JP2008295867A - Biological signal measuring device - Google Patents

Biological signal measuring device Download PDF

Info

Publication number
JP2008295867A
JP2008295867A JP2007147207A JP2007147207A JP2008295867A JP 2008295867 A JP2008295867 A JP 2008295867A JP 2007147207 A JP2007147207 A JP 2007147207A JP 2007147207 A JP2007147207 A JP 2007147207A JP 2008295867 A JP2008295867 A JP 2008295867A
Authority
JP
Japan
Prior art keywords
electrode
biological signal
measuring device
detection
myoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007147207A
Other languages
Japanese (ja)
Inventor
Norihiro Oisaka
則弘 追坂
Isamu Kajitani
勇 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OISAKA DENSHI KIKI KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
OISAKA DENSHI KIKI KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OISAKA DENSHI KIKI KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical OISAKA DENSHI KIKI KK
Priority to JP2007147207A priority Critical patent/JP2008295867A/en
Publication of JP2008295867A publication Critical patent/JP2008295867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitively coupled biological signal measuring device, especially a myoelectric sensor, which is produced at low cost, has a degree of freedom in its shape and solves the problem of noises generated when sweating or the like. <P>SOLUTION: The biological signal measuring device measures a biological signal of a subject. The biological signal measuring signal is provided with an electric difference detection means having a detection electrode 42 for measuring an electric potential from a biological signal of a subject and a reference electrode for detecting a reference electric potential by contacting the subject, and a signal processing circuit for processing a signal output from the electric difference detection means. The detection electrode 42 consists of a two-layered structure including a conductor electrode 41a and a thin tape-like member made of an insulating material 41b layered on the surface of the conductor electrode 41a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

検体者の生体信号、特に筋電位を容量結合型で計測する生体信号計測装置に関する。   The present invention relates to a biological signal measuring apparatus that measures a biological signal of a subject person, in particular, a myoelectric potential by a capacitive coupling type.

筋収縮時に観測される生体信号は筋電とよばれ,各筋繊維における100mV程度の電位変化を生体内あるいは皮膚表面で測定したものである。生体内で侵襲的に測定する方式は細かい筋活動をみるのに適し、皮膚表面で非侵襲的に測る方式はより大きな筋活動に適している。   The biological signal observed during muscle contraction is called myoelectricity, and is measured in vivo or on the skin surface by a potential change of about 100 mV in each muscle fiber. The method of measuring invasively in a living body is suitable for seeing detailed muscle activity, and the method of measuring noninvasively on the skin surface is suitable for larger muscle activity.

筋電のアプリケーションとしては、筋疾患などの診断、筋疲労や運動機能の人間工学的評価に加え、制御やヒューマンインタフェース用の信号源として用いられている。筋疾患の診断など、筋活動を忠実に反映した信号を必要とするケースにおいては、針電極などを用いて侵襲的に筋電を測定する。これに対して、ヒューマンインタフェース等への適用においては手軽に測定できることが重視されるため、非侵襲的に皮膚表面で測定することが多い。   Myoelectric applications are used as signal sources for control and human interface in addition to diagnosing muscle diseases and ergonomic evaluation of muscle fatigue and motor function. In cases where a signal that faithfully reflects muscle activity, such as diagnosis of a muscular disease, is required, myoelectricity is measured invasively using a needle electrode or the like. On the other hand, in application to a human interface or the like, since it is important to be able to measure easily, measurement is often performed non-invasively on the skin surface.

しかしながら、筋電は生体内を伝わるときに減衰するため、皮膚表面で観測される信号は極めて微弱であり、特に商用電源から混入するノイズの影響は無視することができない。この外乱ノイズは皮膚と電極との接触抵抗が一因であり、従来は、導電性のペーストを用いる等の前処理によって接触抵抗を小さくすることにより、外乱ノイズの影響を小さくする方式が用いられてきた。しかし、導電ペーストを用いる方式では、長時間、連続して測定する場合に、導電性ペーストの経時変化が問題となり、また、導電性ペーストの皮膚への塗布、剥がし、測定後の皮膚の洗浄等、脱着時の負担が大きく、実用化の妨げとなっていた。さらに、ヒューマンインタフェース等への適用においては、筋電センサの装着を専門知識のない一般の作業員が行う必要があり、脱着の頻度も大きいことから、装着時の繁雑な前処理が敬遠される傾向にあった。また、実際の使用場面では、十分な皮膚の前処理を行わずに使用することによってノイズが混入し、期待した通りの動作をしないケースが発生している。   However, since myoelectrics are attenuated when transmitted through the living body, the signal observed on the skin surface is extremely weak, and the influence of noise mixed in from a commercial power source cannot be ignored. This disturbance noise is partly due to the contact resistance between the skin and the electrode. Conventionally, a method of reducing the influence of the disturbance noise by reducing the contact resistance by pretreatment such as using a conductive paste has been used. I came. However, in the method using the conductive paste, the time-dependent change of the conductive paste becomes a problem when measuring continuously for a long time. Also, the conductive paste is applied to the skin, peeled off, washed after the measurement, etc. The burden at the time of detachment was large, which hindered practical application. Furthermore, in application to human interfaces, etc., it is necessary for ordinary workers without specialized knowledge to attach myoelectric sensors, and since the frequency of attachment / detachment is large, complicated preprocessing at the time of attachment is avoided. There was a trend. Further, in actual use situations, there are cases where noise is mixed in by using without performing sufficient skin pretreatment, and the operation does not work as expected.

