて決定された補正係数を用いて算出した平均血圧値とを用いて、血液レオロジーを求めることを特徴とする循環動態測定装置。
In a circulatory dynamics measuring device that detects the circulatory dynamics of blood circulating inside the living body by transmitting and receiving waves from the surface of the living body to the blood inside the living body,
A circulation sensor for detecting the circulation dynamics;
A drive unit for driving the circulation sensor;
A circulation signal receiver for receiving a signal from the circulation sensor;
A blood flow state detection unit that is disposed on the side of the circulation sensor and used to measure the blood pressure of the living body;
A pressure signal receiving unit that receives a signal from a blood pressure measurement unit that measures blood pressure based on the detection of the blood flow state detection unit;
A signal calculation unit that executes a processing program related to the circulation dynamics using data obtained from the drive unit, the circulation signal reception unit, and the pressure signal reception unit;
An output unit that outputs a processing result by the signal calculation unit;
The signal calculation unit includes a value correlated with a blood flow velocity flowing through the blood vessel in the living body detected by the circulation sensor, a blood pressure value obtained from the blood pressure measurement unit, and a blood vessel diameter of the blood vessel measured by the circulation sensor. A circulatory dynamics measuring device characterized in that blood rheology is obtained using an average blood pressure value calculated using a correction coefficient determined by using the correction coefficient.
生体表面から生体内部の血液に波動を送受信して、生体内部を循環する血液の循環動態を検出する循環動態測定装置において、
前記循環動態を検出する循環センサと、
前記循環センサを駆動させる駆動部と、
前記循環センサからの信号を受信する循環信号受信部と、
前記循環センサの側方に配置され、前記生体の血圧を測定するために用いられるマイクロホンと、
前記マイクロホンの検出に基づき血圧を測定する血圧測定部からの信号を受信する圧力信号受信部と、
前記駆動部と、前記循環信号受信部と、前記圧力信号受信部と、から得られるデータを用いて前記循環動態に関する処理プログラムを実行する信号演算部と、
前記信号演算部による処理結果を出力する出力部とを有し、
前記信号演算部は、前記循環センサにより検出される前記生体内の血管を流れる血流速度と相関する値と、前記血圧測定部から得られる血圧値及び前記循環センサが計測した血管の血管径を用いて決定された補正係数を用いて算出した平均血圧値とを用いて、血液レオロジーを求めることを特徴とする循環動態測定装置。
In a circulatory dynamics measuring device that detects the circulatory dynamics of blood circulating inside the living body by transmitting and receiving waves from the surface of the living body to the blood inside the living body,
A circulation sensor for detecting the circulation dynamics;
A drive unit for driving the circulation sensor;
A circulation signal receiver for receiving a signal from the circulation sensor;
A microphone disposed on the side of the circulation sensor and used to measure blood pressure of the living body;
A pressure signal receiving unit that receives a signal from a blood pressure measurement unit that measures blood pressure based on detection of the microphone;
A signal calculation unit that executes a processing program related to the circulation dynamics using data obtained from the drive unit, the circulation signal reception unit, and the pressure signal reception unit;
An output unit that outputs a processing result by the signal calculation unit;
The signal calculation unit includes a value correlated with a blood flow velocity flowing through the blood vessel in the living body detected by the circulation sensor, a blood pressure value obtained from the blood pressure measurement unit, and a blood vessel diameter of the blood vessel measured by the circulation sensor. A circulatory dynamics measuring device characterized in that blood rheology is obtained using an average blood pressure value calculated using a correction coefficient determined by using the correction coefficient.
生体表面から生体内部の血液に波動を送受信して、生体内部を循環する血液の循環動態を検出する循環動態測定装置において、
前記循環動態を検出する循環センサと、
前記循環センサを駆動させる駆動部と、
前記循環センサからの信号を受信する循環信号受信部と、
前記循環センサの側方に配置され、前記生体の血圧を測定するために用いられる振動センサと、
前記振動センサの検出に基づき血圧を測定する血圧測定部からの信号を受信する圧力信号受信部と、
前記駆動部と、前記循環信号受信部と、前記圧力信号受信部と、から得られるデータを用いて前記循環動態に関する処理プログラムを実行する信号演算部と、
前記信号演算部による処理結果を出力する出力部とを有し、
前記信号演算部は、前記循環センサにより検出される前記生体内の血管を流れる血流速度と相関する値と、前記血圧測定部から得られる血圧値及び前記循環センサが計測した血管の血管径を用いて決定された補正係数を用いて算出した平均血圧値とを用いて、血液レオロジーを求めることを特徴とする循環動態測定装置。
In a circulatory dynamics measuring device that detects the circulatory dynamics of blood circulating inside the living body by transmitting and receiving waves from the surface of the living body to the blood inside the living body,
A circulation sensor for detecting the circulation dynamics;
A drive unit for driving the circulation sensor;
A circulation signal receiver for receiving a signal from the circulation sensor;
A vibration sensor which is disposed on the side of the circulation sensor and used to measure blood pressure of the living body;
A pressure signal receiving unit that receives a signal from a blood pressure measurement unit that measures blood pressure based on detection of the vibration sensor;
