JP2008293918A - Electron tube - Google Patents

Electron tube Download PDF

Info

Publication number
JP2008293918A
JP2008293918A JP2007140853A JP2007140853A JP2008293918A JP 2008293918 A JP2008293918 A JP 2008293918A JP 2007140853 A JP2007140853 A JP 2007140853A JP 2007140853 A JP2007140853 A JP 2007140853A JP 2008293918 A JP2008293918 A JP 2008293918A
Authority
JP
Japan
Prior art keywords
dynode
partition member
electron
stage
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007140853A
Other languages
Japanese (ja)
Other versions
JP4863931B2 (en
Inventor
Hideki Shimoi
英樹 下井
Hiroyuki Kushima
浩之 久嶋
Takayuki Omura
孝幸 大村
Hiroto Yokota
浩人 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007140853A priority Critical patent/JP4863931B2/en
Publication of JP2008293918A publication Critical patent/JP2008293918A/en
Application granted granted Critical
Publication of JP4863931B2 publication Critical patent/JP4863931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron tube with sensitivity efficiently enhanced even in the case downsizing of a device is required. <P>SOLUTION: A photomultiplier tube 1 is provided with dynodes 10 having photomultiplier holes 9 of a plurality of channels for multiplying incident electrons laminated in a plurality of steps. The photomultiplier holes 9 have adjacent channels in the dynodes 10 of the same steps partitioned by a partitioning member 12, which 12 is formed so that a cross section along a tube axis Z direction is extended aslant toward the tube axis Z direction, and that, a protruded part 13 along an opening 9a of the front-step dynode 10 side is formed at the upstream side side face 12a of the front-step dynode 10 side, and a tip face 12c at the front-step dynode 10 side is slanted to a face vertical to the tube axis Z direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多段に積層させたダイノードによって入射電子流を増倍する電子管に関するものである。   The present invention relates to an electron tube for multiplying an incident electron current by dynodes stacked in multiple stages.

従来、この種の電子管としては、下記特許文献1記載の光電子増倍管が知られている。この光電子増倍管は、主軸方向に沿って設けられた複数段のダイノードを有し、それぞれのダイノードにおいては、主軸に対して傾斜する複数の薄板が主軸に直交する方向に特定のピッチで配列されている。このようなダイノードの隣接する薄板間に主軸に沿って電子が入射すると、電子が順次薄板に衝突しながら増倍されてコレクタで捕集される。
特公昭59−23609号公報 特開昭62−160652号公報 特表2001−508917号公報 特許第3078905号
Conventionally, as this type of electron tube, a photomultiplier tube described in Patent Document 1 below is known. This photomultiplier tube has a plurality of dynodes provided along the main axis direction. In each dynode, a plurality of thin plates inclined with respect to the main axis are arranged at a specific pitch in a direction perpendicular to the main axis. Has been. When electrons enter along the main axis between adjacent thin plates of such dynodes, the electrons are sequentially multiplied while colliding with the thin plates and collected by the collector.
Japanese Patent Publication No.59-23609 JP-A-62-160652 JP-T-2001-508917 Patent No. 3078905

しかしながら、上記形状のダイノードでは、高感度を実現するためには薄板のサイズをある程度大きくすることが必要となるが、あまりサイズを大きくしすぎると前段側或いは後段側のダイノードの印加電圧による影響が強くなるため、かえって電子増倍率が低下してしまう傾向にある。このような傾向は、電子管の小型化が求められている場合に顕著である。   However, in the dynode having the above-described shape, it is necessary to increase the size of the thin plate to some extent in order to achieve high sensitivity. Since it becomes stronger, the electron multiplication factor tends to decrease. Such a tendency is remarkable when downsizing of the electron tube is required.

そこで、本発明は、かかる課題に鑑みて為されたものであり、装置の小型化が求められる場合であっても、感度を効率的に高めることが可能な電子管を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and an object thereof is to provide an electron tube capable of efficiently increasing sensitivity even when downsizing of the apparatus is required. .

上記課題を解決するため、本発明の電子管は、複数段に積層され、入射電子を増倍する複数チャネルの電子増倍孔を有するダイノードを備えた電子管であって、電子増倍孔は、同一段のダイノードにおける隣接チャネルどうしが仕切部材によって仕切られ、仕切部材は、ダイノードの積層方向に沿った断面が積層方向に対して傾斜して延びるように形成され、且つ、前段のダイノード側の上流側側面には、前段のダイノード側の端部に沿った突起部が形成され、前段のダイノード側の先端面が積層方向に垂直な面に対して傾斜している。   In order to solve the above-described problems, an electron tube of the present invention is an electron tube including a dynode having a plurality of channel electron multiplying holes stacked in a plurality of stages and multiplying incident electrons. Adjacent channels in a single stage dynode are partitioned by a partition member, and the partition member is formed such that a cross section along the stacking direction of the dynode extends inclining with respect to the stacking direction, and upstream of the previous dynode side A protrusion is formed on the side surface along the end portion on the dynode side of the previous stage, and the tip surface on the dynode side of the previous stage is inclined with respect to a plane perpendicular to the stacking direction.

このような電子管によれば、複数段に積層されたダイノードには、隣接チャネル間が積層方向に対して傾斜する仕切部材によって仕切られた電子増倍孔が構成されており、その仕切部材には、前段のダイノード側の側面において電子増倍孔の開口端に沿った突起部が設けられ、且つ、仕切部材の前段のダイノード側の先端面がダイノードの積層方向に垂直な面に対して傾斜している。このような仕切部材の形状により、前段のダイノードに印加された電圧による電場のしみこみが突起部により遮られることにより、電子増倍孔内の電位の低下が防止されるとともに、電子増倍孔の後段のダイノード側の側面近傍における電位が引き上げられる。また、前段のダイノード側の先端面が傾斜することで当該先端面から前段のダイノードの電子増倍孔内部に向けて電場がしみこみやすくなる。このような突起部及び先端面形状の相乗効果により、ダイノードにおける電子の増倍効率が向上し、検出感度を効果的に高めることが可能になる。   According to such an electron tube, the dynodes stacked in a plurality of stages are configured with electron multiplying holes that are partitioned by a partition member that is inclined between adjacent channels with respect to the stacking direction. A protrusion along the opening end of the electron multiplier hole is provided on the side surface on the front dynode side, and the front end surface on the front dynode side of the partition member is inclined with respect to a surface perpendicular to the stacking direction of the dynodes. ing. By such a shape of the partition member, the penetration of the electric field due to the voltage applied to the preceding dynode is blocked by the protrusion, so that the potential in the electron multiplier hole is prevented from being lowered and the electron multiplier hole The potential in the vicinity of the side surface on the dynode side in the subsequent stage is raised. In addition, since the front end surface on the dynode side in the previous stage is inclined, the electric field is likely to penetrate from the front end surface toward the inside of the electron multiplier hole of the previous dynode. By such a synergistic effect of the protrusion and the tip surface shape, the electron multiplication efficiency in the dynode is improved, and the detection sensitivity can be effectively increased.

仕切部材の突起部には、先端に前段のダイノード側の端部に沿った窪みが形成されていることが好ましい。この場合、仕切部材の突起部と前段のダイノードとの間の耐電圧特性が低下することなく所望の検出感度を維持することができる。   The projection of the partition member is preferably formed with a dent at the tip along the end on the dynode side of the previous stage. In this case, the desired detection sensitivity can be maintained without degrading the withstand voltage characteristic between the protruding portion of the partition member and the preceding dynode.

また、仕切部材の後段のダイノード側の下流側側面には、前段のダイノード側の端部に沿った窪み部が形成されていることも好ましい。かかる構成を備えれば、電子増倍孔の体積を確保することができるので、ダイノードを多チャネル化した場合であっても、各チャネル毎の電子の収集効率を向上させることができる。   Moreover, it is also preferable that a recess along the end portion on the dynode side of the previous stage is formed on the downstream side surface on the dynode side of the rear stage of the partition member. With such a configuration, the volume of the electron multiplying hole can be secured, so that the electron collection efficiency for each channel can be improved even when the dynode is multi-channeled.

また、仕切部材の窪み部は、上流側側面の突起部の形成位置に対して反対側の下流側側面の位置に形成されていることも好ましい。こうすれば、仕切部材の肉厚を薄くすることが容易になり、限られたサイズのダイノードにおいて電子増倍孔を容易に多チャネル化することができる。   Moreover, it is also preferable that the hollow part of a partition member is formed in the position of the downstream side surface on the opposite side with respect to the formation position of the projection part of an upstream side surface. In this way, it is easy to reduce the thickness of the partition member, and the electron multiplier holes can be easily multi-channeled in a limited size dynode.

或いは、仕切部材の後段のダイノード側の下流側側面には、前段のダイノード側の端部に沿って更に突起部が形成されていることが好ましい。かかる突起部を備えれば、電子増倍孔の後段のダイノード側において後段側に2次電子を導くような電場を生じやすくなるので、検出感度をより高くすることができる。   Or it is preferable that the protrusion part is further formed in the downstream side surface by the side of the back | latter stage dynode of a partition member along the edge part by the side of the front | former stage dynode. Providing such a protrusion makes it easier to generate an electric field that leads secondary electrons to the subsequent stage on the dynode side subsequent to the electron multiplier hole, so that the detection sensitivity can be further increased.

また、上流側側面の突起部は、電子増倍孔の前段のダイノード側の開口部を含む第1の面と、後段のダイノード側の開口部を含む第2の面との間の中点を含む面よりも第1の面寄りに配置されていることも好ましい。この場合、前段のダイノードへの印加電圧による電子増倍孔への電場のしみこみが一層防止され、電子の増倍率をさらに高めることが可能になる。   Further, the protrusion on the upstream side surface is a midpoint between the first surface including the opening on the dynode side upstream of the electron multiplier hole and the second surface including the opening on the dynode side in the subsequent stage. It is also preferable that it is arranged closer to the first surface than the including surface. In this case, the penetration of the electric field into the electron multiplier hole due to the voltage applied to the preceding dynode is further prevented, and the electron multiplication factor can be further increased.

さらに、仕切部材の上流側側面は、突起部から先端面にかけて前段のダイノード側に向けて湾曲するように形成されていることも好ましい。かかる形状の場合、仕切部材の側面から前段のダイノードまでの距離が大きくされるのでダイノード間の放電を防止できるとともに、仕切部材の先端部から前段の電子増倍孔内に向けて電場がしみこみ易くなるので、電子の増倍率をより向上させることができる。   Furthermore, it is also preferable that the upstream side surface of the partition member is formed so as to bend toward the dynode side in the previous stage from the protrusion to the tip surface. In such a shape, the distance from the side surface of the partition member to the preceding dynode is increased, so that discharge between the dynodes can be prevented and the electric field easily penetrates from the tip of the partition member into the preceding electron multiplier hole. Therefore, the multiplication factor of electrons can be further improved.

またさらに、仕切部材の上流側側面は、突起部から後段のダイノード側の先端部にかけて前段のダイノード側に向けて湾曲するように形成されていることも好ましい。かかる形状の場合、仕切部材の先端部から後段のダイノードまでの距離が大きくされるのでダイノード間の放電を十分に防止することができる。   Furthermore, it is also preferable that the upstream side surface of the partition member is formed so as to bend toward the front dynode side from the protrusion to the front end portion on the rear dynode side. In the case of such a shape, since the distance from the front end portion of the partition member to the subsequent dynode is increased, the discharge between the dynodes can be sufficiently prevented.

本発明によれば、装置の小型化が求められる場合であっても、感度を効率的に高めることが可能な電子管を提供することができる。   According to the present invention, it is possible to provide an electron tube capable of efficiently increasing sensitivity even when downsizing of the apparatus is required.

以下、図面を参照しつつ本発明に係る電子管の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of an electron tube according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の好適な一実施形態に係る電子管である光電子増倍管1の管軸方向に沿った端面図である。この光電子増倍管1は、入射光を受ける円形状の透光性を有する受光面板2、その受光面板2の外縁部に取り付けられた円筒状の金属側管3、及び金属側管3を挟んで受光面板2に対面して配置された円形のステム4によって構成された真空容器5と、この真空容器5内に配設された収束電極6、電子増倍部7、及びアノード8とを備えている。この光電子増倍管1のサイズとしては特定のサイズには限定されないが、例えば、真空容器5の管軸Z方向の長さが12mm、管軸Zに垂直な方向の幅が15mmである。   FIG. 1 is an end view along a tube axis direction of a photomultiplier tube 1 which is an electron tube according to a preferred embodiment of the present invention. The photomultiplier tube 1 sandwiches a circular light-receiving surface plate 2 that receives incident light, a cylindrical metal side tube 3 attached to the outer edge of the light-receiving surface plate 2, and the metal side tube 3. The vacuum vessel 5 is constituted by a circular stem 4 disposed so as to face the light receiving face plate 2, and the focusing electrode 6, the electron multiplier 7, and the anode 8 arranged in the vacuum vessel 5. ing. The size of the photomultiplier tube 1 is not limited to a specific size. For example, the length of the vacuum vessel 5 in the tube axis Z direction is 12 mm, and the width in the direction perpendicular to the tube axis Z is 15 mm.

受光面板2の内面には、光電陰極2aが設けられ、この光電陰極2aと電子増倍部7との間において、管軸Z方向に対して垂直な方向に略等間隔に並ぶように線状の収束電極6が設けられている。この収束電極6は、外部から受光面板2への光の入射に伴い光電陰極2aから真空容器5内に放出された電子を、その軌道を収束させることにより電子増倍部7に入射させる。   A photocathode 2a is provided on the inner surface of the light-receiving face plate 2, and the photocathode 2a is linearly arranged between the photocathode 2a and the electron multiplier 7 in a direction perpendicular to the tube axis Z direction. The focusing electrode 6 is provided. The converging electrode 6 causes electrons emitted from the photocathode 2a into the vacuum vessel 5 as light enters the light-receiving face plate 2 from the outside to enter the electron multiplier 7 by converging the trajectory.

電子増倍部7は、多数の電子増倍孔9を有するダイノード10が、管軸Z方向に複数段で積層されて構成されており、最終段のダイノード10の後段側には、最終段のダイノード10の電子増倍孔9に対向して略矩形状のアノード8が配設されている。また、ステム4には、外部の電圧端子と接続して、光電陰極2a、収束電極6、各ダイノード10、及びアノード8に所定の電圧を印加するステムピン11が貫通して設けられている。このダイノード10の段数及びステムピン11への印加電圧は様々に設定されうるが、例えば、ダイノード10は8段で積層され、光電陰極2a、収束電極6、各ダイノード10、及びアノード8への印加電圧は、それぞれ、0V、0V、160〜720V(80V間隔)、800Vと、光電陰極2aからアノード8に向かうに従って高くなるように設定されることで、入射電子流は、電子増倍経路における上流から下流に向かうにつれて、具体的には初段のダイノード10から最終段のダイノード10に向かうにつれて増倍されて、アノード8で検出信号として外部に取り出される。   The electron multiplying unit 7 includes a plurality of dynodes 10 having a plurality of electron multiplying holes 9 stacked in the tube axis Z direction. A substantially rectangular anode 8 is disposed facing the electron multiplying hole 9 of the dynode 10. In addition, the stem 4 is provided with a stem pin 11 that is connected to an external voltage terminal and applies a predetermined voltage to the photocathode 2 a, the focusing electrode 6, each dynode 10, and the anode 8. The number of stages of the dynodes 10 and the voltage applied to the stem pin 11 can be set variously. For example, the dynodes 10 are stacked in eight stages, and the voltages applied to the photocathode 2a, the focusing electrode 6, each dynode 10 and the anode 8 are stacked. Are set so as to increase from 0V, 0V, 160 to 720V (80V interval), 800V, respectively, from the photocathode 2a toward the anode 8, so that the incident electron current flows from upstream in the electron multiplication path. As it goes downstream, specifically, it is multiplied from the first stage dynode 10 toward the last stage dynode 10, and taken out as a detection signal at the anode 8.

次に、図2〜4を参照して、電子増倍部7の構成について詳細に説明する。図2は、図1の電子増倍部7の一部を拡大して示す端面図、図3は、図2の仕切部材を拡大して示す端面図、図4は、図1のダイノード10を管軸Z方向から見た平面図である。   Next, the configuration of the electron multiplier section 7 will be described in detail with reference to FIGS. 2 is an end view showing a part of the electron multiplying unit 7 in FIG. 1 in an enlarged manner, FIG. 3 is an end view showing the partition member in FIG. 2 in an enlarged manner, and FIG. 4 shows the dynode 10 in FIG. It is the top view seen from the pipe-axis Z direction.

各ダイノード10は、略矩形状のステンレス、アルミニウム等の金属製の平板電極に、管軸Z方向に対して垂直な方向に沿って互いに並列にスリット状の電子増倍孔9が複数形成されて成る。これらの複数の電子増倍孔9は、その前段側(収束電極6側)の開口部9aが、前段のダイノード10の電子増倍孔9の後段側(アノード8側)の開口部9bの延長線上に位置することによって管軸Z方向に沿ったジグザグ状の電子増倍用チャネルを複数形成する。   Each dynode 10 has a plurality of slit-like electron multiplying holes 9 formed in parallel to each other along a direction perpendicular to the tube axis Z direction on a substantially rectangular plate electrode made of metal such as stainless steel or aluminum. Become. The plurality of electron multiplier holes 9 have an opening 9a on the front stage side (focusing electrode 6 side) extending from the opening 9b on the rear stage side (anode 8 side) of the electron multiplier hole 9 of the dynode 10 in the front stage. A plurality of zigzag electron multiplying channels along the tube axis Z direction are formed by being positioned on the line.

このような構造のダイノード10としては、例えば、9mm四方、厚さ0.1mmのステンレス平板に1mm間隔で電子増倍孔9を形成したものを、0.8mmピッチで積層したものが使用される。   As the dynode 10 having such a structure, for example, a plate obtained by laminating electron multiplying holes 9 at intervals of 1 mm on a stainless steel plate 9 mm square and 0.1 mm thick is used at a pitch of 0.8 mm.

電子増倍孔9の特徴についてより詳細に説明すると、隣接する電子増倍用チャネルを構成する2つの電子増倍孔9は、平板電極に例えばプレス加工を施すことにより成形された仕切部材12によって仕切られている。この仕切部材12は、スリット状の電子増倍孔9の配列方向をX軸とした場合のX−Z平面に沿った断面が、管軸Zに対して傾斜して延びるように形成されている(図3)。   The characteristics of the electron multiplying hole 9 will be described in more detail. The two electron multiplying holes 9 constituting the adjacent electron multiplying channel are formed by a partition member 12 formed by, for example, pressing a plate electrode. It is partitioned. The partition member 12 is formed such that a cross section along the XZ plane when the arrangement direction of the slit-like electron multiplying holes 9 is the X axis extends in an inclined manner with respect to the tube axis Z. (Figure 3).

仕切部材12の前段のダイノード10側の上流側側面12aには、電子増倍孔9の開口部9aを成す仕切部材12の前段側の端部に沿って(Y軸方向に沿って)、突起部13が形成されている。この突起部13は、電子増倍孔9の開口部9aを含む面S1と開口部9bを含む面S2との間の中点を含む面S3よりも面S1寄りに位置するように形成されている。また、この突起部13の中心部には、突起部13の長手方向に沿って、すなわち、開口部9aに沿って線状に切り欠かれた窪み13aが形成されている。この上流側側面12aは、突起部13から前段側の先端面12c及び後段側の先端面12dにかけて、前段のダイノード10側に湾曲するように曲面を形成している。   On the upstream side surface 12a of the upstream side of the partition member 12 on the dynode 10 side, a protrusion is formed along the front side end of the partition member 12 forming the opening 9a of the electron multiplying hole 9 (along the Y-axis direction). A portion 13 is formed. The protrusion 13 is formed so as to be positioned closer to the surface S1 than the surface S3 including the midpoint between the surface S1 including the opening 9a of the electron multiplying hole 9 and the surface S2 including the opening 9b. Yes. In addition, a recess 13a is formed in the center of the protrusion 13 along the longitudinal direction of the protrusion 13, that is, along the opening 9a. The upstream side surface 12a forms a curved surface from the protrusion 13 to the front end surface 12c and the rear end surface 12d so as to curve toward the front dynode 10 side.

仕切部材12の後段のダイノード10側の下流側側面12bには、突起部13の形成方向に沿って、すなわち、開口部9aに沿って直線状に窪み部14が形成されている(図3及び図4)。この窪み部14は、上流側側面12aの突起部13の形成位置に対して反対側の下流側側面12bの位置に形成されている。また、この下流側側面12bは、窪み部14から前段側の先端面12c及び後段側の先端面12dにかけて、前段のダイノード10側に湾曲するように曲面を形成している。   On the downstream side surface 12b on the dynode 10 side at the rear stage of the partition member 12, a recess 14 is formed linearly along the direction in which the protrusion 13 is formed, that is, along the opening 9a (see FIG. 3 and FIG. 3). FIG. 4). The recess 14 is formed at the position of the downstream side surface 12b opposite to the formation position of the protrusion 13 of the upstream side surface 12a. Further, the downstream side surface 12b forms a curved surface so as to bend toward the front dynode 10 from the recess 14 to the front end surface 12c and the rear end surface 12d.

また、仕切部材12の先端面12cは、同一チャネルの前段側の電子増倍孔9内に向けて開口部9aが突出するように、管軸Z方向に垂直な面S1に対して傾斜して形成されている。同様に、仕切部材12の先端面12dも、管軸Z方向に垂直な面S2に対して傾斜して形成されている。   Further, the front end surface 12c of the partition member 12 is inclined with respect to the surface S1 perpendicular to the tube axis Z direction so that the opening 9a protrudes into the electron multiplying hole 9 on the upstream side of the same channel. Is formed. Similarly, the front end surface 12d of the partition member 12 is also formed to be inclined with respect to the surface S2 perpendicular to the tube axis Z direction.

このような構成の電子増倍部7における電子増倍機能について、図1及び図5を参照しつつ説明する。   The electron multiplying function in the electron multiplying unit 7 having such a configuration will be described with reference to FIGS.

収束電極6を通過して1段目のダイノード10の電子増倍孔9内に入射した電子は、ダイノード10に印加された電圧により加速されながら、電子増倍孔9の上流側側面12aのアノード8側の下部に衝突し、ここで2次電子が放出され入射電子流Eが増倍される。増倍された入射電子流Eは同一チャネルの次段のダイノード10の電子増倍孔9に入射して、そのダイノード10に印加された電圧により加速されながら上流側側面12aに衝突し、再び増倍される。このようにして最終段のダイノード10の電子増倍孔9から放出された電子流Eは、アノード8からステムピン11を介して外部に電気信号として取り出される。   The electrons that have passed through the focusing electrode 6 and entered the electron multiplier hole 9 of the first stage dynode 10 are accelerated by the voltage applied to the dynode 10, and are then anodes on the upstream side surface 12 a of the electron multiplier hole 9. It collides with the lower part on the 8 side, where secondary electrons are emitted and the incident electron current E is multiplied. The multiplied incident electron stream E enters the electron multiplying hole 9 of the next dynode 10 of the same channel, collides with the upstream side surface 12a while being accelerated by the voltage applied to the dynode 10, and increases again. Doubled. In this way, the electron flow E emitted from the electron multiplier hole 9 of the final stage dynode 10 is taken out as an electrical signal from the anode 8 through the stem pin 11.

以上説明した光電子増倍管1によれば、複数段に積層されたダイノード10には、隣接チャネル間が管軸Z方向に対して傾斜する仕切部材12によって仕切られた電子増倍孔9が構成されており、その仕切部材12には、前段のダイノード10側の側面12aにおいて電子増倍孔9の開口部9aに沿った突起部13が設けられ、且つ、仕切部材12の前段のダイノード側の先端面12cが管軸Z方向に垂直な面S1に対して傾斜している。このような仕切部材12の形状により、前段のダイノード10に印加された電圧による電場F1の電子増倍孔9内へのしみこみが突起部13により遮られることにより、電子増倍孔9内の電位の低下が防止されるとともに、電子増倍孔9の後段のダイノード10側の側面12a近傍における電位が引き上げられる(図5)。また、前段のダイノード10側の先端面12cが傾斜することで当該先端面12cから前段のダイノード10の電子増倍孔9内部に向けて電場F2がしみこみやすくなる。このような突起部13及び先端面12c形状の相乗効果により、増倍された入射電子流Eを上流側側面12aから後段の電子増倍孔9に導入しやすい電場の分布が形成されるので、ダイノード10における電子の増倍効率が向上し、検出感度を効果的に高めることが可能になる。また、仕切り部材12には管軸Z方向に垂直な面S1に対して平行な部位が殆どないため、ノイズ等の原因となりうる異物が仕切り部材12上に載ってしまうことを抑制することができる。   According to the photomultiplier tube 1 described above, the dynodes 10 stacked in a plurality of stages are configured with the electron multiplier holes 9 partitioned between the adjacent channels by the partition member 12 inclined with respect to the tube axis Z direction. The partition member 12 is provided with a protrusion 13 along the opening 9a of the electron multiplying hole 9 on the side surface 12a on the front dynode 10 side, and on the front dynode side of the partition member 12. The tip surface 12c is inclined with respect to the surface S1 perpendicular to the tube axis Z direction. With such a shape of the partition member 12, penetration of the electric field F <b> 1 into the electron multiplier hole 9 due to the voltage applied to the dynode 10 in the previous stage is blocked by the protrusion 13, so that the potential in the electron multiplier hole 9 is reduced. Is prevented, and the potential in the vicinity of the side surface 12a on the dynode 10 side at the rear stage of the electron multiplier hole 9 is raised (FIG. 5). In addition, since the front end surface 12c on the front dynode 10 side is inclined, the electric field F2 is likely to penetrate from the front end surface 12c toward the inside of the electron multiplier hole 9 of the front dynode 10. Due to the synergistic effect of the shape of the protruding portion 13 and the tip surface 12c, an electric field distribution is formed that facilitates introduction of the multiplied incident electron current E from the upstream side surface 12a to the subsequent electron multiplying hole 9. Electron multiplication efficiency in the dynode 10 is improved, and detection sensitivity can be effectively increased. Further, since the partition member 12 has almost no part parallel to the surface S1 perpendicular to the tube axis Z direction, it is possible to suppress foreign matters that may cause noise or the like from being placed on the partition member 12. .

特に、突起部13は、電子増倍孔9の開口部9aを含む面S1と、開口部9bを含む面S2との間の中点を含む面S3よりも面S1寄りに配置されているので、前段のダイノード10への印加電圧による電子増倍孔9への電場のしみこみが一層防止され、電子の増倍率をさらに高めることが可能になる。   In particular, the protrusion 13 is disposed closer to the surface S1 than the surface S3 including the midpoint between the surface S1 including the opening 9a of the electron multiplying hole 9 and the surface S2 including the opening 9b. Further, the penetration of the electric field into the electron multiplier hole 9 due to the voltage applied to the preceding dynode 10 is further prevented, and the electron multiplication factor can be further increased.

また、仕切部材12の突起部13には、その先端に開口部9aに沿った窪み13aが形成されているので、仕切部材12の突起部13と前段のダイノード10との間の耐電圧特性が低下することなく所望の検出感度を維持することができる。   Moreover, since the protrusion 13 of the partition member 12 has a recess 13a formed along the opening 9a at the tip thereof, the withstand voltage characteristic between the protrusion 13 of the partition member 12 and the dynode 10 in the previous stage is improved. A desired detection sensitivity can be maintained without being lowered.

また、仕切部材12の下流側側面12bには、開口部9aに沿った窪み部14が形成されていることで電子増倍孔9の体積を確保することができるので、ダイノード10を多チャネル化した場合であっても、各チャネル毎の電子の収集効率を向上させることができる。さらに、仕切部材12の窪み部14は、上流側側面12aの突起部13の形成位置に対して反対側の下流側側面12bの位置に形成されているので、仕切部材12の肉厚を薄くすることが容易になり、限られたサイズのダイノード10において電子増倍孔9を容易に多チャネル化することができる。   Moreover, since the volume of the electron multiplying hole 9 can be secured by forming the recess 14 along the opening 9a on the downstream side surface 12b of the partition member 12, the dynode 10 can be multi-channeled. Even in this case, the electron collection efficiency for each channel can be improved. Furthermore, since the recessed part 14 of the partition member 12 is formed in the position of the downstream side surface 12b on the opposite side with respect to the formation position of the projection part 13 of the upstream side surface 12a, the thickness of the partition member 12 is made thin. Therefore, the electron multiplier holes 9 can be easily multi-channeled in the dynodes 10 of a limited size.

さらに、仕切部材12の上流側側面12aは、突起部13から先端面12cにかけて前段のダイノード10側に湾曲するように形成されているので、仕切部材12の側面12aから前段のダイノード10までの距離が大きくされてダイノード10間の放電を防止できるとともに、仕切部材12の開口部9aから前段の電子増倍孔9内に向けて電場がしみこみ易くなるので、電子の増倍率をより向上させることができる。   Further, since the upstream side surface 12a of the partition member 12 is formed to bend toward the front dynode 10 from the protrusion 13 to the tip surface 12c, the distance from the side surface 12a of the partition member 12 to the front dynode 10 Can be prevented from being discharged between the dynodes 10, and an electric field can easily penetrate from the opening 9 a of the partition member 12 into the electron multiplier hole 9 in the previous stage, so that the electron multiplication factor can be further improved. it can.

またさらに、仕切部材12の上流側側面12aは、突起部13から先端面12dにかけて前段のダイノード10側に湾曲するように形成されているので、仕切部材12の開口部9bから後段のダイノード10までの距離が大きくされるのでダイノード間の放電を十分に防止することができる。   Furthermore, since the upstream side surface 12a of the partition member 12 is formed so as to bend toward the front dynode 10 from the protrusion 13 to the tip surface 12d, from the opening 9b of the partition member 12 to the rear dynode 10 The distance between the dynodes can be sufficiently prevented.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、ダイノード10の形状としては様々な変形態様を採ることができる。例えば、図6には、本発明の変形例であるダイノード110の図1と同様な管軸方向に沿った端面図を示す。このダイノード110は、隣接する電子増倍孔109を仕切る仕切部材112を有しており、この仕切部材112の上流側側面112aには、電子増倍孔109の開口部109aに沿って直線的に尖った形状を有する突起部113が形成されている。そして、この仕切部材の下流側側面112bにおける突起部113と反対側の位置には、後段のダイノード110側に直線的に突出する突起部114が形成されている。このような形状の場合は、電子増倍孔109が後段のダイノード110側に向けて狭くなるように構成されることにより後段側に2次電子を導くような電場が生じやすくなるので、電子の増倍率がさらに高められ、検出感度をより高くすることができる。   In addition, this invention is not limited to embodiment mentioned above. For example, the shape of the dynode 10 can take various modifications. For example, FIG. 6 shows an end view along the tube axis direction similar to FIG. 1 of a dynode 110 which is a modification of the present invention. The dynode 110 has a partition member 112 that partitions adjacent electron multiplying holes 109, and linearly extends along the opening 109 a of the electron multiplying hole 109 on the upstream side surface 112 a of the partition member 112. A protrusion 113 having a sharp shape is formed. A protrusion 114 that linearly protrudes toward the subsequent dynode 110 is formed at a position opposite to the protrusion 113 on the downstream side surface 112b of the partition member. In the case of such a shape, since the electron multiplying hole 109 is configured to become narrower toward the subsequent dynode 110 side, an electric field that guides secondary electrons to the subsequent stage is likely to be generated. The multiplication factor can be further increased, and the detection sensitivity can be further increased.

また、以上説明した実施形態では、電子増倍部を備えた電子管として光電子増倍管を示したが、それ以外にも光電陰極を有さない電子増倍管、入力光像を輝度増幅するイメージ増倍管等の電子増倍部を備えた電子管であってもよい。   In the embodiment described above, a photomultiplier tube is shown as an electron tube having an electron multiplier. However, an electron multiplier having no other photocathode, an image for amplifying the luminance of an input light image. An electron tube having an electron multiplier such as a multiplier may be used.

本発明の好適な一実施形態に係る光電子増倍管の管軸方向に沿った端面図である。1 is an end view along a tube axis direction of a photomultiplier tube according to a preferred embodiment of the present invention. 図1の電子増倍部の要部を拡大して示す端面図である。It is an end elevation which shows the principal part of the electron multiplication part of FIG. 図2の仕切部材を拡大して示す端面図である。It is an end view which expands and shows the partition member of FIG. 図1のダイノードを管軸方向から見た平面図である。It is the top view which looked at the dynode of FIG. 1 from the pipe-axis direction. 図1の電子増倍孔における入射電子の軌道を示す図である。It is a figure which shows the track | orbit of the incident electron in the electron multiplier hole of FIG. 本発明の変形例にかかるダイノードの管軸方向に沿った端面図である。It is an end elevation along the pipe axis direction of the dynode concerning the modification of the present invention.

符号の説明Explanation of symbols

1…光電子増倍管、9,109…電子増倍孔、9a,109a…開口部(端部)、9b…開口部、10,110…ダイノード、12,112…仕切部材、12a,112a…上流側側面、12b,112b…下流側側面、12c…先端面、13,113,114…突起部、13a…窪み、14…窪み部、Z…管軸(積層方向)。   DESCRIPTION OF SYMBOLS 1 ... Photomultiplier tube, 9, 109 ... Electron multiplication hole, 9a, 109a ... Opening part (end part), 9b ... Opening part, 10, 110 ... Dynode, 12, 112 ... Partition member, 12a, 112a ... Upstream Side surface, 12b, 112b ... downstream side surface, 12c ... tip surface, 13, 113, 114 ... projection, 13a ... depression, 14 ... depression, Z ... tube axis (stacking direction).

Claims (8)

複数段に積層され、入射電子を増倍する複数チャネルの電子増倍孔を有するダイノードを備えた電子管であって、
前記電子増倍孔は、同一段の前記ダイノードにおける隣接チャネルどうしが仕切部材によって仕切られ、
前記仕切部材は、
前記ダイノードの積層方向に沿った断面が前記積層方向に対して傾斜して延びるように形成され、且つ、前段の前記ダイノード側の上流側側面には、前記前段のダイノード側の端部に沿った突起部が形成され、前記前段のダイノード側の先端面が前記積層方向に垂直な面に対して傾斜している、
ことを特徴とする電子管。
An electron tube comprising a dynode having a multi-channel electron multiplier hole stacked in a plurality of stages and multiplying incident electrons,
In the electron multiplier hole, adjacent channels in the dynode in the same stage are partitioned by a partition member,
The partition member is
A section along the stacking direction of the dynode is formed so as to extend inclined with respect to the stacking direction, and an upstream side surface on the dynode side of the previous stage is along an end portion on the dynode side of the previous stage A protrusion is formed, and the front end surface on the dynode side in the previous stage is inclined with respect to a plane perpendicular to the stacking direction.
An electron tube characterized by that.
前記仕切部材の前記突起部には、前記前段のダイノード側の端部に沿った窪みが形成されている、
ことを特徴とする請求項1記載の電子管。
In the projection of the partition member, a depression is formed along an end on the dynode side of the previous stage.
The electron tube according to claim 1, wherein:
前記仕切部材の後段の前記ダイノード側の下流側側面には、前記前段のダイノード側の端部に沿った窪み部が形成されている、
ことを特徴とする請求項1又は2記載の電子管。
On the downstream side surface on the dynode side in the rear stage of the partition member, a recess is formed along the end part on the dynode side in the front stage.
The electron tube according to claim 1 or 2, wherein
前記仕切部材の窪み部は、前記上流側側面の前記突起部の形成位置に対して反対側の前記下流側側面の位置に形成されている、
ことを特徴とする請求項3記載の電子管。
The recessed portion of the partition member is formed at the position of the downstream side surface opposite to the formation position of the protruding portion of the upstream side surface.
The electron tube according to claim 3, wherein:
前記仕切部材の後段の前記ダイノード側の下流側側面には、前記前段のダイノード側の端部に沿って更に突起部が形成されている、
ことを特徴とする請求項1又は2記載の電子管。
On the downstream side surface on the dynode side of the rear stage of the partition member, a protrusion is further formed along the end part on the dynode side of the front stage.
The electron tube according to claim 1 or 2, wherein
前記上流側側面の前記突起部は、前記電子増倍孔の前段の前記ダイノード側の開口部を含む第1の面と、後段の前記ダイノード側の開口部を含む第2の面との間の中点を含む面よりも前記第1の面寄りに配置されている、
ことを特徴とする請求項1〜5のいずれか1項に記載の電子管。
The protrusion on the upstream side surface is between a first surface including an opening on the dynode side upstream of the electron multiplier hole and a second surface including an opening on the dynode side in the subsequent stage. It is arranged closer to the first surface than the surface including the midpoint,
The electron tube according to any one of claims 1 to 5, wherein:
前記仕切部材の前記上流側側面は、前記突起部から前記先端面にかけて前段の前記ダイノード側に向けて湾曲するように形成されている、
ことを特徴とする請求項1〜4のいずれか1項に記載の電子管。
The upstream side surface of the partition member is formed so as to curve toward the dynode side in the previous stage from the protrusion to the tip surface.
The electron tube according to any one of claims 1 to 4, wherein:
前記仕切部材の前記上流側側面は、前記突起部から後段の前記ダイノード側の先端部にかけて前段の前記ダイノード側に向けて湾曲するように形成されている、
ことを特徴とする請求項1〜4のいずれか1項に記載の電子管。
The upstream side surface of the partition member is formed so as to bend toward the dynode side in the front stage from the protrusion to the tip part on the dynode side in the rear stage.
The electron tube according to any one of claims 1 to 4, wherein:
JP2007140853A 2007-05-28 2007-05-28 Electron tube Active JP4863931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140853A JP4863931B2 (en) 2007-05-28 2007-05-28 Electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140853A JP4863931B2 (en) 2007-05-28 2007-05-28 Electron tube

Publications (2)

Publication Number Publication Date
JP2008293918A true JP2008293918A (en) 2008-12-04
JP4863931B2 JP4863931B2 (en) 2012-01-25

Family

ID=40168421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140853A Active JP4863931B2 (en) 2007-05-28 2007-05-28 Electron tube

Country Status (1)

Country Link
JP (1) JP4863931B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262811A (en) * 2009-05-01 2010-11-18 Hamamatsu Photonics Kk Photomultiplier
US8492694B2 (en) 2010-10-14 2013-07-23 Hamamatsu Photonics K.K. Photomultiplier tube having a plurality of stages of dynodes with recessed surfaces
KR20180121792A (en) * 2016-03-29 2018-11-08 케이엘에이-텐코 코포레이션 Multi-channel optoelectronic amplifier assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155036A (en) * 1989-11-10 1991-07-03 Hamamatsu Photonics Kk Photomultiplier
JPH05182631A (en) * 1991-12-26 1993-07-23 Hamamatsu Photonics Kk Electron tube provided with electron multiplier
JPH0817389A (en) * 1994-06-28 1996-01-19 Hamamatsu Photonics Kk Electron tube
JP2002008528A (en) * 2000-06-19 2002-01-11 Hamamatsu Photonics Kk Manufacturing method and structure of dynode
JP2007095381A (en) * 2005-09-27 2007-04-12 Hamamatsu Photonics Kk Photomultiplier tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155036A (en) * 1989-11-10 1991-07-03 Hamamatsu Photonics Kk Photomultiplier
JPH05182631A (en) * 1991-12-26 1993-07-23 Hamamatsu Photonics Kk Electron tube provided with electron multiplier
JPH0817389A (en) * 1994-06-28 1996-01-19 Hamamatsu Photonics Kk Electron tube
JP2002008528A (en) * 2000-06-19 2002-01-11 Hamamatsu Photonics Kk Manufacturing method and structure of dynode
JP2007095381A (en) * 2005-09-27 2007-04-12 Hamamatsu Photonics Kk Photomultiplier tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262811A (en) * 2009-05-01 2010-11-18 Hamamatsu Photonics Kk Photomultiplier
US8492694B2 (en) 2010-10-14 2013-07-23 Hamamatsu Photonics K.K. Photomultiplier tube having a plurality of stages of dynodes with recessed surfaces
KR20180121792A (en) * 2016-03-29 2018-11-08 케이엘에이-텐코 코포레이션 Multi-channel optoelectronic amplifier assembly
KR102166395B1 (en) 2016-03-29 2020-10-15 케이엘에이 코포레이션 Multi-channel photomultiplier tube assembly

Also Published As

Publication number Publication date
JP4863931B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP3466712B2 (en) Electron tube
US5936348A (en) Photomultiplier tube with focusing electrode plate
US8013294B2 (en) Charged-particle detector
US8188656B2 (en) Photomultiplier tube
US5616987A (en) Electron multiplier
EP0597667B1 (en) Photomultiplier and electron multiplier
JP4863931B2 (en) Electron tube
US20060164008A1 (en) Electron multiplier unit and photomultiplier including the same
JP2010198911A (en) Photomultiplier tube
JP2925020B2 (en) Photomultiplier tube
JPH05182631A (en) Electron tube provided with electron multiplier
US20040159796A1 (en) Particle detection by electron multiplication
JP4108905B2 (en) Manufacturing method and structure of dynode
US4511822A (en) Image display tube having a channel plate electron multiplier
JP4173134B2 (en) Photomultiplier tube and method of using the same
JP4921248B2 (en) Electron tube
JP2011129362A (en) Microchannel plate assembly and microchannel plate detector
US7687978B2 (en) Tandem continuous channel electron multiplier
JP4756604B2 (en) Multi-anode type photomultiplier tube
US8492694B2 (en) Photomultiplier tube having a plurality of stages of dynodes with recessed surfaces
EP0471563B1 (en) Photomultiplier tube having grid type dynodes
JP5951203B2 (en) Detector
EP0495589A2 (en) Photomultiplier tube
JP5497331B2 (en) Photomultiplier tube
JPWO2005091333A1 (en) Photomultiplier tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250