この問題の解決のために、皮膚の前処理を必要とせず、手軽に扱うことのできる筋電センサとして、絶縁物電極を用いた静電容量性結合に基づく筋電センサが開発されている。このセンサでは、皮膚の状態に影響されにくい測定が可能であるに留まらず、布などの絶縁物を介して筋電を測定することができる(例えば、非特許文献1参照)
また、例えば、筋電義手として、義肢ソケットの内側に筋電センサを取り付け、義肢ソケットの内側に人体の手の断端部を挿入して、断端部の皮膚の上から直接筋電を測定することが知られている(例えば、特許文献1参照)。
梶谷勇 樋口哲也:「絶縁型電極を用いた筋電センサの開発」電子情報通信学会技術研究報告. WIT2006-13, p71-76(2006) (電子情報通信学会/社団法人電子情報通信学会) 特開平11−113866号公報
In order to solve this problem, a myoelectric sensor based on capacitive coupling using an insulator electrode has been developed as a myoelectric sensor that does not require skin pretreatment and can be easily handled. With this sensor, measurement that is not easily influenced by the state of the skin is possible, and myoelectricity can be measured through an insulator such as a cloth (for example, see Non-Patent Document 1).
Also, for example, as a myoelectric prosthetic hand, a myoelectric sensor is attached to the inside of the prosthetic limb socket, a stump portion of the human hand is inserted inside the prosthetic limb socket, and the myoelectricity is measured directly from above the skin at the stump portion. It is known to do (see, for example, Patent Document 1).
Isamu Isani Tetsuya Higuchi: "Development of myoelectric sensor using insulated electrode" IEICE technical report. WIT2006-13, p71-76 (2006) (The Institute of Electronics, Information and Communication Engineers / The Institute of Electronics, Information and Communication Engineers) Japanese Patent Laid-Open No. 11-113866

非特許文献1に示すものでは、検出電極部で静電容量性結合に用いる電気絶縁体として、陽極酸化アルミニウム、酸化珪素、チタン酸バリウム、二酸化シリコン、窒化珪素などのセラミックコンデンサを加工して用いているため、電極の大きさや形を自由に変更するのが困難であり、形状の自由度が不足している。また、使用時の耐久性に問題があった。   In the non-patent document 1, a ceramic capacitor such as anodized aluminum, silicon oxide, barium titanate, silicon dioxide, or silicon nitride is processed and used as an electrical insulator used for capacitive coupling in the detection electrode portion. Therefore, it is difficult to freely change the size and shape of the electrode, and the degree of freedom in shape is insufficient. Moreover, there was a problem in durability during use.

特許文献1に示すものでは、柔軟な基板に検出センサを設けることで、皮膚表面に沿って自在に変形し得る基板が、皮膚表面に対して、弾性変形可能な支持部材を介して相対的に押付けられるようになっており、皮膚と検出センサとの接触不良を防止するようにしている。しかし、この特許文献1では基板構造を工夫して接触不良を低減するようにしているが、接触抵抗に起因する問題を解決するものではない。   In the one disclosed in Patent Document 1, a substrate that can be freely deformed along the skin surface by providing a detection sensor on a flexible substrate is relatively supported by an elastically deformable support member with respect to the skin surface. It is designed to be pressed and to prevent poor contact between the skin and the detection sensor. However, in Patent Document 1, the substrate structure is devised to reduce the contact failure, but the problem due to the contact resistance is not solved.

このため、皮膚の接触抵抗に関わらず高感度に検出可能なものであって、その上、低コストで形状に自由度のある電極材料を用いた容量結合型筋電センサ、即ち容量結合型生体信号計測装置を開発することが強く望まれている。   For this reason, a capacitively coupled myoelectric sensor using an electrode material that can be detected with high sensitivity regardless of the contact resistance of the skin and has a low degree of freedom in shape, that is, a capacitively coupled biological body. It is strongly desired to develop a signal measuring device.

そのために、本願の発明者は、皮膚の接触抵抗に関わらず高感度に検出可能なものとしては容量結合型筋電センサであることが好ましいので、容量結合型筋電センサを前提として、その上、低コストで形状に自由度のある電極材料について、種々の研究を重ねていった。特に、検出電極部の電気絶縁体としてセラミックコンデンサに代わるものについて、研究を重ねていった。   Therefore, the inventor of the present application preferably uses a capacitively coupled myoelectric sensor as a sensor that can be detected with high sensitivity regardless of the contact resistance of the skin. Various researches have been made on electrode materials with low cost and flexibility in shape. In particular, research has been conducted on an alternative to a ceramic capacitor as an electrical insulator of the detection electrode section.

その結果、本願の発明者は、コンデンサなどの容量型の絶縁物にこだわっていると要求を満足するものを得られないので、導電体電極、例えば銀電極等の導電体電極を使って、容量結合型生体信号計測装置(例えば、筋電センサ)を作成することができないかと言う逆転発想を行った。ただ、導電電極体を使用すると、低コストで形状に自由度はあるが、発汗時等で電極と汗(電解液)の間で電極電位が発生し、これに起因するノイズが混入することが問題となる。   As a result, the inventor of the present application cannot obtain what satisfies the requirements when sticking to a capacitive insulator such as a capacitor, and therefore, using a conductor electrode such as a silver electrode, An inversion idea was made as to whether a combined biological signal measuring device (for example, myoelectric sensor) could be created. However, if a conductive electrode body is used, the shape is flexible at a low cost, but an electrode potential is generated between the electrode and sweat (electrolyte) when sweating, etc., and noise caused by this may be mixed. It becomes a problem.

本発明では、上記発汗時等のノイズ問題を解決しつつ、低コストで形状に意自由度のある容量結合型生体信号計測装置を提供することを目的とする。   It is an object of the present invention to provide a capacitively coupled biological signal measuring device having a degree of freedom in shape at a low cost while solving the above-described noise problem such as sweating.

具体的には、導電体電極を使って容量結合型電極にするために、導電体電極の表面に、絶縁部材、特にチタンテープなどの誘電率の高い絶縁テープ状部材を配置して疑似容量結合型電極としたことを特徴とする。   Specifically, in order to make a capacitively coupled electrode using a conductor electrode, an insulating member, particularly an insulating tape-like member having a high dielectric constant, such as titanium tape, is arranged on the surface of the conductor electrode, and pseudo capacitive coupling is performed. It is characterized by being a mold electrode.

具体的には、請求項1の発明は、検体者の生体信号を測定する生体信号計測装置であって、上記検体者からの生体信号に基づく電位を測定する検出電極部と該検体者に接触させて基準電位を検出する基準電極部を備える差電検出手段と、上記差電検出手段から出力される信号を処理する信号処理回路とを備え、上記検出電極部が、導電体電極と、該導電体電極の表面に薄いテープ状部材からなる絶縁物を積層した2重構造からなる特徴とする。   Specifically, the invention of claim 1 is a biological signal measuring apparatus that measures a biological signal of a specimen person, and contacts the specimen electrode with a detection electrode unit that measures a potential based on the biological signal from the specimen person. Differential detection means comprising a reference electrode section for detecting a reference potential and a signal processing circuit for processing a signal output from the differential detection means, the detection electrode section comprising a conductor electrode, It is characterized by a double structure in which an insulator made of a thin tape-like member is laminated on the surface of the conductor electrode.

請求項2の発明は、請求項1に記載の生体信号計測装置において、生体信号計測装置が検体者の皮膚表面から筋電位を測定する筋電計測装置であって、該検出電極部は該皮膚表面からの筋電位を測定し、基準電極部は該皮膚表面の基準電位を検出するようになっていることを特徴とする。   The invention of claim 2 is the biosignal measurement device according to claim 1, wherein the biosignal measurement device measures a myoelectric potential from the skin surface of the subject person, and the detection electrode unit is the skin The myoelectric potential from the surface is measured, and the reference electrode portion detects the reference potential of the skin surface.

請求項3の発明は、請求項1又は2に記載の生体信号計測装置において、導電体電極が、銀電極、銀・塩化銀電極、金電極のいずれか1つからなることを特徴とする。   According to a third aspect of the present invention, in the biological signal measuring apparatus according to the first or second aspect, the conductor electrode is composed of any one of a silver electrode, a silver / silver chloride electrode, and a gold electrode.

請求項4に発明は、請求項1ないし3のいずれか1つに記載の生体信号計測装置において、差電検出手段の検出電極部が2つ設けられ、基準電極部が、両検出電極部の間に該両検出電極部から等距離の位置に配置されたことを特徴とする。   According to a fourth aspect of the present invention, in the biological signal measuring device according to any one of the first to third aspects, the two detection electrode portions of the differential detection means are provided, and the reference electrode portion is provided between the two detection electrode portions. It is characterized by being arranged at an equidistant position from both the detection electrode portions.

請求項1の発明によれば、微細な電位である生体信号を高精度に検出でき、検体者の検出部位や乾燥等の状態によらず同レベルの生体信号を計測可能であることに加え、低コストで形状自由度が高い容量結合型生体信号検出装置を得られる。その上、絶縁物が薄いテープ状部材であり、確実に絶縁できて、且つ絶縁物を簡単に交換できる。   According to the invention of claim 1, in addition to being able to detect a biological signal that is a fine electric potential with high accuracy and measuring a biological signal at the same level regardless of the detection site of the specimen person or the state of dryness, It is possible to obtain a capacitively coupled biological signal detection device with low shape and high degree of freedom. In addition, the insulator is a thin tape-like member that can be reliably insulated and can be easily replaced.

請求項2の発明によれば、微細な電位である筋電を高精度に検出でき、皮膚の乾燥具合によらず同レベルの筋電信号を計測可能であることに加え、低コストで形状自由度が高い容量結合型筋電センサを得られる。   According to the invention of claim 2, in addition to being able to detect a myoelectric signal, which is a fine potential, with high accuracy and measuring a myoelectric signal of the same level regardless of the dryness of the skin, the shape can be freely formed at low cost. A capacitively coupled myoelectric sensor having a high degree can be obtained.

請求項3の発明によれば、更に低コストで、生体信号をより高精度に検出できる。   According to the invention of claim 3, a biological signal can be detected with higher accuracy at a lower cost.

請求項4の発明によれば、コンパクトな生体信号計測装置を得られる。   According to the invention of claim 4, a compact biological signal measuring device can be obtained.

以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

この実施形態では、本発明の生体信号検出装置を筋電センサに適用した場合を示す。図1及び2に示すように、筋電計測装置1の検出電極部2を、検出体Kの段端部Dの皮膚表面Hに被せた断端袋Fの上から接触させる。検出体Kの動作意思を筋電計測装置1で検出される信号によって検出し、義手Gを動作させる手助けとするように利用する。具体的には、筋電計測装置1の検出電極41,42はそれぞれ、図3及び図4に示すように、プラスチックなどの絶縁体のケース44に銀電極42a、42aが取り付けられ、この銀電極の上に、チタンテープ等の誘電率の高い絶縁テープ41b、42bを被覆し、疑似的なコンデンサ回路を形成して、生体の交流信号を検出する。検出電極41,42の間に、検出電極41,42から等距離の位置に基準電極43を取り付けている。   In this embodiment, a case where the biological signal detection device of the present invention is applied to an myoelectric sensor is shown. As shown in FIGS. 1 and 2, the detection electrode unit 2 of the myoelectric measurement device 1 is brought into contact from above the stapling bag F that covers the skin surface H of the step end D of the detection body K. The intention of movement of the detection body K is detected by a signal detected by the myoelectric measurement device 1 and used to help operate the prosthesis G. Specifically, as shown in FIGS. 3 and 4, the detection electrodes 41 and 42 of the myoelectric measurement device 1 have silver electrodes 42 a and 42 a attached to a case 44 made of an insulator such as plastic. On top of this, insulating tapes 41b and 42b having a high dielectric constant such as titanium tape are coated, and a pseudo capacitor circuit is formed to detect an alternating current signal of a living body. A reference electrode 43 is attached between the detection electrodes 41 and 42 at a position equidistant from the detection electrodes 41 and 42.

具体的な検出は、図1及び図2に示すように、筋電計測装置1の検出電極部41、42及び基準電極部43を検出体Kの皮膚表面Hに断端袋Fの上から接触させる。その結果、基準電極部43と検出電極部41、42とでそれぞれ検出電位s1、s2とが検出され、その検出電位s1、s2に外乱n1、n2との合算値s1+n1、s1+n2が差動増幅部24に入力される。差動増幅部24では、(s1+n1)−(s2+n2)が演算されて、その信号が増幅されて出力される。差動増幅部24は、差電検出部24aとプリ増幅部24bとを備える。   Specifically, as shown in FIGS. 1 and 2, the detection electrode portions 41 and 42 and the reference electrode portion 43 of the myoelectric measurement device 1 are brought into contact with the skin surface H of the detection body K from above the stapling bag F. Let As a result, the detection potentials s1 and s2 are detected by the reference electrode portion 43 and the detection electrode portions 41 and 42, respectively, and the sums s1 + n1 and s1 + n2 of the disturbances n1 and n2 are detected as the detection potentials s1 and s2. 24. The differential amplifier 24 calculates (s1 + n1) − (s2 + n2) and amplifies and outputs the signal. The differential amplifier 24 includes a differential detection unit 24a and a preamplifier 24b.

差電検出部24aにより、高精度に皮膚からの筋電を検出できる。プリ増幅部24bを設けたことにより、皮膚表面からの微細な筋電位をプリ増幅部で増幅することで、必要な信号を確実に検出できる。また、高インピーダンスのため、最もノイズの乗り易い電極―増幅部間の配線を最短距離にて接続することでノイズの影響を最小限に抑えることができる。   The myoelectricity from the skin can be detected with high accuracy by the difference detection unit 24a. By providing the preamplifier 24b, a necessary signal can be reliably detected by amplifying a fine myoelectric potential from the skin surface by the preamplifier. In addition, because of the high impedance, it is possible to minimize the influence of noise by connecting the wiring between the electrode and the amplification section that are most susceptible to noise at the shortest distance.

図5に示すように、差動増幅部24からの信号S11は、信号処理部30に送られる。信号処理部30では、例えば、遮断周波数が1.6Hzの第1ハイパスフィルタ32を設けて、1.6Hz以下の周波数成分を低減し、更に遮断周波数が1327Hzのローパスフィルタ31を設けて、この値以上の周波数成分を低減し、通常の外乱周波数領域である領域の周波数帯を除去するようにしている。この実施形態では、その上、通常では除去しない周波数領域を含む周波数領域の除去フィルタとして、遮断周波数が300Hzである第2ハイパスフィルタ33を設け、300Hz以下の周波数成分を低減している。この第2ハイパスフィルタ33によって、大きな外乱の1つである商用周波数領域を除去し、この周波数領域近辺の周波数成分も外乱要因として除去するようにした。その上、本実施形態では、断端袋Fを介して検出体Kの皮膚表面Hの信号を検出するようにしているが、断端袋8(F)と検出電極部41、42の接触圧が変化した場合等に発生する基線変動が大きいため、第2ハイパスフィルタによってこの影響を増幅前に除去するようにした。   As shown in FIG. 5, the signal S <b> 11 from the differential amplifier 24 is sent to the signal processor 30. In the signal processing unit 30, for example, a first high-pass filter 32 having a cut-off frequency of 1.6 Hz is provided to reduce a frequency component of 1.6 Hz or less, and a low-pass filter 31 having a cut-off frequency of 1327 Hz is provided. The above frequency components are reduced, and the frequency band of the region that is a normal disturbance frequency region is removed. In addition, in this embodiment, a second high-pass filter 33 having a cutoff frequency of 300 Hz is provided as a frequency domain removal filter including a frequency domain that is not normally removed, and frequency components of 300 Hz or less are reduced. The second high-pass filter 33 removes a commercial frequency region, which is one of large disturbances, and removes frequency components in the vicinity of this frequency region as disturbance factors. In addition, in the present embodiment, the signal of the skin surface H of the detection body K is detected via the stapling bag F, but the contact pressure between the stapling bag 8 (F) and the detection electrode portions 41 and 42. Since the baseline fluctuation that occurs when the value changes is large, this influence is removed before amplification by the second high-pass filter.

このように、所定周波数以下の周波数領域を大胆に除去した後の信号S12を増幅部34に送り、増幅器34で増幅する。増幅した後で、ノッチフィルタ35で、商用周波数である50Hz或いは60Hzを再度除去し、商用周波数の影響を確実に排除して、信号S13として出力する。その結果、筋電計測装置1として必要な筋電位を効果的に検出できる。   In this way, the signal S12 after boldly removing the frequency region below the predetermined frequency is sent to the amplification unit 34 and amplified by the amplifier 34. After amplification, the notch filter 35 again removes the commercial frequency of 50 Hz or 60 Hz, reliably eliminates the influence of the commercial frequency, and outputs the signal S13. As a result, the myoelectric potential necessary for the myoelectric measurement device 1 can be detected effectively.

検出電極部41,42で用いる絶縁体に要求される機能としては、絶縁できることと以外に、発汗に対して雑音信号を発生しにくいことが好ましい。特に、容易に取付け・取外しができて交換できることが好ましく、更には、皮膚に対して障害を与えない、低コストで得られるものが好ましい。絶縁物としては、例えば、絆創膏、耐震テープ、両面テープ、セロハンテープ(商標)、シールテープ等が適用できる。特に、チタンテープは、絶縁でき、発汗に対して雑音信号を発生しにくく、容易に取付け・取外しができるので、好ましい。   As a function required for the insulator used in the detection electrode portions 41 and 42, it is preferable that a noise signal is hardly generated against perspiration in addition to being able to be insulated. In particular, it is preferable that it can be easily attached / detached and exchanged, and further, it is preferable that it can be obtained at low cost without causing damage to the skin. As the insulator, for example, adhesive bandages, earthquake-resistant tape, double-sided tape, cellophane tape (trademark), seal tape, and the like can be applied. In particular, titanium tape is preferable because it can be insulated, hardly generates a noise signal against perspiration, and can be easily attached and detached.

この絶縁体の膜厚は、厚すぎると電位を生じ難くなり、絶縁がとれるのなら薄ければ薄いほど良く、一般的に用いられているテープの厚さであれば、静電容量性結合を維持できる厚さであり、素材によって厚さ自体は異なり数値化して特定することは難しい。   If the thickness of this insulator is too thick, it is difficult to generate an electric potential, and if insulation can be obtained, the thinner the better, the better the thickness of the tape that is generally used, and capacitive coupling. It is a thickness that can be maintained, and the thickness itself is different depending on the material, and it is difficult to specify it numerically.

電極としては、接触電位差が低いものが好ましく、銀電極、金電極、銀・塩化銀電極等が使用される。特に、電極電位差が低く、汗と電極とで電位差を生じにくいのは銀・塩化銀電極であるが、加工コストが高く耐久性に問題がある。また金電極では素材のコストが高い。銀電極は、筋電局や銀・塩化銀電極に比較して、電極電位の点で僅かに劣るが、加工しやすく材料コスト上でも有利である。   The electrode preferably has a low contact potential difference, and a silver electrode, a gold electrode, a silver / silver chloride electrode, or the like is used. In particular, it is a silver / silver chloride electrode that has a low electrode potential difference and is unlikely to cause a potential difference between sweat and an electrode, but has a high processing cost and a problem in durability. The gold electrode is expensive. Silver electrodes are slightly inferior in terms of electrode potential compared to myoelectric stations and silver / silver chloride electrodes, but are easy to process and advantageous in terms of material cost.

(実施例1)
図4に示すように、銀電極41、42の上に厚さ0.2mmのチタンテープを貼り付け、中央に基準電極43を装着した。仕様としては、ゲイン(プリ増幅部24b)は、13.821倍、入力インピーダンスは1000TΩ、CMR(分弁率)は78dBとした。
Example 1
As shown in FIG. 4, a 0.2 mm thick titanium tape was pasted on the silver electrodes 41 and 42, and the reference electrode 43 was mounted in the center. As specifications, the gain (preamplifier 24b) was 13.821 times, the input impedance was 1000 TΩ, and the CMR (divided valve ratio) was 78 dB.

(比較例1)
非特許文献1に示す容量結合型筋電センサを用い、測定用の電極として、還元再酸化型チタン酸バリウム系半導体磁気コンデンサを加工して、検出電極41、42の代わりに用いた。仕様は、実施例1と同じ。
(Comparative Example 1)
A capacitively coupled myoelectric sensor shown in Non-Patent Document 1 was used, and a reduced re-oxidation type barium titanate semiconductor magnetic capacitor was processed as an electrode for measurement and used instead of the detection electrodes 41 and 42. The specifications are the same as in Example 1.

次に、実施形態と比較例1とを用いた筋電の測定例を説明する。   Next, an example of measuring myoelectricity using the embodiment and Comparative Example 1 will be described.

実施形態の筋電計測装置及び比較例1の筋電計測装置を、それぞれ前腕屈筋群の筋腹付近の皮膚表面に並べてリストバンドで固定した。実施形態では基準電極43を一体に埋め込んでいるが、比較例1と実験条件をそろえるために,共通の基準電極を前腕の伸筋側の皮膚表面に接触させて測定を行った。   The myoelectric measurement device of the embodiment and the myoelectric measurement device of Comparative Example 1 were arranged on the skin surface in the vicinity of the muscle abdomen of the forearm flexor muscle group and fixed with a wristband. In the embodiment, the reference electrode 43 is embedded integrally, but in order to align the experimental conditions with Comparative Example 1, the measurement was performed by bringing the common reference electrode into contact with the skin surface on the extensor side of the forearm.

測定は3種類行い、まず(1)脱力時に混入するノイズ信号を測定し、次に(2)最大収縮時に観測される信号の測定を行った。更に(3)電子メトロノームにあわせて1秒毎に脱力と最大収縮を繰り返しながら測定した。図6〜図11に測定した信号波形のグラフを示し、図6,8及び10が比較例1であり、図7,9及び11が実施形態の測定結果を示す。上段がアンプから出力されるEMG信号をAD変換して取り込んだ電圧で,下段が信号のパワースペクトルである。   Three types of measurements were performed. First, (1) the noise signal mixed during weakness was measured, and then (2) the signal observed during maximum contraction was measured. In addition, (3) measurement was repeated while repeating weakness and maximum contraction every second according to the electronic metronome. 6 to 11 show graphs of the measured signal waveforms, FIGS. 6, 8 and 10 show Comparative Example 1, and FIGS. 7, 9 and 11 show the measurement results of the embodiment. The upper row is the voltage obtained by AD conversion of the EMG signal output from the amplifier, and the lower row is the signal power spectrum.

図6と図7の脱力時のパワースペクトルを比較すると、比較例1に対して実施形態の方が50Hzの商用電源ノイズの混入が大きいものの、図8、図9の最大収縮時のグラフからみると、どちらも50Hzのノイズレベルを上回る筋電信号を測定できていることが解る。また、図10と図11に示すメトロノームにあわせた筋収縮時のグラフからは、比較例1でも実施形態でも筋収縮と脱力を明確に分離可能な信号を測定できているのがわかる。
またパワースペクトルのグラフから、銀電極41a(42a)をチタンテープ41b(42b)で絶縁した場合に、低周波成分と高周波成分がともに減衰しているのがわかる。チタンテープ41b(42b)と銀電極41a(42a)の組合せが、帯域通過フィルタのような働きをしていると考えられる。これらのグラフから、比較例1と実施形態では遜色なく、筋収縮時と脱力時を明確に分離可能であることがわかる。即ち、実施形態の筋電センサが疑似容量結合型筋電センサとして、容量結合型筋電センサと同レベルの筋電検出が可能であることを示している。
Comparing the power spectrum at the time of weakness in FIG. 6 and FIG. 7, the embodiment is larger in comparison with the first comparative example, but it is seen from the graphs at the time of the maximum contraction in FIG. 8 and FIG. It can be seen that both can measure myoelectric signals exceeding the noise level of 50 Hz. Further, it can be seen from the graphs at the time of muscle contraction in accordance with the metronome shown in FIGS. 10 and 11 that a signal capable of clearly separating muscle contraction and weakness can be measured in both Comparative Example 1 and the embodiment.
Further, it can be seen from the graph of the power spectrum that when the silver electrode 41a (42a) is insulated by the titanium tape 41b (42b), both the low frequency component and the high frequency component are attenuated. The combination of the titanium tape 41b (42b) and the silver electrode 41a (42a) is considered to function as a band pass filter. From these graphs, it can be seen that in Comparative Example 1 and the embodiment, the muscle contraction and weakness can be clearly separated. That is, it is shown that the myoelectric sensor of the embodiment can detect myoelectricity at the same level as the capacitively coupled myoelectric sensor as a pseudo capacitively coupled myoelectric sensor.

なお、実施形態は筋電センサであるが、本発明は、この筋電センサに限らず他の構造の筋電センサにも適用でき、更には他の生体信号計測装置にも適用できるものである。   In addition, although embodiment is a myoelectric sensor, this invention is applicable not only to this myoelectric sensor but to the myoelectric sensor of other structures, Furthermore, it can apply also to another biological signal measuring device. .

以上説明したように、本発明に係る生体信号計測装置は、各種生体信号の検出、例えば筋電義手や筋電義足などの筋電センサ等に適用できる。   As described above, the biological signal measuring apparatus according to the present invention can be applied to detection of various biological signals, for example, myoelectric sensors such as myoelectric prosthetic hands and myoelectric prostheses.

本発明を筋電センサに適用した実施形態に係わり、差電検出手段を模式的に示したものである。The present invention relates to an embodiment in which the present invention is applied to a myoelectric sensor, and schematically shows a differential electric power detection means. 実施形態に係わる筋電センサを筋電義手に使用する状態を示す。The state which uses the myoelectric sensor concerning embodiment for a myoelectric prosthetic hand is shown. 図4のA−A断面を示す。The AA cross section of FIG. 4 is shown. 実施形態に係わる筋電計測装置の外観を説明する斜視図を示す。The perspective view explaining the external appearance of the electromyogram measuring device concerning an embodiment is shown. 実施形態に係わる筋電計測装置の信号処理回路のブロック図を示す。The block diagram of the signal processing circuit of the myoelectric measurement apparatus concerning embodiment is shown. 比較例1において脱力時の計測値を示すグラフである。5 is a graph showing measured values at the time of weakness in Comparative Example 1. 実施形態において脱力時の計測値を示すグラフである。It is a graph which shows the measured value at the time of weakness in embodiment. 比較例1において最大収縮時の計測値を示すグラフである。6 is a graph showing measured values at maximum contraction in Comparative Example 1. 実施形態において最大収縮時の計測値を示すグラフである。It is a graph which shows the measured value at the time of maximum contraction in an embodiment. 比較例1において脱力/収縮を繰り返したときの計測値を示すグラフである。It is a graph which shows a measured value when weak force / shrinkage is repeated in Comparative Example 1. 実施形態において脱力/収縮を繰り返したときの計測値を示すグラフである。It is a graph which shows a measured value when repeating weak force / shrinkage in an embodiment.

符号の説明Explanation of symbols

1 筋電計測装置
2 差電検出手段
41 検出電極部
41a 銀電極
41b 絶縁物
42 検出電極部
42a 銀電極
42b 絶縁物
22 差電検出部
23 基準電極部
24 差動増幅部
30 信号処理回路
31 ローパスフィルタ
32 第1ハイパスフィルタ
33 第2ハイパスフィルタ
34 増幅部
35 ノッチフィルタ
DESCRIPTION OF SYMBOLS 1 Myoelectric measurement apparatus 2 Differential electric power detection means 41 Detection electrode part 41a Silver electrode 41b Insulator 42 Detection electrode part 42a Silver electrode 42b Insulator 22 Differential electric current detection part 23 Reference electrode part 24 Differential amplification part 30 Signal processing circuit 31 Low pass Filter 32 First high-pass filter 33 Second high-pass filter 34 Amplifying unit 35 Notch filter

Claims (4)

検体者の生体信号を測定する生体信号計測装置であって、
上記検体者からの生体信号に基づく電位を測定する検出電極部と該検体者に接触させて基準電位を検出する基準電極部を備える差電検出手段と、
上記差電検出手段から出力される信号を処理する信号処理回路とを備え、
上記検出電極部が、導電体電極と、該導電体電極の表面に薄いテープ状部材からなる絶縁物を積層した2重構造からなることを特徴とする生体信号計測装置。
A biological signal measuring device for measuring a biological signal of a specimen person,
A difference detection unit comprising a detection electrode unit for measuring a potential based on a biological signal from the sample person and a reference electrode unit for contacting the sample person to detect a reference potential;
A signal processing circuit for processing a signal output from the differential detection means,
The biological signal measuring device, wherein the detection electrode section has a double structure in which a conductor electrode and an insulator made of a thin tape-like member are laminated on the surface of the conductor electrode.
請求項1に記載の生体信号計測装置において、
生体信号計測装置が検体者の皮膚表面から筋電位を測定する筋電計測装置であって、該検出電極部は該皮膚表面からの筋電位を測定し、基準電極部は該皮膚表面の基準電位を検出するようになっていることを特徴とする生体信号計測装置。
The biological signal measuring apparatus according to claim 1,
The biosignal measuring device is a myoelectric measuring device that measures myoelectric potential from the skin surface of the subject person, wherein the detection electrode unit measures myoelectric potential from the skin surface, and the reference electrode unit is a reference potential of the skin surface A biological signal measuring device characterized in that the signal is detected.
請求項1又は2に記載の生体信号計測装置において、
導電体電極が、銀電極、銀・塩化銀電極、金電極のいずれか1つからなることを特徴とする生体信号計測装置。
In the biological signal measuring device according to claim 1 or 2,
The biological signal measuring device, wherein the conductor electrode is one of a silver electrode, a silver / silver chloride electrode, and a gold electrode.
請求項1ないし3のいずれか1つに記載の生体信号計測装置において、
差電検出手段の検出電極部が2つ設けられ、
基準電極部が、両検出電極部の間に該両検出電極部から等距離の位置に配置されたことを特徴とする生体信号計測装置。
In the biological signal measuring device according to any one of claims 1 to 3,
Two detection electrode portions of the differential detection means are provided,
A biological signal measuring device, wherein the reference electrode unit is arranged at a position equidistant from the two detection electrode units between the two detection electrode units.
JP2007147207A 2007-06-01 2007-06-01 Biological signal measuring device Pending JP2008295867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147207A JP2008295867A (en) 2007-06-01 2007-06-01 Biological signal measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147207A JP2008295867A (en) 2007-06-01 2007-06-01 Biological signal measuring device

Publications (1)

Publication Number Publication Date
JP2008295867A true JP2008295867A (en) 2008-12-11

Family

ID=40169953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147207A Pending JP2008295867A (en) 2007-06-01 2007-06-01 Biological signal measuring device

Country Status (1)

Country Link
JP (1) JP2008295867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533248A (en) * 2009-07-13 2012-12-20 ヴェーデクス・アクティーセルスカプ Hearing aid suitable for EEG detection and method for adapting such a hearing aid
JP2015164564A (en) * 2010-03-17 2015-09-17 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Implantable biomedical devices on bioresorbable substrates
JP2017148231A (en) * 2016-02-24 2017-08-31 株式会社カネカ Biomedical electrode and manufacturing method of the same
WO2019073648A1 (en) * 2017-10-12 2019-04-18 株式会社村田製作所 Biological signal sensor
JP2021072136A (en) * 2013-02-22 2021-05-06 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc Methods and devices for combining muscle activity sensor signals and inertial sensor signals for gesture-based control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533248A (en) * 2009-07-13 2012-12-20 ヴェーデクス・アクティーセルスカプ Hearing aid suitable for EEG detection and method for adapting such a hearing aid
US9025800B2 (en) 2009-07-13 2015-05-05 Widex A/S Hearing aid adapted for detecting brain waves and a method for adapting such a hearing aid
JP2015164564A (en) * 2010-03-17 2015-09-17 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Implantable biomedical devices on bioresorbable substrates
US9986924B2 (en) 2010-03-17 2018-06-05 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
JP2021072136A (en) * 2013-02-22 2021-05-06 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc Methods and devices for combining muscle activity sensor signals and inertial sensor signals for gesture-based control
JP2017148231A (en) * 2016-02-24 2017-08-31 株式会社カネカ Biomedical electrode and manufacturing method of the same
WO2019073648A1 (en) * 2017-10-12 2019-04-18 株式会社村田製作所 Biological signal sensor

Similar Documents

Publication Publication Date Title
KR101736978B1 (en) Apparatus and method for measuring biological signal
Kim et al. The electrically noncontacting ECG measurement on the toilet seat using the capacitively-coupled insulated electrodes
JP6162366B2 (en) Biological signal measuring apparatus and method, unit measuring instrument therefor, and recording medium according to the method
CN104717919B (en) ECG system with multi-mode electrically pole unit
WO2005032367A1 (en) Biometric sensor and biometric method
US10729379B2 (en) Electrical wearable capacitive biosensor and noise artifact suppression method
KR101947676B1 (en) Method and apparatus for measuring bio signal
US11607126B2 (en) Electrodes for biopotential measurement, biopotential measuring apparatus, and biopotential measuring method
Luo et al. A paper-based flexible tactile sensor array for low-cost wearable human health monitoring
CN113348427A (en) Soft capacitance type pressure sensor
Komensky et al. Ultra-wearable capacitive coupled and common electrode-free ECG monitoring system
JP2008295867A (en) Biological signal measuring device
Ueno et al. Feasibility of capacitive sensing of surface electromyographic potential through cloth
KR101843083B1 (en) Apparatus and method for measuring biological including multiple unit measurer
Gargiulo et al. A wearable contactless sensor suitable for continuous simultaneous monitoring of respiration and cardiac activity
Asadi et al. Graphene elastomer electrodes for medical sensing applications: Combining high sensitivity, low noise and excellent skin compatibility to enable continuous medical monitoring
CN111836577B (en) Contact state detection device and wearable equipment
Svärd et al. Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG
Yama et al. Development of a wireless capacitive sensor for ambulatory ECG monitoring over clothes
Ianov et al. Development of a capacitive coupling electrode for bioelectrical signal measurements and assistive device use
Schommartz et al. Advances in modern capacitive ECG systems for continuous cardiovascular monitoring
JP2011156194A (en) Electrocardiographic device
EP3880065A2 (en) Handheld ecg monitoring system with fault detection
Sandra et al. Simulation study of a contactless, capacitive ECG system
JP2007301157A (en) Myoelectric measuring instrument