A signal calculation unit that executes a processing program related to the circulation dynamics using data obtained from the drive unit, the circulation signal reception unit, and the pressure signal reception unit;
An output unit that outputs a processing result by the signal calculation unit;
The signal calculation unit includes a value correlated with a blood flow velocity flowing through the blood vessel in the living body detected by the circulation sensor, a blood pressure value obtained from the blood pressure measurement unit, and a blood vessel diameter of the blood vessel measured by the circulation sensor. A circulatory dynamics measuring device characterized in that blood rheology is obtained using an average blood pressure value calculated using a correction coefficient determined by using the correction coefficient.
生体表面から生体内部の血液に波動を送受信して、生体内部を循環する血液の循環動態を検出する循環動態測定装置において、
前記循環動態を検出する循環センサと、
前記循環センサを駆動させる駆動部と、
前記循環センサからの信号を受信する循環信号受信部と、
前記循環センサの側方に配置され、前記生体の血圧を測定するために用いられる圧力センサと、
前記圧力センサの検出に基づき血圧を測定する血圧測定部からの信号を受信する圧力信号受信部と、
前記駆動部と、前記循環信号受信部と、前記圧力信号受信部と、から得られるデータを用いて前記循環動態に関する処理プログラムを実行する信号演算部と、
前記信号演算部による処理結果を出力する出力部とを有し、
前記信号演算部は、前記循環センサにより検出される前記生体内の血管を流れる血流速度と相関する値と、前記血圧測定部から得られる血圧値及び前記循環センサが計測した血管の血管径を用いて決定された補正係数を用いて算出した平均血圧値とを用いて、血液レオロジーを求めることを特徴とする循環動態測定装置。
In a circulatory dynamics measuring device that detects the circulatory dynamics of blood circulating inside the living body by transmitting and receiving waves from the surface of the living body to the blood inside the living body,
A circulation sensor for detecting the circulation dynamics;
A drive unit for driving the circulation sensor;
A circulation signal receiver for receiving a signal from the circulation sensor;
A pressure sensor disposed on the side of the circulation sensor and used to measure blood pressure of the living body;
A pressure signal receiving unit that receives a signal from a blood pressure measurement unit that measures blood pressure based on detection of the pressure sensor;
A signal calculation unit that executes a processing program related to the circulation dynamics using data obtained from the drive unit, the circulation signal reception unit, and the pressure signal reception unit;
An output unit that outputs a processing result by the signal calculation unit;
The signal calculation unit includes a value correlated with a blood flow velocity flowing through the blood vessel in the living body detected by the circulation sensor, a blood pressure value obtained from the blood pressure measurement unit, and a blood vessel diameter of the blood vessel measured by the circulation sensor. A circulatory dynamics measuring device characterized in that blood rheology is obtained using an average blood pressure value calculated using a correction coefficient determined by using the correction coefficient.
請求項1乃至請求項4のいずれかに記載の循環動態測定装置において、
前記信号演算部は、前記平均血圧値をPm、前記血圧値から求まる最低血圧値をPd、最高血圧値をPs、前記補正係数をCとすると、
Pm=Pd+(Ps-Pd)/C
で表される式によって前記平均血圧値Pm算出し、
前記信号演算部は、前記生体内の血管を流れる前記血流速度と相関する値と、前記平均血圧値Pmとを用いて、血液レオロジーを求めることを特徴とする循環動態測定装置。
In the circulatory dynamics measuring device according to any one of claims 1 to 4,
The signal calculation unit, when the average blood pressure value is Pm, the minimum blood pressure value obtained from the blood pressure value is Pd, the maximum blood pressure value is Ps, and the correction coefficient is C,
Pm = Pd + (Ps-Pd) / C
The mean blood pressure value Pm is calculated by the formula represented by
The circulatory dynamics measuring device characterized in that the signal calculation unit obtains blood rheology using a value correlated with the blood flow velocity flowing through a blood vessel in the living body and the average blood pressure value Pm.
請求項1乃至請求項5のいずれかに記載の循環動態測定装置において、
前記信号演算部は、前記血流速度と相関する値に前記平均血圧値の逆数を掛けて血液レオロジーを求めることを特徴とする循環動態測定装置。
In the circulatory dynamics measuring device according to any one of claims 1 to 5,
The said signal calculating part calculates | requires a blood rheology by multiplying the reciprocal number of the said average blood pressure value by the value correlated with the said blood flow velocity, The circulatory dynamics measuring apparatus characterized by the above-mentioned.
請求項1乃至請求項6のいずれかに記載の循環動態測定装置において、
前記循環センサが前記血圧測定部内部にあることを特徴とする循環動態測定装置。
In the circulatory dynamics measuring device according to any one of claims 1 to 6,
The circulatory dynamics measuring device, wherein the circulatory sensor is inside the blood pressure measuring unit.
JP2008239037A 2008-09-18 2008-09-18 Cardiodynamic measurement device Expired - Fee Related JP4388585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239037A JP4388585B2 (en) 2008-09-18 2008-09-18 Cardiodynamic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239037A JP4388585B2 (en) 2008-09-18 2008-09-18 Cardiodynamic measurement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002323330A Division JP2004154376A (en) 2002-11-07 2002-11-07 Circulation kinetics measuring apparatus

