JP2008293969A - Electrode for lithium secondary battery, lithium-ion secondary battery, and its manufacturing method - Google Patents

Electrode for lithium secondary battery, lithium-ion secondary battery, and its manufacturing method Download PDF

Info

Publication number
JP2008293969A
JP2008293969A JP2008114318A JP2008114318A JP2008293969A JP 2008293969 A JP2008293969 A JP 2008293969A JP 2008114318 A JP2008114318 A JP 2008114318A JP 2008114318 A JP2008114318 A JP 2008114318A JP 2008293969 A JP2008293969 A JP 2008293969A
Authority
JP
Japan
Prior art keywords
active material
current collector
electrode
columnar particles
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008114318A
Other languages
Japanese (ja)
Inventor
Keiichi Takahashi
慶一 高橋
Masaya Ugaji
正弥 宇賀治
Tatsuji Mino
辰治 美濃
Nobuaki Nagao
宣明 長尾
Masaki Hasegawa
正樹 長谷川
Yasutaka Furuyui
康隆 古結
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008114318A priority Critical patent/JP2008293969A/en
Publication of JP2008293969A publication Critical patent/JP2008293969A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability at the charging/discharging of a lithium secondary battery by the use of a material containing tin for a negative electrode active material. <P>SOLUTION: The electrode for the lithium secondary battery is provided with a sheet-like current collector and an active material layer carried by the current collector. The active material layer includes a plurality of columnar particles having at least one bent part and containing tin elements. The electrode is capable of absorbing and discharging lithium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム二次電池用電極、リチウムイオン二次電池およびその製造法に関し、特に活物質層が錫元素を含むリチウム二次電池用電極に関する。   The present invention relates to an electrode for a lithium secondary battery, a lithium ion secondary battery, and a method for producing the same, and particularly relates to an electrode for a lithium secondary battery in which an active material layer contains a tin element.

近年、パーソナルコンピュータ、携帯電話などのポータブル機器の開発に伴い、その電源としての電池の需要が増大している。上記のような用途に用いられる電池には、常温使用が求められると同時に、高いエネルギー密度と優れたサイクル特性が要望される。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has increased. A battery used for the above applications is required to be used at room temperature, and at the same time, a high energy density and excellent cycle characteristics are required.

この要求に対し、正極および負極のそれぞれにおいて、新たに高容量の活物質が開発されている。中でも非常に高い容量が得られるケイ素(Si)もしくは錫(Sn)の単体、酸化物または合金は、負極活物質として有望視されている。また、LiNiO2などのLi含有複合酸化物は、正極活物質として有望視されている。 In response to this requirement, high-capacity active materials have been newly developed in each of the positive electrode and the negative electrode. Among them, a simple substance, oxide or alloy of silicon (Si) or tin (Sn) capable of obtaining a very high capacity is considered promising as a negative electrode active material. In addition, Li-containing composite oxides such as LiNiO 2 are considered promising as positive electrode active materials.

しかし、リチウムを吸蔵および放出する能力の高い活物質は、充放電時の膨張および収縮も大きくなる。よって、集電体を含む電極が大きく歪み、しわや切れが生じやすい。また、電極とセパレータとの間に空間が生じ、充放電反応が不均一になりやすい。よって、電池が局部的な特性低下を引き起こす懸念がある。   However, an active material having a high ability to occlude and release lithium has a large expansion and contraction during charging and discharging. Therefore, the electrode including the current collector is greatly distorted and tends to be wrinkled or cut. Further, a space is generated between the electrode and the separator, and the charge / discharge reaction tends to be non-uniform. Therefore, there is a concern that the battery may cause local characteristic deterioration.

このような問題に対し、活物質の膨張応力を緩和する空間を、負極に設けることが提案されている。この提案は、負極の歪みやうねりを抑制し、サイクル特性の劣化を抑えることを意図している。例えば特許文献1は、集電体上に、ケイ素の柱状粒子を形成することを提案している。また、特許文献2は、集電体上に、リチウムと合金を形成する活物質を規則的に配列させるパターン成形を行うことを提案している。また、特許文献3および4は、負極活物質を形成する柱状粒子を、集電体表面の法線方向に対して傾斜させることを提案している。   In order to solve such a problem, it has been proposed to provide a space in the negative electrode for relaxing the expansion stress of the active material. This proposal is intended to suppress negative electrode distortion and undulation, and to suppress deterioration of cycle characteristics. For example, Patent Document 1 proposes forming silicon columnar particles on a current collector. Further, Patent Document 2 proposes to perform pattern forming in which an active material that forms an alloy with lithium is regularly arranged on a current collector. Patent Documents 3 and 4 propose that the columnar particles forming the negative electrode active material are inclined with respect to the normal direction of the current collector surface.

特許文献1、2は、いずれもシート状の集電体の法線方向に直立した柱状構造に活物質を形成するものである。そのため、活物質の多くは、対極の活物質と対向せず、電極集電体の露出部に対向する。たとえば負極が柱状構造であった場合、充電時に正極活物質から供給されるリチウムは、負極活物質に吸蔵されずに、負極集電体の露出部に析出しやすくなる。その結果、放電時には、リチウムが負極から効率良く放出されず、充放電効率は低下する。   In each of Patent Documents 1 and 2, an active material is formed in a columnar structure upright in the normal direction of a sheet-like current collector. Therefore, most of the active material does not face the counter electrode active material but faces the exposed portion of the electrode current collector. For example, when the negative electrode has a columnar structure, lithium supplied from the positive electrode active material at the time of charging is not occluded by the negative electrode active material, but tends to precipitate on the exposed portion of the negative electrode current collector. As a result, during discharge, lithium is not efficiently released from the negative electrode, and charge / discharge efficiency is reduced.

特許文献3および特許文献4によれば、正極または負極活物質層を活物質の膨張を緩和しながら得ることが可能である。容量維持率の点では、特許文献3または特許文献4は、特許文献1および特許文献2よりも優れている。   According to Patent Document 3 and Patent Document 4, it is possible to obtain a positive electrode or negative electrode active material layer while relaxing expansion of the active material. In terms of capacity retention, Patent Document 3 or Patent Document 4 is superior to Patent Document 1 and Patent Document 2.

特許文献5は、リチウム二次電池用負極の製造法ではないが、螺旋状の柱状粒子を成長させる方法を提案している。螺旋状の柱状粒子は、蒸着により、基板上に形成される。その際、直交する二つの軸の回転により基板の傾斜角度を、蒸気の入射方向に対して、連続的に変化させている。   Patent Document 5 proposes a method for growing spiral columnar particles, although it is not a method for producing a negative electrode for a lithium secondary battery. The spiral columnar particles are formed on the substrate by vapor deposition. At that time, the tilt angle of the substrate is continuously changed with respect to the incident direction of the vapor by the rotation of two orthogonal axes.

なお、Sn合金などの合金薄膜を形成する技術として、合金を蒸着源としたフラッシュ蒸着法や、合金元素を別々の蒸着源に入れ、各蒸着源を別々に蒸発させる多元蒸着法が知られている(非特許文献1)。
特開2003−303586号公報 特開2004−127561号公報 特開2005−196970号公報 特開平6−187994号公報 米国特許第5866204号公報 薄膜の基礎技術、第二版、東京大学出版会、1987年、p49
As a technique for forming an alloy thin film such as an Sn alloy, a flash vapor deposition method using an alloy as a vapor deposition source and a multi-source vapor deposition method in which alloy elements are put in separate vapor deposition sources and each vapor deposition source is vaporized separately are known. (Non-Patent Document 1).
JP 2003-303586 A JP 2004-127561 A JP-A-2005-196970 JP-A-6-187994 US Pat. No. 5,866,204 Basic Technology of Thin Films, Second Edition, University of Tokyo Press, 1987, p49

しかし、柱状粒子は、充電時に生じる活物質の膨張により、活物質と集電体との接触部に応力を受ける。エネルギー密度を高めるために活物質層の厚みを大きくすると、その応力の法線方向の成分は大きくなる。この応力は、柱状粒子が傾斜している場合(特許文献3および特許文献4の場合)、柱状粒子と集電体との接触部に集中する。よって、充放電サイクルを長期間に亘って繰り返すと、柱状粒子と集電体との接触部に繰り返し応力がかかり、クラックが生じやすい。   However, the columnar particles are subjected to stress at the contact portion between the active material and the current collector due to the expansion of the active material that occurs during charging. When the thickness of the active material layer is increased to increase the energy density, the normal component of the stress increases. When the columnar particles are inclined (in the case of Patent Document 3 and Patent Document 4), this stress is concentrated on the contact portion between the columnar particles and the current collector. Therefore, when the charge / discharge cycle is repeated over a long period of time, stress is repeatedly applied to the contact portion between the columnar particles and the current collector, and cracks are likely to occur.

また、柱状粒子は幅方向(材料供給源の蒸気の入射方向に垂直な平面と集電体に平行な平面との交差線の方向)への成長が次第に大きくなる傾向がある。幅方向に垂直な方向においては、粒子間に十分な隙間を設けることができるが、幅方向においては、十分な隙間を設けることができない。よって、大きなエネルギー密度を得るために活物質層の厚さを大きくすると、電極の歪み、しわ、切れが生じてしまう。   Further, the columnar particles tend to grow gradually in the width direction (the direction of the intersecting line between the plane perpendicular to the incident direction of the vapor of the material supply source and the plane parallel to the current collector). In the direction perpendicular to the width direction, a sufficient gap can be provided between the particles, but in the width direction, a sufficient gap cannot be provided. Therefore, when the thickness of the active material layer is increased in order to obtain a large energy density, the electrode is distorted, wrinkled, or cut.

ここで、図1および図2に、集電体2と、集電体2に担持された活物質層1とを具備し、活物質層が複数の柱状粒子3を含む電極の一部を概念的に示す。図1は、柱状粒子3の幅方向に垂直な断面図である。図2は、柱状粒子3の幅方向に平行な断面図であり、図1の側面図に相当する。   Here, FIG. 1 and FIG. 2 are conceptual views of a part of an electrode that includes a current collector 2 and an active material layer 1 carried on the current collector 2, and the active material layer includes a plurality of columnar particles 3. Indicate. FIG. 1 is a cross-sectional view perpendicular to the width direction of the columnar particles 3. FIG. 2 is a cross-sectional view parallel to the width direction of the columnar particles 3 and corresponds to the side view of FIG.

本発明のリチウム二次電池用電極は、シート状の集電体と、集電体に担持された活物質層とを具備し、活物質層は、少なくとも1つの屈曲部を有する複数の柱状粒子を含み、柱状粒子は、錫元素を含み、リチウムの吸蔵および放出が可能である、ことを特徴とする。柱状粒子は、例えば、錫単体、錫合金および錫酸化物よりなる群から選択される少なくとも1種を含むことにより、錫元素を含有する。   An electrode for a lithium secondary battery of the present invention includes a sheet-like current collector and an active material layer carried on the current collector, and the active material layer has a plurality of columnar particles having at least one bent portion. The columnar particles contain a tin element and can store and release lithium. The columnar particles contain, for example, tin element by containing at least one selected from the group consisting of simple tin, tin alloy and tin oxide.

柱状粒子の底部(すなわち集電体と柱状粒子との接触部)から最初の屈曲部までの柱状粒子の成長方向と、集電体の法線方向とが成す角度θ1は、10°以上、90°未満であることが好ましい。
柱状粒子の底部(すなわち集電体と柱状粒子との接触部)から数えてn番目の屈曲部から(n+1)番目の屈曲部までの柱状粒子の成長方向と、集電体の法線方向とが成す角度をθn+1とし、nは1以上の整数としたとき、前記θn+1は、0°以上、90°未満であることが好ましい。
The angle θ 1 formed by the growth direction of the columnar particles from the bottom of the columnar particles (that is, the contact portion between the current collector and the columnar particles) to the first bent portion and the normal direction of the current collector is 10 ° or more, It is preferably less than 90 °.
The growth direction of the columnar particles from the nth bent portion to the (n + 1) th bent portion counting from the bottom of the columnar particles (that is, the contact portion between the current collector and the columnar particles), and the normal direction of the current collector, Is θ n + 1 and n is an integer of 1 or more, the θ n + 1 is preferably 0 ° or more and less than 90 °.

柱状粒子は、屈曲部を1つだけ有してもよく、複数の屈曲部を有してもよい。
柱状粒子は、ジグザグ形状もしくは螺旋形状を有することができる。
活物質層の空隙率Pは、10%≦P≦70%が好適である。
本発明は、また、上記の電極と、対極と、これらの間に介在するリチウムイオン伝導性を有する電解質と、を含む、リチウム二次電池に関する。
The columnar particles may have only one bent portion or a plurality of bent portions.
The columnar particles can have a zigzag shape or a spiral shape.
The porosity P of the active material layer is preferably 10% ≦ P ≦ 70%.
The present invention also relates to a lithium secondary battery including the above electrode, a counter electrode, and an electrolyte having lithium ion conductivity interposed therebetween.

なお、特許文献4のように、基板の傾斜角度を様々に変化させる場合には、例えば螺旋状に柱状粒子を成長させることができる。よって、柱状粒子の幅方向への成長を抑制することができると考えられる。しかし、実際の製造プロセスにおいては、基板の傾斜角度を様々に変化させることは容易ではない。特に、長尺の集電体をロールから巻き出し、連続的に電極を作製し、その後ロールで巻き取る場合、電極の製造途中で集電体の傾斜角度を様々に変えることは困難である。   In addition, when changing the inclination angle of a board | substrate variously like patent document 4, for example, columnar particle | grains can be made to grow helically. Therefore, it is considered that the growth of the columnar particles in the width direction can be suppressed. However, in an actual manufacturing process, it is not easy to change the tilt angle of the substrate in various ways. In particular, when a long current collector is unwound from a roll to continuously produce an electrode and then wound with a roll, it is difficult to change the inclination angle of the current collector in the course of manufacturing the electrode.

そこで、本発明は、別の観点から、+10°〜+70°である第1入射角で、シート状の集電体に活物質構成元素を入射させ、活物質構成元素を堆積させる第1ステップと、−10°〜−70°である第2入射角で、シート状の集電体に活物質構成元素を入射させ、活物質構成元素を堆積させる第2ステップとを有し、活物質構成元素が、錫元素を含む、リチウムイオン二次電池用電極の製造法を提案する。   Therefore, the present invention, from another viewpoint, the first step of depositing the active material constituent element by causing the active material constituent element to enter the sheet-like current collector at a first incident angle of + 10 ° to + 70 °. And a second step of causing the active material constituent element to enter the sheet-like current collector and depositing the active material constituent element at a second incident angle of −10 ° to −70 °, and the active material constituent element Proposes a method of manufacturing an electrode for a lithium ion secondary battery containing a tin element.

活物質構成元素は、1種以上の元素を含むことができる。第1ステップおよび第2ステップでは、1種以上の全く同じ元素または元素群を堆積させることができる。ただし、活物質構成元素は錫元素を含む。
なお、入射角が+の場合と−の場合とでは、粒子の入射方向が逆になる。
The active material constituent element can include one or more elements. In the first step and the second step, one or more identical elements or groups of elements can be deposited. However, the active material constituent element includes a tin element.
In addition, the incident direction of particle | grains becomes reverse by the case where an incident angle is + and-.

例えば、第1ステップは、第1位置および第2位置で材料供給源から発生させた活物質構成元素を、第1入射角で集電体の表面に入射させることを含み、第2ステップは、第1位置および第2位置で材料供給源から発生させた活物質構成元素を、第2入射角で集電体の表面に入射させることを含む。   For example, the first step includes causing the active material constituent element generated from the material supply source at the first position and the second position to enter the surface of the current collector at the first incident angle, and the second step includes: Including the active material constituent element generated from the material supply source at the first position and the second position on the surface of the current collector at the second incident angle.

例えば、本発明は、第1位置および第2位置で、順次または交互に、材料供給源を蒸発させ、生じた材料供給源の蒸気をシート状の集電体の表面に入射させ、活物質を堆積させることにより、集電体に担持された活物質層を形成するリチウム二次電池用電極の製造法を含む。
材料供給源が、第1元素および第2元素を含む場合、本発明は、第1元素を第1位置で蒸発させ、第2元素を第2位置で蒸発させる製造法を含む。この場合、第1元素と第2元素とを、順次または交互に蒸発させてもよい。
For example, according to the present invention, the material source is evaporated sequentially or alternately in the first position and the second position, and the vapor of the generated material source is incident on the surface of the sheet-like current collector. It includes a method for producing an electrode for a lithium secondary battery that forms an active material layer carried on a current collector by being deposited.
When the material source includes the first element and the second element, the present invention includes a manufacturing method in which the first element is evaporated at the first position and the second element is evaporated at the second position. In this case, the first element and the second element may be evaporated sequentially or alternately.

第1位置および第2位置は、例えば、集電体の表面と垂直な面に対して対称な位置である。ここで、集電体の表面と垂直な面は、シート状の集電体の長手方向における中心を通ることが好ましい。   The first position and the second position are, for example, positions that are symmetric with respect to a plane perpendicular to the surface of the current collector. Here, the surface perpendicular to the surface of the current collector preferably passes through the center in the longitudinal direction of the sheet-shaped current collector.

ここで、屈曲部とは、粒子(グレイン:grain)の成長方向が不連続となる点を意味する。具体的には、粒子の成長方向を曲線で表すとき、その曲線の微分が不連続となる点(すなわち微分曲線の変曲点)が屈曲部である。粒子の成長方向を表す曲線は、例えば、柱状粒子の断面SEM写真を解析することにより、求めることができる。断面SEM写真より、集電体から活物質層の表面に向かう柱状粒子の成長方向が判別できる。   Here, the bent portion means a point where the growth direction of grains (grains) becomes discontinuous. Specifically, when the grain growth direction is represented by a curve, a point at which the derivative of the curve is discontinuous (that is, the inflection point of the derivative curve) is a bent portion. A curve representing the growth direction of the particles can be obtained by, for example, analyzing a cross-sectional SEM photograph of the columnar particles. From the cross-sectional SEM photograph, the growth direction of the columnar particles from the current collector toward the surface of the active material layer can be determined.

本発明において、集電体の法線方向とは、集電体の表面に垂直であり、かつ、集電体の表面から離れる方向を意味する。集電体の表面は、微視的に見れば凹凸を有する場合が多いが、目視によれば平坦であるため、集電体の法線方向は一義的に定められる。   In the present invention, the normal direction of the current collector means a direction perpendicular to the surface of the current collector and away from the surface of the current collector. The surface of the current collector often has irregularities when viewed microscopically, but is flat according to visual observation, so that the normal direction of the current collector is uniquely determined.

柱状粒子の成長方向と、集電体の法線方向とが成す角度は、例えば、電子顕微鏡(SEMなど)を用いて求めることができる。電子顕微鏡を用いる場合、例えば図4のような切断面が得られるように、集電体の法線方向と平行で、かつ、柱状粒子の成長方向と平行に、活物質層を切断し、その断面を観察する。   The angle formed by the growth direction of the columnar particles and the normal direction of the current collector can be determined using, for example, an electron microscope (SEM or the like). When using an electron microscope, for example, the active material layer is cut in parallel with the normal direction of the current collector and in parallel with the growth direction of the columnar particles so as to obtain a cut surface as shown in FIG. Observe the cross section.

柱状粒子の成長方向と、集電体の法線方向とが成す角度θ1およびθ2は、少なくとも10個の柱状粒子について測定し、その平均値を求めることが好ましい。なお、図4において柱状粒子の成長方向と、集電体の法線方向とが成す角度θ1およびθ2の評価は、製造直後の電極、製造直後の未使用の電池に含まれる電極、もしくは、10回以下しか充放電が行われていない電池に含まれる電極を用いて行うことが好ましい。 The angles θ 1 and θ 2 formed by the growth direction of the columnar particles and the normal direction of the current collector are preferably measured for at least 10 columnar particles and the average value thereof is obtained. In FIG. 4, the angles θ 1 and θ 2 formed by the growth direction of the columnar particles and the normal direction of the current collector are evaluated as follows: an electrode immediately after manufacture, an electrode included in an unused battery immediately after manufacture, It is preferable to use an electrode included in a battery that is charged and discharged only 10 times or less.

錫元素を含む活物質層がリチウムを吸蔵および放出する際、活物質層の膨張および収縮により、柱状粒子は応力を受ける。しかし、本発明によれば、このような応力を、屈曲部において分散することができる。よって、柱状粒子と集電体との界面(柱状粒子の底部)への応力集中を緩和することができ、柱状粒子のクラックを生じにくくすることができる。これにより、活物質層と集電体との接続が維持される。   When the active material layer containing tin element occludes and releases lithium, the columnar particles are subjected to stress due to expansion and contraction of the active material layer. However, according to the present invention, such stress can be dispersed in the bent portion. Therefore, stress concentration at the interface between the columnar particles and the current collector (the bottom of the columnar particles) can be alleviated, and cracks in the columnar particles can be made difficult to occur. Thereby, the connection between the active material layer and the current collector is maintained.

さらに、対極側の法線方向から見た場合に、本発明の電極を構成する集電体の露出部を、著しく少なくすることができる。その結果、充電時に対極から供給されたリチウムが集電体の露出部に析出する場合であっても、析出するリチウム量は少なくなる。よって、放電時に電極からリチウムが効率良く放出されるようになり、充放電効率が改善する。   Furthermore, when viewed from the normal direction on the counter electrode side, the exposed portion of the current collector constituting the electrode of the present invention can be remarkably reduced. As a result, even when lithium supplied from the counter electrode during charging is deposited on the exposed portion of the current collector, the amount of deposited lithium is reduced. Therefore, lithium is efficiently released from the electrode during discharge, and charge / discharge efficiency is improved.

本発明の製造法によれば、材料供給源からの蒸気の集電体への入射方向を、2つの傾斜方向の間で交互に切り替えることができる。また、このような操作を材料供給源の設置位置を制御することにより行えるため、複数方向に可動な回転軸を基板に設置する必要がない。   According to the manufacturing method of the present invention, the incident direction of the vapor from the material supply source to the current collector can be alternately switched between two inclination directions. In addition, since such an operation can be performed by controlling the installation position of the material supply source, there is no need to install a rotating shaft movable in a plurality of directions on the substrate.

本発明の方法によれば、材料供給源からの蒸気の集電体への入射方向を一方向に傾斜させつつ、その方向に直交する方向にも傾斜させることができる。これにより、柱状粒子を集電体の法線方向に対して傾斜させる場合に、柱状粒子の幅方向においても、十分な隙間を設けることができる。よって、屈曲部が応力を分散するだけでなく、隙間が充電時の膨張応力を緩和する。これにより、電極の歪み、しわ、切れを抑制することができ、リチウム二次電池の充放電サイクル特性を向上させることができる。   According to the method of the present invention, it is possible to incline the incident direction of the vapor from the material supply source into the current collector in one direction and also in the direction orthogonal to the direction. Thus, when the columnar particles are inclined with respect to the normal direction of the current collector, a sufficient gap can be provided also in the width direction of the columnar particles. Thus, the bent portion not only disperses the stress, but the gap relaxes the expansion stress during charging. Thereby, distortion of an electrode, a wrinkle, and cutting | disconnection can be suppressed and the charge / discharge cycle characteristic of a lithium secondary battery can be improved.

以下、図面を参照しながら説明するが、本発明は、特許請求の範囲に記載された特徴を有する限り、以下の内容に限定されない。
図3は、本発明の実施形態1に係るリチウム二次電池用電極10を概念的に示す斜視図である。電極10は、シート状の集電体11と、集電体11に担持されたリチウムを吸蔵および放出可能な活物質層12とを具備する。活物質層12は、少なくとも1つの屈曲部を有する複数の柱状粒子13からなる。柱状粒子13は、例えば、錫単体、錫合金および錫酸化物よりなる群から選択される少なくとも1種を含むことにより、錫元素を含有する。柱状粒子13は、集電体11と柱状粒子13との接触部(柱状粒子の底部)を始点とし、屈曲部を経て、活物質層の表面に向かって連続的に伸長している。
Hereinafter, the present invention will be described with reference to the drawings. However, the present invention is not limited to the following contents as long as it has the features described in the claims.
FIG. 3 is a perspective view conceptually showing the electrode 10 for a lithium secondary battery according to Embodiment 1 of the present invention. The electrode 10 includes a sheet-like current collector 11 and an active material layer 12 capable of inserting and extracting lithium supported on the current collector 11. The active material layer 12 is composed of a plurality of columnar particles 13 having at least one bent portion. The columnar particles 13 contain a tin element by containing at least one selected from the group consisting of a simple tin, a tin alloy and a tin oxide, for example. The columnar particles 13 start from the contact portion (the bottom portion of the columnar particles) between the current collector 11 and the columnar particles 13 and continuously extend toward the surface of the active material layer through the bent portion.

図4は、本発明のリチウム二次電池用電極20の一部の断面拡大図である。図4において、柱状粒子23は、2つの屈曲部を有する。柱状粒子23の集電体21との接触部(柱状粒子の底部)から最初の屈曲部までの部分(第1柱状部)は、成長方向D1を有する。成長方向D1は、集電体21の表面の法線方向Dと角度θ1を成している。θ1は10°以上、90°未満である。最初の屈曲部から第2屈曲部までの部分(第2柱状部)は、成長方向D2を有する。成長方向D2は、集電体の表面の法線方向Dと角度θ2を成している。第2屈曲部から柱状粒子の先端までの部分(第3柱状部)は、成長方向D3を有する。成長方向D3は、集電体表面の法線方向Dと角度θ3を成している。 FIG. 4 is an enlarged sectional view of a part of the electrode 20 for a lithium secondary battery of the present invention. In FIG. 4, the columnar particle 23 has two bent portions. Portion of the contact portion between the current collector 21 of the columnar particles 23 from (the bottom of the columnar particles) to the first bent portion (first columnar portion) has a growth direction D 1. The growth direction D 1 forms an angle θ 1 with the normal direction D of the surface of the current collector 21. θ 1 is 10 ° or more and less than 90 °. Portion from the first bend to the second bend (second columnar portion) has a growth direction D 2. The growth direction D 2 forms an angle θ 2 with the normal direction D of the surface of the current collector. Portion from the second bent portion to the distal end of the columnar particles (third columnar portion) has a growth direction D 3. The growth direction D 3 forms an angle θ 3 with the normal direction D of the current collector surface.

図4では柱状部が3つの場合について説明したが、さらに柱状部が増えた場合を一般的に述べる。成長の始点から数えてn番目の屈曲部から(n+1)番目の屈曲部までの柱状部の成長方向と、集電体の法線方向とが成す角度θn+1(nは1以上の整数)は、一般に0°以上、90°未満である。ここで、成長の始点とは、集電体と柱状粒子との接触部(柱状粒子の底部)である。柱状粒子の成長方向とは、柱状粒子が、成長の始点から、屈曲部を経て、活物質層の表面に向かって連続的に伸長している方向のことである。図4の場合、1番目の屈曲部から2番目の屈曲部までの領域である第2柱状部の成長方向D2と、集電体の法線方向Dとが成す角度が、θ2に対応する。 Although the case where there are three columnar portions has been described with reference to FIG. 4, a case where the number of columnar portions further increases will be generally described. Angle θ n + 1 (n is an integer of 1 or more) formed by the growth direction of the columnar portion from the n-th bent portion to the (n + 1) -th bent portion counted from the starting point of growth and the normal direction of the current collector ) Is generally 0 ° or more and less than 90 °. Here, the starting point of growth is the contact portion between the current collector and the columnar particles (the bottom of the columnar particles). The growth direction of the columnar particles is a direction in which the columnar particles continuously extend from the growth starting point through the bent portion toward the surface of the active material layer. In the case of FIG. 4, the angle formed by the growth direction D 2 of the second columnar portion, which is the region from the first bent portion to the second bent portion, and the normal direction D of the current collector corresponds to θ 2 . To do.

図5は、各柱状部を短くした場合の複数の屈曲部を有する柱状粒子の形態を示している。集電体201の表面に形成された活物質層202において、柱状粒子203は、成長方向の異なる7つの柱状部d1〜d7を有している。それぞれの柱状部の成長方向はD1〜D7である。このような柱状粒子203は、傾斜角度を変化させて、複数段階の蒸着を行うことによって得られる。   FIG. 5 shows the form of columnar particles having a plurality of bent portions when each columnar portion is shortened. In the active material layer 202 formed on the surface of the current collector 201, the columnar particle 203 has seven columnar portions d1 to d7 having different growth directions. The growth direction of each columnar part is D1-D7. Such columnar particles 203 can be obtained by performing a plurality of stages of deposition by changing the tilt angle.

電極200のように各柱状部が短い場合、柱状部は、柱状というよりも、むしろ層状となる。本発明は、電極200のように、各柱状部がむしろ層状である形態も包含する。このような場合でも、粒子の成長方向がほぼ周期的に変化し、屈曲していることは、様々な分析方法で確認することができる。すなわち、各柱状部が短い場合でも、微視的観察を行えば、屈曲部および柱状部を明確に把握することができる。例えば、集電体201の法線方向と平行な電極200の断面をSEMで観察することにより、屈曲部および柱状部(もしくは層状部)を確認することができる。なお、電極の断面を研磨し、化学エッチングを行うことにより、断面観察が容易となる。   When each columnar part is short like the electrode 200, the columnar part is a layer rather than a columnar. The present invention also includes a form in which each columnar portion is rather layered like the electrode 200. Even in such a case, it can be confirmed by various analysis methods that the growth direction of the particles changes almost periodically and is bent. That is, even when each columnar part is short, if the microscopic observation is performed, the bent part and the columnar part can be clearly grasped. For example, by observing a cross section of the electrode 200 parallel to the normal direction of the current collector 201 with an SEM, a bent portion and a columnar portion (or a layered portion) can be confirmed. In addition, cross-sectional observation becomes easy by grind | polishing the cross section of an electrode and performing a chemical etching.

図6に、本発明の別のリチウム二次電池用電極の一実施形態を示す。電極30は、シート状の集電体31と、集電体に担持された活物質層32とを具備する。活物質層32は、1つの屈曲部を有する複数の柱状粒子33からなる。柱状粒子33の集電体31との接触部から最初の屈曲部までの第1柱状部は、成長方向D4を有する。成長方向D4は、集電体31の表面の法線方向Dと角度θ1を成している。また、最初の屈曲部から第2屈曲部までの第2柱状部は、成長方向D5を有する。成長方向D5は、集電体の表面の法線方向Dと角度θ2を成している。ここでも、各柱状部の成長方向D4〜D5は、一平面内に存在する必要はない。よって、集電体の法線方向から見た場合、各柱状部がそれぞれ別の方向に屈曲していてもよい。各柱状部と集電体の法線方向とが成す角度θ1およびθ2の好ましい範囲は、図4の電極20の場合と同様である。 FIG. 6 shows an embodiment of another electrode for a lithium secondary battery of the present invention. The electrode 30 includes a sheet-like current collector 31 and an active material layer 32 supported on the current collector. The active material layer 32 includes a plurality of columnar particles 33 having one bent portion. First columnar portion from the contact portion of the current collector 31 of the columnar particles 33 to the first bend has a growth direction D 4. The growth direction D 4 forms an angle θ 1 with the normal direction D of the surface of the current collector 31. The second columnar portion from the first bend to a second bend has a growth direction D 5. The growth direction D 5 forms an angle θ 2 with the normal direction D of the surface of the current collector. Again, the growth direction D 4 to D 5 of the columnar section need not be present in one plane. Therefore, when viewed from the normal direction of the current collector, each columnar portion may be bent in a different direction. A preferable range of the angles θ 1 and θ 2 formed by each columnar portion and the normal direction of the current collector is the same as that of the electrode 20 in FIG.

屈曲部を有する柱状粒子を含む電極の一部の電子顕微鏡写真(SEM写真)を図7に示す。観察結果によれば、活物質層は、図6に示すような、屈曲部を有する柱状粒子で構成されている。   FIG. 7 shows an electron micrograph (SEM photograph) of a part of an electrode including columnar particles having a bent portion. According to the observation results, the active material layer is composed of columnar particles having bent portions as shown in FIG.

柱状粒子33が錫元素を含む場合、リチウムを吸蔵したときに柱状粒子33は膨張する。その際、柱状粒子33には膨張によって応力が発生する。電池内では、セパレータを間に介して正極と負極とが対向しているため、活物質層の厚さ方向の応力は特に大きくなる。柱状粒子が屈曲部を有する場合、この応力は、活物質―集電体界面に集中して印加されるが、柱状粒子が屈曲部を有する場合には、屈曲部において面方向に分散される。よって、柱状粒子の底部に印加される応力は緩和される。その結果、柱状粒子と集電体との界面に存在する応力が小さくなり、クラックの進展が抑制される。すると、充放電サイクルを繰り返した場合でも、活物質の脱落が生じにくくなり、電池特性の劣化が抑制される。   When the columnar particle 33 contains a tin element, the columnar particle 33 expands when lithium is occluded. At that time, stress is generated in the columnar particles 33 due to expansion. In the battery, since the positive electrode and the negative electrode face each other with the separator interposed therebetween, the stress in the thickness direction of the active material layer is particularly large. When the columnar particles have a bent portion, this stress is concentrated and applied to the active material-current collector interface, but when the columnar particles have a bent portion, the stress is dispersed in the surface direction at the bent portion. Therefore, the stress applied to the bottom of the columnar particles is relaxed. As a result, the stress existing at the interface between the columnar particles and the current collector is reduced, and the progress of cracks is suppressed. As a result, even when the charge / discharge cycle is repeated, the active material is unlikely to drop out, and the deterioration of the battery characteristics is suppressed.

高容量化のためには、活物質層を厚くすることが要求される。本発明の場合、活物質層を厚くすることは、柱状粒子を長く成長させることに対応する。柱状粒子が長いほど、屈曲部の数が多いことが、応力分散の観点から望ましい。例えば、集電体の法線方向における高さが10μm以上の柱状粒子の場合、少なくとも1個の屈曲部を有することが望ましい。また、集電体の法線方向における高さが50μm以上の柱状粒子の場合、少なくとも2個以上の屈曲部を有することが望ましい。   In order to increase the capacity, it is necessary to increase the thickness of the active material layer. In the case of the present invention, increasing the thickness of the active material layer corresponds to growing columnar particles longer. It is desirable from the viewpoint of stress dispersion that the longer the columnar particles, the greater the number of bent portions. For example, in the case of columnar particles having a height in the normal direction of the current collector of 10 μm or more, it is desirable to have at least one bent portion. Further, in the case of columnar particles having a height in the normal direction of the current collector of 50 μm or more, it is desirable to have at least two or more bent portions.

各柱状部の成長方向(図4の場合、D1〜D3)は、同一平面内に存在する必要はない。集電体の法線方向から見た場合、各柱状部がそれぞれ別の方向に屈曲していてもよい。柱状粒子が、複数の屈曲部を有する場合、柱状粒子は、ジグザグ形状を有することが望ましい。ジグザグ形状によれば、柱状粒子と集電体との接触部に集中する一方向の応力を、別方向に分散でき、効率良く応力を緩和できる。また、柱状粒子が、ジグザグ形状を有する場合、柱状粒子は、螺旋形状を有することが望ましい。螺旋形状によれば、柱状粒子の集電体との接触部に印加される応力を、更に効率良く緩和できる。 The growth direction of each columnar part (in the case of FIG. 4, D 1 to D 3 ) does not need to exist in the same plane. When viewed from the normal direction of the current collector, each columnar portion may be bent in a different direction. When the columnar particles have a plurality of bent portions, the columnar particles preferably have a zigzag shape. According to the zigzag shape, the stress in one direction concentrated on the contact portion between the columnar particles and the current collector can be dispersed in another direction, and the stress can be efficiently relieved. In addition, when the columnar particles have a zigzag shape, the columnar particles desirably have a spiral shape. According to the spiral shape, the stress applied to the contact portion between the columnar particles and the current collector can be more efficiently relaxed.

図8に、本発明のリチウム二次電池用電極の更に別の一実施形態を示す。電極40は、シート状の集電体41と、集電体に担持された活物質層42とを具備する。活物質層42は、1つの屈曲部を有する複数の柱状粒子43からなる。柱状粒子43の集電体41との接触部から最初の屈曲部までの第1柱状部は、成長方向D6を有する。成長方向D6は、集電体41の表面の法線方向Dと角度θ1を成している。また、最初の屈曲部から第2屈曲部までの第2柱状部は、成長方向D7を有する。成長方向D7は、集電体の表面の法線方向Dと角度θ2を成している。ここでも各柱状部の成長方向D6〜D7は、一平面内に存在する必要はない。法線方向から見た場合、各柱状部がそれぞれ別の方向に屈曲していてもよい。よって、各柱状部と、集電体の集電体の法線方向とが成す角度θ1およびθ2の好ましい範囲は、図4の電極20の場合と同様である。なお、図3、図4、図5、図6、図7および図8は、柱状粒子の形状を制限するものではない。柱状粒子の形状は、特に制限されない。 FIG. 8 shows still another embodiment of the electrode for a lithium secondary battery of the present invention. The electrode 40 includes a sheet-like current collector 41 and an active material layer 42 supported on the current collector. The active material layer 42 is composed of a plurality of columnar particles 43 having one bent portion. First columnar portion from the contact portion of the current collector 41 of the columnar particles 43 to the first bend has a growth direction D 6. The growth direction D 6 forms an angle θ 1 with the normal direction D of the surface of the current collector 41. Further, the second columnar portion from the first bent portion to the second bent portion has a growth direction D 7 . The growth direction D 7 forms an angle θ 2 with the normal direction D of the surface of the current collector. Again growth direction D 6 to D 7 of the columnar section need not be present in one plane. When viewed from the normal direction, each columnar portion may be bent in a different direction. Therefore, a preferable range of the angles θ 1 and θ 2 formed by each columnar portion and the normal direction of the current collector is the same as that of the electrode 20 in FIG. In addition, FIG.3, FIG.4, FIG.5, FIG.6, FIG.7 and FIG. 8 do not restrict | limit the shape of columnar particle | grains. The shape of the columnar particles is not particularly limited.

電解質と活物質との接触面積を多く確保するとともに、活物質の膨張による応力を緩和する観点から、活物質層は、所定の空隙率を有することが望まれる。活物質層の空隙率Pは、一定面積の活物質層の重量と厚さと活物質の真密度から求めることができる。また、ガス吸着や水銀圧入によるポロシメータを用いる方法などでは、より正確に空隙率Pを測定することができる。   From the viewpoint of securing a large contact area between the electrolyte and the active material and relieving stress due to expansion of the active material, the active material layer is desired to have a predetermined porosity. The porosity P of the active material layer can be obtained from the weight and thickness of the active material layer having a certain area and the true density of the active material. Further, the porosity P can be measured more accurately by a method using a porosimeter by gas adsorption or mercury intrusion.

電極の空隙率Pは、リチウムを吸蔵した際に活物質がどの程度膨張するかによるが、概ね10%≦P≦70%である。空隙率Pが10%以上であれば、柱状粒子の膨張および収縮による応力を緩和するのに十分と考えられる。よって、粒状粒子と接触する電解質も豊富に確保できる。高速充放電時の容量低下を抑制するという観点から、空隙率Pは30%≦P≦60%であることが更に望ましい。なお、空隙率Pが70%を超えても、電池の用途によっては好適に電極として用いることができる。   The porosity P of the electrode is approximately 10% ≦ P ≦ 70% depending on how much the active material expands when lithium is occluded. If the porosity P is 10% or more, it is considered sufficient to relieve stress due to expansion and contraction of the columnar particles. Therefore, an abundant electrolyte in contact with the granular particles can be secured. From the viewpoint of suppressing capacity reduction during high-speed charge / discharge, the porosity P is more preferably 30% ≦ P ≦ 60%. Even if the porosity P exceeds 70%, it can be suitably used as an electrode depending on the use of the battery.

活物質層の厚さ(図4の場合t)は0.1μm以上であれば、エネルギー密度を確保でき、100μm以下であれば、各柱状粒子が他の柱状粒子で遮蔽される割合を低く抑えることができる。また、活物質層の厚さが100μm以下であれば、柱状粒子からの集電抵抗を抑制できるので、ハイレートでの充放電に有利である。従って、活物質層の厚さは、0.1μm≦t≦100μmであることが好ましい。さらに、高速充放電時の温度上昇の抑制という観点から、1μm≦t≦50μmであることが特に好ましい。   If the thickness of the active material layer (in the case of FIG. 4 t) is 0.1 μm or more, the energy density can be secured, and if it is 100 μm or less, the rate at which each columnar particle is shielded by other columnar particles is kept low. be able to. Moreover, if the thickness of an active material layer is 100 micrometers or less, since the current collection resistance from columnar particles can be suppressed, it is advantageous for charging / discharging at a high rate. Therefore, the thickness of the active material layer is preferably 0.1 μm ≦ t ≦ 100 μm. Furthermore, it is particularly preferable that 1 μm ≦ t ≦ 50 μm from the viewpoint of suppressing temperature rise during high-speed charge / discharge.

柱状粒子の成長方向に対して垂直な断面(以下、断面C)の形状は特に限定されない。また、断面Cの形状が柱状粒子の長さ方向において変化してもよい。ただし、柱状粒子が膨張するときに柱状粒子が割れたり、集電体から離脱したりすることを防止する観点から、断面Cは略円形であることが望ましい。また、断面Cの直径dは、概ね100μm以下である。微細化による高強度化および高信頼性化の観点から、断面Cの直径dは1〜50μmが好ましい。なお、柱状粒子の断面Cが略円形の場合、直径dは、例えば任意の2〜10個の柱状粒子の直径の平均値として求められる。ここで、柱状粒子の直径は、その中心高さで求める。中心高さとは、集電体の法線方向における柱状粒子の中心高さを意味する。直径dは、柱状粒子の成長方向に対して垂直な径である。   The shape of the cross section perpendicular to the growth direction of the columnar particles (hereinafter referred to as cross section C) is not particularly limited. Further, the shape of the cross section C may change in the length direction of the columnar particles. However, from the viewpoint of preventing the columnar particles from cracking or detaching from the current collector when the columnar particles expand, the cross section C is preferably substantially circular. The diameter d of the cross section C is approximately 100 μm or less. The diameter d of the cross-section C is preferably 1 to 50 μm from the viewpoint of high strength and high reliability by miniaturization. In addition, when the cross-section C of columnar particles is substantially circular, the diameter d is calculated | required as an average value of the diameter of arbitrary 2-10 columnar particles, for example. Here, the diameter of the columnar particles is determined by the center height. The center height means the center height of the columnar particles in the normal direction of the current collector. The diameter d is a diameter perpendicular to the growth direction of the columnar particles.

互いに隣接する複数の柱状粒子は、成長途中で合体する場合がある。ただし、個々の柱状粒子は、成長の始点が異なることから、集電体の表面付近では分離しており、粒子の成長状態も異なる。そのため、合体した個々の柱状粒子間には境界が観察できる。よって、個々の柱状粒子の直径dを求めることは可能である。   A plurality of columnar particles adjacent to each other may coalesce during growth. However, since the individual columnar particles have different growth starting points, they are separated in the vicinity of the surface of the current collector, and the growth state of the particles is also different. Therefore, a boundary can be observed between the combined individual columnar particles. Therefore, it is possible to determine the diameter d of each columnar particle.

活物質層の空隙率、厚さ、および、柱状粒子の直径を測定する際の活物質の好ましい状態は、活物質が不可逆容量に相当するリチウムを含み、かつ、可逆容量に相当するリチウムを含まない状態(可逆容量が0の状態)、すなわち完全放電状態で測定することが望ましい。完全放電状態は、完成した電池内における活物質層の体積が最小の状態に相当する。   The preferable state of the active material when measuring the porosity, thickness, and diameter of the columnar particles of the active material layer includes lithium corresponding to the irreversible capacity and lithium corresponding to the reversible capacity. It is desirable to measure in a state where there is no reversible capacity (a state where the reversible capacity is 0), that is, a complete discharge state. The completely discharged state corresponds to a state where the volume of the active material layer in the completed battery is minimum.

不可逆容量に相当するリチウムを含まない状態で負極の空隙率、活物質層の厚さ、および、柱状粒子の直径を測定する場合、測定値を補正することにより、完全放電状態の場合の値を得ることができる。例えば、リチウムを全く含まない活物質層の空隙率Pは、水銀ポロシメータを用いて測定することができる。この場合、不可逆容量に相当するリチウムを含む完全放電状態の活物質層の体積と、リチウムを全く含まない活物質層の体積との体積差ΔVを用いて、空隙率Pの値を補正する。不可逆容量に相当するリチウムを含む空隙率P’は、P’=P−ΔVより求められる。   When measuring the porosity of the negative electrode, the thickness of the active material layer, and the diameter of the columnar particles without lithium corresponding to the irreversible capacity, by correcting the measured values, Obtainable. For example, the porosity P of the active material layer containing no lithium can be measured using a mercury porosimeter. In this case, the value of the porosity P is corrected using the volume difference ΔV between the volume of the fully discharged active material layer containing lithium corresponding to the irreversible capacity and the volume of the active material layer not containing lithium at all. The porosity P ′ containing lithium corresponding to the irreversible capacity is obtained from P ′ = P−ΔV.

本発明では、柱状粒子は、錫の他に、錫と固溶体を形成可能な元素を含むことができる。このような元素としては、例えば、コバルト、ニッケル、亜鉛、銅、鉄、マンガン、クロム、チタン、バナジウム、インジウムなどが挙げられる。これらは単独で活物質に用いてもよく、複数種を組み合わせて用いてもよい。   In the present invention, the columnar particles can contain an element capable of forming a solid solution with tin in addition to tin. Examples of such elements include cobalt, nickel, zinc, copper, iron, manganese, chromium, titanium, vanadium, and indium. These may be used alone for the active material, or may be used in combination of plural kinds.

柱状粒子を形成する活物質としては、例えばSn単体、Sn合金、Sn酸化物などが挙げられる。錫と同様に高容量の材料として、Si単体、Si合金、SiOxなどが挙げられるが、プロセスコストの観点からは、錫を含む活物質が望ましい。これらは単独で活物質層を構成してもよく、複数種が同時に活物質層を構成してもよい。錫酸化物は、一般式(1):SnOx(ただし、0<x<2)で表される組成を有することが望ましい。酸素元素の含有量を示すx値は0.01 ≦x≦1であることが更に好ましい。 Examples of the active material that forms the columnar particles include Sn alone, Sn alloy, and Sn oxide. Similar to tin, high-capacity materials include Si alone, Si alloys, SiO x, and the like. From the viewpoint of process cost, an active material containing tin is desirable. These may constitute an active material layer alone, or a plurality of types may simultaneously constitute an active material layer. The tin oxide preferably has a composition represented by the general formula (1): SnO x (where 0 <x <2). The x value indicating the content of oxygen element is more preferably 0.01 ≦ x ≦ 1.

柱状粒子は、活物質の単結晶粒子でも、複数の活物質の結晶子(結晶粒:crystallite)を含む多結晶粒子でもよい。また、柱状粒子は、結晶子サイズが100nm以下の活物質の微結晶を含む粒子でもよく、均一なアモルファスの活物質を含む粒子であれば、より好ましい。   The columnar particles may be single crystal particles of an active material or polycrystalline particles including crystallites (crystal grains) of a plurality of active materials. Further, the columnar particles may be particles containing fine crystals of an active material having a crystallite size of 100 nm or less, and more preferably particles containing a uniform amorphous active material.

本発明において、シート状の集電体の構成材料は、特に限定されない。負極集電体としては、一般に銅が適しており、例えば電解銅箔、電解銅合金箔が用いられる。表面に粗化処理を施した電解銅箔、表面に粗化処理を施した圧延銅箔なども用いられる。チタン、ニッケル、ステンレスなども集電体に適している。集電体は、電解法により作製することが好ましい。それぞれの集電体の厚さは、特に限定されないが、例えば1〜50μmが一般的である。   In the present invention, the constituent material of the sheet-like current collector is not particularly limited. As the negative electrode current collector, copper is generally suitable. For example, an electrolytic copper foil or an electrolytic copper alloy foil is used. An electrolytic copper foil whose surface is roughened, a rolled copper foil whose surface is roughened, and the like are also used. Titanium, nickel, stainless steel, etc. are also suitable for the current collector. The current collector is preferably produced by an electrolytic method. The thickness of each current collector is not particularly limited, but is generally 1 to 50 μm, for example.

シート状の集電体は、活物質層を担持する表面に、凹凸を有することが望ましい。具体的な集電体の表面粗さRz(十点平均高さ)の値としては、0.1〜30μmの範囲が好ましく、0.3〜15μmが更に好ましい。表面粗さRzが0.1μm未満の場合、互いに隣接する柱状粒子間に間隔を設けることが困難になる場合がある。なお、表面粗さRzは、日本工業規格(JISB 0601―1994)に定められており、例えば市販の表面粗さ計により測定することができる。   The sheet-like current collector desirably has irregularities on the surface carrying the active material layer. The specific value of the surface roughness Rz (ten-point average height) of the current collector is preferably in the range of 0.1 to 30 μm, more preferably 0.3 to 15 μm. When the surface roughness Rz is less than 0.1 μm, it may be difficult to provide a space between the columnar particles adjacent to each other. The surface roughness Rz is defined in Japanese Industrial Standard (JISB 0601-1994) and can be measured by, for example, a commercially available surface roughness meter.

本発明のリチウム二次電池用電極は、例えば図9Aおよび図9Bに示すような製造装置50を用いて作製することができる。図9Bは、図9AのB−B線断面図である。製造装置50は、真空雰囲気を実現するためのチャンバー56と、集電体51を固定する固定台54と、材料供給源59を入れたターゲット55と、ターゲットの加熱手段である電子ビーム(図示せず)とを具備する。   The electrode for a lithium secondary battery of the present invention can be manufactured using a manufacturing apparatus 50 as shown in FIGS. 9A and 9B, for example. 9B is a cross-sectional view taken along line BB in FIG. 9A. The manufacturing apparatus 50 includes a chamber 56 for realizing a vacuum atmosphere, a fixing base 54 for fixing the current collector 51, a target 55 containing a material supply source 59, and an electron beam (not shown) as a heating means for the target. A).

錫酸化物を含む活物質層を形成する場合、錫酸化物を材料供給源として用いてもよいが、チャンバー内に酸素ガスを導入するガス導入部を設けることもできる。製造装置50は、ガスを放出するノズル52と、外部からノズル52にガスを導入する配管53とを具備する。例えばSnOを含む活物質を柱状に堆積させる場合、材料供給源としてSnOを用いてもよいが、錫単体を用いるとともに、ノズル52から高純度の酸素ガスを放出してもよい。ただし、チャンバー内の真空度は、1Pa程度に調整することが好ましい。   In the case of forming an active material layer containing tin oxide, tin oxide may be used as a material supply source, but a gas introduction part for introducing oxygen gas into the chamber may be provided. The manufacturing apparatus 50 includes a nozzle 52 that discharges gas and a pipe 53 that introduces gas into the nozzle 52 from the outside. For example, when depositing an active material containing SnO in a columnar shape, SnO may be used as a material supply source, but tin alone may be used and high-purity oxygen gas may be released from the nozzle 52. However, the degree of vacuum in the chamber is preferably adjusted to about 1 Pa.

錫合金を含む活物質層を形成する場合、錫合金を蒸着源としたフラッシュ蒸着法、合金元素を別々の蒸着源に入れ、各蒸着源を別々に蒸発させる多元蒸着法といった一般的な手法を用いることができる。   When forming an active material layer containing a tin alloy, there are general methods such as flash vapor deposition using a tin alloy as a vapor deposition source, and multi-source vapor deposition methods in which alloy elements are placed in separate vapor deposition sources and each vapor deposition source is vaporized separately. Can be used.

本発明の電極は、例えば以下の手順により作製する。
集電体51を固定台54に固定し、傾斜回転軸57を中心に固定台54を回転させ、水平面と角度αを成すように固定台54を設置する。回転軸57は、固定台54と水平面とに平行で、固定台54の中心Cを通る軸である。ここで、水平面とは、ターゲット55から固定台54に向かう材料供給源の蒸気の飛散方向に対して、垂直な面である。固定台54を角度αで固定したままで活物質の堆積を行う。次に、回転軸58を中心に固定台54を時計回りに180度回転させて固定する。回転軸58は、集電体表面に垂直で、かつ固定台54の中心Cを通る軸である。この状態で、活物質の堆積を更に続ける。さらに、固定台54を回転軸58を中心に時計回りに180度回転させて固定し、活物質の堆積を続ける。このような手順により、図4に示すような2つの屈曲部を有する柱状粒子が得られる。柱状粒子の第1柱状部および第2柱状部が、集電体表面の法線方向と成す角度は、固定台54と水平面とが成す角度αにより制御される。
The electrode of the present invention is produced, for example, by the following procedure.
The current collector 51 is fixed to the fixed base 54, the fixed base 54 is rotated around the tilt rotation shaft 57, and the fixed base 54 is installed so as to form an angle α with the horizontal plane. The rotation shaft 57 is an axis that is parallel to the fixed base 54 and the horizontal plane and passes through the center C of the fixed base 54. Here, the horizontal plane is a plane perpendicular to the vapor scattering direction of the material supply source from the target 55 toward the fixed base 54. The active material is deposited while the fixing base 54 is fixed at the angle α. Next, the fixing base 54 is rotated 180 degrees clockwise around the rotation shaft 58 and fixed. The rotation shaft 58 is an axis that is perpendicular to the current collector surface and passes through the center C of the fixed base 54. In this state, the active material is further deposited. Further, the fixing base 54 is fixed by rotating clockwise by 180 degrees about the rotation shaft 58, and the active material is continuously deposited. By such a procedure, columnar particles having two bent portions as shown in FIG. 4 are obtained. The angle formed by the first columnar portion and the second columnar portion of the columnar particles with the normal direction of the current collector surface is controlled by the angle α formed by the fixed base 54 and the horizontal plane.

柱状粒子を螺旋形状にする場合には、回転軸58を中心に固定台54を回転させる装置を用いる。まず、集電体を固定台54に固定し、回転軸57を中心に固定台54を回転させ、水平面と角度αを成すように固定台54を設置する。そして、活物質の堆積中に、集電体51を、回転軸58を中心に回転させる。活物質の堆積中、固定台54と水平面とが成す角度αは一定に維持する。このとき、活物質の堆積速度に比例する速度で集電体51を回転させることにより、螺旋形状を有する柱状粒子が得られる。   When the columnar particles are formed in a spiral shape, a device that rotates the fixed base 54 around the rotation shaft 58 is used. First, the current collector is fixed to the fixed base 54, the fixed base 54 is rotated about the rotation shaft 57, and the fixed base 54 is installed so as to form an angle α with the horizontal plane. Then, the current collector 51 is rotated around the rotation shaft 58 during the deposition of the active material. During the deposition of the active material, the angle α formed by the fixed base 54 and the horizontal plane is kept constant. At this time, columnar particles having a spiral shape are obtained by rotating the current collector 51 at a speed proportional to the deposition rate of the active material.

図10は、本発明のリチウム二次電池の一例である積層型リチウム二次電池の概略断面図である。電池60は、正極61と、負極62と、これらの間に介在するセパレータ63とを含む極板群を具備する。極板群とリチウムイオン伝導性を有する電解質は、外装ケース64 の内部に収容されている。リチウムイオン伝導性を有する電解質は、セパレータ63に含浸されている。正極61は、正極集電体61aと、正極集電体61aに担持された正極活物質層61bからなり、負極62は、負極集電体62aと、負極集電体62aに担持された負極活物質層62bからなる。正極集電体61aおよび負極集電体62aには、それぞれ正極リード65および負極リード66の一端が接続されており、他端は外装ケース64の外部に導出されている。外装ケース64の開口部は、樹脂材料67により封止されている。   FIG. 10 is a schematic cross-sectional view of a stacked lithium secondary battery which is an example of the lithium secondary battery of the present invention. The battery 60 includes an electrode plate group including a positive electrode 61, a negative electrode 62, and a separator 63 interposed therebetween. The electrode group and the electrolyte having lithium ion conductivity are accommodated in the exterior case 64. The separator 63 is impregnated with an electrolyte having lithium ion conductivity. The positive electrode 61 includes a positive electrode current collector 61a and a positive electrode active material layer 61b supported on the positive electrode current collector 61a. The negative electrode 62 includes a negative electrode current collector 62a and a negative electrode active material supported on the negative electrode current collector 62a. It consists of a material layer 62b. One end of a positive electrode lead 65 and a negative electrode lead 66 is connected to the positive electrode current collector 61 a and the negative electrode current collector 62 a, respectively, and the other end is led out of the exterior case 64. The opening of the outer case 64 is sealed with a resin material 67.

正極活物質層61bは、充電時にリチウムイオンを放出し、放電時には、負極活物質層62bが放出したリチウムイオンを吸蔵する。負極活物質層62bは、充電時に、正極活物質が放出したリチウムイオンを吸蔵し、放電時には、リチウムイオンを放出する。   The positive electrode active material layer 61b releases lithium ions during charging, and occludes lithium ions released from the negative electrode active material layer 62b during discharge. The negative electrode active material layer 62b occludes lithium ions released from the positive electrode active material during charging, and releases lithium ions during discharge.

積層型電池では、正極と負極とを含む3層以上を積層してもよい。このとき、両面もしくは片面に正極活物質層を有する正極と、両面もしくは片面に負極活物質層を有する負極とを用いる。ただし、全ての正極活物質層を負極活物質層と対向させ、全ての負極活物質層を正極活物質層と対向させる。   In a stacked battery, three or more layers including a positive electrode and a negative electrode may be stacked. At this time, a positive electrode having a positive electrode active material layer on both sides or one side and a negative electrode having a negative electrode active material layer on both sides or one side are used. However, all the positive electrode active material layers are opposed to the negative electrode active material layer, and all the negative electrode active material layers are opposed to the positive electrode active material layer.

柱状粒子の屈曲部で区分される個々の領域(各柱状部もしくは層状部)の傾斜状態は、全ての活物質層で、同じであってもよく、活物質層毎に異なっていてもよい。更に、同じ電極内に、各柱状部の傾斜状態の異なる柱状粒子が含まれていてもよい。両面に活物質層を有する電極の場合、両面の柱状粒子において、各柱状部の傾斜状態は、同じでもよく、異なってもよい。   The inclination state of each region (each columnar portion or layered portion) divided by the bent portion of the columnar particles may be the same in all active material layers, or may be different for each active material layer. Furthermore, the same electrode may contain columnar particles having different inclination states of the columnar portions. In the case of an electrode having active material layers on both sides, in the columnar particles on both sides, the inclined state of each columnar part may be the same or different.

本発明で用いられるリチウムイオン伝導性の電解質には、様々な固体電解質や非水電解液が用いられる。非水電解液には、非水溶媒にリチウム塩を溶解したものが好ましく用いられる。非水電解液の組成は特に限定されない。セパレータや外装ケースも特に限定されず、様々な形態のリチウム二次電池に用いられている材料を、特に限定なく、用いることができる。
図10では、積層型電池の一例を示したが、本発明は、スパイラル型(捲回型)の極板群を有する円筒型電池や角型電池などにも当然適用できる。
Various solid electrolytes and non-aqueous electrolytes are used as the lithium ion conductive electrolyte used in the present invention. As the non-aqueous electrolyte, a solution obtained by dissolving a lithium salt in a non-aqueous solvent is preferably used. The composition of the nonaqueous electrolytic solution is not particularly limited. The separator and the outer case are not particularly limited, and materials used in various forms of lithium secondary batteries can be used without particular limitation.
FIG. 10 shows an example of a stacked battery, but the present invention can naturally be applied to a cylindrical battery or a square battery having a spiral (winding) electrode group.

図11Aおよび図11Bに、本発明のリチウム二次電池用電極の別の製造装置を示す。製造装置90は、材料供給源を含むターゲット95およびその加熱手段である電子ビーム装置(図示せず)の設置位置を除き、図9Aおよび図9Bの製造装置50と同様の構成である。よって、固定台54は、水平面と角度αを成すように、回転軸57を中心に回転させることができる。ターゲット95の設置位置は、第1位置98と第2位置99との間で可動である。第1位置98と第2位置99は、それぞれ固定台54の中心Cを通り回転軸57に直交する面に対し、対称な位置である。   11A and 11B show another apparatus for manufacturing an electrode for a lithium secondary battery of the present invention. The manufacturing apparatus 90 has the same configuration as the manufacturing apparatus 50 of FIGS. 9A and 9B except for the installation position of a target 95 including a material supply source and an electron beam apparatus (not shown) that is a heating means thereof. Therefore, the fixed base 54 can be rotated around the rotation shaft 57 so as to form an angle α with the horizontal plane. The installation position of the target 95 is movable between the first position 98 and the second position 99. The first position 98 and the second position 99 are symmetrical positions with respect to a plane that passes through the center C of the fixed base 54 and is orthogonal to the rotation shaft 57.

固定台54の中心Cに対して鉛直下方の方向Uと、中心Cから第1位置に向かう方向とが成す角度β1は、0°以上、90°未満の角度の範囲で設定可能である。同様に、方向Uと、中心Cから第2置に向かう方向とが成す角度β2、0°以上、90°未満の角度の範囲で設定可能である。ただし、固定台54が水平面と角度αを成している場合、角度β1およびβ2は、それぞれα×0.2≦β1≦α×0.8およびα×0.2≦β2≦α×0.8の範囲であることが好ましく、α×0.35≦β1≦α×0.65およびα×0.35≦β2≦α×0.65の範囲が更に好ましい。   An angle β1 formed by a direction U vertically below the center C of the fixed base 54 and a direction from the center C toward the first position can be set in a range of angles of 0 ° or more and less than 90 °. Similarly, the angle β2 formed by the direction U and the direction from the center C toward the second position can be set within an angle range of 0 ° or more and less than 90 °. However, when the fixed base 54 forms an angle α with the horizontal plane, the angles β1 and β2 are α × 0.2 ≦ β1 ≦ α × 0.8 and α × 0.2 ≦ β2 ≦ α × 0. The range of 8 is preferable, and the ranges of α × 0.35 ≦ β1 ≦ α × 0.65 and α × 0.35 ≦ β2 ≦ α × 0.65 are more preferable.

図11Aは、ターゲット95が第1位置に存在する状態を示す。図11Bは、ターゲット95が第2位置に存在する状態を示す。ターゲット95を第1位置98および第2位置99の間で交互に移動させて、材料供給源を第1位置98および第2位置99で交互に蒸発させる。その結果、材料供給源の蒸気の第1位置から集電体への入射方向と、第2位置から集電体への入射方向とが、それぞれ集電体の法線方向に対して、回転軸57の軸方向に傾斜する。なお、固定台54が水平面と成す角度αは、例えば0≦α<90°に設定することができる。角度αは0°でもよい。   FIG. 11A shows a state where the target 95 exists at the first position. FIG. 11B shows a state where the target 95 exists at the second position. The target 95 is moved alternately between the first position 98 and the second position 99 to evaporate the material source alternately at the first position 98 and the second position 99. As a result, the direction of incidence of the vapor of the material supply source from the first position to the current collector and the direction of incidence from the second position to the current collector are respectively rotation axes with respect to the normal direction of the current collector. Inclined in 57 axial directions. The angle α formed by the fixed base 54 with the horizontal plane can be set to 0 ≦ α <90 °, for example. The angle α may be 0 °.

固定台54が水平面と0°より大きい角度αを成す場合、柱状粒子は集電体の法線方向に対して、回転軸57の回転方向とは逆方向に傾斜する。更に、材料供給源の蒸気の集電体への入射方向が方向Uと角度β1およびβ2を成すことにより、回転軸57の軸方向に傾斜する。   When the fixing base 54 forms an angle α larger than 0 ° with the horizontal plane, the columnar particles are inclined in the direction opposite to the rotation direction of the rotation shaft 57 with respect to the normal direction of the current collector. Furthermore, the incident direction of the vapor of the material supply source on the current collector forms an angle β1 and β2 with the direction U, whereby the axis of rotation 57 is inclined.

上記のような方法で集電体に活物質を堆積させることにより、材料供給源の蒸気の入射方向を、様々に変化させることが可能である。よって、屈曲部を有する柱状粒子を容易に成長させることができる。また、集電体表面の凸部による陰の影響により、隣接する柱状粒子間に効果的に隙間を形成することができる。その結果、充電時の活物質の膨張応力を効果的に分散させることができる。また、上記のような方法によれば、固定台54を固定したままでも、ターゲットの位置を制御するだけで、屈曲部を有する柱状粒子を形成することができる点で便利である。   By depositing the active material on the current collector by the method as described above, the incident direction of the vapor of the material supply source can be changed variously. Therefore, columnar particles having a bent portion can be easily grown. Moreover, a gap can be effectively formed between the adjacent columnar particles due to the influence of the shadows on the surface of the current collector. As a result, the expansion stress of the active material during charging can be effectively dispersed. Further, according to the above method, it is convenient in that columnar particles having a bent portion can be formed only by controlling the position of the target even when the fixing base 54 is fixed.

図12Aおよび図12Bに、本発明のリチウム二次電池用電極の更に別の製造装置を示す。製造装置100は、材料供給源を含むターゲットおよびその加熱手段である電子ビーム装置(図示せず)の設置位置を除き、図9Aおよび図9Bの製造装置50と同様の構成である。製造装置100は、2つのターゲット105aおよび105bを有する。ターゲット105aおよび105bの設置位置は、それぞれ第1位置108および第2位置109である。第1位置108と第2位置109は、それぞれ固定台54の中心Cを通り回転軸57に直交する面に対し、対称な位置である。固定台54の中心Cに対して鉛直下方の方向Uと、中心Cから第1位置(または第2位置)に向かう方向とが成す角度β1(またはβ2)は、図11Aおよび図11Bの製造装置90と同様である。   12A and 12B show still another manufacturing apparatus for an electrode for a lithium secondary battery of the present invention. The manufacturing apparatus 100 has the same configuration as the manufacturing apparatus 50 of FIGS. 9A and 9B except for the installation position of a target including a material supply source and an electron beam apparatus (not shown) that is a heating means thereof. The manufacturing apparatus 100 includes two targets 105a and 105b. The installation positions of the targets 105a and 105b are a first position 108 and a second position 109, respectively. The first position 108 and the second position 109 are symmetrical positions with respect to a plane that passes through the center C of the fixed base 54 and is orthogonal to the rotation shaft 57. The angle β1 (or β2) formed by the direction U vertically below the center C of the fixed base 54 and the direction from the center C toward the first position (or second position) is the manufacturing apparatus of FIGS. 11A and 11B. 90.

ターゲット105aおよび105bは、それぞれ別々にシャッター107aおよび107bにより遮蔽するとことができる。図12Aは、ターゲット105aがシャッター107aで遮蔽された状態を概念的に示す。図12Bは、ターゲット105bがシャッター107bで遮蔽された状態を概念的に示す。なお、第1位置98と第2位置99との間で可動であるシャッターを1つだけ設置してもよい。シャッター107aおよびシャッター107bにより、交互にターゲット105aおよび105bを遮蔽し、遮蔽されていないターゲットから材料供給源を蒸発させる。このような方法により、製造装置90を用いる場合と同様に、屈曲部を有する柱状粒子を形成することができる。   Targets 105a and 105b can be shielded separately by shutters 107a and 107b, respectively. FIG. 12A conceptually shows a state where the target 105a is shielded by the shutter 107a. FIG. 12B conceptually shows a state where the target 105b is shielded by the shutter 107b. Note that only one shutter that is movable between the first position 98 and the second position 99 may be installed. The targets 107a and 105b are alternately shielded by the shutter 107a and the shutter 107b, and the material supply source is evaporated from the unshielded target. By such a method, columnar particles having a bent portion can be formed as in the case of using the manufacturing apparatus 90.

図13に、本発明のリチウム二次電池用電極の更に別の製造装置を示す。製造装置110は、材料供給源を含むターゲットを除き、図9Aおよび図9Bの製造装置50と同様の構成である。すなわち、第1位置118と第2位置119は、それぞれ固定台54の中心Cを通り回転軸57に直交する面に対し、対称な位置である。固定台54の中心Cに対して鉛直下方の方向Uと、中心Cから第1位置(または第2位置)に向かう方向とが成す角度β1(β2)は、図11Aおよび図11Bの製造装置90と同様である。   FIG. 13 shows still another manufacturing apparatus for the electrode for the lithium secondary battery of the present invention. The manufacturing apparatus 110 has the same configuration as the manufacturing apparatus 50 of FIGS. 9A and 9B except for a target including a material supply source. That is, the first position 118 and the second position 119 are symmetrical positions with respect to a plane that passes through the center C of the fixed base 54 and is orthogonal to the rotation shaft 57. An angle β1 (β2) formed by a direction U vertically below the center C of the fixed base 54 and a direction from the center C toward the first position (or the second position) is the manufacturing apparatus 90 of FIGS. 11A and 11B. It is the same.

ターゲット115は、第1位置118から第2位置119に至る幅を有する。ターゲット115の両端部は、それぞれ第1位置118および第2位置119に対応する。電子ビームの照射位置を変化させることにより、ターゲット115の一部または全体を加熱することができる。電子ビームの照射位置を制御し、材料供給源を第1位置および第2位置で交互に蒸発させる。このような方法により、製造装置90を用いる場合と同様に、屈曲部を有する柱状粒子を形成することができる。   The target 115 has a width from the first position 118 to the second position 119. Both ends of the target 115 correspond to the first position 118 and the second position 119, respectively. By changing the irradiation position of the electron beam, a part or the whole of the target 115 can be heated. The irradiation position of the electron beam is controlled, and the material supply source is alternately evaporated at the first position and the second position. By such a method, columnar particles having a bent portion can be formed as in the case of using the manufacturing apparatus 90.

図13の製造装置110では、第1位置118および第2位置119に、それぞれ電子ビーム装置を1基ずつ設置し、第1位置118および第2位置119に交互に電子ビームを照射しても、同様の効果が得られる。   In the manufacturing apparatus 110 of FIG. 13, one electron beam device is installed at each of the first position 118 and the second position 119, and the first position 118 and the second position 119 are alternately irradiated with the electron beam, Similar effects can be obtained.

材料供給源を固定し、集電体を固定する固定台を二軸方向に回転もしくは傾斜させても同様の効果が得られる。ただし、長尺の集電体をロールから巻き出し、連続的に電極を作製し、その後ロールで巻き取る場合、電極の製造途中で集電体の傾斜角度を様々に変えることは困難である。一方、図11〜13のような製造装置の場合、材料供給源の設置位置や蒸発のタイミングを制御するだけで、容易に集電体の傾斜角度を様々に変えることができる。
次に、本発明を実施例に基づいて具体的に説明するが、以下の実施例は本発明を限定するものではない。
The same effect can be obtained by fixing the material supply source and rotating or tilting the fixing base for fixing the current collector in the biaxial direction. However, when a long current collector is unwound from a roll to continuously produce an electrode and then wound with a roll, it is difficult to variously change the inclination angle of the current collector during the production of the electrode. On the other hand, in the case of a manufacturing apparatus like FIGS. 11-13, the inclination angle of a collector can be easily changed variously only by controlling the installation position of a material supply source and the timing of evaporation.
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, a following example does not limit this invention.

《実施例1》
図10に示すような積層型のリチウム二次電池を作製した。
(i)正極の作製
正極活物質である平均粒径約10μmのコバルト酸リチウム(LiCoO2)粉末10gと、導電剤であるアセチレンブラック0.3gと、結着剤であるポリフッ化ビニリデン粉末0.8gと、適量のN−メチル−2−ピロリドン(NMP)とを、充分に混合して、正極合剤ペーストを調製した。
Example 1
A stacked lithium secondary battery as shown in FIG. 10 was produced.
(I) Production of positive electrode 10 g of lithium cobaltate (LiCoO 2 ) powder having an average particle diameter of about 10 μm as a positive electrode active material, 0.3 g of acetylene black as a conductive agent, and polyvinylidene fluoride powder as a binder. 8 g and an appropriate amount of N-methyl-2-pyrrolidone (NMP) were sufficiently mixed to prepare a positive electrode mixture paste.

得られたペーストを厚さ20μmのアルミニウム箔からなる正極集電体61aの片面に塗布し、乾燥後、圧延して、正極活物質層61bを形成した。その後、所定形状に正極を切り出した。得られた正極において、アルミニウム箔の片面に担持された正極活物質層は、厚さ50μmで、30mm×30mmのサイズであった。正極活物質層を有さない集電体の裏面にはリードを接続した。   The obtained paste was applied to one side of a positive electrode current collector 61a made of an aluminum foil having a thickness of 20 μm, dried and then rolled to form a positive electrode active material layer 61b. Thereafter, the positive electrode was cut into a predetermined shape. In the obtained positive electrode, the positive electrode active material layer carried on one side of the aluminum foil had a thickness of 50 μm and a size of 30 mm × 30 mm. A lead was connected to the back surface of the current collector without the positive electrode active material layer.

(ii)負極の作製
図9Aおよび図9bに示すような、蒸着装置((株) アルバック製)を用いて、負極を作製した。負極集電体51(図10の62a)を固定台54に固定し、固定台54の鉛直下方には、るつぼつきタングステンフィラメントを設置した。るつぼには、材料供給源59として、純度99.99%の錫((株)関東化学製)を充填した。
(Ii) Production of Negative Electrode A negative electrode was produced using a vapor deposition apparatus (manufactured by ULVAC, Inc.) as shown in FIGS. 9A and 9b. The negative electrode current collector 51 (62a in FIG. 10) was fixed to the fixed base 54, and a tungsten filament with a crucible was installed vertically below the fixed base 54. The crucible was filled with 99.99% pure tin (manufactured by Kanto Chemical Co., Inc.) as a material supply source 59.

負極集電体には、厚さ35μmで、40mm×40mmのサイズに裁断された、表面粗さRzが10μmの電解銅箔(古河サーキットフォイル(株)製)を用いた。負極集電体を固定した固定台54は、はじめ水平面と70°の角度αを成すように傾斜させ、その状態で10分間、錫を蒸着させた(第1蒸着工程)。蒸着条件として、フィラメントに流す電流は60Aに設定した。その後、固定台54を、回転軸58を中心に時計回りに180°回転させ、その状態で更に10分間、同一条件で錫を蒸着させた(第2蒸着工程)。   As the negative electrode current collector, an electrolytic copper foil (manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 35 μm and cut to a size of 40 mm × 40 mm and having a surface roughness Rz of 10 μm was used. The fixing base 54 on which the negative electrode current collector was fixed was first inclined to form an angle α of 70 ° with the horizontal plane, and tin was vapor-deposited for 10 minutes in this state (first vapor deposition step). As vapor deposition conditions, the current flowing through the filament was set to 60A. Thereafter, the fixed base 54 was rotated 180 ° clockwise around the rotation shaft 58, and in this state, tin was vapor-deposited under the same conditions for 10 minutes (second vapor deposition step).

このようにして銅箔上に錫からなる負極活物質層を形成し、負極1Aを得た。その後、負極1Aを31mm×31mmのサイズに裁断した。負極活物質層を有さない集電体の裏面にはリード端子を接続した。   Thus, the negative electrode active material layer which consists of tin was formed on copper foil, and negative electrode 1A was obtained. Thereafter, the negative electrode 1A was cut into a size of 31 mm × 31 mm. A lead terminal was connected to the back surface of the current collector having no negative electrode active material layer.

負極1Aの断面を電子顕微鏡(SEM)で様々な角度から観察した。
観察の結果、負極活物質層は、1つの屈曲部を有する柱状粒子で構成されていることが判明した。柱状粒子の集電体との接触部から屈曲部までの第1柱状部が集電体表面の法線方向と成す角度θ1は45°であり、屈曲部から柱状粒子の先端までの第2柱状部が集電体表面の法線方向と成す角度θ2も同じく45°であった。負極活物質層の厚さtは5.5μmであり、互いに隣接する柱状粒子の中心間距離(ピッチ)は15μmであった。柱状粒子の中心高さにおける直径は4μmであった。
The cross section of the negative electrode 1A was observed from various angles with an electron microscope (SEM).
As a result of observation, it was found that the negative electrode active material layer was composed of columnar particles having one bent portion. The angle θ1 formed by the first columnar portion from the contact portion of the columnar particle with the current collector to the bent portion and the normal direction of the current collector surface is 45 °, and the second columnar shape from the bent portion to the tip of the columnar particle The angle θ2 formed by the portion with the normal direction of the current collector surface was also 45 °. The thickness t of the negative electrode active material layer was 5.5 μm, and the center-to-center distance (pitch) between the columnar particles adjacent to each other was 15 μm. The diameter at the center height of the columnar particles was 4 μm.

次に、負極1Aの空隙率Pを以下の要領で測定した。3cm×3cmのサイズの銅箔(表面粗さRz=10μm、厚さ35μm)の片面に、上記と同様の条件で、一様に錫の柱状粒子を形成し、負極1Aの試料を作製した。得られた試料の重量から、銅箔の重量を差し引いて、活物質層の重量を求め、錫の膜厚を測定し、活物質層の密度を求めた。得られた密度を、錫の真密度で除して、全体積に対する空隙の割合である空隙率Pを求めたところ、46%であった。   Next, the porosity P of the negative electrode 1A was measured as follows. On one side of a 3 cm × 3 cm size copper foil (surface roughness Rz = 10 μm, thickness 35 μm), tin columnar particles were uniformly formed under the same conditions as described above to prepare a sample of the negative electrode 1A. The weight of the copper foil was subtracted from the weight of the obtained sample to determine the weight of the active material layer, the film thickness of tin was measured, and the density of the active material layer was determined. The obtained density was divided by the true density of tin, and the void ratio P, which is the ratio of voids to the total volume, was found to be 46%.

以下、負極1Aの物性をまとめる。
活物質の組成:Sn
第1柱状部が集電体表面の法線方向と成す角度θ1:45°
第2柱状部が集電体表面の法線方向と成す角度θ2:45°
活物質層の厚さt:5.5μm
互いに隣接する柱状粒子の中心間距離:15μm
柱状粒子の直径:4μm
集電体の表面粗さRz:10μm
空隙率P:46%
Hereinafter, the physical properties of the negative electrode 1A are summarized.
Active material composition: Sn
Angle θ1: 45 ° formed by the first columnar portion and the normal direction of the current collector surface
Angle θ2: 45 ° formed by the second columnar portion and the normal direction of the current collector surface
Active material layer thickness t: 5.5 μm
Distance between centers of adjacent columnar particles: 15 μm
Columnar particle diameter: 4 μm
Current collector surface roughness Rz: 10 μm
Porosity P: 46%

(iii)試験電池の作製
旭化成(株)製の厚さ20μmのポリエチレン微多孔膜からなるセパレータを介して、正極活物質層と負極活物質層とを対向させ、薄い極板群を構成した。この極板群を、電解質とともに、アルミニウムラミネートシートからなる外装ケースに挿入した。電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:1で混合し、これにLiPF6を1.0mol/Lの濃度で溶解した非水電解液を用いた。非水電解液は、正極活物質層、負極活物質層およびセパレータにそれぞれ含浸させた。その後、正極リードと負極リードを外部に導出させた状態で、真空減圧しながら、外装ケース64の端部を溶着させて、試験電池を完成させた。得られた試験電池を電池1Aと称する。
(Iii) Production of test battery A positive electrode active material layer and a negative electrode active material layer were opposed to each other through a separator made of a polyethylene microporous film having a thickness of 20 μm manufactured by Asahi Kasei Co., Ltd. to form a thin electrode plate group. This electrode group was inserted into an outer case made of an aluminum laminate sheet together with the electrolyte. As the electrolyte, a nonaqueous electrolytic solution in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 1 and LiPF 6 was dissolved at a concentration of 1.0 mol / L was used. The non-aqueous electrolyte was impregnated in the positive electrode active material layer, the negative electrode active material layer, and the separator, respectively. Thereafter, with the positive electrode lead and the negative electrode lead led out to the outside, the end portion of the outer case 64 was welded while vacuum decompression to complete a test battery. The obtained test battery is referred to as battery 1A.

《比較例1》
以下の要領で負極を作製した。
負極集電体には、厚さ35μmの表面粗さRzが10μm電解銅箔(古河サーキットフォイル(株) 製)を用いた。図9Aおよび図9Bに示すような製造装置を用いて、負極集電体に錫を蒸着した。銅箔を、固定台54に固定し、固定台と水平面とが成す角度αを0°にして、銅箔を水平に設置した。蒸着条件として、フィラメントに流す電流は60Aに設定した。蒸着時間は5分に設定した。このようにして銅箔上に錫からなる負極活物質層を形成し、負極1Bを得た。
<< Comparative Example 1 >>
A negative electrode was produced in the following manner.
As the negative electrode current collector, an electrolytic copper foil having a thickness of 35 μm and a surface roughness Rz of 10 μm (manufactured by Furukawa Circuit Foil Co., Ltd.) was used. Using a manufacturing apparatus as shown in FIGS. 9A and 9B, tin was deposited on the negative electrode current collector. The copper foil was fixed to the fixing base 54, the angle α formed by the fixing base and the horizontal plane was set to 0 °, and the copper foil was horizontally installed. As vapor deposition conditions, the current flowing through the filament was set to 60A. The deposition time was set to 5 minutes. Thus, the negative electrode active material layer which consists of tin was formed on copper foil, and the negative electrode 1B was obtained.

負極1Aと同様に、負極1Bの断面を電子顕微鏡(SEM)で観察した。
観察の結果、図14に示すように、負極活物質層は、屈曲部をもたない柱状粒子を含む緻密なSn膜で構成されていることが判明した。得られた活物質層の厚さtは5.2μm、粒状粒子の直径は6.5μmであった。また、負極1Aと同様の方法で、負極1Bの空隙率Pを求めたところ、14%であった。
Similarly to the negative electrode 1A, the cross section of the negative electrode 1B was observed with an electron microscope (SEM).
As a result of observation, as shown in FIG. 14, it was found that the negative electrode active material layer was composed of a dense Sn film containing columnar particles having no bent portion. The thickness t of the obtained active material layer was 5.2 μm, and the diameter of the granular particles was 6.5 μm. Further, when the porosity P of the negative electrode 1B was determined by the same method as that of the negative electrode 1A, it was 14%.

以下、負極1Bの物性をまとめる。
活物質の組成:Sn
柱状粒子が集電体の法線方向と成す角度θ:0°
活物質層の厚さt:5.2μm
柱状粒子の直径:6.5μm
空隙率P:14%
Hereinafter, the physical properties of the negative electrode 1B are summarized.
Active material composition: Sn
The angle θ between the columnar particles and the normal direction of the current collector: 0 °
Active material layer thickness t: 5.2 μm
Columnar particle diameter: 6.5 μm
Porosity P: 14%

負極1Bを31mm×31mmのサイズに裁断し、負極活物質層を有さない集電体の裏面にはリード端子を接続した。こうして得られた負極を用いたこと以外、実施例1と同様にして、試験電池1Bを作製した。   The negative electrode 1B was cut into a size of 31 mm × 31 mm, and a lead terminal was connected to the back surface of the current collector not having the negative electrode active material layer. A test battery 1B was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.

[評価方法]
電池1Aおよび1Bを、それぞれ20℃の恒温室に収納し、定電流定電圧方式で充電を行った。ここでは、電池電圧が4.2Vになるまで1Cレート(1Cとは1時間で全電池容量を使い切ることができる電流値)の定電流で充電し、4.2Vに達した後は電流値が0.05Cになるまで定電圧で充電した。充電後、20分間休止した後、1Cレートの定電流で、電池電圧が2.5Vになるまで放電を行った。さらに、電池電圧が2.5Vになるまで0.05Cの電流値で再放電を行った。再放電後、20分間休止した。
[Evaluation methods]
The batteries 1A and 1B were each housed in a constant temperature room at 20 ° C. and charged by a constant current constant voltage method. Here, the battery is charged at a constant current of 1C rate (1C is a current value that can use up the entire battery capacity in 1 hour) until the battery voltage reaches 4.2V, and after reaching 4.2V, the current value is The battery was charged at a constant voltage until reaching 0.05C. After charging, the battery was paused for 20 minutes, and then discharged at a constant current of 1C until the battery voltage reached 2.5V. Furthermore, re-discharge was performed at a current value of 0.05 C until the battery voltage reached 2.5V. After the re-discharge, it was paused for 20 minutes.

上記の充放電を100サイクル繰り返した。(i)サイクル初期において、充電容量に対する、放電容量の割合を、充放電効率として、百分率値で求めた。また、(ii)サイクル初期の放電容量に対する、100サイクル目の放電容量の割合を、容量維持率として、百分率値で求めた。結果を表1に示す。   The above charging / discharging was repeated 100 cycles. (I) At the beginning of the cycle, the ratio of the discharge capacity to the charge capacity was determined as a percentage value as the charge / discharge efficiency. Further, (ii) the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the beginning of the cycle was obtained as a percentage value as the capacity retention rate. The results are shown in Table 1.

表1より、電池1Bと比べて電池1Aは、容量維持率が改善した。容量維持率が大幅に改善したのは、柱状粒子が屈曲部を有することにより、活物質層内部に応力を緩和する空隙を持つことができるようになり、負極活物質と集電体との接続が維持されたためと考えられる。   From Table 1, the capacity maintenance rate of the battery 1A was improved as compared with the battery 1B. The capacity retention rate has been greatly improved because the columnar particles have a bent portion, so that the active material layer can have voids to relieve stress and connect the negative electrode active material and the current collector. This is probably because of

《実施例2》
図11Aおよび図11Bに示すような、蒸着装置((株) アルバック製)、すなわち材料供給源を含むターゲットおよび電子ビームの設置位置を除き、図9Aおよび図9Bの製造装置50と同様の装置を用いて、負極を作製した。負極集電体51(図9の62a)を固定台54に固定し、固定台54の下方には、カーボンるつぼに入れられたターゲット105aおよび105bを設置した。その際、ターゲット105aおよび105bは、固定台54の中心Cを通り回転軸57に直交する面に対して対称な第1位置および第2位置に設置した。
Example 2
As shown in FIG. 11A and FIG. 11B, a vapor deposition apparatus (manufactured by ULVAC, Inc.), that is, an apparatus similar to the manufacturing apparatus 50 of FIG. A negative electrode was prepared using the same. The negative electrode current collector 51 (62a in FIG. 9) was fixed to the fixed base 54, and targets 105a and 105b placed in a carbon crucible were installed below the fixed base 54. At that time, the targets 105a and 105b were placed at first and second positions symmetrical with respect to a plane passing through the center C of the fixed base 54 and orthogonal to the rotation shaft 57.

固定台54の中心Cに対して鉛直下方の方向Uと、中心Cから第1位置に向かう方向とが成す角度b1、および、方向Uと、中心Cから第2位置に向かう方向とが成す角度b2は、それぞれ30°とした。   An angle b1 formed by a direction U vertically below the center C of the fixed base 54 and a direction from the center C toward the first position, and an angle formed by the direction U and a direction directed from the center C toward the second position. Each b2 was 30 °.

ターゲット105aおよび105bには、それぞれ材料供給源として、純度99.99%の錫((株)関東化学製)および純度99.99%コバルト((株)関東化学製)を充填し、電子ビーム照射装置(図示せず)を用いて材料供給源を加熱した。   Each of the targets 105a and 105b is filled with 99.99% purity tin (manufactured by Kanto Chemical Co., Ltd.) and 99.99% purity cobalt (manufactured by Kanto Chemical Co., Ltd.) as a material supply source. An apparatus (not shown) was used to heat the material source.

負極集電体には、厚さ35μmで、40mm×40mmのサイズに裁断された、表面粗さRzが10μmの電解銅箔(古河サーキットフォイル(株)製)を用いた。負極集電体を固定した固定台54は、はじめ水平面と70°の角度αを成すように傾斜させた。また、第2位置に設置したターゲット105bを、シャッター107bにより遮蔽した。その状態で10分間、第1位置に設置したターゲット105aから錫を蒸発させて、10分間、活物質を蒸着させた(第1蒸着工程)。   As the negative electrode current collector, an electrolytic copper foil (manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 35 μm and cut to a size of 40 mm × 40 mm and having a surface roughness Rz of 10 μm was used. The fixing base 54 to which the negative electrode current collector was fixed was first inclined so as to form an angle α of 70 ° with the horizontal plane. Further, the target 105b installed at the second position was shielded by the shutter 107b. In this state, tin was evaporated from the target 105a placed at the first position for 10 minutes, and an active material was vapor-deposited for 10 minutes (first vapor deposition step).

その後、第1位置に設置したターゲット105aをシャッター107aにより遮蔽した状態で、第2位置に設置したターゲット105bからコバルトを蒸発させて、5分間、活物質を蒸着させた(第2蒸着工程)。   Thereafter, in a state where the target 105a installed at the first position was shielded by the shutter 107a, cobalt was evaporated from the target 105b installed at the second position, and an active material was deposited for 5 minutes (second deposition process).

その後、固定台54を、回転軸58を中心に時計回りに180°回転させた。また、第2位置に設置したターゲット105bを、シャッター107bにより遮蔽した。その状態で、第1位置に設置したターゲット105aから錫を蒸発させて、10分間、同一条件で蒸着させた(第3蒸着工程)。   Thereafter, the fixed base 54 was rotated 180 ° clockwise around the rotation shaft 58. Further, the target 105b installed at the second position was shielded by the shutter 107b. In this state, tin was evaporated from the target 105a installed at the first position, and was vapor-deposited for 10 minutes under the same conditions (third vapor deposition step).

その後、再び第1位置に設置したターゲット105aをシャッター107aにより遮蔽した状態で、第2位置に設置したターゲット105bからコバルトを蒸発させて、5分間、活物質を蒸着させた(第4蒸着工程)。   Thereafter, cobalt was evaporated from the target 105b installed at the second position while the target 105a installed at the first position was shielded by the shutter 107a again, and an active material was deposited for 5 minutes (fourth deposition process). .

各ターゲットに照射する電子ビームの加速電圧は−8kVとし、ターゲット105aのエミッションは250mAに、ターゲット105bのエミッションは500mAに設定した。
錫およびコバルトの蒸気は、固定台54に設置された負極集電体上に、積層膜として堆積させることができた。その後、得られた積層膜を、200℃の真空オーブン中で、24時間熱処理した。こうして錫コバルト合金からなる負極活物質層を形成し、負極2Aを得た。負極2Aを31mm×31mmのサイズに裁断した。負極活物質層を有さない集電体の裏面にはリード端子を接続した。
The acceleration voltage of the electron beam irradiated to each target was set to -8 kV, the emission of the target 105a was set to 250 mA, and the emission of the target 105b was set to 500 mA.
The vapor of tin and cobalt could be deposited as a laminated film on the negative electrode current collector installed on the fixed base 54. Then, the obtained laminated film was heat-treated in a 200 ° C. vacuum oven for 24 hours. In this way, a negative electrode active material layer made of a tin-cobalt alloy was formed to obtain a negative electrode 2A. The negative electrode 2A was cut into a size of 31 mm × 31 mm. A lead terminal was connected to the back surface of the current collector having no negative electrode active material layer.

負極2Aを電子顕微鏡(SEM)で様々な角度から観察した。
観察の結果、負極活物質層は、1つの屈曲部を有する柱状粒子で構成されていることが判明した。柱状粒子の集電体との接触部から屈曲部までの第1柱状部が集電体表面の法線方向と成す角度θ1は45°であり、屈曲部から柱状粒子の先端までの第2柱状部が集電体表面の法線方向と成す角度θ2も同じく45°であった。負極活物質層の厚さtは6.5μmであり、互いに隣接する柱状粒子の中心間距離(ピッチ)は12μmであった。柱状粒子の中心高さにおける直径は5.0μmであった。
The negative electrode 2A was observed from various angles with an electron microscope (SEM).
As a result of observation, it was found that the negative electrode active material layer was composed of columnar particles having one bent portion. The angle θ1 formed by the first columnar portion from the contact portion of the columnar particle with the current collector to the bent portion and the normal direction of the current collector surface is 45 °, and the second columnar shape from the bent portion to the tip of the columnar particle The angle θ2 formed by the portion with the normal direction of the current collector surface was also 45 °. The thickness t of the negative electrode active material layer was 6.5 μm, and the distance (pitch) between the centers of the columnar particles adjacent to each other was 12 μm. The diameter at the center height of the columnar particles was 5.0 μm.

得られた負極活物質層に含まれるCo量をICP分析により定量した結果、錫コバルト合金の組成はSnCo0.3であった。XRDの解析結果からは、CoSn3相の存在が確認された。 As a result of quantifying the amount of Co contained in the obtained negative electrode active material layer by ICP analysis, the composition of the tin-cobalt alloy was SnCo 0.3 . From the XRD analysis results, the presence of the CoSn 3 phase was confirmed.

次に、負極2Aの空隙率Pを以下の要領で測定した。
3cm×3cmのサイズの銅箔(表面粗さRz=10μm、厚さ35μm)の片面に、上記と同様の条件で、一様にSnの柱状粒子を形成し、負極2Aの試料を作製した。得られた試料の重量から、銅箔の重量を差し引いて、活物質層の重量を求め、厚さを測定し、密度を求めた。得られた密度を、ICP分析で求めた組成の錫合金の真密度で除して、全体積に対する空隙の割合である空隙率Pを求めたところ、48%であった。
Next, the porosity P of the negative electrode 2A was measured as follows.
Sn columnar particles were uniformly formed on one side of a 3 cm × 3 cm size copper foil (surface roughness Rz = 10 μm, thickness 35 μm) under the same conditions as above to prepare a sample of the negative electrode 2A. The weight of the copper foil was subtracted from the weight of the obtained sample, the weight of the active material layer was determined, the thickness was measured, and the density was determined. The obtained density was divided by the true density of the tin alloy having the composition obtained by ICP analysis, and the porosity P, which is the ratio of the voids to the total volume, was found to be 48%.

以下、負極2Aの物性をまとめる。
活物質の組成:SnCo0.3
第1柱状部が集電体表面の法線方向と成す角度θ1:45°
第2柱状部が集電体表面の法線方向と成す角度θ2:45°
活物質層の厚さt:6.5μm
互いに隣接する柱状粒子の中心間距離:12μm
柱状粒子の直径:5.0μm
空隙率P:48%
こうして得られた負極を用いたこと以外、実施例1と同様にして、試験電池2Aを作製した。
Hereinafter, the physical properties of the negative electrode 2A are summarized.
Composition of active material: SnCo 0.3
Angle θ1: 45 ° formed by the first columnar portion and the normal direction of the current collector surface
Angle θ2: 45 ° formed by the second columnar portion and the normal direction of the current collector surface
Active material layer thickness t: 6.5 μm
Distance between centers of adjacent columnar particles: 12 μm
Columnar particle diameter: 5.0 μm
Porosity P: 48%
A test battery 2A was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.

《比較例2》
以下の要領で負極を作製した。
負極集電体には、厚さ35μmの表面粗さRzが10μm電解銅箔(古河サーキットフォイル(株) 製)を用いた。図11Aおよび図11Bに示すような製造装置を用いて、負極集電体に錫とコバルトの積層膜を蒸着した。銅箔を、固定台54に固定し、固定台と水平面とが成す角度αを0°にして、銅箔を水平に設置した。蒸着条件として、各ターゲットに照射する電子ビームの加速電圧は−8kVとし、ターゲット105aのエミッションは250mAに、ターゲット105bのエミッションは500mAに設定した。
<< Comparative Example 2 >>
A negative electrode was produced in the following manner.
As the negative electrode current collector, an electrolytic copper foil having a thickness of 35 μm and a surface roughness Rz of 10 μm (manufactured by Furukawa Circuit Foil Co., Ltd.) was used. A laminated film of tin and cobalt was deposited on the negative electrode current collector using a manufacturing apparatus as shown in FIGS. 11A and 11B. The copper foil was fixed to the fixing base 54, the angle α formed by the fixing base and the horizontal plane was set to 0 °, and the copper foil was horizontally installed. As the deposition conditions, the acceleration voltage of the electron beam applied to each target was set to -8 kV, the target 105a emission was set to 250 mA, and the target 105b emission was set to 500 mA.

第2位置に設置したターゲット105bを、シャッター107bにより遮蔽した。その状態で10分間、第1位置に設置したターゲット105aから錫を蒸発させて、10分間、活物質を蒸着させた(第1蒸着工程)。   The target 105b installed at the second position was shielded by the shutter 107b. In this state, tin was evaporated from the target 105a placed at the first position for 10 minutes, and an active material was vapor-deposited for 10 minutes (first vapor deposition step).

その後、第1位置に設置したターゲット105aをシャッター107aにより遮蔽した状態で、第2位置に設置したターゲット105bからコバルトを蒸発させて、5分間、活物質を蒸着させた(第2蒸着工程)。   Thereafter, in a state where the target 105a installed at the first position was shielded by the shutter 107a, cobalt was evaporated from the target 105b installed at the second position, and an active material was deposited for 5 minutes (second deposition process).

錫およびコバルトの蒸気は、固定台54に設置された負極集電体上に、積層膜として堆積させることができた。その後、得られた積層膜を、200℃の真空オーブン中で、24時間熱処理した。こうして錫コバルト合金からなる負極活物質層を形成し、負極2Bを得た。負極2Bを31mm×31mmのサイズに裁断した。負極活物質層を有さない集電体の裏面にはリード端子を接続した。   The vapor of tin and cobalt could be deposited as a laminated film on the negative electrode current collector installed on the fixed base 54. Then, the obtained laminated film was heat-treated in a 200 ° C. vacuum oven for 24 hours. In this way, a negative electrode active material layer made of a tin-cobalt alloy was formed to obtain a negative electrode 2B. The negative electrode 2B was cut into a size of 31 mm × 31 mm. A lead terminal was connected to the back surface of the current collector having no negative electrode active material layer.

負極2Bを電子顕微鏡(SEM)で様々な角度から観察した。
観察の結果、活物質層は、屈曲部をもたない粒状粒子を含む緻密な合金膜で構成されていることが判明した。同様にICP分析により合金の組成を求めると、SnCo0.32の組成が得られた。得られた活物質層の厚さtは6.6μm、粒状粒子の直径は5.4μmであった。また、1A同様の方法で負極1Bの空隙率Pを求めたところ、16%であった。
The negative electrode 2B was observed from various angles with an electron microscope (SEM).
As a result of observation, it has been found that the active material layer is composed of a dense alloy film including granular particles having no bent portion. Similarly, when the composition of the alloy was determined by ICP analysis, a composition of SnCo 0.32 was obtained. The thickness t of the obtained active material layer was 6.6 μm, and the diameter of the granular particles was 5.4 μm. Further, when the porosity P of the negative electrode 1B was determined by the same method as 1A, it was 16%.

以下、負極2Bの物性をまとめる。
活物質の組成:SnCo0.32
柱状粒子が集電体の法線方向と成す角度θ:0°
活物質層の厚さt:6.6μm
粒上粒子の粒子径:5.4μm
空隙率P:16%
こうして得られた負極を用いたこと以外、実施例1と同様にして、試験電池2Bを作製した。
The physical properties of the negative electrode 2B are summarized below.
Composition of active material: SnCo 0.32
The angle θ between the columnar particles and the normal direction of the current collector: 0 °
Active material layer thickness t: 6.6 μm
Particle size of particles on the grain: 5.4 μm
Porosity P: 16%
A test battery 2B was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.

上記の評価方法と同様の条件で、電池2Aおよび電池2Bを評価した。充放電効率および容量維持率の結果を表2に示す。   Battery 2A and battery 2B were evaluated under the same conditions as in the above evaluation method. Table 2 shows the results of charge / discharge efficiency and capacity retention rate.

表2より、電池2Bと比べて電池2Aは、容量維持率が改善している。これは、負極2Aの活物質層が十分な空隙を有し、充電による膨張応力を緩和できたためと考えられる。さらに、柱状粒子が屈曲部を有するため、負極活物質と集電体との接触部における応力も緩和されているためと考えられる。   From Table 2, the capacity maintenance rate of the battery 2A is improved as compared with the battery 2B. This is presumably because the active material layer of the negative electrode 2A had sufficient voids, and the expansion stress due to charging could be relaxed. Furthermore, since the columnar particles have a bent portion, the stress at the contact portion between the negative electrode active material and the current collector is also relaxed.

本発明は、様々な形態のリチウム二次電池に適用することができるが、特に、高容量と良好なサイクル特性が要求されるリチウム二次電池において有用である。本発明を適用可能なリチウム二次電池の形状は、特に限定されず、例えばコイン型、ボタン型、シート型、円筒型、偏平型、角型などの何れの形状でもよい。また、正極、負極およびセパレータからなる極板群の形態は、捲回型でも積層型でもよい。また、電池の大きさは、小型携帯機器などに用いる小型でも電気自動車等に用いる大型でもよい。本発明のリチウム二次電池は、例えば携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等の電源に用いることができるが、用途は特に限定されない。   The present invention can be applied to various forms of lithium secondary batteries, but is particularly useful in lithium secondary batteries that require high capacity and good cycle characteristics. The shape of the lithium secondary battery to which the present invention is applicable is not particularly limited, and may be any shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a flat shape, and a square shape. Further, the form of the electrode plate group including the positive electrode, the negative electrode, and the separator may be a wound type or a laminated type. The size of the battery may be small for a small portable device or large for an electric vehicle. The lithium secondary battery of the present invention can be used for a power source of, for example, a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle, an electric vehicle, a hybrid electric vehicle, etc., but the application is not particularly limited.

従来のリチウム二次電池用電極の一部の断面図である。It is sectional drawing of a part of conventional electrode for lithium secondary batteries. 図1の電極の側面図である。It is a side view of the electrode of FIG. 本発明の一実施形態に係るリチウム二次電池用電極を概念的に示す斜視図である。It is a perspective view which shows notionally the electrode for lithium secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウム二次電池用電極の一部の断面拡大図である。It is a cross-sectional enlarged view of a part of an electrode for a lithium secondary battery according to an embodiment of the present invention. 本発明の別の実施形態に係るリチウム二次電池用電極の一部の断面拡大図である。It is a cross-sectional enlarged view of a part of an electrode for a lithium secondary battery according to another embodiment of the present invention. 本発明のさらに別の実施形態に係るリチウム二次電池用電極の一部の断面拡大図である。It is a partial cross-sectional enlarged view of the electrode for lithium secondary batteries which concerns on another embodiment of this invention. 屈曲部を有する柱状粒子を含む本発明の一実施形態に係るリチウム二次電池用負極の一部のSEM写真である。It is a part of SEM photograph of the negative electrode for lithium secondary batteries which concerns on one Embodiment of this invention containing the columnar particle | grains which have a bending part. 本発明の更に別の実施形態に係るリチウム二次電池用電極の一部の断面拡大図である。It is a cross-sectional enlarged view of a part of an electrode for a lithium secondary battery according to still another embodiment of the present invention. リチウム二次電池用電極の製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of the electrode for lithium secondary batteries. 図9AのB−B線断面図である。It is the BB sectional view taken on the line of FIG. 9A. 積層型リチウム二次電池の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of a laminated lithium secondary battery. リチウム二次電池用電極の製造装置の別の一例を示す概略図である。It is the schematic which shows another example of the manufacturing apparatus of the electrode for lithium secondary batteries. 図11Aの製造装置の別の状態を示す概略図である。It is the schematic which shows another state of the manufacturing apparatus of FIG. 11A. リチウム二次電池用電極の製造装置の更に別の一例を示す概略図である。It is the schematic which shows another example of the manufacturing apparatus of the electrode for lithium secondary batteries. 図12Aの製造装置の別の状態を示す概略図である。It is the schematic which shows another state of the manufacturing apparatus of FIG. 12A. リチウム二次電池用電極の製造装置の更に別の一例を示す概略図である。It is the schematic which shows another example of the manufacturing apparatus of the electrode for lithium secondary batteries. 屈曲部を有さない柱状粒子を含むリチウム二次電池用負極の一部のSEM写真である。It is a SEM photograph of a part of negative electrode for lithium secondary batteries containing the columnar particle | grains which do not have a bending part.

符号の説明Explanation of symbols

1、12、22、202、32、42 活物質層
2、11、21、201、31、41、51 集電体
3、13、23、33、43 柱状粒子
10、20、200、30、40 負極
50、90、100、110 蒸着装置
52 ノズル
53 配管
54 固定台
55、95、105a、105b、115 ターゲット
56 チャンバー
57 基板傾斜軸
58 回転軸
59 材料供給源
60 電池
61 正極
61a 正極集電体
61b 正極活物質層
62 負極
62a 負極集電体
62b 負極活物質層
98、108、118 ターゲットの第1位置
99、109、119 ターゲットの第2位置
107a シャッター(第1位置)
107b シャッター(第2位置)
1, 12, 22, 202, 32, 42 Active material layer 2, 11, 21, 201, 31, 41, 51 Current collector 3, 13, 23, 33, 43 Columnar particle 10, 20, 200, 30, 40 Negative electrode 50, 90, 100, 110 Vapor deposition device 52 Nozzle 53 Piping 54 Fixing base 55, 95, 105a, 105b, 115 Target 56 Chamber 57 Substrate tilt axis 58 Rotating axis 59 Material supply source 60 Battery 61 Positive electrode 61a Positive electrode current collector 61b Positive electrode active material layer 62 Negative electrode 62a Negative electrode current collector 62b Negative electrode active material layer 98, 108, 118 First position of target 99, 109, 119 Second position of target 107a Shutter (first position)
107b Shutter (second position)

Claims (14)

シート状の集電体と、前記集電体に担持された活物質層とを具備し、
前記活物質層は、少なくとも1つの屈曲部を有する複数の柱状粒子を含み、
前記柱状粒子は、錫元素を含み、リチウムの吸蔵および放出が可能である、リチウム二次電池用電極。
A sheet-like current collector, and an active material layer carried on the current collector,
The active material layer includes a plurality of columnar particles having at least one bent portion,
The said columnar particle | grain is an electrode for lithium secondary batteries which contains a tin element and can occlude and discharge | release lithium.
前記柱状粒子の底部から最初の屈曲部までの前記柱状粒子の成長方向と、前記集電体の法線方向とが成す角度θ1が、10°以上、90°未満である、請求項1記載のリチウム二次電池用電極。 The angle θ 1 formed by the growth direction of the columnar particles from the bottom of the columnar particles to the first bent portion and the normal direction of the current collector is 10 ° or more and less than 90 °. Electrode for lithium secondary battery. 前記柱状粒子の底部から数えてn番目の屈曲部から(n+1)番目の屈曲部までの前記柱状粒子の成長方向と、前記集電体の法線方向とが成す角度をθn+1とし、nは1以上の整数としたとき、前記θn+1が、0°以上、90°未満である、請求項1または2記載のリチウム二次電池用電極。 The angle formed by the growth direction of the columnar particles from the n-th bent portion to the (n + 1) -th bent portion counted from the bottom of the columnar particles and the normal direction of the current collector is θ n + 1 , 3. The electrode for a lithium secondary battery according to claim 1 , wherein when n is an integer of 1 or more, the θ n + 1 is 0 ° or more and less than 90 °. 前記柱状粒子が、2個以上の屈曲部を有する、請求項1〜3のいずれかに記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein the columnar particles have two or more bent portions. 前記柱状粒子が、ジグザグ形状を有する、請求項4記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 4, wherein the columnar particles have a zigzag shape. 前記柱状粒子が、螺旋形状を有する、請求項4記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 4, wherein the columnar particles have a spiral shape. 前記活物質層の空隙率Pが、10%≦P≦70%である、請求項1〜6のいずれかに記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 1, wherein a porosity P of the active material layer is 10% ≦ P ≦ 70%. 前記柱状粒子が、さらに錫と固溶体を形成可能な元素Mを含み、前記元素Mが、コバルト、ニッケル、亜鉛、銅、鉄、マンガン、クロム、チタン、バナジウムおよびインジウムよりなる群から選択される少なくとも1種である、請求項1〜7のいずれかに記載のリチウム二次電池用電極。   The columnar particles further include an element M capable of forming a solid solution with tin, and the element M is at least selected from the group consisting of cobalt, nickel, zinc, copper, iron, manganese, chromium, titanium, vanadium, and indium. The electrode for a lithium secondary battery according to any one of claims 1 to 7, which is one type. 請求項1〜8のいずれかに記載のリチウム二次電池用電極と、対極と、これらの間に介在するリチウムイオン伝導性を有する電解質とを含む、リチウム二次電池。   A lithium secondary battery comprising the electrode for a lithium secondary battery according to any one of claims 1 to 8, a counter electrode, and an electrolyte having lithium ion conductivity interposed therebetween. +10°〜+70°である第1入射角で、シート状の集電体に活物質構成元素を入射させ、前記活物質構成元素を堆積させる第1ステップと、
−10°〜−70°である第2入射角で、前記シート状の集電体に前記活物質構成元素を入射させ、前記活物質構成元素を堆積させる第2ステップとを有し、
前記活物質構成元素が、錫元素を含む、リチウムイオン二次電池用電極の製造法。
A first step of depositing the active material constituent element by causing the active material constituent element to enter the sheet-like current collector at a first incident angle of + 10 ° to + 70 °;
A second step of depositing the active material constituent element by causing the active material constituent element to enter the sheet-like current collector at a second incident angle of −10 ° to −70 °;
The manufacturing method of the electrode for lithium ion secondary batteries in which the said active material structural element contains a tin element.
第1ステップが、第1位置および第2位置で材料供給源から発生させた前記活物質構成元素を、集電体の表面に入射させることを含み、
第2ステップが、前記第1位置および前記第2位置で前記材料供給源から発生させた前記活物質構成元素を、集電体の表面に入射させることを含む、請求項10記載のリチウム二次電池用電極の製造法。
The first step includes causing the active material constituent element generated from the material supply source at the first position and the second position to enter the surface of the current collector;
11. The lithium secondary according to claim 10, wherein the second step includes causing the active material constituent element generated from the material supply source at the first position and the second position to enter the surface of the current collector. Manufacturing method of battery electrode.
前記第1位置および前記第2位置が、前記集電体の表面と垂直な面に対して対称な位置である、請求項11記載のリチウム二次電池用電極の製造法。   The method for producing an electrode for a lithium secondary battery according to claim 11, wherein the first position and the second position are symmetrical with respect to a plane perpendicular to the surface of the current collector. 前記活物質構成元素が、第1元素および第2元素を含み、前記第1位置で前記第1元素を蒸発させ、前記第2位置で前記第2元素を蒸発させる、請求項11または12記載のリチウム二次電池用電極の製造法。   The active material constituent element includes a first element and a second element, the first element is evaporated at the first position, and the second element is evaporated at the second position. Manufacturing method of electrode for lithium secondary battery. 前記第1元素と前記第2元素とを、順次または交互に蒸発させる、請求項13記載のリチウム二次電池用電極の製造法。   The method for producing an electrode for a lithium secondary battery according to claim 13, wherein the first element and the second element are evaporated sequentially or alternately.
JP2008114318A 2007-04-27 2008-04-24 Electrode for lithium secondary battery, lithium-ion secondary battery, and its manufacturing method Pending JP2008293969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114318A JP2008293969A (en) 2007-04-27 2008-04-24 Electrode for lithium secondary battery, lithium-ion secondary battery, and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007118665 2007-04-27
JP2008114318A JP2008293969A (en) 2007-04-27 2008-04-24 Electrode for lithium secondary battery, lithium-ion secondary battery, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008293969A true JP2008293969A (en) 2008-12-04

Family

ID=40168453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114318A Pending JP2008293969A (en) 2007-04-27 2008-04-24 Electrode for lithium secondary battery, lithium-ion secondary battery, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008293969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098058A (en) * 2011-11-01 2013-05-20 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098058A (en) * 2011-11-01 2013-05-20 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4177885B2 (en) Negative electrode for lithium secondary battery, lithium ion secondary battery and method for producing the same
US7794878B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP4351732B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
JP4113910B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP4036889B2 (en) battery
JP5210162B2 (en) Anode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5095863B2 (en) Negative electrode for lithium ion battery, method for producing the same, and lithium ion battery
JP4910297B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP2008258154A (en) Negative electrode for lithium secondary battery and manufacturing method thereof, as well as lithium secondary battery equipped with negative electrode for lithium secondary battery
WO2008072460A1 (en) Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
JP5342440B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery
WO2009101815A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and method for producing negative electrode for lithium secondary battery
JP2008098157A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2008117785A (en) Negative electrode for lithium secondary battery and its manufacturing method
WO2008044449A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
JP4594965B2 (en) Negative electrode current collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5095132B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2001143760A (en) Lithium ion secondary cell
JP2008293969A (en) Electrode for lithium secondary battery, lithium-ion secondary battery, and its manufacturing method
JP2012199179A (en) Lithium secondary battery
JP5094034B2 (en) Method for manufacturing electrode for lithium secondary battery and lithium secondary battery
JP5238195B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10784511B1 (en) Nanoporous carbon as an anode material for Li-ion batteries
Qi Manganese-Based Thin Film Cathodes for Advanced Lithium Ion Battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107