Publications (2)

Publication Number Publication Date
JP2008296061A true JP2008296061A (en) 2008-12-11
JP4388585B2 JP4388585B2 (en) 2009-12-24

Family

ID=40170105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239037A Expired - Fee Related JP4388585B2 (en) 2008-09-18 2008-09-18 Cardiodynamic measurement device

Country Status (1)

Country Link
JP (1) JP4388585B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230228A (en) * 2014-06-04 2015-12-21 株式会社Dnpファインケミカル Blood condition regulation method
JP2017520280A (en) * 2014-05-15 2017-07-27 ノヴァラング ゲゼルシャフト ミット ベシュレンクテル ハフツング Medical technical measuring apparatus and measuring method
CN108652665A (en) * 2018-03-21 2018-10-16 业成科技(成都)有限公司 Sensing device further
US10463306B2 (en) 2014-05-15 2019-11-05 Novalung Gmbh Medical measuring system and method for production of the measuring system
US10814054B2 (en) 2015-10-23 2020-10-27 Novalung Gmbh Intermediate element for a medical extracorporeal fluid line, and system and method associated therewith

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453719B1 (en) 2014-07-07 2014-10-21 한국생산기술연구원 Method for supporting bleeding to obtain arterial blood sample
KR20180076806A (en) 2016-12-28 2018-07-06 삼성전자주식회사 bio-signal feature scaling apparatus and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520280A (en) * 2014-05-15 2017-07-27 ノヴァラング ゲゼルシャフト ミット ベシュレンクテル ハフツング Medical technical measuring apparatus and measuring method
US10391227B2 (en) 2014-05-15 2019-08-27 Novalung Gmbh Medico-technical measuring device and measuring method
US10463306B2 (en) 2014-05-15 2019-11-05 Novalung Gmbh Medical measuring system and method for production of the measuring system
US11357899B2 (en) 2014-05-15 2022-06-14 Novalung Gmbh Measuring device and method for measuring a property of a fluid in a line
JP2015230228A (en) * 2014-06-04 2015-12-21 株式会社Dnpファインケミカル Blood condition regulation method
US10814054B2 (en) 2015-10-23 2020-10-27 Novalung Gmbh Intermediate element for a medical extracorporeal fluid line, and system and method associated therewith
CN108652665A (en) * 2018-03-21 2018-10-16 业成科技(成都)有限公司 Sensing device further

Also Published As

Publication number Publication date
JP4388585B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4206218B2 (en) Cardiodynamic measurement device
US8277388B2 (en) Blood rheology measuring apparatus
JP4388585B2 (en) Cardiodynamic measurement device
JP5016718B2 (en) Atherosclerosis evaluation device
WO2004103185A1 (en) Ultrasonograph
WO2005112774A1 (en) Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
JP3848589B2 (en) Cardiodynamic measurement device
JP2004154376A (en) Circulation kinetics measuring apparatus
RU2563229C1 (en) Method for assessing growing child&#39;s cardiovascular fitness at early pathology stages
JP5471736B2 (en) Pulse wave measuring device and pulse wave measuring method
JP5866776B2 (en) Pulse wave measuring device and pulse wave measuring method
JP3913612B2 (en) Cardiodynamic measurement device
JP3820162B2 (en) Cardiodynamic measurement device
JP2003250767A (en) Dynamic circulation movement measurement apparatus
EP2034901A1 (en) Global and local detection of blood vessel elasticity
Seo et al. Non-Invasive evaluation of a carotid arterial pressure waveform using motion-tolerant ultrasound measurements during the valsalva maneuver
JP4754597B2 (en) Cardiodynamic measurement device, cardiovascular sensor
JP3816400B2 (en) Cardiodynamic measurement device
Joseph et al. Non-invasive estimation of arterial compliance
JP5016717B2 (en) Atherosclerosis evaluation device
JP2011167347A (en) Circulatory organ function measuring apparatus, circulatory organ function measuring method and program
Xu et al. Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound
JP4648700B2 (en) Blood rheology measurement device and blood rheology measurement method
JP5344294B2 (en) Vessel wall hardness evaluation device
JP4567481B2 (en) Non-invasive blood analysis measurement device and blood measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Ref document number: 4388585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees